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Hur maskininlärning kan hjälpa dig att klara 

tentan och beräkna hur mycket kemikalie som 

behövs!  

Maskininlärning kan liknas vid en student som läser en väldigt stor kurs med ett väldigt 

brett innehåll. När tentan börjar närma sig så inser studenten att det är omöjligt att 

tentaplugga genom att lära sig allt som står i kurslitteraturen. Så istället fokuserar hen 

på att göra extentor för att lära dig svara på de frågor som brukar komma på tentan. 

För varje extenta så svarar studenten på frågorna, jämför med facit och justerar sitt 

resonerande därefter. Målet för både studenten och med maskininlärning är att ha 

tillräckligt bra koll på hur man bör svara på en viss typ av fråga att på tentan kunna 

applicera det på frågor som man inte har övat på.  

Maskininlärning är inte bara användbart under studietiden utan går även att applicera 

i verkliga livet, exempelvis i en reningsprocess av avloppsvatten. Utanför Landskrona 

har Oatly en fabrik där man tillverkar havreprodukter och avloppsvattnet från den 

produktionen renar man i ett tillhörande vattenreningsverk. Reningsprocessen består 

av ett antal olika steg varav ett är ett kemiskt reningssteg där man använder en 

fällningskemikalie för att rena vattnet från bland annat organiskt material, COD. För 

att uppskatta mängden fällningskemikalie som man behöver tillsätta så genomför man 

ett antal testar där man tar prover, tillsätter olika mängder kemikalie och ser vad som 

verkar vara en tillräcklig mängd. Problemet är att varje test tar ganska lång tid och när 

mängden organiskt material i avloppsvattnet eller andra faktorer ändras så måste man 

göra nya tester. Oatlys avloppsvatten varierar väldigt mycket när det kommer till 

organiskt material, temperatur, pH och annat. Det innebär att väldigt många justeringar 

i mängden fällningskemikalie man tillsätter krävs och därför också väldigt många 

tester.  

Man renar också vattnet mer än vad som behövs enligt sitt miljötillstånd och man vill 

därför se över om det går att minska mängden kemikalie.  

Hur effektiv en fällningskemikalie är beror på väldigt många olika faktorer och det är 

därför svårt att få en överblick, kurslitteraturen är enormt bred och komplicerad. 

Däremot så kan man använda maskininlärning, mer specifikt, Random Forest, för att 

försöka hitta ett mönster i sammansättningen av avloppsvattnet som kommer in, 

mängden fällningskemikalie man tillsätter och hur rent vattnet ut blir. På så sätt så får 

man både ett verktyg som de som jobbar kan använda för att förhoppningsvis slippa 

göra så många tester och man kan också undersöka hur rent vattnet beräknas bli vid 

olika doseringar.  

Resultatet är någonting som kan användas för att göra miljön en tjänst samtidigt som 

man sparar pengar, och det enda som krävs är att låta en dator göra jobbet.  

  

  



 

  



 

Summary   

The wastewater treatment process at Oatly consists of several treatment steps of which, two 

are chemical treatment steps involving coagulation followed by flotation to remove 

phosphorous and COD.  

The coagulant dosage is mainly determined based on the operator’s experience and supported 

using results from jar tests. Jar tests are, however, highly dependent on the wastewater quality 

parameters making it difficult to apply the result if there are large variations in the 

composition of the wastewater, which is the case at Oatly. As wastewater parameters such as 

concentration of COD and Tot-P in the primary influent, pH, temperature, and flow rate all 

varies multiple jar tests have to be conducted daily and the coagulant dosage is often adjusted.  

Despite this, the BOD7 concentration of the final effluent is well within the concentration 

limits of the environmental permit. This in combination with the large amounts of coagulant 

used in the process has raised the question, is it possible to decrease the dosage and still fulfill 

the requirements of the permit?  

The large variations of the primary influent make this difficult to achieve as there is no simple 

linear relationship between the amount of coagulant used and the coagulation efficiency, 

instead, it is influenced by several parameters.  

 

Instead, machine learning is used where a random forest regressor algorithm is used to predict 

the concentration of COD in the effluent based on the flow rate, pH, temperature, PAC 

dosage, the influent concentration of COD, and Tot-P. To train the model data from the first 

chemical treatment step is used as more data is available compared to the second chemical 

treatment step. After training the model it is used to predict the COD concentrations of the 

effluent from the first flotation.  

 

The results show an r2 value of 0.85 and an RMSE value of approximately 49, indicating a 

strong relationship between the independent and dependent variables used in the model. The 

RMSE value on the other hand should preferably have been lowered, it means that the 

difference between the concentration predicted by the model and the real concentrations is 49 

mg/L on average.  

 

To illustrate the possible benefits of the model it is used to estimate the COD concentration 

based on test data where the dosage of PAC is varied. The predicted COD concentrations are 

then compared to the COD concentration of the effluent with a 57 % removal efficiency. A 

57% removal efficiency was used to determine what would have been a sufficient amount of 

COD in the effluent as this is the removal efficiency that was used when the WWTP was 

designed.  

The model predictions showed that it, according to the model, would have been possible to 

decrease the coagulant dosage and save around 280 kg of coagulant/day on average. The 

carbon footprint of PAC is approximately 0.54 kg CO2-eq/kg PAC so this would mean a 

decrease in CO2 emission by around 150 kg CO2-eq per day. Decreasing the dosage would 

also make it possible to save approximately 1000 SEK.    

 

The main suggestion for areas of future work is to increase the size of the dataset to improve 

the performance of the model. However, the model shows potential as a tool to predict the 

COD concentrations of the effluent and could be used to estimate the effect of different 

coagulant dosages, thereby opening up the possibility of optimizing the coagulant dosage.  
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1 Introduction 

One of Sweden’s environmental objectives is to achieve a reduced climate impact by reducing 

emissions of carbon dioxide and other greenhouse gases to achieve zero net emissions of 

greenhouse gases by 2045 (Naturvårdsverket, n.d.). It is approximated that around one-third 

of the emissions in Sweden are from industries which is 24 % less than in 1990 

(Naturvårdsverket, n.d.). Poly-aluminum chloride (PAC) is a coagulant commonly used in 

wastewater treatment processes and is used in Oatly’s wastewater treatment (WWT) mainly 

for the removal of phosphorous and colloidal particles. The carbon footprint of PAC is 537 kg 

of CO2-eq per ton of product. For the WWT at Oatly, approximately 52 tons of PAC are used 

per month which, means that just the usage of coagulant in the process is responsible for 

around 28 000 kg CO2-eq emissions each month. In comparison, a pickup truck is estimated 

to emit approximately 3510 kg CO2/year or 290 kg CO2/month (Armstrong, 2022). This 

means that the amount of coagulant used each month is equal to the emissions from almost 96 

pickup trucks. Although this number might seem high it is important to note that during 2021 

the total emissions in Sweden from industries were 15.7 million tons of CO2-eq.  

 

One possible way of decreasing the amount of emission is of course to ensure that the 

coagulant dosage used is sufficient for the treatment purpose without being excessive. Oatly’s 

environmental permit regulates the requirements that must be met by the process, for 

example, the maximum concentration of BOD7 in the treated water. According to Oatly’s 

environmental permit, the maximum concentration of BOD7 in the final effluent is 8 mg/L 

calculated over 6 months. Currently, the concentration is 4 mg/L indicating that it might be 

possible to decrease the coagulant dosage, causing higher concentrations in the effluent, while 

still meeting the demands of the permit.  

 

The most common approach for determining coagulant dosages is to perform jar tests to 

determine how much coagulant is required; however, these results may be difficult to apply 

because it is highly dependent on the wastewater quality parameters of the sample. At Oatly 

there are large variations in the composition of the primary influent, which means that a large 

number of jar tests and adjustments in coagulant dosage are required. It is therefore difficult 

to systematically determine what could be a sufficient dosage to achieve the required results 

while minimizing the amount of coagulant used in addition to being very time-consuming 

(Heddam, et al., 2011).  

 

A more novel approach is to use machine learning to train a system to predict concentrations 

in the effluent based on historical data. By learning from previous data, the system has the 

potential to make accurate predictions even with varying wastewater parameters. Research 

also indicates that it could provide a possible substitute for jar tests thereby also decreasing 

the workload for the operators (Zhang et al., 2013).   

 

Although the concentration of BOD7 in the final effluent is the parameter regulated in the 

permit, it can be substituted by measuring the chemical oxygen demand (COD) as there is a 

strong. correlation between BOD7 and COD (Hu and Grasso, 2005). Due to this, and the fact 

that measuring COD is much faster, Oatly has measured the concentrations of COD at 

multiple points in the process during a period of approximately 5 months. This data, in 

combination with data from several online sensors, makes it possible to investigate the 

possibility of using machine learning to predict the concentration of COD in the effluent of 
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the first chemical treatment step. Using the coagulant dosage as a parameter in this model also 

opens up the possibility of estimating what could be a sufficient amount that results in a low 

enough concentration of COD in the effluent. The ambition is that by continuing this work it 

could eventually be possible to make real-time adjustments to the dosage to ensure that just 

enough coagulant is used and not too much.  

1.1 Aim and research questions  

The overall aim of the project is to investigate ways of possibly decreasing the amount of 

coagulant used in the WWT at Oatly. To achieve this machine learning will be used to try to 

create a model that could be used for this purpose.  

 

Based on this overall aim, the research questions that the project aims to answer are:  

• Is it possible to use the data available to create a model that can be used to predict 

COD concentrations in the effluent?   

• How could such a model be used and what could be the possible consequences from 

an environmental and economical perspective?  

• What is needed to improve the performance of the model? 

1.2 Project boundaries  

The model is only based on data from the first chemical treatment step. This is motivated by 

the data available, and the choice is described in greater detail in section 4. The dataset. The 

focus of the project is to investigate the possibility of creating a model and highlight its 

possibilities, but validating the results by applying them to the actual process is considered 

out of scope.  

 

The task was only focused on the concentration of BOD7 in the effluent and so all evaluations 

regarding coagulation efficiencies and so on, are only done in regards to the concentrations of 

BOD7 and by extension, COD.  

 

Finally, as the aim was to investigate the possibility of creating a model, there has been no 

systematic comparison of different algorithms and their strengths. The choice has been made 

based on conclusions from previous research, but no attempt has been made to evaluate which 

algorithm that is best suited nor has any optimization of the algorithm been attempted. The 

reason for this is that the main limitation of the model is believed to be the small size of the 

dataset which could make the effect of any optimization negligible.  
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2 Background 

2.1 The production at Oatly 

Just outside of Landskrona Oatly has a large factory used for the production of the company’s 

different oat-based products. Oatly’s products are produced from oat kernels which are peeled 

and heat-treated before arriving at the factory. At the factory, the oat kernels are milled and 

mixed with water before natural enzymes are added for the hydrolysis of the starch to create 

the oat base. After the separation of insoluble oat fibers, the main components of the oat base 

are beta-glucans, maltose, protein, fat, and carbohydrates. This oat base is the base of all of 

Oatly’s products and different ingredients are added to form the different products before the 

solution is pasteurized or treated using ultra-heat treatment. Finally, the product is homogenized 

to break down large fat droplets before the product is packed and transported to wholesale 

companies (Oatly, n.d.).  

The production generates wastewater with a high content of organic material, nitrogen, 

phosphorous, and suspended particles mainly. There have also been occasional discharges of 

for example large quantities of oil due to disturbances in production.   

2.2 The wastewater treatment process at Oatly  

To take care of the wastewater generated from the production Oatly built their wastewater 

treatment plant which began operating at the beginning of 2021 and is connected to the recipient 

Lundåkrabassängen. The major steps of the process are shown in Figure 1 and as can be seen, 

it consists of mechanical, chemical, and biological treatment steps.   

 

Figure 1 The major steps of the WWT at Oatly.  
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2.2.1 Before entering the WWT  

The wastewater from the factory is short-time stored in two buffer tanks with a total capacity 

of 800 m3 before entering the treatment process. The buffer tanks are usually filled to about half 

capacity to ensure that there is a possibility of negating possible peaks in temperature, pH, and 

concentration of containments using dilution. Both tanks are equipped with stirrers as well as 

on-line monitors measuring the temperature and pH in the tanks. There are also monitors to 

measure the flow rate, pH, and turbidity as the wastewater enters the plant. The influent samples 

are taken automatically and sent for analysis at an accredited laboratory. The samples are flow 

proportional to ensure that the concentrations are representative of the average concentration 

for 24 hours.  

2.2.2 The pretreatment step  

During the process's pretreatment step, large solids, for example, residual oats, are separated 

from the influent using a rotary drum screen. The screen has 3 mm perforations and an 

integrated screw press that dewaters the separated solids before being sent away for 

incineration.   

2.2.3 Pre-precipitation 

The chemical treatment step consists of coagulation followed by flotation for the removal of 

phosphorous and colloidal particles, thereby removing COD. The reaction tank consists of two 

areas separated by a partial divider, both of which are equipped with stirrers operating at 

different conditions. In the first area of the tank sulphuric acid (H2SO4) is used to adjust the pH 

to approximately 5 to enable the removal of oil from the wastewater. The acid reacts with the 

oil through emulsion breakage, meaning that it reacts with the oil’s carboxylic groups forming 

carboxylic acid causing neutralization of the oil’s stabilizing factors and thereby facilitating 

coagulation-flocculation (Kemmer and Ill, 1988). In the same area, the coagulant, poly-

aluminum chloride (PAC) is added during turbulent conditions caused by the mixer operating 

at 1465 rpm.  

In the second area of the tank flocculation takes place and to avoid breakage of the flocs formed, 

the stirrer is set to operate at 1390 rpm to ensure less turbulent conditions. The addition of the 

coagulant causes the pH to decrease and to negate the effect sodium hydroxide (NaOH) is added 

to increase the pH to approximately 6.5 to 7.5. The amounts of H2SO4 and PAC that are added 

for the coagulation are proportional to the flow rate but the dosage of NaOH is automatically 

adjusted to achieve a set pH.  

After the flocculation, an anionic polymer solution is added to the wastewater to strengthen the 

formed flocs just before it passes through a static mixer and enters the flotation tank. For 

separation of the flocs dissolved air flotation (DAF) is used using an IdraFlot IFS 80 which has 

a volume of 79.5 m3 and a flotation area of 83 m2. Along the entire length of the tank, there are 

openings where the influent can enter after being mixed with a mixture of pressurized air 

(around 5 bar) and dispersion water. Once inside the tank, the pressurized air causes bubbles to 

form which the flocs will adsorb to and then float to the surface of the tank. At the top of the 

IdraFlot, the sludge produced is scraped off the surface using a drag skimmer. The produced 

sludge is pumped into a sludge tank before being dewatered and compressed. During this 

process, the secondary effluent, water separated from the sludge, is produced and then mixed 

with the pressurized air before being mixed with the influent.  
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2.2.4 The biological treatment step   

The biological treatment step consists of two parallel Moving Bed  Biofilm Reactors (MBBR) 

where nitrogen and the majority of the BOD7 are removed from the wastewater through pre-

denitrification and two BOD-reducing steps taking place in different areas of the reactors. Each 

reactor has a volume of approximately 400 m3 divided into three chambers with different 

operating conditions adjusted for the biological process taking place. The first chamber is 60 

m3 and where denitrification takes place, BOD reduction occurs in two steps in two different 

parts of the reactor. The volume for the first part of the BOD reduction is 230 m3 and for the 

second 110 m3. All chambers contain biofilm carriers, AnoxK  Z-400 biofilm-carriers, where 

the microbes and bacteria grow and are kept suspended in the reactor. The approximate 

residence time of the reactors is 15 hours according to the design specifications (VA 

Ingenjörerna, 2022).  

The wastewater enters the reactors at the pre-denitrification stage where nitrite is converted into 

nitrogen gas under anoxic conditions using BOD as an energy source. Due to the anoxic 

conditions, there is no air diffuser to keep the biofilm carriers suspended, instead, there is a 

mixer to ensure this and to facilitate good transportation of the nutrients to the biofilm (Veolia 

Water Technologies AB, 2021). The mixing also causes turbulent conditions which help keep 

the biofilm from growing too thick on the carriers which can hinder the transportation of 

substrates to the surface of the biofilm (Barwal and Chaudhary, 2014). Unlike the chamber for 

pre-denitrification, in the areas for BOD reduction, there is also an air diffuser connected to the 

bottom of the tank to enable aerobic conditions. An on-line monitor measures the pH, 

temperature, and concentration of dissolved oxygen which is automatically adjusted using an 

air diffuser to ensure that the concentration is approximately 2 to 4 mg/L. In the two BOD-

reduction steps, BOD is reduced to form mainly CO2 and water and during this reduction, 

oxygen is consumed (Veolia Water Technologies AB, 2021).  

Important operating parameters for the bio-treatment are temperature and the influent 

concentration of phosphate. Before entering the bioreactors the temperature of the influent is 

adjusted to between 26 C  and 28 C and it is also possible to increase the concentration of 

phosphate by adding phosphoric acid (H3PO4) in connection to the entrance of the reactor. The 

adjustment of temperature is required as it controls the growth and activity of the microbes with 

a temperature of around 27C found to be optimal for COD removal according to one study 

(Madan et al., 2022; Majid, 2019). Phosphate is required for the growth and reproduction of the 

microbes and a rule of thumb is that an appropriate ratio of C:N:P in the wastewater is 

approximately 100:5:1 for aerobic treatment (Ammary, 2004). The dosage of H3PO4 is set to 

be flow-proportional and adjustments to the amount added have been made according to the 

BOD loading rate over time (Veolia Water Technologies AB, 2020).  

2.2.5 Post-percipitation 

Following the bio-step is a second chemical treatment step consisting of coagulation followed 

by flotation used for the removal of phosphorous and surplus biomass from the MBBR. The 

design of the reaction tank is similar to the first chemical treatment step, meaning that it consists 

of two parts divided by a partial divider. PAC is used as a coagulant and the stirrer in the 

coagulation area operates at 1465 rpm. To counteract the pH lowering caused by the coagulant, 

NaOH is added to increase it to approximately pH 7 to 8. The pH is chosen to ensure that the 

recipient fulfills the pH requirement of the environmental permit. After the pH adjustment, the 
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wastewater enters the flocculation part where flocs are formed under less turbulent conditions 

accomplished by a stirrer operating at 1390 rpm.  

To strengthen the flocs an anionic polymer is added as the wastewater moves through a static 

mixer before entering the flotation tank. The model of the flotation tank is the same as that used 

for the first flotation, an IdraFlot 80 with a volume of 79.5 m3 and a flotation area of 83 m2. The 

flocs are scraped off the surface of the tank using a drag skimmer and the sludge is transported 

to the same sludge tank.    

2.2.6 The post-treatment step  

The effluent from the second chemical treatment step carries on to a drum filter for after-

treatment before reaching the recipient Lundåkrabassängen. In connection to the drum filter is 

a coagulation tank with the possibility of adding coagulant and polymer based on the turbidity 

of the wastewater which, is measured using an on-line sensor located just after the second 

flotation tank. As a coagulant, ferric chloride, PIX-111, is used along with an anionic polymer 

and the set point of the automatic dosing is 3.5 NTU, meaning that the amount added to ensure 

a residual turbidity of 3.5 NTU or less is calculated. From the filter effluent samples are taken 

automatically using a Liquistation CSF48  which gathers a flow-proportional sample over a 

period of 24 hours.  

2.2.7 The sludge treatment  

The sludge produced from both the first and second chemical treatment steps is transported to 

a sludge tank for dewatering and thickening. From there the sludge is transported and a cationic 

polymer is added just before it reaches either the decanter centrifuge or screw conveyor. The 

water that is separated during the dewatering is then recirculated back to the first flotation and 

the dewatered sludge is stored for a short period before being sent away for incineration.  

2.3 Requirements and parameters 

The wastewater treatment plant (WWTP) began operating on 2021-01-19 and the second 

MBBR, drum filter, the second buffer tank, the second sludge tank, and a new sludge centrifuge 

was installed on 2021-12-22 except for the second buffer tank which began operating on 2022-

05-19.  
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2.3.1 Environmental permit  

In the environmental permit granted Oatly, the concentrations of BOD7, total phosphorus, and 

total nitrogen are regulated for which the maximum concentrations are stated in Table 1. These 

requirements are valid for the first 24 months of operating the WWTP. The maximum 

concentrations are mean concentrations, for BOD7 the mean is for a period of 6 months, for 

Tot-P and Tot-N the means are for a period of 12 months (Länsstyrelsen Skåne, 2020).  

 

Table 1 The permit parameters and their maximum concentrations, the first 24 months of operation.  

Permit parameter Maximum concentration (mg/l) 

BOD7 8 

Tot-P  0.3 

Tot-N 10 

After that the requirements regarding the time for the mean concentration of BOD7 is changed 

to 3 months and the maximum concentration of Tot-P is lowered however the mean period is 

unchanged. The requirements that apply after the first 24 months of operating are presented in 

Table 2 (Länsstyrelsen Skåne, 2020). 

Table 2 The permit parameters and their maximum concentrations, after the first 24 months of operation.  

Permit parameters Maximum concentration (mg/l) 

BOD7 8 

Tot-P  0.2 

Tot-N  10 

 

It is also stated in the permit that measurements of BOD7, Tot-P, and Tot-N are to be taken at 

least 12 times a year. Besides the maximum concentration of containments the treated water 

also has to have a pH of 6.5-10 and measurements are to be done continuously (Länsstyrelsen 

Skåne, 2020).  
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2.3.2 Design parameters 

Some of the maximum design loads and concentrations are presented in Table 3, so not 

exceeding these limits the WWT is designed to fulfill the requirements of the permit.  

Table 3 The design loading rates and concentrations of the WWT, all values are maximum values except 

for pH which is a monthly average.   

Parameter Unit Design capacity  

Flow m3/day 1500 

Biological Oxygen Demand (BOD7) kg/day 5460 

Chemical Oxygen Demand (COD) kg/day 8730 

Total nitrogen (Tot-N) kg/day 210 

Total phosphorus (Tot-P) kg/day 19 

Sulphate (SO4) mg/l 20 

Suspended Solids (SS) kg/day 1960 

pH - 5-11 

Temperature C 30-43 

 

 

2.3.3 Wastewater parameters 

The wastewater parameters of the primary influent are very varying. It has not been established 

what might be the cause, but one belief is that it might be because the content of the wastewater 

generated from the production of different products varies. A possible consequence of this 

would then be the variation in wastewater parameters as the products and the amounts produce 

vary from week to week. Figures 2 to 6 illustrate how the influent concentrations of COD and 

BOD7, the influent concentration of tot-P, the loading rate of COD and BOD7, the flow rate, 

and the influent pH all have varied during the period 2021-11-01 to 2022-10-02. The same 

variations can also be found for the influent concentration of SO4 and the temperature. 
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Figure 2 The concentration of COD and BOD7 (mg/L) in the influent during the period 2021-11-01 to 

2022-10-02.  

 

Figure 3 The loading rate of Tot-P (kg/day) during the period 2021-11-01 to 2022-10-02. 
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Figure 4 The loading rate of COD and BOD7 (kg/day) during the period 2021-11-01 to 2022-10-02. 

 

Figure 5 The influent pH during the period 2021-11-01 to 2022-10-02.  
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Figure 6 The flow rate (m3/day) during the period 2021-11-01 to 2022-10-02. 

 

Although there are large variations, all values are well within those used as design parameters 

from the WWT as Table 4 shows.  

Table 4 The average values and design values for some of the wastewater parameters recorded from the 

period 2021-11-01 to 2022-10-02.  

Wastewater parameter Unit Average value  Design value 

COD loading rate  kg/day 1300 8730 

BOD7 loading rate kg/day 760 5460 

Tot-P loading rate  kg/day 4.18 19 

pH  7.06 5-11 

Flow rate m3/day 580 1500 

 

This means that none of the values can be considered abnormal and the WWT is designed to 

fulfill the requirements of the environmental permit at this composition. This is not always the 

case however as Figure 7 shows.   
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Figure 7 The concentration of COD and BOD7 in the treated water during the period 2021-11-01 to 

2022-10-02. 

 

The concentration of COD in the treated water is not regulated in the permit however the 

concentration of BOD7 is and as previously mentioned, the average concentration for 6 months 

can be no higher than 8 mg/L. The graph shows the concentrations for the period  

2021-11-01 to 2022-10-02 with the average concentration of BOD7 being 7.7 mg/L, so just 

slightly under the limit. However, as the figure also shows, the main reason for the high average 

concentration is a few concentration peaks. Most of these peaks are caused by various 

disturbances, for example, on 2022-04-07 the phosphoric acid was used up and accidentally 

replaced with biocide until 2022-04-12 when it was once again replaced by phosphoric acid. 

During these couple of days, the concentration of BOD7 in the treated water varied between 45 

and 340 mg/L. There are other examples of disturbances but this one appears to have had the 

greatest impact on the quality of the treated water. So excluding the samples from those days 

instead results in an average BOD7 of 5.55 mg/L. After this period the number of disturbances 

has decreased and the average BOD7 concentration is currently 4 mg/L (calculated for the period 

2022-10-12 to 2023-04-12) indicating that the treatment process, under normal circumstances, 

is performing satisfactorily. 

Achieving these results however considering the challenges caused by the varying composition 

of the influent, requires multiple adjustments of the PAC dosage used for both the first and 
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second coagulation. Figure 8 shows how the dosages have been changed during the period and 

as can be seen, in particular, the second dosage has changed a lot.      

 

Figure 8 The PAC dosages used for both the first and second coagulation during the period 2021-11-01 

to 2022-10-02. 

Each adjustment requires the operators to conduct several jar tests to approximate a suitable 

dosage. Based on those results and the operators’ experience the dosage is then changed and 

the results are evaluated by performing a visual inspection of the quality of effluent. For the 

second chemical treatment step there is also the possibility of using the results from the on-line 

turbidity monitor located shortly after the flotation unit. This approach requires that the 

operators are experienced enough to perform the visual inspection and can also be a source of 

frustration as multiple jar tests might be required before finding a suitable dosage. There have 

also been occasions where the results from the jar tests have been difficult to apply as a much 

large amount has been required for the actual process compared to what the tests showed. In 

addition, this approach makes it difficult to determine how much coagulant that is required to 

fulfill the requirements of the treated water. The very low concentrations of BOD7 in the treated 

water also indicate that there could be a possibility of decreasing the PAC dosage without 

exceeding the permit. This is however difficult to do just based on the results from jar tests due 

to the varying water quality parameters.  
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3 Theory 

The theory section is focused on different wastewater parameters, coagulation-flocculation 

including important factors, PAC, flotation as a separation technique, and different methods to 

estimate coagulant dosage.  

3.1 Wastewater parameters 

This section covers some common wastewater parameters and their relationship to each other.  

3.1.1 BOD  

Biological oxygen demand, BOD, is a measurement that can be used to approximate the amount 

of biochemically degradable organic matter in the wastewater and is an important indicator of 

the quality of wastewater. It is defined as the amount of oxygen that is required for an aerobic 

microorganism to oxidize the organic matter to a stable inorganic form. BOD5 and BOD7 are 

measurements of the amount of oxygen consumed for a period of 5 respective 7 days. (Jain and 

Singh, 2003) 

3.1.2 COD  

Chemical oxygen demand, COD, is related to BOD and also describes the bioavailability of 

carbon in a sample. It is a measurement of the amount of oxygen equivalents that is consumed 

by a strong oxidant during the oxidation of organic matter. During this reaction both organic 

and inorganic components are oxidized as compared to BOD where only the biologically 

reactive carbon is oxidized. It can be used as a surrogate measurement of BOD by establishing 

a correlation between BOD and COD, assuming that the proportions and types of materials in 

the wastewater remain relatively constant. Normally COD is in the range of 1.3 to 1.5 times the 

BOD. Besides the possibility of acting as a surrogate measurement, it is also often used as a 

measurement of pollutants in wastewater (Hu and Grasso, 2005; Jain and Singh, 2003; Woodard 

& Curran, 2006).  

3.1.3 TOC  

Total organic carbon, TOC, is a measurement of the concentration of organic matter in the 

wastewater and is therefore related to both COD and BOD7 (Assmann et al., 2017). Studies 

highlight the possibility of establishing a ratio of TOC and COD  for both influent and effluent 

respectively (Dubber and Gray, 2010). However, TOC concentrations cannot replace BOD7 in 

issues related to environmental permits but can be used for process control purposes. TOC 

measurements are especially suited for process control as in-line monitoring is possible by 

providing real-time data. These in-line detectors can use different methods to oxidize the 

organic content in a sample to generate CO2 which is then detected. The time required for this 

is often just 5-10 minutes as compared to COD tests which usually take a few hours to complete 

(Assmann et al., 2017).    

3.1.4 Turbidity  

Turbidity is a parameter that can affect the quality of water and can be used to describe how 

smoky or hazy the wastewater appears. It is defined as a measurement of the light-scattering 

properties caused by fine particles in a sample (Woodard & Curran, 2006; Khan and Ali, 2018). 
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These light-scattering properties also affect light penetration and treated wastewater with high 

turbidity can have a negative impact on the habitat quality for aquatic life (Water Science 

School, 2018).     

3.2 Coagulation and flocculation 

In this section, coagulation is described in more detail, including reactions and mechanisms, as 

well as factors that are important for the efficiency of coagulation. 

3.2.1 Chemical reactions 

Coagulants consist of positively charged metal ions and form positively charged hydroxides 

that can crosslink and aggregate impurities thereby neutralizing their charge (Parsons et al., 

2014). The ability to form aggregates also depends on the turbulence and mixing speed as it 

determines the frequency and number of particle collisions. This dictates the likelihood of the 

hydroxides coming into contact, with and reacting with, the contaminants. 

Coagulants of metal salts, often iron or aluminum-containing trivalent ions, Al3+ or Fe3+, react 

with water forming hydroxide ions along with hydrogen according to the reversible reactions 

shown in equations 1-4 (Bottero et al., 1980; Kemira, n.d.). 

𝐴𝑙3+ + 𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)2+ + 𝐻+ 1 

𝐴𝑙3+ + 2𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)2
+ + 2𝐻+ 2 

2 𝐴𝑙3+ + 2 𝐻2𝑂 → 𝐴𝑙2(𝑂𝐻)2
4+ + 2𝐻+ 3 

13𝐴𝑙3+ + 28𝐻2𝑂 → 𝐴𝑙13𝑂4(𝑂𝐻)24
7+ + 32𝐻+ 4 

The formed hydroxide ion can be further hydrolyzed as described by the two equations below 

(Kemira, n.d.). 

𝐴𝑙𝑂𝐻2+ + 𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)2
+ + 𝐻+ 5 

𝐴𝑙(𝑂𝐻)2
+ + 𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)3 + 𝐻+ 6 

In partially neutralized aluminum solutions, the dominating polymeric compound is 

Al13O4(OH)24(H2O)12
7+ commonly abbreviated as Al13

7+ (Pernitsky and Edzwald, 2003). 

3.2.2 Coagulation mechanisms  

There are different mechanisms influencing the coagulation process however the two most 

important ones are charge neutralization and sweep coagulation and which mechanism that will 

dominate depend mainly on the pH and concentration of the coagulant (Wei et al., 2015). 

Charge neutralization is where the cationic Al (or Fe depending on the coagulant) adsorbs to 

the surface of the negatively charged contaminants thereby neutralizing their zeta potential. The 

zeta potential is a measurement of the strength of the electrostatic charge of a particle, 

contaminants usually have a zeta potential of -14 to -30 mV if the pH is in the range between 5 

to 8. The more negative zeta potential the more strongly negatively charged the colloidal 

(Ecolab company, 2018, pp.203). Coagulants can be used to neutralize the charge and once the 

zeta potential is in the range of -8 mV to +3 mV coagulation can occur (DeNigris, 2020). During 
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sweep coagulation ions adsorb to the surface of the containments enabling the growth of layers 

of aluminum hydroxides eventually causing enmeshment of the particles (Bache et al., 1999).   

The different mechanisms have different advantages, sweep coagulation for example requires 

a higher coagulant dosage which results in higher sludge production. However, the mechanism 

is less sensitive to suboptimal dosage conditions, especially overdosing, which can make 

process control easier. It is also advantageous when treating wastewater with low turbidity as a 

large amount of coagulant increases the probability of contact between containments and 

precipitate particles (Bache et al., 1999). The quality of the formed flocs is also influenced by 

the dominating mechanism where sweep coagulation is associated with large flocs and charge 

neutralization with stronger microflocs (Cruz et al., 2020).    

3.2.3 pH  

The pH of the wastewater has a substantial influence on the removal of COD and by extent, the 

amount of coagulant required for a sufficient removal efficiency however this effect decreases 

with high amounts used (Ahmad et al., 2008; Ecolab company, 2018, pp. 210).  

As previously mentioned, charge neutralization dominates at relatively low pH and dosage 

while sweep coagulation occurs mainly at high pH and coagulant dosage (Wei et al., 2015). 

This is due to charge neutralization dominating for small aggregates which is the case at low 

pH and dosage (Ahmad et al., 2008). It is therefore possible to influence the coagulation process 

by adjusting the pH before the addition of a coagulant (Johnson et al., 2019). For the removal 

of natural organic matter in raw water using PAC as coagulant, the best removal efficiency was 

achieved at a pH close to the minimum solubility of the coagulant. This can be achieved by 

matching the basicity of the coagulant to the alkalinity of the wastewater (Pernitsky and 

Edzwald, 2006). 

3.2.4 Mixing and motion  

There are different types of motion affecting the particles depending on the size of the particles. 

The motion of small particles is dominated by Brownian motion and flocculation occurring due 

to this is referred to as perikinetic flocculation, flocculation due to the natural movement of the 

particles (Kemira, n.d.). Flocculation occurring due to the addition of energy is referred to as 

orthokinetic flocculation and energy is most commonly added through mixing.  

The rate of floc formation is determined by the rate of collisions between the particles. 

Increasing the mixing rate leads to an increase in velocity gradient thereby increasing both the 

frequency and the number of collisions. increases the movement causing an increase in the 

frequency and number of collisions (Huck and Sozański, 2011).    

However, one cause of the breakage of flocs is too large shear forces caused by both the floc 

growth and too rapid mixing. The rate is therefore the result of the balance between the floc 

formation and breakage as described by the equation below where 𝑅𝐵𝑟  is the rate of floc 

breakage, 𝑅𝐶𝑜𝑙 the rate of particle collision, ∝ a collision factor and 𝑅𝐹𝑙𝑜𝑐 the rate of floc 

formation (Jarvis et al., 2005).  

𝑅𝐹𝑙𝑜𝑐 =∝ 𝑅𝐶𝑜𝑙 − 𝑅𝐵𝑟 7 

The collision factor is dependent on the effective shear rate and particle size and indicates the 

reversibility of floc breakage with a value of 0 if the breakage is fully irreversible. As a 
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consequence of what is described in the equation above, if the shear rate, and thereby the rate 

of breakage, is kept constant, steady state will eventually reign (Jarvis et al., 2005). 

If steady state is not the goal but instead to maximize the rate of floc formation, the speed of 

the mixing can be adjusted to ensure high velocity during the aggregation stage, when the rate 

of collision is greater than the rate of breakage, and then decreased as the flocs grow to cause a 

decrease in the rate of floc breakage. This can be done using the velocity gradient, G, and 

retention time, t, and progressively reducing the Gt value. Optimal values of G and t are often 

established in practice and differ depending on the separation method following the flocculation 

(Huck and Sozański, 2011).   

Flocs breaking risk having a direct effect on the efficiency of the sequent separation methods, 

e.g., the removal efficiency of the flotation. For flotation, this is due to the smaller broken flocs 

being less efficiently adsorbed by the air bubbles. The flocs do have the ability to re-grow but 

exposed to too large shear forces that ability is diminished (Jarvis et al., 2005). The possibility 

of re-flocculation is influenced by the coagulation mechanism, which is dependent on, inter 

alia, the coagulation dosage, with charge neutralization having the highest re-flocculation  

factor (Miranda et al., 2020).  

3.3 Flotation   

Flotation is a separation method where the wastewater is mixed with pressurized water before 

entering the flotation tank. Due to the change in pressure bubbles are formed to which the flocs 

adsorb and then float to the surface. After reaching the surface the flocs can either be allowed 

to overflow or the containments can be scraped off as sludge. (Huck and Sozański, 2011). The 

efficiency of flotation as a separation method depends on several factors such as stirring 

velocity, residence time, size of flocs, the ratio of pressurized water, the addition of polymers, 

and pH (Ødegaard, 1995).  

3.4 PAC 

Poly-aluminum chloride, or PAC, is a pre-hydrolyzed metal-ion coagulant that is efficient at 

COD removal with the capacity of achieving a COD reduction of over 90% (Ahmad et al., 

2008). The molecular formula of PAC is [𝐴𝑙𝑚(𝐻2𝑂)𝑥] ∙ 𝐶𝑙3𝑚−𝑛 (n ≤ 3m) and can also contain 

different amounts of hydroxyl (Li et al., 2010). These hydroxyl ions will react with water 

causing the release of hydrogen ions, this is referred to as the basicity of the coagulant which 

controls the pH-lowering effect of the coagulant. The higher the basicity, the smaller the pH-

lowering effects, and generally, commercial PAC has a basicity of between 15-85%. The 

basicity can also be used as a measurement of the fraction of polymeric and colloidal Al in the 

coagulant which increases with the basicity (Pernitsky and Edzwald, 2003). This is especially 

useful as it also indicates which monomeric are the most abundant which is important when 

considering the coagulation mechanism. In PAC with a basicity of below 33% the most plentiful 

species are monomers such as Al3+ and AlOH2+, both of which can only partake in charge 

neutralization (Ahmad et al., 2008). When comparing different aluminum species it was found 

that this monomeric aluminum was the most efficient at the removal of soluble COD and 

Suspended Solids (Miranda et al., 2020).        

The advantage of PAC compared to conventional coagulants such as aluminum or ferric sulfate, 

is that it is efficient over a larger pH range, and less coagulant is generally required to achieve 

the same removal efficiency (Li et al., 2010). What pH is optimal depends on the composition 
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of the wastewater treated and can differ, it can for example be around 7.5-8, or around 6, or 

between 5-6 (Ahmad et al., 2008; Kemira, n.d; Nti et al., 2021).  

The PAC used in the WWT at Oatly is Ekoflock 90 which has a basicity of 45 ± 3 weight%, an 

Al content of 9.0 ± 0.3 weight%, and a density of 1370 ± 25 kg/m3 (Feralco, 2021). 

3.5 Optimizing coagulant dosage   

In this section, traditional methods, such as jar tests, are discussed along with more novel 

approaches such as using mathematical models or machine learning to determine a suitable 

coagulant dosage.   

3.5.1 Jar tests  

Jar tests are performed by taking samples of the wastewater, adding coagulant, and then 

analyzing the concentration of the compound of interest, the turbidity, or inspecting the quality 

of the flocs. Rapid mixing is used as the coagulant is added but once the floc formation has 

begun it is switched to slow stirring. After the flocculation, the flocs sediment before any 

analysis is performed. The tests usually take approximately 30 minutes to perform not including 

analysis of the results (Kemira, n.d.). As previously mentioned, the efficiency of the coagulant 

is dependent on several factors which means that with very varying water quality parameters a 

great number of tests are required which makes the method very time-consuming (Heddam et 

al., 2011).  

3.5.2 Mathematical models  

As an alternative to this, there have been made several attempts to use data collected at 

wastewater treatment plants to create models to be used for control of coagulant dosage based 

on parameters such as pH, temperature, turbidity, suspended solids, total organic content, 

alkalinity, total phosphorus concentration and conductivity among others. The data collected 

can be analyzed using different mathematical methods such as multivariate regression analysis 

to find an equation describing the relationship between the raw water parameters and coagulant 

dosage. At Hazard’s Green Waterworks, multiple regression was used to find the equation 

shown below which could be used to calculate the dosage of iron sulfate based on the turbidity, 

conductivity, temperature, and flow of raw water (Ratnaweera and Fettig, 2015).  

𝐼𝑟𝑜𝑛 𝑠𝑢𝑙𝑓𝑎𝑡𝑒 𝑑𝑜𝑠𝑒 (𝑚𝑔 𝑙⁄ ) = 𝐶0 +  𝐶1 × 𝑇𝑢𝑟𝑏 +  𝐶2 × log(𝑇𝑢𝑟𝑏) + 𝐶3 × 𝐶𝑜𝑛𝑑 +

 𝐶4 × log(𝐶𝑜𝑛𝑑) +  𝐶5 × 𝑇𝑒𝑚𝑝 +  𝐶6 × log(𝑇𝑒𝑚𝑝) + 𝐶7 × 𝐹𝑙𝑜𝑤 +  𝐶8 × log(𝐹𝑙𝑜𝑤) 8
 

 

A similar correlation could be established for surface water from Norway where the 

concentration of residual NOM (NOMr) could be calculated from pH, initial NOM (NOMi), 

and coagulant dosage (Al-dose), as seen below (Ratnaweera and Fettig, 2015).  

𝑁𝑂𝑀𝑟 = (𝐶1 + 𝐶2 × 𝑝𝐻 + 𝐶3 × 𝑝𝐻2 + 𝐶4 × 𝑝𝐻3) × 𝐴𝑙 − 𝑑𝑜𝑠𝑒𝐶5(𝑚𝑔 𝑙⁄ ) × 𝑁𝑂𝑀𝑖
𝐶6 9 

An evaluation of data from jar tests performed using 21 raw water sources using either ferric 

salts or alum as coagulant was used to develop a model that could be used to predict non-

adsorbable DOC based on influent DOC (DOCi) and its specific ultraviolet absorbance 

(SUVAi), see equation below (Ratnaweera and Fettig, 2015).  
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𝐷𝑂𝐶𝑛𝑎 = 𝐷𝑂𝐶𝑖 × (𝐾1 × 𝑆𝑈𝑉𝐴𝑖 + 𝐾2) 10 

These models are all based on mathematical analysis of gathered data and are usually created 

using either multivariate regression analysis, artificial neural network models (ANN), or fuzzy 

logic models (Ratnaweera and Fettig, 2015).  

3.5.3 Machine learning  

An alternative is to use various Machine Learning (ML) algorithms that have shown to be a 

promising substitute for jar tests and relying only on the experience of the operators (Zhang et 

al., 2013). ML refers to a system’s ability to use data to find patterns making it possible to 

make predictions based on unknown data. This can be done by training the system using 

historical data, and supervised machine learning, to learn the relationship between a large 

number of input and output variables. One of the advantages is that a linear relationship is not 

required, and different algorithms use different learning techniques making it possible to use 

for several different types of applications (Woolf, 2009).  

 

A decision tree is an algorithm that has a structure like a flowchart where the data is divided 

into decision nodes and leaves. The decision nodes are how the system splits the data and the 

leaf nodes are the result of the splitting. The algorithm then continuously splits the data and 

compares the results with the dependent variable thereby trying to find the splitting that 

results in the leaf nodes closest to the real result (Schonlau and Zou, 2020). Figure X below 

shows an example of what a decision tree might look like based on the dataset from Oatly’s 

WWT.  

 

 

Figure 9 An example of a decision tree, for plotting purposes the height has been set to 1.  

 

In the figure, the root node (the first “box” in the figure) is the starting point of the tree. X[i] 

denotes the variable that the split is based on, here the dataset is split so that all COD 

concentrations in the influent lower or equal to 2350 is to the left, the rest to the right. MSE is 

the mean squared error of the real concentration of COD in the effluent compared to the 

predicted. Samples state the number of data points (here the number of rows from the dataset) 

and the value is the predicted COD concentration in the effluent. As can be seen, the base of 

the splitting can be different independent variables and the algorithm will continuously split the 

tree to try to find the tree that results in the smallest MSE value. In this example the solutions 
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are evaluated using MSE the aim can also be to minimize the mean absolute error (MAE) or 

other functions can be used for evaluation to find the “best” decision tree.  

Random Forest (RF) is an algorithm that uses a combination of several decision trees to make 

predictions. The algorithm can be used for both classification and regression and can handle 

nonlinear relationships. By using several decision trees, the risk of overfitting the model 

decreases when compared to using a single decision tree (Schonlau and Zou, 2020). This 

causes RF to be a suitable algorithm when working with small datasets(Aliashrafi et al., 

2021). RF can be used for example to optimize a coagulation-flocculation process to ensure 

optimal pH, amount of coagulant, and settling time, to minimize the residual turbidity. There 

is even a possibility of this using results from jar tests which makes it possible to evaluate 

changes in operating conditions without risking disturbing the treatment process (Ugonabo et 

al., 2022). Another study compared different machine learning algorithms also used to predict 

turbidity and found that RF along with something called Adaptive Neuro-Fuzzy Inference 

System showed the highest accuracy levels of removing water  

turbidity (Arab et al., 2022). In conclusion, RF has proved to be an attractive alternative to jar 

tests and can be used as a tool for operators to predict concentrations in the effluent, optimize 

operating conditions, estimate coagulant dosage, and can be used with data extracted from, for 

example, a SCADA system like the one used at Oatly (Dürrenmatt and Gujer, 2011).  
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4 Methodology  

As illustrated in section 2.3.3 Wastewater parameters the influent concentration of BOD7, 

COD, Tot-P, and SO4 varied greatly along with the pH, temperature, and flow rate. Due to these 

fluctuations, jar tests are an unsuitable method as the results are highly dependent on the 

wastewater parameters making any conclusions only valid for the specific composition of the 

sample used for testing. An alternative approach is to use machine learning which has the 

potential to take these variations into account when making predictions based on what it has 

learned from training on data from previous samples. When using machine learning algorithms 

the results will be very dependent on the data that has been used for training the model. This 

section, therefore, describes how the data has been collected by Oatly, how the selection of 

variables was done from all of the available wastewater parameters, what preprocessing of the 

data was required, and finally, what algorithm and libraries have been used for the creation of 

the model.   

4.1 Data collection   

The data used is historical data covering the period 2021-11-04 to 2022-03-25 that has been 

gathered from internal documentation and the software used for process monitoring, VA-

operatör, and then compiled. VA-operatör is a SCADA system developed by VA-ingenjörerna 

where data from the on-line sensor is gathered and it is also used to control the treatment process 

by, for example, changing the dosage of coagulant. The software can also be used to extract 

information, including the flow rate, temperature, and pH, from these on-line sensors. There is 

also a possibility of recording both the results from analyses done by accredited laboratories 

and by the operators. The accredited laboratory ALS is responsible for analyzing samples from 

the primary influent, the treated water, and samples taken from the process by the operators. 

An automatic sampler is used to take samples from the primary influent and from the treated 

water,  both of which are taken flow-proportionally and show the average concentration over 

24 hours. The samples from the treated water are taken automatically by the Liquistation CSF48 

is flow-proportional, and each sample is taken for 24 hours.  

Previously it has also been possible for the operators to use LCK314 Hach-Lange test kits to 

measure the concentrations of COD using a DR3900 spectrophotometer also from Hach-Lange. 

The LCK314 contains potassium dichromate, the usage of which is now highly regulated in 

Sweden and the rest of Europe (Mantech, n.d.). Therefore, today other test kits are used to 

measure the concentration of TOC instead.  

So the data from the primary influent and treated water are average concentrations, and the 

sample concentrations in the effluent from the first and second chemical treatment steps are 

from discrete samples. It has not been established if, and in that case, how large the variations 

in concentration are during a day.   

4.2 The dataset 

The most intense period of measuring was between 2021-11-04 to 2022-06-24 when samples 

were taken 2-5 times a week, resulting in a total of 142 samples. The samples were taken from 

different parts of the process and different parameters were measured at different points. Some 
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of the wastewater parameters measured are presented in Table 5 along with where the sample 

was taken. The table also includes data from the on-line sensors.   

Table 5 Some of the wastewater parameters measured during the period 2021-11-04 to 2022-

06-24 and from where in the process the samples were taken. There are also comments in those 

cases that the routine of taking samples changed during the period.  

Parameter Primary 

influent 

Effluent 1st 

coagulation 

Influent 2nd 

coagulation  

Effluent 2nd 

flotation  

Treated 

water 

Comment 

Flow rate x    x  

BOD7 x  x  x  

COD x x x x x Effluent 
concentration 

only 

measured 

until 2022-

03-26 

TOC x x  x x Effluent 1st 

coag. and 2nd  

flot. 

measured 

occasionally  

2022-06-20 

to 2022-10-

03 

Tot-N x    x  

Tot-P x    x  

PO4-P x  x  x Measured 

occasionally  

SO4 x    x  

SS x x x x x  

pH x    x  

Temperature x    x  

 

As the table shows a lot of the samples from both the first and second chemical treatment steps 

are taken either the influent or effluent. However, there is more data related to the first chemical 

treatment step, mostly due to data from the on-line sensors. Another issue regarding the second 

chemical treatment step is that the level of detection for COD is 30 mg/L so all concentrations 

of 30 mg/L or less are just recorded as “<30 mg/L” making much of the data difficult to use. In 



25 

 

addition to what is presented in Table 5, there was also data available regarding the coagulant 

and polymer dosage for both the first and second coagulation.  

Due to this, it was decided to focus on the first coagulation and flotation of the process instead 

of the second to maximize the amount of data available for use. Also, as the focus of the project 

is to investigate if it is possible to use the data available to create a model that can be used to 

estimate the COD concentration in the effluent, only data from 2021-11-04 to 2022-03-26 was 

included in the dataset as measurements of the COD concentration in the effluent was 

discontinued after this point. Only including data containing the COD concentration in the 

effluent decreases the size of the dataset from 142 rows to 65 rows. A number of the wastewater 

parameters included in this dataset are presented in Table 6 along with the minimum, maximum, 

and average values. It is this dataset that the modeling described later on in this rapport is based 

on.  

Table 6 The minimum, maximum, and average flow rate, temperature primary influent, pH 

primary influent, PAC dosage, loading rate, and concentration of COD, Tot-P, and SO4 in the 

primary influent. The data is from the period 2021-11-04 to 2022-03-26 and no rows containing 

missing data have been included in these calculations.  

Water quality 

parameter 

Minimum Maximum Average 

Flow rate (m3/day) 170.5 748.8 583.3 

Temperature 

influent (°C) 

11.9 38.8 30.6 

pH influent 5.33 11.5 7.22 

PAC dosage 

(ml/m3) 

600 1200 977 

COD influent 

(mg/L) 

1100 3500 2070 

Tot-P (mg/L) 3.7 16 2.0 

SO4 (mg/L) 1 29 3.4 

 

As the coagulant used, Ekoflock90, has an aluminum content of 9 weight% these PAC 

dosages of between 600ml/m3 and 1200ml/m3 correspond to an aluminum concentration of 

approximately 148 mg/L and 74 mg/L respectively. It should be noted that the concentrations 

of the primary influent are average concentrations while the concentrations from the effluent 

are discrete samples.  
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4.3 Selection of variables  

The dataset is made up of the wastewater parameters, flow rate, temperature, pH, coagulant 

dosage, polymer dosage, the influent concentration of COD, Suspended Solids, BOD7, Tot-P, 

and SO4, and the effluent concentration of COD and Suspended Solids. There was also a 

possibility of including the primary influent concentrations of ammonia, total nitrogen, and fat 

but this data was believed to be redundant for the model and was therefore excluded.      

The choice of independent variables was chosen based on factors that have a large impact on 

the efficiency of a coagulant as described in section 3.2 Coagulation and Flocculation. The 

final selection was done by testing different constellations of independent variables and then 

evaluating the resulting model.  

4.4 Data preprocessing     

During the data preprocessing any rows containing missing data were removed from the dataset 

as the algorithm requires that no data is missing from the independent variables. In addition, 

data with a pH of 9 or above was removed from the set, further decreasing the size of the dataset. 

This is because if the pH is too high it will impact the coagulation mechanism which will have 

consequences for the coagulation efficiency. There is a risk that this might change the “pattern” 

that the algorithm establishes and from which it makes predictions as the relationship suddenly 

behaves differently. To avoid this risk, this data was therefore removed.  

4.5 Modeling    

The modeling was done in Python using a RandomForest regression algorithm. For the creation, 

the libraries pandas and scikit-learn were imported. Pandas were mainly used to import all data 

from Excel to Python and make it readable. Pandas DataFrame was used to store the data for 

the variables used in the model.   

The method test_split was used to divide the dataset into a training and a test set. The test set 

consisted of 10 % of the total dataset and, as discussed later on in this report, 10 % was chosen 

to maximize the size of the training set.  

To evaluate the results from the model the built-in functions of the module sklearn.metrics was 

used and matplotlib was used to create all the figures and graph used in the report. 
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5 Results and discussion 

In this section, the final selection of variables from all the available wastewater parameters is 

discussed along with the results from the model based on these. It is also evaluated how accurate 

the predictions of the COD concentrations in the effluent from the first flotation are using 

statistical methods and by discussion of the model’s limitations. Finally, the model is used to 

predict the COD concentration at different dosages of coagulant to test if it could have been 

possible to, according to the model, decrease the dosage and by how much. To illustrate the 

possible gains of using the model, it is calculated what Oatly possibly could save based on these 

results in terms of CO2 emissions and SEK.     

5.1 Final selection of variables and preprocessing    

As mentioned in section 2.3.3 Wastewater parameters, the relevant wastewater parameters in 

the dataset were flow rate, temperature, pH, the influent concentration of COD, Tot-P and SO4, 

the PAC dosage, and the COD concentration of the effluent.  In addition, there were also data 

regarding the concentration of suspended solids, total nitrogen, ammonia, and alkalinity, along 

with other water quality parameters.  

During the literature overview, possible variables from other studies appeared to be flow rate, 

temperature, pH, influent COD concentration, influent Tot-P concentration, coagulant dosage, 

effluent COD concentration, and turbidity. These variables were either used along machine 

learning or when trying to establish mathematical correlations.  

When discussing the possibility of removal of COD and BOD7 it is important to take into 

consideration that these measurements include both soluble and particulate COD/BOD7 

(Mackenzie Davis, 2020). There is also a possibility of removal of some soluble matter 

however, during the chemical treatment, the majority of the COD reduction, for example, is due 

to the removal of particulate COD (Haydar and Aziz, 2009). It can therefore be misguiding to 

evaluate the removal efficiency based on the reduction in COD and BOD7 concentration if the 

fraction of soluble COD/BOD7 varies. So different fractions of soluble and particle COD/BOD7 

could mean that the removal efficiency does vary although the difference in concentration 

before and after the treatment is the same (Iwapublishing.com, 2010). The concentration of 

particulate COD/BOD7 can be measured by filtering the sample prior to analysis and assuming 

that the fraction of particulate vs soluble does not vary, makes it possible to estimate how much 

of the total COD that can be considered possible to remove. Turbidity measurements can also 

be used to get an indication of the amount of particulate COD as it is a measurement of the 

amount of suspended particles in the wastewater which is related to the amount of particulate 

COD (Mucha and Kułakowski, 2016). Although the turbidity does not only depend on the 

amount of particulate COD or BOD, but it provides a good complement when trying to evaluate 

a chemical treatment step (El bied et al., 2021). The dataset used here does not contain any 

measurements of the turbidity, however, the concentration of suspended solids has been 

recorded. The concentration of suspended solids is related to the turbidity, so it was therefore 

considered a potential variable as it is also related to the amount of particular COD (Rügner et 

al., 2013). Another factor that can affect the efficiency of a coagulant is the concentration of 

SO4 at high concentrations (Kemira, n.d.). This was therefore also considered a possible 

candidate when selecting variables for the model.   

Based on this, the flow rate, pH, temperature, COD influent, Tot-P influent, and dosage of PAC 

were chosen as independent variables and the COD concentration in the effluent as the 
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dependent variable. Trials exchanging Tot-P for either SO4 or influent SS were made however 

this resulted in less accurate predictions. This may be because even though SO4 can affect the 

efficiency of a coagulant, the concentrations are too low to have an impact. Regarding the usage 

of SS as a variable, it is possible that it is unsuitable to use a combination of SS and COD since 

there is a correlation between the parameters (Guida et al., 2007).  

Overall, the selection of variables is in line with what has been used in previous research where 

different machine learning algorithms have been used for predictions of COD concentrations in 

the effluent or coagulant dosages. Following the selection of variables the data was, as 

mentioned in 4.3 Data preprocessing, preprocessed meaning that any rows containing missing 

data were removed from the set along with data where the pH was 9 or above.   

The minimum, maximum, and average values for each variable can be seen in Table 7, the main 

difference from the entire dataset (as described in section 2.2.3 Wastewater parameters) is that 

the dataset after preprocessing only consists of 56 rows (as compared to 65 rows) and the 

concentration of SO4 in the influent has been excluded from the table.  

 

Table 7. The minimum, mean, and max values of the independent variables when calculated 

from the entire dataset. 

Independent Variable Minimum  Maximum Average 

Influent flow rate (m3/d) 171  749  589  

COD concentration 

influent (mg/L) 

1100 3500 2040 

Ekoflock 90 (ml/m3) 600 1200 980  

Temperature influent 

(°C) 

11.9 38.8 30.1 

pH influent  5.33 8.14 6.72 

Tot-P in (mg/L) 3.7 16.0 7.36  

 

The maximum and minimum dosage of Ekoflock90 which has an aluminum content of 9 

weight%, corresponds to an Al concentration of approximately 148 mg/L and 74 mg/L 

respectively.  

Regarding the pH, there are on-line sensors that continuously measure the pH at three different 

locations related to the first chemical treatment step. One sensor is located just before the 

coagulation tank, one inside of the coagulation tank, and one in the flocculation tank meaning 

that there is a possibility to either include the pH at the start, during the coagulation, or after the 

coagulation. There have been attempts to include each of the three in the model however the 

starting pH caused the best model performance. It is possible that the starting pH potentially 

has a greater impact on the coagulation efficiency, or it is that this is the pH before adjustments 

have been done. The pH during the coagulation and after varies very little which might negotiate 

any effects that the pH might have had on the coagulant.  
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As mentioned in the section Project Boundaries this selection of variables has only been 

evaluated for the first coagulation-flotation step. It is therefore possible that this constellation 

is suboptimal for the second coagulation-flotation step, in particular, the concentration Tot-P as 

it only affects the coagulation efficiency at high concentrations which might not be the case for 

the second chemical treatment step.   

5.2 Model estimations  

The model was used to predict the COD concentration in the effluent from the first flotation, 

which was then compared with the real COD concentration, both of which are presented in 

Figure 10. The data used for this was the test set which consisted of 10% of the entire dataset, 

resulting in only 6 points. An alternative could have been to use a larger section of the dataset 

for testing however this would have decreased the amount of data available for training the 

model. It was decided that it was more important to maximize the amount of training data to 

improve the model than to use more data for testing to increase the validity of the results.  

 

Figure 10. Real COD concentration vs the predicted COD concentration using the model, the 

comparison is done using the 6 data points making up the test set.  

 

The figure illustrates how well the model is at making predictions based on unknown data by 

applying patterns learned from the training data. As can be seen, the shape of the curves is very 

similar although the accuracy of the predictions is not great. This could mean that the size and 

spread of the training data are enough for the model to find a pattern but not enough for very 
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precise predictions. A possible solution for this could either be to increase the size of the dataset 

or to optimize the algorithm through the tuning of hyperparameters. It is difficult to determine 

exactly which is the most limiting to the performance of the model, but the most likely obstacle 

is the size of the dataset.  

It is usually recommended that the number of rows in a training set should be approximately 

ten times the number of variables used for the model (Alwosheel et al., 2018). This training set 

only consists of 50 rows even though the model is based on a total of 7 variables. However, 

although a smaller number of variables could have been beneficial from a machine learning 

point of view it would also have made the model unable to take important factors for the 

coagulation efficiency into account. Had there been smaller variations in water parameters 

decreasing the number of variables might not have posed a problem however in this case any 

attempts caused the model to perform worse.  

Another solution could have been to increase the size of the dataset, however, as the model is 

based on the COD concentration both in the influent and effluent it was not possible to increase 

the amount of data as COD is no longer measured due to the environmental hazard of the reagent 

used (Mantech, n.d.). Instead, TOC is measured and, according to the theory presented in 

section 3.1.4 TOC, it is plausible to assume that the TOC concentration could be used instead. 

However, both the investigation of the possibility of replacing COD with TOC and optimizing 

the algorithm is outside of the scope of this project.  

The same results are illustrated in Table 8 and as shown the model could be used for making 

rough estimations but in its current form, it should be complemented with jar tests. But 

depending on the accuracy required, it could provide a plausible tool for the operators to 

decrease the amount of jar testing required.  

Table 8. Real COD concentration and the COD concentration predicted by the model are based 

on data from the test set. 

Sample number Real COD concentration  

(mg/L) 

Predicted COD concentration  

(mg/L) 

0 640 711 

1 950 1011 

2 1000 1077 

3 970 916 

4 980 985 

5 1100 1079 
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The model was also used to make predictions based on the entire dataset to see how good it was 

overall at finding the patterns that describe the coagulation efficiency. Figure 11 shows the 

results for the predictions done for the entire dataset, but it should be noted that no conclusions 

regarding the validity of the model should be drawn from this as the model has been fitted based 

on the majority of the data.  

 

Figure 11. The real COD concentration and the predicted COD concentration for the entire 

dataset 

However the figure does present the limitations of using the RF algorithm, it has difficulties 

making accurate predictions in cases where the COD concentration in the effluent is either very 

high or low. This is linked to the algorithm's inability to extrapolate; it is limited to the data that 

has been used for the training and so, if there is a need for extrapolation, other machine learning 

algorithms should be considered (Tyralis et al., 2019). It is also possible that the performance 

could be improved by simply increasing the size and range of the training set or it could be that 

because of the large variations in the dataset, other algorithms might be better suited, both 

solutions which are out of scope for this project.   
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5.3 Model evaluation 

The performance of the model was evaluated by calculating the root-mean-squared-error 

(RMSE) and the goodness-of-fit (r2) using sklearn.metrics in Python. The RMSE value 

described how far off the model predictions were compared to the actual values and the lower 

the value the more accurate predictions. The r2 value describes the strength of the relationship 

between the independent and dependent variables and can be used to evaluate how well the 

pattern found by the model fits reality. To avoid overfitting where the model performs great 

using known data but not when faced with unknown data, the evaluation was done using 

unknown data, the test set.  

The results from this evaluation are shown in Table 9 below and were mainly used to compare 

the model performance when selecting variables.  

Table 9. The RMSE and r2 values can be used to evaluate the accuracy of the model. 

RMSE r2 

48.98 0.85 

 

 An r2 value of above 0.75 indicates a strong relationship between the variables as it means that 

75% of the variance of the dependent variable can be explained by the variance of the 

independent variables  (Allwright, 2022). Therefore this was the major method of evaluation 

when the independent variables were selected for the model. As mentioned in section 5.1 Final 

selection of variables there is no guarantee that these variables are optimal for modeling the 

second chemical treatment step, mainly because of the presumed large difference in 

concentration of both Tot-P and SO4 in the influent.    

The RMSE value describes how far off the model predictions were from the actual 

concentrations and is mainly useful for comparing different models or discussing the accuracy 

of approximation required for the usage of the model. By improving the model it is possible to 

decrease the RMSE value and therefore decrease the need for validation of the predictions, for 

example by performing jar tests. A model with a low enough RMSE might even be used to 

determine the dosage of coagulant automatically as a future application. 

5.4 Model limitations    

One important model limitation, besides the inability to extrapolate, is the possible inability to 

take changes of the dominating coagulation mechanism into account. A change of the 

coagulation mechanism could result in a deviation from the pattern learned by the model 

thereby increasing the inaccuracy of the predictions. The risk of this could be avoided by 

ensuring that the model is only used under conditions where the same mechanism dominates. 

But it is also possible that with enough data the model can take this change into account when 

finding the pattern thereby decreasing this risk.  

Another important limitation is the range of the data used for training the model. As previously 

mentioned, it is unable to extrapolate, and as a direct consequence, it is only possible to perform 

optimization within the span of wastewater parameters used during the training. This means 

that, for example, if all coagulant doses in the dataset are unnecessarily high, the estimated 
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coagulant dosage will be too high as well. So if the aim is to use the model to evaluate rather 

than predict it is important to take this limitation into account or ensure good quality of the data.  

The model is only based on the historical data available and therefore a too small dataset. This 

could lead to overfitting where the model is good at making accurate predictions based on 

known data but is unable to handle unknown data (Ellis, 2021).  

5.5 Model consequences  

According to internal documentation, the first chemical treatment step is designed to have a 

mean COD removal efficiency of 57%. It can therefore be presumed that if a removal efficiency 

of 57 % in the first chemical treatment step is achieved it should be enough to fulfill the 

requirements of the permit assuming that there are no abnormal circumstances affecting the rest 

of the treatment process. Therefore the COD concentrations with a removal efficiency of 57% 

are calculated and presented in Table 10 along with the real COD concentrations in the effluent.  

  

Table 10. Data from the test set including the predicted COD concentration, and the 

concentration at a 57% removal efficiency.  

Sample 

number 

COD 

concentration 

influent (mg/L) 

Real COD 

concentration 

effluent (mg/L) 

Predicted COD 

concentration  

(mg/L) 

Calculated COD 

concentration (mg/L) 

with 57 % removal 

efficiency 

0 1700 640 711 731 

1 3000 950 1011 1290 

2 2800 1000 1077 1204 

3 2200 970 916 946 

4 2100 980 985 903 

5 3000 1100 1079 1290 

 

As seen in the table the majority of real COD concentrations are lower than what would be 

required if a 57% removal efficiency is sufficient. This indicates that there could be a possibility 

to decrease the coagulant dosage but still fulfill the process requirements. As one of the 

independent variables that the model is based on is the coagulant dosage it can be used to predict 

what effect different coagulant dosages have on the concentration in the effluent. It is however 

limited by the data used for training and for the majority of the data, the coagulant dosage is the 

same as seen in Figure 12. 
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Figure 12 Histogram showing the frequency of the different PAC dosages.   

   

As a result it is difficult to evaluate how the COD concentration in the effluent changes with 

the coagulant dosage from the dataset as it stands. For example evaluating a dosage between 

700 to 950 ml/m3 would require extrapolation decreasing the validity of the predictions.   

It is still possible to use the model to evaluate the effect of changing the coagulant dosage but 

only using the same dosages that can be found in the training set making the estimations very 

rough. The data from the test set used for evaluating the coagulant amounts can be seen in Table 

11.  

Table 11. The data from the test set 

Sample 

number 

Flow 

rate 

m3/d 

Temperature 

°C 

pH 

influent 

PAC 

ml/m3 

COD 

influent 

(mg/L) 

Tot-P 

influent 

(mg/L) 

COD 

effluent 

(mg/L) 

0 522 20.6 7.6 1200 1700 8.7 640 

1 681 34.6 5.36 1000 3000 7.5 950 

2 646 27 6.21 1200 2800 9.4 1000 

3 542 34.5 5.64 1000 2200 6.7 970 

4 583 34.1 6.23 700 2100 4.9 980 

5 629 36.3 5.93 600 3000 9.2 1100 
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In Table 12 the effect of varying the amount of PAC can be seen. To approximate the required 

dosage the coagulant dosage was varied for each sample and the predicted COD concentration 

was compared to the COD concentration at 57% removal efficiency.  

 

Table 12. Predicted COD concentrations in mg/L at different dosages of Ekoflock 90 (PAC), 

the values are with three significant figures   

Sample Predicted 

COD at 

Ekoflock 600 

ml/m3  

Predicted COD 

at Ekoflock 

700 ml/m3 

Predicted 

COD at 

Ekoflock 

1000 ml/m3 

Predicted 

COD at 

Ekoflock 

1200 

ml/m3 

Goal COD 

concentration 

(mg/L) 

Actual 

dosage  

0 813 780 700 711 731 1200 

1 1010 1010 1010 1050 1290 1000 

2 1060 1050 1070 1080 1200 1200 

3 930 930 916 937 946 1000 

4 1000 985 967 1010 903 700 

5 1080 1080 1080 1140 1290 1000 

 

In accordance with the theory, there does not seem to be a linear relationship between the 

amount of coagulant and the COD concentration. However, this could also be a consequence 

of the small variation in dosage in the dataset making it difficult for the model to determine 

the impact of the amount of coagulant.  

According to these results, it would have been possible to decrease the dosage for all samples 

except for sample 4 while still fulfilling the treatment requirements. The results also indicate 

that a lower dose could lead to increased removal efficiency.  

The model thereby shows the potential of being a helpful tool for the operators although the 

model in its current state should be complemented with jar tests.  

 

  



36 

 

As Table 13 shows, the average amount of PAC that could be saved, according to the model, 

is approximately 206 L/d. As the density of Ekoflock 90 is 1370 kg/m3 this is equal to 

approximately 282 kg/d.  

 

Table 13 Result of estimation of coagulant dosage according to the model. 

Sample 

number 

Flow rate m3/d Actual 

dosage 

ml/m3 

Sufficient dosage according 

to model ml/m3 

Difference of amount of 

coagulant L/d 

0 521,7 1200 1000 104 

1 680,5 1000 600 272 

2 646,4 1200 600 388 

3 541,7 1000 600 217 

4 583 700 700 0 

5 629,2 1000 600 252 

 

The Aluminum content of Ekoflock90 is 9.0 ± 0.3 weight%. In Table 14 the aluminum 

concentration at current as well as the estimated sufficient dosages is presented.  

 

Table 14 The aluminum concentration at actual and estimated sufficient dosage 

Sample 

number 

Actual 

dosage 

ml/m3 

Aluminum 

concentration at 

actual dosage 

(mg/L) 

Sufficient dosage 

according to 

model ml/m3 

Aluminum 

concentration 

at the 

estimated 

sufficient 

dosage (mg/L) 

0 1200 148 1000 123 

1 1000 123 600 74 

2 1200 148 600 74 

3 1000 123 600 74 

4 700 86 700 86 

5 1000 123 600 74 

 

 

It is important to note that no tests or measurements have been used to validate these results 

so there is a very large uncertainty. So no conclusions should be drawn from these numbers, 
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instead, these results should be considered a suggestion of how the model might be used and 

what the advantages could be.  

5.5.1 From an economical perspective  

The cost of Ekoflock 90 according to internal documentation is approximately 3.48 SEK/kg 

coagulant. The possible average amount of PAC saved would mean that it could be possible 

to decrease the cost of coagulant by approximately 1000 SEK/day.  

 

5.5.2 From an environmental perspective  

The carbon footprint of PAC is 0.537 CO2-eq/kg PAC including the emissions related to the 

transport of the coagulant (Homa and Hoffmann, 2014). According to the results from the 

model, saving an average of approximately 280 kg/day would then mean a 152 kg reduction 

of CO2 emissions per day. The average CO2-eq emissions from coagulants used in the WWT 

at Oatly is around 28 tons a month so the results from the model indicate that there could be a 

possibility of reducing the environmental impact from coagulants by 16% a month.  
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6 Conclusion 

According to the results presented in the previous sections, it is possible to use the random 

forest algorithm to create a model that can be used for approximation of the concentration of 

COD in the effluent based on the influent concentration of COD, and Tot-P, temperature, pH, 

flow rate and dosage of coagulant.  

The high r2 value indicates that there is a strong relationship between the independent and 

dependent variables. This means that the wastewater parameters used for the model are well-

suited for predicting the concentration of COD in the effluent. However the high RMSE value 

indicates that the accuracy of the predictions could be improved but depending on the 

requirements, it could be deemed accurate enough. In total, the results indicate that the aim of 

creating a model and training it using historical data to make predictions is fulfilled.  

 

The second research question was regarding the possible consequences of using the model. 

By using the model to make predictions based on different coagulant dosages it was possible 

to estimate how much the amount of PAC could be decreased while still meeting the 

requirements of the WWT. The results indicate the possibility of saving approximately 280 kg 

of PAC/day which corresponds to saving 980 SEK/day or 152 kg CO2-eq/day by decreasing 

the coagulant dosage according to the model. Although there is a high degree of uncertainty, it 

still illustrates how the model has the potential to be used and what there is to gain but more 

research is required before any conclusions should be drawn. Nonetheless, if this is accurate it 

would mean that it is possible to decrease the environmental impact caused by PAC by 

approximately 16% a month. 

 

The final research question was what is required to improve the model. This has been 

previously mentioned but will be discussed more in depth in the next section of the rapport.  

 

To conclude, the research questions presented at the beginning of the rapport are considered 

fulfilled, and the overall aim of the project is achieved.  
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7 Future recommendations  

7.1 Model improvements  

The largest model limitation is the size of the dataset. With more data available it would be 

possible to increase the training of the model which should lead to better predictions. It would 

also make it possible to evaluate the results to a greater extent since it would mean more test 

data to use when comparing predictions to real values. One way of gathering a very large 

amount of data could be to install more on-line sensors to automatically gather measurements 

of the different concentrations. As long as the data is then compiled in an excel-file it is then 

relatively easy to import it into Python and make it ready to use.  

It is suggested that it is investigated how concentrations might vary during a day to determine 

if the data from the flow-proportional samples are suitable for modeling purposes or if data 

from single samples is required instead. This would be an important aspect to take into 

consideration when planning how more data can be gathered. When gathering data it is also 

important that it is done systematically and preferably well-documented. By establishing a 

structure for the systematical gathering of samples from the process it could be possible to also 

establish relationships between the wastewater parameters such as TOC, COD, and BOD7. It 

could also make it possible to investigate if there are also great variations in the composition of 

the primary influent during the day. In the future this might make it possible to relate the 

variations to different products being produced and the results could thereby serve as a tool for 

production planning. In an evaluation of the WWT, it was found that the biological treatment 

step has trouble handling large and sudden increases in the loading rate of BOD. It could 

therefore be beneficial to link single products to these peaks so that the operation of the 

wastewater treatment process may be adjusted.  

The algorithm that has been used in this project is a RandomForest regressor, but several other 

algorithms could have been used instead. For example, a support vector machine algorithm has 

the advantage of being able to extrapolate, unlike the random forest. Similarly, the random 

forest algorithm has several hyperparameters that for example, control the number of decision 

trees, how decisions should be evaluated, and many other things. These hyperparameters have 

not been optimized in this project but it is suggested for future work. Along with any 

optimization, a comparison of different algorithms should be done as well.  

7.2 Areas for development of the model 

As mentioned in section 6.5 Model consequences the results from the example of how the model 

could be used to test different dosages of coagulant, have not been validated. It is believed that 

this is a plausible area of application for the model but as there is no data for how the COD 

concentration of the effluent varies with the coagulant dosage, there are no results to compare 

to. If there is an ambition to use the model in this way, it is therefore recommended that a series 

of jar tests are performed so that the results can be compared to the model predictions. This is 

currently done except that no concentrations are measured. The operators have reported that the 

results from the jar tests, regarding the amount of coagulant required, sometimes differ greatly 

from what is needed for the actual treatment process. So there is a risk that this might not be an 

optimal method to collect data for these comparisons however it might be worth investigating.  
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As mentioned in section 6.1 Final selection of variables, the pH is currently measured by three 

on-line sensors located before the first coagulation, in the area for coagulation and the area for 

flocculation. The pH measurement that has been used for the model has been chosen just based 

on model performance, but another pH may have a greater impact on the coagulation efficiency. 

It would also be interesting to investigate the impact of the pH in a similar way as done with 

the coagulant dosage. This would require that another pH measurement is used as a variable as 

the data from the current sensor is before the pH adjustment.    

According to previous research, it also seems possible to use the model to evaluate operating 

conditions such as stirring intensity. If this is included in the model it could also be possible to 

evaluate if different stirring intensities are more or less suitable for different coagulant dosages. 

As shortly mentioned in section 3.2.4 Mixing and motion, the flocs' ability to re-grow is 

influenced by the coagulation mechanism used for the formation. This could potentially mean 

that if the flocs were formed using charge neutralization, which has the highest re-flocculation 

factor, and the change in dosage causes sweep coagulation to dominate instead, then the flocs 

might be more breakable. If the flocs became more breakable, then a decrease in stirring 

intensity might be required. This is just one example of how it could be possible to include 

operating conditions that are known to be important factors affecting the efficiency of the 

chemical treatment steps.   

The only dependent variable used in this model is, as previously mentioned, the concentration 

of COD in the effluent. This is not the only important factor when concluding is a chemical 

treatment step is performing satisfactorily or not. Another important parameter that has not been 

included in the model is the residual turbidity which is especially important if the model is to 

be used for the second chemical treatment step as well. As mentioned in section 2.2.6 The post-

treatment, a coagulant is added to the drum filter if the turbidity of the filter influent is 4.5 NTU 

or above. This could mean that if the model is used in its current state, thereby making decisions 

regarding the coagulant based on the COD concentration only, there might be an increase in 

residual turbidity in the effluent from the second chemical treatment step. A consequence of 

this would then be more coagulant is used in the post-treatment step diminishing possible gains 

from decreasing the dosage in the second coagulation. It is therefore important to either try to 

include the turbidity in the model or to perform other tests to evaluate the consequence of any 

coagulant change.  

One advantage of decreasing the coagulant dosage is a decreased amount of sludge produced 

during the chemical treatment steps. According to the operators, there is a noticeable difference 

when the dosage is changed but this is not reflected in the results from the model. To get a more 

comprehensive view of the consequences of using the model, it would therefore be interesting 

to include this aspect, either by testing if it is possible to adapt the model for this purpose, or 

by performing manual calculations.  

Finally, as mentioned in section 3.5.3 Machine learning, there are several ways to use machine 

learning to improve a wastewater treatment process. It is therefore not implausible that the 

model could be further developed, perhaps by combining results from different algorithms, to 

potentially be used to evaluate multiple steps of the process and how changes in one part affect 

the rest.  

  

 



43 

 

8 Reference list 

ADEMOROTI, C.M.A. (1986). Model to predict BOD from COD values. Model to predict 

BOD from COD values, [online] 26(3-4), pp.80–84. Available at: http://pascal-

francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8644681 [Accessed 10 Nov. 

2022]. 

Ahmad, A.L., Wong, S.S., Teng, T.T. and Zuhairi, A. (2008). Improvement of alum and PACl 

coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill 

wastewater. Chemical Engineering Journal, [online] 137(3), pp.510–517. 

doi:https://doi.org/10.1016/j.cej.2007.03.088. 

Aliashrafi, A., Zhang, Y., Groenewegen, H. and Peleato, N.M. (2021). A review of data-

driven modelling in drinking water treatment. Reviews in Environmental Science and 

Bio/Technology, 20(4), pp.985–1009. doi:https://doi.org/10.1007/s11157-021-09592-y. 

Allwright, S. (2022). What is a good R-Squared value? (simply explained). [online] Stephen 

Allwright. Available at: https://stephenallwright.com/good-r-squared-value/. 

Alwosheel, A., van Cranenburgh, S. and Chorus, C.G. (2018). Is your dataset big enough? 

Sample size requirements when using artificial neural networks for discrete choice 

analysis. Journal of Choice Modelling, 28, pp.167–182. 

doi:https://doi.org/10.1016/j.jocm.2018.07.002. 

Ammary, B. (2004). Nutrients requirements in biological industrial wastewater 

treatment. African Journal of Biotechnology, [online] 3(4), pp.236–238. Available at: 

https://tspace.library.utoronto.ca/bitstream/1807/4122/1/jb04045.pdf. 

Arab, M., Akbarian, H., Gheibi, M., Akrami, M., Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, 

M. and Tian, G. (2022). A soft-sensor for sustainable operation of coagulation and 

flocculation units. Engineering Applications of Artificial Intelligence, [online] 115, p.105315. 

doi:https://doi.org/10.1016/j.engappai.2022.105315. 

Armstrong, M. (2022). Which passenger cars pollute the most? [online] World Economic 

Forum. Available at: https://www.weforum.org/agenda/2022/04/most-polluting-passenger-

cars/. 

Assmann, C., Scott, A. and Biller, D. (2017). Online total organic carbon (TOC) monitoring 

for water and wastewater treatment plants processes and operations optimization. Drinking 

https://stephenallwright.com/good-r-squared-value/
https://tspace.library.utoronto.ca/bitstream/1807/4122/1/jb04045.pdf
https://www.weforum.org/agenda/2022/04/most-polluting-passenger-cars/
https://www.weforum.org/agenda/2022/04/most-polluting-passenger-cars/


44 

 

Water Engineering and Science, 10(2), pp.61–68. doi:https://doi.org/10.5194/dwes-10-61-

2017. 

Aziz, J.A. and Tebbutt, T.H.Y. (1980). Significance of COD, BOD and TOC correlations in 

kinetic models of biological oxidation. Water Research, 14(4), pp.319–324. 

doi:https://doi.org/10.1016/0043-1354(80)90077-9. 

Bache, D.H., Johnson, C., Papavasilopoulos, E., Rasool, E. and McGilligan, F.J. (1999). 

Sweep coagulation: structures, mechanisms and practice. Journal of Water Supply: Research 

and Technology-Aqua, [online] 48(5), pp.201–210. 

doi:https://doi.org/10.2166/aqua.1999.0022. 

Bajpai, P. (2018). Chapter 15 - Environmental Impact. [online] ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/B9780128142387000155. 

Barwal, A. and Chaudhary, R. (2014). To study the performance of biocarriers in moving bed 

biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing 

aerobic treatment systems: a review. Reviews in Environmental Science and Bio/Technology, 

13(3), pp.285–299. doi:https://doi.org/10.1007/s11157-014-9333-7. 

Bottero, J.Y., Cases, J.M., Fiessinger, F. and Poirier, J.E. (1980). Studies of hydrolyzed 

aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous 

solutions. The Journal of Physical Chemistry, 84(22), pp.2933–2939. 

doi:https://doi.org/10.1021/j100459a021. 

Cruz, D., Pimentel, M., Russo, A. and Cabral, W. (2020). Charge Neutralization Mechanism 

Efficiency in Water with High Color Turbidity Ratio Using Aluminium Sulfate and 

Flocculation Index. Water, [online] 12(2), p.572. doi:https://doi.org/10.3390/w12020572. 

da Rosa, J.J. and Rubio, J. (2005). The FF (flocculation–flotation) process. Minerals 

Engineering, 18(7), pp.701–707. doi:https://doi.org/10.1016/j.mineng.2004.10.010. 

DeNigris, J. (2020). Top 7 Reasons To Consider Zeta-Potential For Coagulant Dose Control 

- Materials Talks. [online] Malvern Panalytical. Available at: https://www.materials-

talks.com/top-7-reasons-to-consider-zeta-potential-for-coagulant-dose-control/ [Accessed 23 

Nov. 2022]. 

Dubber, D. and Gray, N.F. (2010). Replacement of chemical oxygen demand (COD) with 

total organic carbon (TOC) for monitoring wastewater treatment performance to minimize 

https://www.sciencedirect.com/science/article/pii/B9780128142387000155


45 

 

disposal of toxic analytical waste. Journal of Environmental Science and Health, Part A, 

45(12), pp.1595–1600. doi:https://doi.org/10.1080/10934529.2010.506116. 

Dürrenmatt, D.J. and Gujer, W. (2011). Data-driven modeling approaches to support 

wastewater treatment plant operation. Environmental Modelling & Software. 

doi:https://doi.org/10.1016/j.envsoft.2011.11.007. 

Ecolab company (2018). The NALCO Water Handbook, Fourth Edition /. 4th ed. [online] 

New York, N.Y.: Mcgraw-Hill Education, pp.197, 203–204, 210–212. Available at: 

http://www.abfaeng.ir/Content/media/article/The%20Nalco%20Water%20Handbook%201-

500_0.pdf [Accessed 18 Nov. 2022]. 

El bied, O., Kessler, M., Terrero, M.A., Fechtali, T., Cano, A.F. and Acosta, J.A. (2021). 

Turbidity and Chemical Oxygen Demand Reduction from Pig Slurry through a Coagulation 

Flocculation Process. Agronomy, 11(11), p.2158. 

doi:https://doi.org/10.3390/agronomy11112158. 

Ellis, C. (2021). Random forest overfitting. [online] Crunching the Data. Available at: 

https://crunchingthedata.com/random-forest-overfitting/. 

Franceschi, M., Girou, A., Carro-Diaz, A.M., Maurette, M.T. and Puech-Costes, E. (2002). 

Optimisation of the coagulation–flocculation process of raw water by optimal design 

method. Water Research, 36(14), pp.3561–3572. doi:https://doi.org/10.1016/s0043-

1354(02)00066-0. 

Ganesh, S. (2010). Multivariate Linear Regression. [online] ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/B9780080448947013506. 

Gebbie, P. (2001). 64 th Annual Water Industry Engineers and Operators’ Conference All 

Seasons International Hotel -Bendigo. [online] Available at: 

https://www.wioa.org.au/conference_papers/2001/pdf/paper6.pdf. 

Guida, M., Mattei, M., Della Rocca, C., Melluso, G. and Meriç, S. (2007). Optimization of 

alum-coagulation/flocculation for COD and TSS removal from five municipal 

wastewater. Desalination, 211(1-3), pp.113–127. 

doi:https://doi.org/10.1016/j.desal.2006.02.086. 

Hancock, N. (2017). Safe Drinking Water Foundation. [online] Safe Drinking Water 

Foundation. Available at: https://www.safewater.org/fact-sheets-1/2017/1/23/conventional-

water-treatment. 

https://www.wioa.org.au/conference_papers/2001/pdf/paper6.pdf
https://www.safewater.org/fact-sheets-1/2017/1/23/conventional-water-treatment
https://www.safewater.org/fact-sheets-1/2017/1/23/conventional-water-treatment


46 

 

Haydar, S. and Aziz, J.A. (2009). Coagulation–flocculation studies of tannery wastewater 

using combination of alum with cationic and anionic polymers. Journal of Hazardous 

Materials, 168(2-3), pp.1035–1040. doi:https://doi.org/10.1016/j.jhazmat.2009.02.140. 

Heddam, S., Bermad, A. and Dechemi, N. (2011). ANFIS-based modelling for coagulant 

dosage in drinking water treatment plant: a case study. Environmental Monitoring and 

Assessment, 184(4), pp.1953–1971. doi:https://doi.org/10.1007/s10661-011-2091-x. 

Homa, J. and Hoffmann, E. (2014). Life Cycle Analysis of Leading Coagulants: Executive 

Summary. [online] Available at: https://www.incopa.org/wp-

content/uploads/2019/02/INCOPA_LCA_Executive_Summary_web.pdf [Accessed 3 Apr. 

2023]. 

Hu, Z. and Grasso, D. (2005). WATER ANALYSIS | Chemical Oxygen Demand. [online] 

ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/B0123693977006634. 

Huck, P. and Sozański, M. (2011). 3.16 - Chemical Basis for Water Technology. [online] 

ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/B9780444531995000695#bib116 

[Accessed 17 Nov. 2022]. 

Iwapublishing.com. (2010). Coagulation and Flocculation in Water and Wastewater 

Treatment | IWA Publishing. [online] Available at: 

https://www.iwapublishing.com/news/coagulation-and-flocculation-water-and-wastewater-

treatment. 

Jain, S.K. and Singh, V.P. (2003). Chapter 13 - Water Quality Modeling. [online] 

ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/S0167564803800679 [Accessed 9 Nov. 

2022]. 

Jarvis, P., Jefferson, B., Gregory, J. and Parsons, S.A. (2005). A review of floc strength and 

breakage. Water Research, [online] 39(14), pp.3121–3137. 

doi:https://doi.org/10.1016/j.watres.2005.05.022. 

Johnson, I., Sithik Ali, M.A. and Kumar, M. (2019). Chapter 10 - Cyanobacteria/Microalgae 

for Distillery Wastewater Treatment- Past, Present and the Future. [online] ScienceDirect. 

Available at: 



47 

 

https://www.sciencedirect.com/science/article/pii/B9780128168097000105#bib9 [Accessed 

23 Nov. 2022]. 

Kemira. (n.d.). Download the updated Water Handbook! [online] Available at: 

https://www.kemira.com/insights/water-handbook-2020/ [Accessed 16 Nov. 2022]. 

Kemmer, F.N. and Ill, B. (1988). The NALCO water handbook. New York: Mcgraw-Hill. 

Khan, S. and Ali, J. (2018). Chemical analysis of air and water. Bioassays, pp.21–39. 

doi:https://doi.org/10.1016/b978-0-12-811861-0.00002-4. 

Li, F., Jiang, J.-Q., Wu, S. and Zhang, B. (2010). Preparation and performance of a high 

purity poly-aluminum chloride. Chemical Engineering Journal, [online] 156(1), pp.64–69. 

doi:https://doi.org/10.1016/j.cej.2009.09.034. 

Länsstyrelsen Skåne (2020). Tillstånd enligt miljöbalken till livsmedelsproduktion, 

Landskrona kommun. [online] Available at: 

https://www.naturvardsverket.se/contentassets/e54a650ab51a46dbbe614cfdcb077d6a/2020-

12-10-mpd-skane.pdf [Accessed 7 Feb. 2023]. 

Mackenzie Leo Davis (2020). Water and wastewater engineering : design principles and 

practice. New York: Mcgraw-Hill. 

Madan, S., Madan, R. and Hussain, A. (2022). Advancement in biological wastewater 

treatment using hybrid moving bed biofilm reactor (MBBR): a review. Applied Water 

Science, 12(6). doi:https://doi.org/10.1007/s13201-022-01662-y. 

Majid, A. (2019). Application of Lab-Scale MBBR to Treat Industrial Wastewater using K3 

Carriers: Effects of HRT, High COD Influent, and Temperature. International Journal of 

Environmental Sciences & Natural Resources, 20(2). 

doi:https://doi.org/10.19080/ijesnr.2019.20.556031. 

Mantech (n.d.). Potassium Dichromate, COD Analysis and the European Chemical Agency: 

What You Need to Know. [online] Available at: https://mantech-inc.com/wp-

content/uploads/2016/07/REACH-Dichomate-Ban-Release.pdf. 

Miranda, R., Latour, I. and Blanco, A. (2020). Understanding the efficiency of aluminum 

coagulants used in dissolved air flotation (DAF). Frontiers in Chemistry, [online] 8. 

doi:https://doi.org/10.3389/fchem.2020.00027. 



48 

 

Mucha, Z. and Kułakowski, P. (2016). Turbidity measurements as a tool of monitoring and 

control of the SBR effluent at the small wastewater treatment plant – preliminary 

study. Archives of Environmental Protection, 42(3), pp.33–36. 

doi:https://doi.org/10.1515/aep-2016-0030. 

Naturvårdsverket (n.d.). Reduced Climate Impact. [online] www.naturvardsverket.se. 

Available at: https://www.naturvardsverket.se/en/environmental-work/swedish-

environmental-objectives/reduced-climate-impact/ [Accessed 13 Apr. 2023]. 

Naturvårdsverket (n.d.). Industri, utsläpp av växthusgaser. [online] www.naturvardsverket.se. 

Available at: https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-

fran-industrin/. 

Naturvårdsverket (n.d.). Sveriges utsläpp och upptag av växthusgaser. [online] 

www.naturvardsverket.se. Available at: https://www.naturvardsverket.se/data-och-

statistik/klimat/sveriges-utslapp-och-upptag-av-vaxthusgaser/. 

 Nti, S.O., Buamah, R. and Atebiya, J. (2021). Polyaluminium chloride dosing effects on 

coagulation performance: case study, Barekese, Ghana. Water Practice and Technology. 

doi:https://doi.org/10.2166/wpt.2021.069. 

Oatly (n.d.). Our process | Oatly. [online] www.youtube.com. Available at: 

https://youtu.be/OdHRe6kgf4c [Accessed 7 Feb. 2023]. 

Ødegaard, H. (1995). Optimization of flocculation/flotation in chemical wastewater 

treatment. Water Science and Technology, 31(3-4), pp.73–82. 

doi:https://doi.org/10.2166/wst.1995.0518. 

Parsons, S.A., Goslan, E.H., McGrath, S., Jarvis, P. and Jefferson, B. (2014). 2.7 - 

Disinfection Byproduct Control. [online] ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/B9780123821829000840 [Accessed 17 

Nov. 2022]. 

Pernitsky, D.J. and Edzwald, J.K. (2003). Solubility of polyaluminium coagulants. Journal of 

Water Supply: Research and Technology-Aqua, [online] 52(6), pp.395–406. 

doi:https://doi.org/10.2166/aqua.2003.0036. 

Pernitsky, D.J. and Edzwald, J.K. (2006). Selection of alum and polyaluminum coagulants: 

principles and applications. Journal of Water Supply: Research and Technology - Aqua, 

55(2), pp.121–141. doi:https://doi.org/10.2166/aqua.2006.062. 

https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-fran-industrin/
https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-fran-industrin/


49 

 

Ratnaweera, H. and Fettig, J. (2015). State of the Art of Online Monitoring and Control of the 

Coagulation Process. Water, 7(11), pp.6574–6597. doi:https://doi.org/10.3390/w7116574. 

Rattanapan, C., Sawain, A., Suksaroj, T. and Suksaroj, C. (2011). Enhanced efficiency of 

dissolved air flotation for biodiesel wastewater treatment by acidification and coagulation 

processes. Desalination, 280(1-3), pp.370–377. 

doi:https://doi.org/10.1016/j.desal.2011.07.018. 

Rügner, H., Schwientek, M., Beckingham, B., Kuch, B. and Grathwohl, P. (2013). Turbidity 

as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in 

catchments. Environmental Earth Sciences, 69(2), pp.373–380. 

doi:https://doi.org/10.1007/s12665-013-2307-1. 

Schonlau, M. and Zou, R.Y. (2020). The random forest algorithm for statistical learning. The 

Stata Journal: Promoting communications on statistics and Stata, 20(1), pp.3–29. 

doi:https://doi.org/10.1177/1536867x20909688. 

Shi, Z., Chow, C.W.K., Fabris, R., Liu, J., Sawade, E. and Jin, B. (2022). Determination of 

coagulant dosages for process control using online UV-vis spectra of raw water. Journal of 

Water Process Engineering, 45, p.102526. doi:https://doi.org/10.1016/j.jwpe.2021.102526. 

Tyralis, H., Papacharalampous, G. and Langousis, A. (2019). A Brief Review of Random 

Forests for Water Scientists and Practitioners and Their Recent History in Water 

Resources. Water, 11(5), p.910. doi:https://doi.org/10.3390/w11050910. 

Ugonabo, V.I., Ovuoraye, P.E., Chowdhury, A. and Fetahi, E. (2022). Machine learning 

model for the optimization and kinetics of petroleum industry effluent treatment using 

aluminum sulfate. Journal of Engineering and Applied Science, 69(1). 

doi:https://doi.org/10.1186/s44147-022-00164-7. 

VA Ingenjörerna (2022). Godkänd anläggning/Prestandaprov Oatly reningsverk SR200. 

Veolia Water Technologies AB (2020). Oatly reningsverk utbildning 2020-12-03. 

Veolia Water Technologies AB (2021). Bruksanvisning Preliminär. 

Villa, A., Fölster, J. and Kyllmar, K. (2019). Determining suspended solids and total 

phosphorus from turbidity: comparison of high-frequency sampling with conventional 

monitoring methods. Environmental Monitoring and Assessment, 191(10). 

doi:https://doi.org/10.1007/s10661-019-7775-7. 



50 

 

Water Science School (2018). Turbidity and Water | U.S. Geological Survey. [online] 

www.usgs.gov. Available at: https://www.usgs.gov/special-topics/water-science-

school/science/turbidity-and-water. 

Wei, N., Zhang, Z., Liu, D., Wu, Y., Wang, J. and Wang, Q. (2015). Coagulation behavior of 

polyaluminum chloride: Effects of pH and coagulant dosage. Chinese Journal of Chemical 

Engineering, 23(6), pp.1041–1046. doi:https://doi.org/10.1016/j.cjche.2015.02.003. 

Woodard & Curran, Inc. , (2006). 5 - Waste Characterization. [online] ScienceDirect. 

Available at: https://www.sciencedirect.com/science/article/pii/B9780750679633500072. 

Woolf, B.P. (2009). Chapter 7 - Machine Learning. [online] ScienceDirect. Available at: 

https://www.sciencedirect.com/science/article/pii/B9780123735942000071. 

World Health Organization (2017). Guidelines for drinking-water quality, 4th edition, 

incorporating the 1st addendum. [online] www.who.int. Available at: 

https://www.who.int/publications/i/item/9789241549950. 

Yang, Z., Gao, B. and Yue, Q. (2010). Coagulation performance and residual aluminum 

speciation of Al2(SO4)3 and polyaluminum chloride (PAC) in Yellow River water 

treatment. Chemical Engineering Journal, 165(1), pp.122–132. 

doi:https://doi.org/10.1016/j.cej.2010.08.076. 

Zarei Mahmudabadi, T., Ebrahimi, A.A., Eslami, H., Mokhtari, M., Salmani, M.H., Ghaneian, 

M.T., Mohamadzadeh, M. and Pakdaman, M. (2018). Optimization and economic evaluation 

of modified coagulation–flocculation process for enhanced treatment of ceramic-tile industry 

wastewater. AMB Express, 8(1). doi:https://doi.org/10.1186/s13568-018-0702-4. 

Zhang, K., Achari, G., Li, H., Zargar, A. and Sadiq, R. (2013). Machine learning approaches 

to predict coagulant dosage in water treatment plants. International Journal of System 

Assurance Engineering and Management, 4(2), pp.205–214. 

doi:https://doi.org/10.1007/s13198-013-0166-5. 

Zhang, Z., Jing, R., He, S., Qian, J., Zhang, K., Ma, G., Chang, X., Zhang, M. and Li, Y. 

(2018). Coagulation of low temperature and low turbidity water: Adjusting basicity of 

polyaluminum chloride (PAC) and using chitosan as coagulant aid. Separation and 

Purification Technology, [online] 206, pp.131–139. 

doi:https://doi.org/10.1016/j.seppur.2018.05.051. 

 





LUND UNIVERSITY
Faculty of Engineering

Department of Chemical Engineering 
Water and Environmental Engineering

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

23


	Tom sida
	344783_1_A4_Hanna S.pdf
	1 Introduction
	1.1 Aim and research questions
	1.2 Project boundaries

	2 Background
	2.1 The production at Oatly
	2.2 The wastewater treatment process at Oatly
	2.2.1 Before entering the WWT
	2.2.2 The pretreatment step
	2.2.3 Pre-precipitation
	2.2.4 The biological treatment step
	2.2.5 Post-percipitation
	2.2.6 The post-treatment step
	2.2.7 The sludge treatment

	2.3 Requirements and parameters
	2.3.1 Environmental permit
	2.3.2 Design parameters
	2.3.3 Wastewater parameters


	3 Theory
	3.1 Wastewater parameters
	3.1.1 BOD
	3.1.2 COD
	3.1.3 TOC
	3.1.4 Turbidity

	3.2 Coagulation and flocculation
	3.2.1 Chemical reactions
	3.2.2 Coagulation mechanisms
	3.2.3 pH
	3.2.4 Mixing and motion

	3.3 Flotation
	3.4 PAC
	3.5 Optimizing coagulant dosage
	3.5.1 Jar tests
	3.5.2 Mathematical models
	3.5.3 Machine learning


	4 Methodology
	4.1 Data collection
	4.2 The dataset
	4.3 Selection of variables
	4.4 Data preprocessing
	4.5 Modeling

	5 Results and discussion
	5.1 Final selection of variables and preprocessing
	5.2 Model estimations
	5.3 Model evaluation
	5.4 Model limitations
	5.5 Model consequences
	5.5.1 From an economical perspective
	5.5.2 From an environmental perspective


	6 Conclusion
	7 Future recommendations
	7.1 Model improvements
	7.2 Areas for development of the model

	8 Reference list
	Tom sida

	Tom sida



