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Abstract

High intensity focused ultrasound is a growing technique for tissue ablation, among
other uses, and given its destructive capabilities, there is a need for control of where
the energy is delivered. There exist a number of methods for focusing such ultrasound
arrays, but these often assume prior knowledge of the impulse response, or require
extensive full-system simulations. This thesis explores schemes for calculating impulse
and frequency response of simple but still nonhomogeneous media, and implements
different focusing methods, the spatiotemporal inverse filter, the Gerchberg-Saxton
algorithm, and gradient descent, to test them.

With a 128-channel transducer operating at 5 MHz, these techniques are carried
out in a simulated 2D setting on water and concrete with first a straight edge and then
an oblique one between the two media. With a focus depth of 5 cm, the techniques
are able to clearly outperform the uncompensated results, and were able to produce
feasible foci even for offset or multiple simultaneous foci locations.

Although the optimization-based method did fail to produce adequate results for
parts of the test, the overall investigation was seen as a successful venture, and that
extension of the techniques to more complex media and 3D settings would be needed
before any practical value can be realized.

Keywords: Focusing algorithms, k-wave, Spatiotemporal inverse filter, Gerchberg-
Saxton algorithm, Focused ultrasound
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Chapter 1

Introduction

Sound, in its most general definition, is simply mechanical waves passing through any
medium, be it solid, liquid, or gaseous. These waves can be of any frequency, but are
generally divided into three bands:

• Infrasound, with frequencies lower than 20 Hz. These vibrations are too low to
be heard by the human ear, but depending on intensity, they can be felt by the
body. Sources range from earthquakes to whale communication, to subwoofers
for music.

• Acoustic sound, with frequencies in the band between 20 Hz and 20 KHz.
This is the band which are detectable to the human ear, but the exact limits
vary, mainly based on age but also on other factors. Sources include the human
vocal cords, musical instruments, and generally everything.

• Ultrasound, with frequencies above 20 KHz. These waves are inaudible to hu-
mans, although longer exposure can result in health risks, so they certainly do
interact with the human body. Some animals use ultrasound for navigation,
such as bats, and dog whistles produce similar frequencies.

It is worth noting that there is nothing fundamentally separating these three cate-
gories in terms of physical characteristics.

Ultrasound today has a wide range of uses, and although medicine might be the
most well-known and prominent, it is hardly the only one. In nondestructive exami-
nation (NDE) industrial products are screened for internal cracks by using ultrasound.
Any cavity would cause rippling and unpredictable effects in the propagating sound,
and it is therefore possible to detect such anomalies without cutting up and exposing
the area in question.

The high-frequent vibrations can also be used for cleaning items such as jewelry or
parts of watches. The items are submerged in a liquid, and the sound waves give rise to
small jets, which efficiently clean the item, without causing the damage a traditional
cleaning method might have caused.

SONAR or similar detection techniques are found in animals such as bats, and
also onboard submarines and other boats today. They emit a sound pulse, and listen
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CHAPTER 1. INTRODUCTION 2

for an echo afterwards. If the time between the original signal and the echo is short,
the object they are aiming at is close nearby, and if it is long, the distance is greater.

Finally, although this list is anything but complete, there are also great opportu-
nities for ultrasound within medicine. The harmless nature of these waves, and the
relatively low costs of equipment make ultrasound a useful first screening tool when
locating cancer tumors or when checking the growth of a fetus in a pregnant woman.
Here, the principle is the same as with echolocation, in that a signal is sent, and then
the nature of the echo tells the radiologist about the physical characteristics of the
tissue present.

Ultrasound can also be used for therapeutic purposes, since it can elicit vibrations
in otherwise hard-to-reach tissue. This can raise temperatures which could kill cells,
it could also increase transmissibility of the blood-brain-barrier, which would then
increase uptake of substances, such as medicine, in the brain.

In such cases it is important that energy is only delivered to the desired regions.
Raising the temperature enough to kill cells in different parts of the brain could have
catastrophic consequences, and the need for an accurate focusing of the ultrasound is
needed. In the simplest case, it is sufficient to send pulses staggered in such a way that
they all arrive in the designated focus at the same time, but given the sometimes com-
plicated geometry, this is not always enough. In such cases, more powerful focusing al-
gorithms are needed, capable of adjusting for variable sound speeds in different regions
of the medium, and the scattering that occurs at the borders between these regions.
The aim of this thesis is the investigation of such methods, capable of compensating
for the scattering caused by the cranium, or similarly sharp-edged inhomogeneities.

Workflow overview

Given that the thesis was carried out at a university-independent institute, the work-
flow was more fluid than the usual phases of a thesis normally found at a university.
Before beginning, other minor tasks were done, in order to build familiarity with the
software and methodology that was to be used. Then, work started with implementing
all of the methods presented in this thesis more or less simultaneously, based on their
respective original sources. When additional theory was needed, this was searched for
in literature, with aid from my supervisor. There was thus no formal literature review
phase. This work was evaluated in 2-week cycles, up to a point where the results were
deemed satisfactory, and the writing process began.



Chapter 2

Theory

The first step towards developing models for how a phenomenon works, and to be
able to predict its results, is to understand the physics behind. In this chapter, the
wave equation is derived using a simple physical model, and this is then specified to
the problem at hand.

2.1 Physical background
A simple model for the interconnectedness of a medium is that it consists of point
masses connected with springs. In one dimension, this takes the form of a long array
of springs, as seen in figure 2.1.

Figure 2.1: An illustration of the model of matter used for the derivation of the wave
equation. Point massesm are connected bymassless springs, each with spring constant
k and length h.

Now, let the function u(x) denote the longitudinal disturbance from the equilib-
rium for weight in point x, towards the right. Thus, if the mass at point x0 is moved
some distance α to the right, then u(x0) = α. The forces acting on the weight in
an arbitrary point x can then be calculated as follows, with right being the positive
direction

Fprev = k(u(x− h)− u(x)), Fnext = k(u(x+ h)− u(x))

where subscripts indicate the forces corresponding to the previous and next springs,
correspondingly.

3



CHAPTER 2. THEORY 4

Newton’s first law then states

F = ma ⇒ k(u(x−h)−u(x)) + k(u(x+ h)−u(x)) = m
d2u

dt2

Rearranging gives

d2u

dt2
=

k

m

(
u(x− h)− 2u(x) + u(x+ h)

)
(2.1)

Now, the entire object is considered, with a total of N point masses. The total mass
becomes M = Nm and the total spring coefficient becomes K = k/N , as the
total equivalent spring coefficient becomes smaller when multiple spring are placed in
series[1]. Substitution of these new quantities into the previous expression yields

d2u

dt2
=

KN2

M

(
u(x− h)− 2u(x) + u(x+ h)

)
(2.2)

Finally, the number of point masses N can be rewritten as L/h, where h is the total
length of the object in question. Inserting this gives an expression of the well-known
form

d2u

dt2
=

KL2

M

u(x− h)− 2u(x) + u(x+ h)

h2
(2.3)

Matter, at the scale that is relevant for this thesis, can be considered a continuous dis-
tribution of mass, and therefore the limit h → 0 needs to be considered. Recognizing
the definition of the second derivative, the final expression

∂2u

∂t2
= c2

∂2u

∂x2
(2.4)

is reached. The constants KL2/M are collected into one, c2, for simplicity. The
constant c, as it so happens, is the propagation speed of waves in this medium. With
the inclusion of the spatial derivatives, the partial derivative notation is now also used.

This equation is known as the wave equation, and is the basis for the simulation
tools used in this thesis.

2.2 Modelling ultrasound transducers as linear systems
The wave equation in the previous section is the natural way to completely describe
any general sound propagation, but algorithms built upon it can be slow, especially
as demands for precision and accuracy become higher. A simpler way of modelling
the process is as a linear system, where the input consists of the sound that is sent out
through each element in the transducer, and the output is the resulting pressure in
our designated points, in practice also recorded with a transducer. These points would
include the focus, but also points where the pressure ideally should be 0.

A core part of the model is that it is linear, which means that if two different inputs
are entered at the same time, the output will be the sum of their respective outputs.
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In addition, each sender affects each receiver, and a model like the one in figure 2.2 is
the result.

Figure 2.2: A schematic of the model. Inputs are entered into the senders on the left,
which then travel along the arrows to the receivers and form the output. Each arrow
symbolizes one gm,n, a connection between a sender and a receiver.

Mathematically, this means the output f in a receiverm can be written as

fm =

N∑
n=1

gm,n(νn) (2.5)

which a sum of the contributions from each individual sender. The function gm,n
is the connection linking the input νn in sender n with receiver m, and would in
the simplest case include just delay corresponding to the travelling time, and a loss
in amplitude due to dispersion, but could also include bouncing and transmission at
medium edges, for instance.

The linearity allows not only for the splitting of the input into the different senders,
but also into each infinitesimal time instant. The way a system responds to an input
which is limited to one such time point is called the system’s impulse response, and
characterizes that entire part of the system. Summing these impulse responses back
together is done via an operation called convolution, which for one receiver would
become

fm =

N∑
n=1

hm,n × νn (2.6)

with the cross indeed denoting the standard convolution operator. The time-
dependence has been omitted for notational simplicity. This equation is the grounds
on which the majority of the modelling in this thesis rests.
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2.3 Modelling harmonic oscillationswith complex num-
bers

Equation 2.6 in the previous section can be made simpler if the input is restricted to
harmonic oscillations with some certain frequency ω. Then, assuming all transient
processes caused by the input being switched on have died down, the output will also
be an oscillation with the same frequency ω [2]. This can be succinctly expressed by
using complex numbers. First, let the input be defined as

νn = ane
2πiωt, an = Rne

iθn (2.7)

where Rn is the (real) amplitude and θn the phase delay of input νn. The variable an
thus contains both the amplitude and phase delay, as its absolute value and argument,
respectively. Then, the output becomes

fm = bme2πiωt, bm = Wmeiψm (2.8)

where the bm acts similarly to the an, but for the output oscillations. As this signal
travels through the medium, the phase and amplitude changes, which can be captured
in a complex variable Hm,n, known as the frequency response. The complete output
in one point therefore becomes

fm =

N∑
n=1

Hm,n νn (2.9)

Due to the multiplication being more allowing than the previous convolution, this
can be collected and written as a matrix multiplication. With matrices defined as

F =


f1
f2
f3
...
fm

 =


b1
b2
b3
...
bm

 e2πiωt = Be2πiωt, E =


ν1
ν2
ν3
...

νm

 =


a1
a2
a3
...

am

 e2πiωt = Ae2πiωt

(2.10)
and H as the matrix logically consisting of the elements {Hm,n}, the following

formulation is possible:
F = HE ⇐⇒ B = HA (2.11)

where the second form is possible because the factor e2πiωt can be factored out. Log-
ically, for two oscillations of the same frequency to be equal, all that is required is
that their respective amplitudes and phases are equal, which is exactly what the second
form describes. Because of its simplicity, this is the form that will be used throughout
the later parts of the thesis.



Chapter 3

Methods

3.1 Calculation of the impulse response
In order to develop methods for the calculation of an optimal focus, knowledge of the
impulse response is required. It is the link from input in the sender elements to output
in the receiver elements, and our methods will then later aim to invert this connection,
to instead go from a desired output to the input that would then be required.

3.1.1 Homogeneous media
The simplest case is when there are no obstacles or other sources of inhomogeneity in
the medium. For this case it is quite simple to envision the appearance an impulse re-
sponse would take, whichmakes it useful to create methods, that can then be expanded
to situations where intuition becomes harder.

A simple, seemingly obvious, solution would be to simulate these using the same
software that is then used for the verification. Themain issue that arises with this strat-
egy, is that a true delta-spike is impossible to emulate in a time- and space-discretized
grid, and that the results therefore may vary heavily from what is expected, and fur-
thermore might depend on simulation-related parameters.

A second option, that is also discarded, is to solve the wave equation analytically.
When the input is a delta-impulse, the output is, quite trivially, the Green function of
the wave equation. In two dimensions, this is

G(t, r) =
1

2πc
√
c2t2 − r2

δ(t− r/c) (3.1)

and in three dimensions

G(t, r) =
1

1πr
δ(t− r/c) (3.2)

where r is the distance between sender and receiver. While this might be the most
accurate solution in this case, it is impossible to generalize to heterogeneous media,
where the wave equation becomes impossible to solve analytically.

7



CHAPTER 3. METHODS 8

Figure 3.1: A comparison between the three described strategies for calculating the
impulse response.

The final option, which is the one chosen, is the simplest: to only use a delayed
impulse scaled by the dispersion factor. Sound intensity obeys an inverse square law,
which means that the pressure, which is the root of the intensity, scales as 1/

√
r in two

dimensions and as 1/r in three. Due to the unpredictable nature of a delta impulse in a
discretized setting, the proportionality constant is simply determinedwith simulations.

A comparison of these three methods can be seen in figure 3.1, where h64,64, the
impulse response from sender 64 to receiver 64, was calculated.

In the figure, it can be seen that the simulated impulse response is quite different
from what would be expected from theory, and has burst of noise at what would seem
to be quite arbitrary points, for instance at t = 0.07 ms.

The theoretical approach, however, predicts a maximal amplitude far greater, than
the one obtained in the simulations, whereas the delayed impulse obviously matches
it accurately, given that it is scaled to do exactly that. Given the observations and the
reasoning regarding scalability to more complex media, the delayed impulse becomes
the strategy of choice moving forward.

3.1.2 Inhomogeneous media with straight borders
The case when the sound speed is constant in the entire region is not of any notable
challenge and does not warrant any of the methods developed here, alone. The case
when two differentmedia are present however, becomesmore interesting. The simplest
case of this is pictured in figure 3.2, with two equally large regions of different sound
speed.



CHAPTER 3. METHODS 9

Figure 3.2: The sound speed in the first inhomogeneous medium considered.

Here, two different methods are devised, both utilizing the spherically emanating
nature of the sound wave.

Firstly, a standard raytracing method, where a certain amount of straight rays are
sent out from each sender element. If these rays miss the central border, they are
disregarded, but if they hit, they give rise to a similar cascade of equally spread rays
on the other side. When these then hit the receiver plate, the impact coordinate is
rounded to the nearest receiver element, and is considered to have hit there. The total
time is computed as the distance travelled in each region divided by the sound speed
there.

The secondmethod can be seen as a form of importance sampling. InMonte Carlo
simulations, this would mean sampling not from the true distribution, but from an-
other, which places higher probability on the outcomes that are considered important.
These outcomes are then scaled down by their true probability.

In this way, the second strategy instead sends rays to points equally spaced on the
border. From there, these are then sent to each receiver element. In both steps, the
amplitudes are scaled down to match the true amplitudes that would come, if the wave
was emanating spherically. An illustration of this can be seen in figure 3.3. It is easy to
see that this factor becomes the area of the receiving element, as seen from the source,
making the weights

Wθ = cos θ (3.3)
where θ is the angle of deviation from the center.

An example of how the resulting impulse responses for the homogeneous case, and
then the two methods for the inhomogeneous case look, can be seen in figure 3.4.

3.1.3 Oblique region borders
The final case is when the region border, that separates the areas of different sound
speeds, is oblique with some angle . There is no fundamental change to the structure
of the methods used, but the calculation of the incident angle now has to also include
the angle of the medium border. This changes the weighting factor to

Wθ = cos(θ + α) (3.4)
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Figure 3.3: An illustrations showing the effects that cause larger angles of deviation
to be weighted less. The red angle to the more distant border element is smaller, and
it therefore constitutes a smaller part of the spherically emanating wave, even though
the corresponding border elements are of equal size. When just considering the wave
as rays travelling to the points, this effect is lost.

Figure 3.4: A comparison of the impulse responses for sender 64, in the middle of the
sender array. In the first subplot, the impulse response for the homogeneous case is
shown, and in the second and third, the response for medium 2, with the two different
methods of calculation.
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For the raytracing method, calculating the collision point on the edge now requires
a small equation system to be solved, but it is hardly a difficulty.
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3.2 Spatiotemporal inverse filter
With knowledge of how to calculate the impulse responses, a focusing algorithm can
now be created. The fundamental equation that describes the system when the input
is not necessarily harmonic is

fm =

N∑
n=1

hm,n × νn (3.5)

By usage of the Fourier transform, the convolution becomes a simple multiplication

Fmω =

N∑
n=1

Hm,n(ω)En(ω) (3.6)

where the dependence on ω as argument has been added for clarity. This can of course
be written as a matrix multiplication

F (ω) = H(ω)E(ω) (3.7)

where, at least theoretically, only a matrix pseudoinverse is needed to compute E:

E = (HTH)−1HTF (3.8)

In fact, as the pseudoinverse essentially is a projection, this would result in an op-
timal E in terms of least squares. In practice, however, the matrix H tends to be
ill-conditioned, and virtually rank-deficient. In other words, it has some amount of
very small singular values. When inverting, these becomes very large, and what was
once small errors in H , now becomes major deviations from the expected results.

3.2.1 Inverting theH matrix
Instead of the naïve approach with the pseudoinverse, a singular value decomposition
is performed:

H = UDV ∗ (3.9)

Here, U and V are unitary matrices of sizeM×M andN×N respectively, * denotes
the Hermitian conjugate, andD is a matrix of the same size asH ,M×N , containing
the singular values of H on the diagonal.

Now, all but the P largest singular values are set to 0, in order to avoid the ill-
conditioned problem. P will be determined in the next section. This new matrix D̃
can be symbolically inverted by inverting each remaining singular value:

D =


d1 0 0 0 · · ·
0 d2 0 0 · · ·
0 0 d3 0 · · ·
0 0 0 d4 · · ·
...

...
...

...
. . .

⇒ D̃−1 =


1/d1 0 0 0 · · ·
0 1/d2 0 0 · · ·
0 0 1/d3 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .


(3.10)
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Here, P was 3, but this value will of course vary, and in general, be substantially larger.
Now that the small singular values that previously gave rise to unpredictable results

have been removed, the new inverse H̃−1 can be constructed:

H̃−1 = V D̃−1U∗ (3.11)

That allows us to determine the optimal E:

E = H̃−1F (3.12)

3.2.2 Determining the number of relevant singular values
During the singular value decomposition, all but the largest P singular values were
removed, but how this value should be determined has not yet been discussed. Three
different strategies were tried:

For the first option, the matrixD represents all the independent ways in which the
output can be varied in the specified frequency. This has been shown to correlate with
the amount of possible sidelobes[3], or secondary maxima, capable of being emitted
from the sender array, at that frequency:

P =
2DR

λ
sin
(
arctan

DS

2Z

)
(3.13)

The parameters DR, DS and Z relate to the geometry of the simulation as in figure
3.5.

Figure 3.5: An illustration explaining the various geometrical parameters introduced in
order to calculate the number of relevant singular values by the first proposed method.
Note that in all of the cases investigated in this thesis, DS = DR.

To recover the value of λ, an investigation of the Fourier transform is needed. For
H , the calculation was
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Hm,n(ω) =

Ω−1∑
t=0

hm,ne
2πiω/Ω (3.14)

Ω is here the total amount of timesteps in the simulation, and the amount of distinct
frequencies that are part of the spectrum. The normalized frequency in this case be-
comes ω/Ω. This represents the number of cycles per sample, with aliasing when are
above the Nyquist frequency. We can recover the actual frequency as

f =
ω

Ω
fs =

ω

Ω∆t
(3.15)

The spatial frequency is then controlled by the speed of the wave:

fs = f/c0 ⇒ λ = c0/f (3.16)

The second strategy is based on a simple threshold; all singular values that are above
a certain magnitude are kept, and the rest are discarded. This has proven to be quite
cumbersome in practice, since this threshold has to be determined for each case, and
changing any geometrical parameter would require a recalibration of this value.

Thirdly, the energy of the matrix, which is the sum of the singular values, can be
calculated. Then the smallest values are removed, until only some certain fraction of
the original energy remains, for instance 95%.
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3.3 Calculating the frequency response
Before moving on to the two remaining focusing methods, the matter of the frequency
response must first be dealt with. Given that waves propagating are harmonic, some
additional methods are possible, but the same method that was used for the impulse
response also works here.

3.3.1 Raytracing methods
This is an modification of the techniques used for calculating the impulse response,
which worked by sending out rays of sound, and seeing how they bounced, dispersed
and eventually reached a receiver element. The same of course works for harmonic
waves. In fact, attentive readers will notice that the impulse response can be used
to calculate the output to any input, using a convolution. Therefore, the frequency
responseHω

m,n satisfies the following:

Hω
m,n sin 2πωt (3.17)

The reasoning can be made even simpler if only the phase delay and change of ampli-
tude is considered. Then, if the input from some sender element n is

en = e2πωit (3.18)

then in the homogeneous case, the output caused by this becomes

fm =
ke2πi

d
λ

√
d

e2πωit = Hω
m,ne

2πωit (3.19)

following previous reasoning about dispersion.
Extending this to inhomogeneous media is also quite simple. When there are

no inhomogeneities, there is essentially only one ray that is relevant. With a border
between sender and receiver, all that changes is that more rays are capable of producing
outputs. Adding all of them gives an expression for the total frequency response.

3.3.2 Angular Spectrum
For media with either no inhomogeneities or with borders that are parallel with the
sender array and thus at a right angle with the propagation direction, it is possible to
calculate the frequency responses using the angular spectrum approach. This method
consists of three steps:

Firstly, a spatial Fourier transform is done in the plane which is being propagated,
perpendicular to the direction in which the waves are going. This produces what is
known as the angular spectrum U :

U(kx, 0) =

∫ ∞

−∞
A(x, 0)e−ikxx dx (3.20)

A is here, just as in the theory chapter, the complex vector containing phase and
magnitude of the field, in this case at z = 0 which is at the sender transducer.
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Then, this spectrum is multiplied with a propagation kernel

T = eiz
√
k2z − k2x (3.21)

where z is the distance at which the wave front should be propagated, and the k are the
wavenumbers in the respective directions, which is a scalar for z, and dependent on
the frequencies in the Fourier transform for x. With this kernel, the angular spectrum
can be evaluated at any z:

U(kx, z) =

∫ ∞

−∞
A(x, 0)e−ikxxeiz

√
k2z − k2x dx (3.22)

All that remains is an inverse transformation to recover the field:

A(x, z) =

∫ ∞

−∞
U(kx, z)e

ikxx dx (3.23)

Now, this has some drawbacks that need to be combatted pertaining to the spatial
Fourier transformation. It assumes the function is periodic, and thus, any wave exiting
the simulation area through one of the sides, will reenter through the opposite side.
This can be solved with either sufficient zeropadding to the point where the errors
caused by this effect are negligible, or through a mirroring of the simulation area, with
the new sources being negative. This would ensure perfect destructive interference on
the borders and also remove this effect.

More egregious is, however, the inability to process oblique borders. Because the
wave front needs to be parallel with the sender array and is propagated assuming equal
sound speed in the entire front, it is simply not possible without major extensions to
the method.
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3.4 The Gerchberg-Saxton algorithm
In some cases, it is necessary to impose restrictions on the input, most commonly
because of equipment limitations. For the case when the input needs to be harmonic,
with some preset frequency and amplitudes, the Gerchberg-Saxton algorithm can be
used to calculate the phase distribution that will give rise to some desired output.

As in section 2.3, the input is set to

E =


a1e

2πift

a2e
2πift

a3e
2πift

...
ane

2πift

 = Ae2πift (3.24)

The output then, as previously, becomes F = Be2πift, with B = HA.
Now, only the amplitudes in A are actually relevant, since the phases are to be

determined. Therefore, the phases are replaced with uniformly random values on the
interval [0, 2π]. Then, this quantity is transformed usingH , in order to determine the
resulting output, changing both the amplitudes and phases.

The amplitudes are discarded and replaced with the desired output amplitudes, but
the phase content is kept. This is then transformed back to the input plate usingH−1,
the calculation of which will be discussed later. To now finish the iteration, the am-
plitudes are replaced with the preset input amplitudes |A|, and the process is repeated
until some convergence criterion is met, in this implementation when the difference
||(n + 1)−(n)|| between one iteration and the next was under some threshold, after
being normalized so that the first in each vector has delay 0. Given that the output
phase is never specified, the result is only the relative phase distribution in the input
plate, and the normalization step is therefore needed.

A flowchart of the algorithm can be seen in figure 3.6.

Figure 3.6: A flowchart detailing the Gerchberg-Saxton algorithm.

In the original implementation of the Gerchberg-Saxton algorithm, light scatter-
ing was studied, and there, the transform connecting the nearfield with the far-field
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was instead the spatial Fourier transform F [4], for which there is well-studied inverse
F−1. Given the geometrical differences between this case and theirs, the transform
matrixH instead has to be used here, for which the inverse is not as obvious. Similarly
to when the method for the inverse spatiotemporal filter was developed, the H matrix
is often ill-conditioned, and the solution is the same now as previously:

1. Compute a singular value decomposition H = U∗ΣV

2. Threshold the singular values and set the sufficiently small ones to 0

3. Invert the nonzero ones and reform the inverseH−1 = V ∗Σ−1U

For non-quadratic matrices H , which arise when the number of senders N and
receivers M are different, a least-squares problem will need to be solved in one of the
directions. This can be done with the pseudo-inverse [5] and a similar as used here
technique for circumventing the low condition number.
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3.5 Optimization methods
An optimization-based approach is, at least in theory, very general. In this setting, it
could be limited to three different cases:

• The inputs and outputs are not necessarily harmonic, similar to the problem
solved by the spatiotemporal inverse filter.

• The system is harmonic, but both amplitude and phase of the inputs can be
controlled. Only the amplitude of the output is relevant, not the phase.

• The system is harmonic, and only the input phases can be controlled. The
output phases are once again, discarded.

The cases when the phases of the outputs are considered relevant could also be
solved by themethods in this section, and would in fact make themathematical deriva-
tions simpler, but for most practical purposes and actual applications they are not rel-
evant. Therefore, their inclusion would only constrain the algorithm unnecessarily,
and cause an inferior result.

In the first case, the spatiotemporal filter is already optimal in the least squares
sense, and therefore, what will likely be a computationally more intensive optimiza-
tion algorithm simply serves no purpose. Likewise, in the last case, the already devel-
oped GerchbergSaxton algorithm solves the problem quite quickly and with adequate
results, although it is hard to reason if they are optimal or not[4]. Thus, the case with
harmonic inputs with variable phases and amplitudes will be the focus of this chap-
ter. The model will therefore be based on complex-number modelling and frequency
responses as developed previously.

As before, the system can be summarized with the equation

B = HA (3.25)

with absolute value and argument of the vectorsA andB detailing the magnitude
and phase of the sound field at the input and output, respectively. Here, however, the
desired B is not a fully complex vector, but rather just real values corresponding to
the wanted output magnitudes. Therefore, comparing B withHA makes little sense,
and instead, an optimizing function should be constructed as

f(A) = g(|HA| −B) (3.26)

The corresponding quadratic form is the standard choice, and is also selected in
this case:

f(A) = (|HA| −B)TW (|HA| −B) (3.27)

The weighting matrix W is a square matrix with elements wk only on the diagonal
corresponding to the importance given to individual output elements.
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3.5.1 Calculating the gradient of the penalty function
A prerequisite for many methods is knowledge of the gradient, which first requires the
rewriting of the optimizing function as

f(A) =

M∑
m=1

wm

(
|
N∑
n=1

Hm,nam| − bm

)2
(3.28)

Next, calculating the gradient with respect to am will not produce the wanted results,
given its complex nature. Instead, the separation

an = θn + iγn, θn, γn ∈ R (3.29)

is necessary. Now, the first step of the calculation can be carried out, using the chain
rule for derivatives:

∂f

∂θk
= 2

M∑
m=1

(
wm

(∣∣∣ N∑
n=1

Hm,nam

∣∣∣− bm

) ∂

∂θk

∣∣∣ N∑
n=1

Hm,nam︸ ︷︷ ︸
S

∣∣∣) (3.30)

The inner derivative requires some more attention, and can be computed by imagining
it more geometrically. In the complex plane, the entire expression within the absolute
value is simply a point, and as θk changes, this point moves in the direction ofHm,k.
This can be seen in figure 3.7.

Figure 3.7: A geometrical illustration of the derivative calculation.

The movement of the total sum S as the differentiating variable θk changes can be
split into two parts, one parallel with the vector S, and one perpendicular to it. The
ratio of these parts is controlled by the angle α as seen in figure 3.7.

The perpendicular part just rotates the vector, and in the limit as this movement
becomes infinitely small, this of course causes no change to the absolute value. Instead,
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the parallel part is responsible for the change in absolute value of the vector S, which
then logically ends up having the magnitude |hm,k| cosα.

Thus, the total derivative becomes

∂f

∂θk
= 2

M∑
m=1

(
wm

(∣∣∣ N∑
n=1

Hm,nam

∣∣∣− bm

)
|hm,k| cosα

)
(3.31)

In the case of the γk, the calculation is very much the same, except there is an
additional i to consider. As γk increases, the sum moves in the direction of ihm,k,
and with β denoting the angle between S and ihm,k, the derivative can be written as

∂f

∂θk
= 2

M∑
m=1

(
wm

(∣∣∣ N∑
n=1

Hm,nam

∣∣∣− bm

)
|hm,k| cosβ

)
(3.32)

where the multiplication with i of course did not change anything in the absolute
value |hm,k|.

3.5.2 Gradient descent
As the aim of this section is not to develop the best possible optimization method, but
rather, to verify its feasibility, the perhaps simplest method is chosen: gradient descent.
It uses the prior knowledge of the derivative to continuously update an initial guess,
by always stepping in the direction in which the function decreases the sharpest. One
iteration can be written as

xn+1 = xn − η∇f(xn) (3.33)

where η is a set value called the step size, indicating how far the method should go
in the direction of the gradient. Because minimization is the goal, the step is always
in the direction of the negative gradient. Various step sizes were tested without any
major changes in result, and the final used was η = 0.01.
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3.6 Testing procedure
The main results were compared for three different cases:

• Focus 1: a focus at distance Z = 5 cm from the transducer, centrally in front
of the sender.

• Focus 2: a focus also at distance Z = 5 cm, but at x = −1.5 cm, i.e. not
centrally in front of the transducer.

• Focus 3: two foci at Z = 5 cm, at x = 1.5 cm and x = −1.5 cm, respectively.

Each of these foci were tested for three different media:

• Medium 1: homogeneous water, with c = 1500 m/s and ρ = 1000 kg/m3.

• Medium 2:a focus also at distance Z = 5 cm, but at x = −1.5 cm, i.e. not
centrally in front of the transducer.

• Medium 3: two foci atZ = 5 cm, at x = 1.5 cm and x = −1.5 cm, respectively.

The full simulation parameters can be seen in table 3.1.

Variable Value Explanation
N 128 Number of sender elements
M 128 Number of receiver elements
s 300μm Spacing between elements
Z 70mm Distance between sender and receiver plates

∆x 100μm Spatial discretization
∆t 50 ns Temporal discretization
T 80 μs Total simulation time

Table 3.1: A summary of the parameter values that were chosen for the simulations.

All tests were carried out using the open-source simulation software k-wave[6]
version 1.3, and the methods were implemented in Matlab. The simulations were run
on a HP laptop with an Intel i77500U processor at 4 × 2.70 GHz. The operating
system was Ubuntu 20.04.
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Results

4.1 Spatiotemporal inverse filter
For the spatiotemporal inverse filter, the method for determining how many singular
values to remove first had to be chosen, which was done using the first medium. The
optimal output was considered to be a geometrically focused 2-sinus-burst in homo-
geneous water, and the reconstruction capabilities of the different variations on the
filter were tested. Multiple frequencies between 1 and 20 MHz were tested to ensure
that the higher performance of one method over another was not simply the cause of
the specific parameters.

Then, all results for the three media, using the chosen technique for removing the
smaller singular values, are presented. For the third focus, with two different foci, the
respective inputs were simply added together.

The general testing procedure was here to first simulate a geometrically focused
sender in homogeneous water, and then to use these results as the target for all future
simulations. This process is described more thoroughly below. Then, if the filter could
produce an equally good result in the presence of inhomogeneities, it could be said
that it successfully compensates for them.

4.1.1 Comparison of singular value removal methods
For this first test case, only the first focus was used, and the distances to this element
from each element in the sender array was calculated, as well as the corresponding
travel times. The chosen input was this time a 2-sinus-burst at a variable frequency ω,
or in other words the function

f(t) = sin 2πωt, 0 ≤ t ≤ 2

ω
(4.1)

This input was then staggered, so that all pulses would arrive in the focus at the same
time, with the first inputs being sent at t = 0. This can be seen in figure 4.1.

23
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Figure 4.1: A plot showing the staggering of the input from the different transducer
elements, in order to have them all arrive in receiver element 64 at the same time. The
middle element travels the shortest distance, which results in the corresponding pulse
being sent the last. Not all element inputs are shown, and the scale of the inputs has
been chosen for visual clarity.

This simulation was then carried out using the MATLAB package k-wave[6], and
the results can be seen in figure 4.2.

Figure 4.2: The results of the forward simulation with inputs as in figure 4.1.

The test was now to use this as the desired output and recreate the original input.
The results of this can be seen in figure 4.3. The threshold used was 1, but multiple
values were tested, and this was regarded the best in this case. Similarly for the energy-
based method, multiple values were tested, and keeping 95 % was deemed optimal.
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4.1.2 Inspection of the singular values
Before passing judgment on the three methods, a closer look at the actual singular
values would also be prudent. In the ideal case, every frequency contains some amount
of clearly nonzero singular values, and then some amount of negligibly small ones, and
these are then, without ambiguity, separated by the algorithm of choice.

The distribution of singular values for two different frequencies can be seen in
figure 4.4. They are based on the impulse responses from the test case used in the
previous section.

With an eye to the results produced by the different strategies, and also the down-
side of the threshold having to be chosen specifically for each case, the energy-based
approach is chosen. It is intuitive, universal, and easy to scale to more complex ge-
ometries or to three dimensions, which, for instance, would require a reworking of the
frequency-dependent scheme.

Figure 4.3: The result of each method for removal of small singular values. The third
option is clearly the best at capturing the original input, with no major deviations
during the initial parts, and no signals at all during the later parts of the process. The
actual values, as indicated by the colorbar on the right do not take dispersion into
account and are therefore erroneous on their own, but still useful for the comparison.
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Figure 4.4: A comparison between the size and amount of singular values that the
different methods include. In the second diagram, the two first essentially overlap,
and both include all available singular values.

4.1.3 Medium 1
The first medium is simply the homogeneous case, so it is impossible to argue based
on these results if the method can compensate for inhomegeneities in the medium.
Nevertheless, they prove a valuable tool for validating that the methods work at all.

Furthermore, the differentmethods for computing the impulse response essentially
become the same in this case, since there is no edge aroundwhich any kind of scattering
could occur.

The results for the three foci can be seen in figures 4.5, 4.6, and 4.7, and it is clear
that the geometrical foci are well reconstructed, and there are no major deviations,
neither in calculated input or resulting output.
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Figure 4.5: The results of the spatiotemporal inverse filter for focus 1 in medium 1.
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Figure 4.6: The results of the spatiotemporal inverse filter for focus 2 in medium 1.
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Figure 4.7: The results of the spatiotemporal inverse filter for focus 3 in medium 1.
The rightmost plots have had the xaxis cut so that both foci are visible and zoomed in.

4.1.4 Medium 2
For the second medium, there are two schemes for calculating the impulse response
to compare, the one based on importance sampling, labelled importance in the fig-
ures, and the raytracing-based method. These are visually compared for the different
foci in figures 4.8, 4.9, and 4.10 below. In order to prove that they are indeed an
improvement, the result from the geometric focus is also included, labelled without
compensation.

As can be seen, there are no major differences between the two methods for this
medium, but they are both improvements to the method, compared to simply disre-
garding the changing medium. Numerical examination similar using errors from the
desired focus also did not manage to separate them noticeably.
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Figure 4.8: The results of the spatiotemporal inverse filter for focus 1 in medium 2,
with the two different methods for calculating the impulse response pictured. The top-
left target indicates the ideal focusing, that the methods are trying to replicate, while
the bottom left shows the results when not taking the inhomogeneities into account.

Figure 4.9: The results of the spatiotemporal inverse filter for focus 2 in medium 2,
with the two different methods for calculating the impulse response pictured.
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Figure 4.10: The results of the spatiotemporal inverse filter for focus 3 in medium 2,
with the two different methods for calculating the impulse response pictured.

4.1.5 Medium 3
For the third medium, the two schemes for calculating the impulse response are once
again compared, as with the previous section. These comparisons are shown in figures
4.11, 4.12, and 4.13 below, for the respective focus situations.

Once more, it proves difficult to discern the two methods, and visually, it is im-
possible to rank them.
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Figure 4.11: The results of the spatiotemporal inverse filter for focus 1 in medium 3,
with the two different methods for calculating the impulse response pictured.

Figure 4.12: The results of the spatiotemporal inverse filter for focus 2 in medium 3,
with the two different methods for calculating the impulse response pictured.
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Figure 4.13: The results of the spatiotemporal inverse filter for focus 3 in medium 3,
with the two different methods for calculating the impulse response pictured.

4.2 The Gerchberg-Saxton algorithm
With this method, there is no time-dependence, but rather, an infinitely stretching
oscillation as input gives rise to a similarly infinite oscillation as output. Therefore,
only the amplitudes are shown in the following graphs. The frequency was 5 MHz
and there were no other changes compared to the previous section.

Furthermore, the target was once more set to be the result of a geometric focus,
where every sender was delayed so that the oscillations reach the focus at the same
time. In the third case, the inputs were first calculated for each of the two foci, and
then the average was used.

As can be seen, the differences are quite small between the different variations, so
the following performance measure e, the error in the 2-norm, was also used:

e = ||ftarget − fmethod||2 =

N∑
n=1

(
f
(n)
target − f

(n)
method

)2
(4.2)

All the results were normalized by the condition ||f || = 1 prior to calculating the
errors.

4.2.1 Medium 1
The first medium is completely homogenous, and therefore the result here just shows
the ability of the method to recreate a focus that is completely attainable. Because
there is no scattering, there is no need to calculate the frequency response matrix in
any other way than the direct. As can be seen in figure 4.14, the target is recreated
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well, with only some additional energy being sent to the middle when using the third
focus.

Figure 4.14: The amplitudes of the oscillations in the output plate for medium 1 after
a focus had been calculated using the Gerchberg-Saxton method.

4.2.2 Medium 2
For the second medium, there are three methods for determining the frequency re-
sponse to compare: the importance sampling method, denoted importance, the one
based on raytracing and the method built on propagating the angular spectrum. These
are visually compared in figure 4.15.
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Figure 4.15: The amplitudes of the oscillations in the output plate for medium 2 after
a focus had been calculated using the Gerchberg-Saxton method.

In table 4.1 below, the squared errors can be seen.

Importance Raytracing AS Uncompensated
Focus 1 0.45 0.40 1.10 0.95
Focus 2 0.63 0.77 1.10 0.99
Focus 3 0.44 0.45 0.98 1.21

Table 4.1: A table of the squared errors produced by the different methods for cal-
culating the frequency response, when used with the GerchbergSaxton algorithm for
medium 2.

4.2.3 Medium 3
For the third medium, there are only two methods for determining the frequency re-
sponse to compare: the importance samplingmethod, and the one based on raytracing,
given that the angular spectrum approach only works when the edges are perpendic-
ular to the propagation direction. The two methods are visually compared in figure
4.16. In table 4.2 below, the squared errors can be seen.
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Figure 4.16: The amplitudes of the oscillations in the output plate for medium 3 after
a focus had been calculated using the Gerchberg-Saxton method.

Importance Raytracing AS Uncompensated
Focus 1 0.55 0.49 1.11 0.95
Focus 2 0.65 0.65 1.10 1.02
Focus 3 0.55 0.56 0.98 1.01

Table 4.2: A table of the squared errors produced by the different methods for cal-
culating the frequency response, when used with the Gerchberg-Saxton algorithm for
medium 2.

4.3 Optimization-based methods
The results for the optimization-based methods are displayed similarly to those from
the Gerchberg-Saxton algorithm, given that they are also harmonic, and that the am-
plitude is the only important output.

4.3.1 Medium 1
As can be seen in figure 4.17, the method is capable of recreating the focus in homo-
geneous media.
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Figure 4.17: The amplitudes of the oscillations in the output plate after a focus had
been calculated using the optimization method, for medium 1.

Figure 4.18: The amplitudes of the oscillations in the output plate after a focus had
been calculated using the optimization method, for medium 2.
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Importance Raytracing AS Uncompensated
Focus 1 0.40 0.42 1.08 0.95
Focus 2 0.40 0.50 0.93 0.99
Focus 3 0.43 0.46 1.03 0.86

Table 4.3: A table of the squared errors produced by the different methods for cal-
culating the frequency response, when used with the optimizationbased algorithm for
medium 2.

4.3.2 Medium 3
For the final medium, this approach struggled to even converge. With the first focus,
all methods converged to a result, but it could hardly be described as accurate. For the
second two the importance sampling method increased exponentially for the entire
process, reaching values on the order 1010 during the allotted 100 iterations of the
optimization loop. It has therefore been omitted from figure 4.19, where the others
have been plotted.

Figure 4.19: The amplitudes of the oscillations in the output plate after a focus had
been calculated using the optimization method, for medium 3.
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Discussion

For one homogeneous medium, and two inhomogeneous ones, the presented meth-
ods were tested. Both the different schemes for generating impulse and frequency
responses, and the subsequent focusing algorithms were tested in combination. For
the impulse response, no major differences were found between the methods, and the
spatiotemporal inverse filter using these was a significant improvement compared to
not compensating for the inhomogeneities. For the frequency response, the angular
spectrum method failed to produce useful results, but using the other methods, the
Gerchberg-Saxton and the optimization algorithm was able to compensate for inho-
mogeneities. The optimization method failed to converge in one case.

5.1 Comments on results
At a cursory glance, all methods seem to produce results that at least at a general level
follows the desired focus. Compared to not including any compensation, there is a
significant improvement, justifying the use of these methods.

5.1.1 Spatiotemporal inverse filter
For the first focus, an essentially perfect recreation was achieved, and warrants no
further attention. For the second medium, there was significant smearing of energy
timewise, causing a longer pulse than intended. This is clearly not optimal, but in
the case of focused ultrasound for killing cells, this can be compensated for with a
lower amplitude[7], however given the nonlinear terms that do arise when modelling
sound propagation in tissue[8], this might cause further errors in real experiments.
The spatial accuracy is also lower than the desired focus, which carries with it more
significant biological consequences, and limits the usage of this technique to cases
where the target is 2 mm or larger.

For the third medium, the trend continues, and the focus is smeared timewise,
causing an intended duration of less than 1 µs to last more than 10 times that. Here,
the spatial focusing also worsens.

39
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One likely explanation for the resulting outputs lasting longer than intended is
the more smeared impulse responses. This can be seen in figure 3.4. Because the
waves send from each sender hits the same edge centrally in the medium, the duration
of these impulse responses are of the same order, and it is thus difficult to perfectly
match them so that they cancel out in the nondesireable area in time and space.

In general, there is no major difference between the importance sampling method,
and the raytracing method, and numerical investigation also failed to distinguish them
particularly. Given that, as the number of rays increase, and the spatial discretization
becomes finer, the twomethods converge towards the same, it seems unlikely tomatter.
As can be seen in figure 3.4 there is still some difference with the parameter values used
for this study, but they are minimal.

5.1.2 Gerchberg-Saxton and optimization
These methods might, at first sight, appear to perform better than the spatiotemporal
inverse filter, but that is simply because there are no errors in timing, only in space.
In general, they are able to reproduce the peaks well, but leak some more energy into
the other regions than the ideal focus. This is, of course, excluding medium 3, where
the optimization method did not produce a feasable result. For medium 2, however,
the numerical errors were slightly lower for the optimization approach, but this can
be explained by it optimizing over both amplitude and phase, and not just the latter.

For the first medium, there are no major differences, and both methods accurately
capture the indended focus. For the second and third media, the need for compensa-
tion becomes evident. The uncompensated version produces a focus that is far wider
than either method, and in the third case it is also misaligned.

Similarly to the spatiotemporal inverse filter, there does not seem to be any mean-
ingful difference between the importance sampling method and the raytracing one.
The method based on the angular spectrum, however, fails to produce any sensical
results and is not better than the uncompensated result. This is likely because of the
wrapping caused by the spatial Fourier transform, causing unwanted paths around the
medium to the receiver. Even though this could be combatted with zero-padding, dif-
ferent amounts of zero-padding gave different results. In a normal simulation, there
would be a limit where the waves simply would not reach around in time, but be-
cause the results are the steady-state solutions, this is not the case here. The mirroring
approach also did not solve this issue completely.

Putting the results into context, the focus recreated by the Gerchberg-Saxton is
approximately 1 cm wide, if the borders are put where the intensity drops below 10%
of its peak. This is the scale at which brain tumours do appear[9], making it a poten-
tially useful method for that application. This focus is a limitation of the transducer,
and in order to accomodate a better focus, either more channels would be needed, or
the distance to the focus would need to be decreased.
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5.2 Possible improvements
Although the results are promising, the modelling is quite crude, and the possibilities
for improvements are large. In general, these were seen as beyond the scope of this
thesis, and in some cases, expensive or impossible to implement practically.

5.2.1 Improvements to impulse and frequency response calcula-
tion

Sound propagation and transmission at surfaces is quite complicated, and there are
many factors that were not considered. Firstly, there are nonlinear terms when sound
is travelling through tissue that would essentially invalidate the entire model.

Barring that, there are some parts of the sound transmission past themedium edges
that are also not considered. A wave passing an medium border may give rise to surface
waves, propagating on the edge[10], which of course direct some energy away from
the main direction of propagation.

Otherwise, the modelling approach based on rays is a relatively sound one, and
certainly an approach that is used in many other fields, even when the simulated field
does not actually contain any rays or travelling particles, such as geophysics[11]. It has
also been used for calculating specifically impulse responses in acoustics[12], albeit in
a slightly more advanced framework.

The naïve solution of simulating the responses would in theory work well, but
numerical errors cause the solutions to become quite inexact, as can be seen in the
earlier figure 3.1. This then cascades to the calculation of the optimal inputs, and the
end result becomes worse than the other methods. Simulating N = 128 senders is
also time-consuming, as one simulation on an average computer took approximately
5 minutes, making the entire process last more than 10 hours.

The ultimate solution is of course to conduct physical experiments to determine
the responses of the medium. This has been done [13] for human craniums, but even
then, they had to fill the empty space with water, which admittedly does mimic most
non-bone tissues relatively well in terms of sound speed, but certainly is not equal.
Furthermore, one strength of a simulation approach is its generality; it is possible to
perturb the model slightly, whereas it is impossible to test on different geometries than
specifically those crania that are available.

5.2.2 Improvements to the focusing methods
The spatiotemporal inverse filter

The spatiotemporal inverse filter is, at its core, just solving a linear equation system for
each frequency. In a least squares sense, this is then solved optimally, which makes the
room for improvement zero. But, by use of zeropadding for the impulse responses,
the resolution in the frequency domain could be made smaller, which could lead to a
more accurate result. This is perhaps more so the case when the impulse responses are
recorded through physical experimentation though, as the signals there would have
energy in every frequency, in the general case. In a simulated setting, this can be



CHAPTER 5. DISCUSSION 42

controlled to a greater extent, and everything would also be subject to the limit posed
by the time resolution.

The different schemes for discarding the lowest singular values also deserves some
attention. Previous research did provide a formula[14] for calculating the rank of
the matrices that appears in the equation systems for each frequency when using the
filter, and it does indeed correlate with a sharp drop at least for the first frequency, but
numerical investigations showed that there was some energy left behind for others, as
pictured in figure 4.4. This might however be a result of the idealized conditions in
this thesis. The fact that the energy-based method produced a visually better result, as
evidenced by figure 4.3, does speak for its usage at least in this setting though.

The Gerchberg-Saxton algorithm

The main problem with the method, as it is currently used, is that there is no proof
of convergence. When using the Fourier transform, one can show that the squared
error does not increase[4], but no similar proof exists for a general matrix transform.
The fact that the optimization space is bounded to [0, 2π]N does mean that there is a
upper bound for the error, but there is no guarantee that a solution is found, or that
the method even approaches it. For the cases tested in this thesis, the method did
however perform quite well.

Optimization

It is obvious that the optimization method could be improved, which is evidenced not
only by the non-viable results for the last medium, but also by the fact that it consists
of perhaps the simplest optimization routine possible. Anymore modern optimization
scheme would likely outperform this one in terms of speed, and most pre-written or
proprietary algorithms would have measures against the divergence seen in the last
medium.

5.2.3 Other improvements
All validation simulation were carried out using the open-source software k-wave[6]
without any hardware acceleration or parallelization at all, as this was seen to be outside
the scope of the thesis. Coupled with the fact that simulation times were approximately
5 minutes, this means that the spatial and temporal discretization could have been
made much finer, which possibly could have resulted in a better result. As a means of
comparing the methods used against each other, however, it seems sufficient.

With some parameter values, the simulations became unstable. This happened in
particular with changes in density, which was not a problem for the three designated
test media.

5.3 Parameter choices
In terms of parameters, all values are reasonable from a real-world perspective. A focus-
ing distance of 5 cm does cover some of the applications of an ultrasound system, and
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128 channels is quite common in modern equipment, even though larger arrays with
256 or more exist[15]. The transducer dimensions were also taken from equipment in
use today.

A wide range of frequencies are used, varying with the application, but 5 MHz
falls into the spectrum of commonly used frequencies. For focused ultrasound with
tissue ablation as goal, frequencies of 0.5 - 1.5 MHz are more common though[7].
The frequency mainly impacts the result through nonlinear effects[8] though, which
were not considered in this thesis. Therefore, the choice of frequency only affects the
needed sampling rate and not the results directly.

5.4 Choice of medium
The choice of water as medium for ultrasound studies is a quite common one, as
human tissue is mainly comprised of water, which means that they share approximate
physical characteristics such as sound speed and density. Coupled with the facts that
is a very practical and inexpensive material, and that a large amount of ultrasound
literature uses the same medium, it was a sensible choice.

Choosing concrete as secondary medium, however, is slightly less standard and not
as common in literate, in particular in the biomedical field. When using ultrasound
for nondestructive testing though, concrete certainly has its place, and studies have
shown that ultrasound is an effective resource for detecting subsurface cracks[16], for
example. It is, similar to water, also a very practical and inexpensive material that can
be cast or cut into any shape, making future experimental validations easier.

The speed of sound through the cranium is dependent on many factors, including
bone density, degree ofmineralization and of course general geometry. Previous studies
have reported values ranging from 2200 to 3100 m/s[17], and there have also been
attempts at modelling the speed of sound based on the bone density as detected by CT
scans[18], with similar sound speeds reached for standard bone density values. This
should be compared to the speed of sound in concrete used in this thesis, 2300 m/s.
There are of course many difference in porosity between the two materials, and the
water content present in bone is also expected to introduce some nonlinear viscoelastic
effects. At the level of modelling in this thesis, however, the two materials are fairly
similar.

5.5 Potential areas for further research
This thesis has been a study mainly of methods for focusing, and calculating system
responses for simpler geometries. The largest step needed in order to approach real-
world conditions would probably be moving into the third dimension. All three of
the methods presented are capable of being extended to 3D, and the calculation of
the system responses can also be done analogously. In general, it is possible to stack
all sender points in one vector and all similarly with the receiver points, foregoing
the perhaps natural matrix formulation given the 2D structure, in order to use the
methods without any change. The verification simulations would likely take more



CHAPTER 5. DISCUSSION 44

time, and the exponent in the dispersion term would increase by one, but otherwise
there would be no major changes.

Even without leaving two dimensions, it would have been interesting to extend the
receiver points into points not only on a line, but in the entire plane. Currently, when
focusing, the regions behind and in front of the designated focus are not considered at
all, and in cases where a tumor situated in sensitive tissue is to be ablated, this would
certainly be cause concern. Like in the previous paragraph, the methods themselves
do not need to be extended in any way to allow this, though.

More complex geometries could also be tackled with similar methods, by simply
raytracing, and allowing the rays to scatter when colliding with an edge, regardless of
the actual edge geometry, direction or curvature. With more advanced models, porous
edges could be considered, and viscoelastic media could for instance also be simulated,
further bridging the gap towards realistic models.



Chapter 6

Conclusion

In general, the results presented in the thesis were considered a promising first step
towards more concretely applicable methods. In particular, the spatiotemporal in-
verse filter was able to compensate for the investigated inhomogeneities with arbitrary
inputs, and the Gerchberg-Saxton algorithm was able to do so with time-harmonic in-
puts. The optimization approach failed in some cases, but this was assumed to mainly
be because of the simplistic algorithm used. The test cases were admittedly simple, but
proved that there is merit to using these algorithms, and it was argued that the way
towards a more generalized approach is straightforward and requires no fundamen-
tal changes to the methods. Therefore, handling more complex geometries similar to
those present in biomedical applications could be possible.
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