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Abstract

Quantum entanglement is a crucial component for many applications in quantum technology.
In recent years it has therefore become of great interest to develop methods for generating,
controlling and storing entanglement. In 2015, it was shown that a two-qubit engine could
generate stationary entanglement exploiting the incoherent interactions with its environ-
ment [1]. However, the entanglement generated in such engines is relatively low, and cannot
be used for non-classical tasks such as quantum teleportation. In this thesis, we characterize
a time-continuous measurement and feedback protocol able to increase the stationary entan-
glement production in the two-qubit machine. The obtained results show that the developed
protocol generates entanglement increments up to seven times higher than those achieved
without it. In addition, we show that the entanglement generated through the protocol
becomes useful in performing non-classical tasks such as quantum teleportation.
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1 Introduction

Quantum mechanics is a field of physics that tries to address discrepancies between the
predictions of classical physics and the observations of systems on an atomic and subatomic
scale. At these scales, the equations used to describe otherwise macroscopic systems turn
out to be approximations to the laws that quantum mechanics tries to describe. These laws
indicate a departure from the traditional understanding of the universe provided by classical
mechanics. For instance, quantum mechanics introduces the idea of superposition, through
which systems can simultaneously exist in multiple states. This concept departs from the
idea of realism and the classical understanding of systems being in a definite state at all times.
Another key feature separating classical from quantum physics is entanglement; namely the
ability of quantum systems to portray higher levels of correlations than is possible to describe
through the formalism of classical physics [2, 3]. In quantum mechanics, the existence of
entangled systems establishes a dependency on two measurements even when separated by
great distances. This effect challenges the classical notion of locality. For several years,
discussions behind the discrepancies between quantum and classical theories remained a
topic of debate. However, with an ever increasing understanding of quantum mechanics, in
recent years several experiments have supported the claims made by quantum mechanics. In
addition, through the development of John S. Bell’s inequality formalism, it has been largely
established that no successful theory of the universe could simultaneously preserve the ideas
of realism and locality.

In recent years, the study of entanglement has seen an increasing amount of interest.
This renewed interest emerges from the possibility of using entanglement as a resource. As
such, entanglement enables a wide range of applications within the fields of quantum tech-
nology and quantum information [4, 5]. Among these, the possibility of using entanglement
in quantum computation schemes is of great interest, as it allows for the development of
algorithms that are capable of performing meaningful computations that would take far too
long for a classical computer to perform [6,7]. In addition, quantum entanglement has been
long established to be a form of thermodynamic resource, thereby allowing it to be used to
perform operations in quantum systems such as quantum batteries [8,9]. Therefore, the gen-
eration, storage, and control of entanglement have become central challenges in various areas
of quantum physics. Among these, preserving entanglement is a critical challenge in quantum
information processing, as the coupling of entangled systems with external environments can
quickly degrade the established correlations within the system [10, 11]. One way this chal-
lenge can be addressed is through the development of feedback control algorithms. Quantum
feedback control is a branch of control theory that aims to control a quantum system through
the use of ”closed-loop” processes. In a general feedback control setting, a controller monitors
some property (observable) of a system. The controller then uses, in real time, the obtained
signal to control the dynamics of the measured system. Via means of this general feedback
description, several feedback control implementations, formalisms and protocols have been
proposed in order to aid the entanglement storage of quantum systems [12–14].

However, it is sometimes possible to exploit dissipative interactions to produce entangle-
ment in the absence of measurement and feedback [15–17]. In Refs. [1,18], a two-qubit system
is capable of generating entanglement exploiting the coherent interaction between the qubits
and some external environment. Outside of thermal equilibrium, it is thus possible to show
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that these systems are capable of generating long lasting steady state entanglement. The
simplicity of these engines allows for the prospect of experimental implementations, however,
the entanglement generation capabilities of these engines are limited, and they are often not
capable of producing any practically useful amount of entanglement.

In recent years, the study of autonomous thermal engines has seen increased interest as
they allow for the investigation of concepts such as work and heat in quantum systems. Exper-
imental implementation of such engines has already been achieved with trapped ions [19,20],
while several others have been proposed [21–23]. The engines studied in Refs. [1,18] were first
proposed in Ref. [24], and represent the smallest possible form of an autonomous heat engine.
The engines are autonomous as they do not require any source of external work to function.
In these engines, two qubits are coupled to two thermal resevoirs of different temperature.
The two qubits are then left to interact, and the temperature gradient between the two baths
establishes a heat current within the two qubit system. Through this scheme, the qubits are
capable of extracting useful work, as well as generating weak amounts of entanglement.

In this thesis we address the weakness of the entanglement generated in these engines by
developing a continuous feedback protocol. To this end, we define a control parameter for
the coupling between the hot bath and the system, which decouples the two whenever an
excitation is measured within the system. Via means of this simple procedure, we are able to
enhance the entanglement generation of the engines presented in Refs. [1,18]. In addition, we
establish a direct relation between the heat currents from the hot bath and the entanglement
generated. Lastly, we study the presented protocol under external dephasing and imperfect
bath isolation.
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2 Theory

In this section we provide the theory required to understand the results presented in chapter 4.
We start with a general introduction of quantum systems. Here we introduce the formalism
of density operators, their role in quantum mechanics and how to describe their dynamics.
We then introduce the basics of entanglement, and discuss how it can be quantified. Lastly,
we provide an overview of measurements in quantum mechanics, and the theory behind
continuous feedback control.

2.1 Description of Quantum Systems

In the Schrödinger picture of quantum mechanics, quantum systems are represented by time-
dependent, normalized statevectors (also known as kets) |ϕ(t)⟩ in some complex vector space
H. Such a representation is postulated to contain all information regarding the physical
state of the system [11, 25]. In addition, it is postulated that for every ket |ϕ⟩ there exists
a corresponding ”bra” ⟨ϕ|, such that ⟨ϕ|ϕ⟩ = 1 (normalization condition). In this picture
physical observables are represented by linear operators acting on H. The expectation value
of any observable Â, with respect to an arbitrary state |ϕ⟩, is then defined as

⟨Â⟩ ≡ ⟨ϕ|Â|ϕ⟩. (1)

When the whole system |ϕ(t)⟩ can be considered decoupled from any external system (closed),
its time evolution is characterized by the Schrödinger equation (note: h̄ ≡ 1)

i∂t|ϕ(t)⟩ = Ĥ|ϕ(t)⟩, (2)

where Ĥ(t) is the system’s Hamiltonian. By solving Eq. (2) for a time independent Hamilto-
nian, we arrive at an equivalent description for the evolution of |ϕ(t)⟩ in terms of a unitary
operation denoted by Û(t, t0)

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. (3)

where |ϕ(t0)⟩ is system’s initial state and Û(t, t0) = e−iĤ(t−t0) is the time evolution operator
which satisfies Û Û † = Û †Û = 1.

For a composite quantum system made up of N different subsystems with complex vector
spaces H1,H2, ...,HN , the total complex vector space is defined as H ≡ H1 ⊗H2 ⊗ ...⊗HN .
Each sub-space has a basis {|ϕ(k)

j ⟩}k such that the basis of H reads {|ϕ1
j1
⟩⊗|ϕ2

j2
⟩⊗ ...⊗|ϕN

jN
⟩}.

Any state in H may thus be written as

|ψ⟩ ≡
∑

ϕ1,ϕ2,...,ϕN

cϕ1,ϕ2,...,ϕN
|ϕ1⟩ ⊗ |ϕ2⟩ ⊗ ...⊗ |ϕN⟩ (4)

=
∑

ϕ1,ϕ2,...,ϕN

cϕ1,ϕ2,...,ϕN
|ϕ1, ϕ2, ..., ϕN⟩, (5)

where cϕ1,ϕ2,...,ϕN
are complex numbers ensuring the normalization condition

∑
ϕ1,ϕ2,...,ϕN

|cϕ1,ϕ2,...,ϕN
|2 =

1.
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The state vector formalism discussed so far provides the description of an idealized sce-
nario in which a system can be represented as a pure state vector. However, in experimental
settings, due to imperfections in the lab equipment, it is usually not possible to prepare an
ensemble of particles to be exactly in some desired state. It is therefore useful to introduce
the notion of mixed states, described by density operators ϱ̂. A mixed state is characterized
by a collection of systems which are prepared with different probabilities pi, where

∑
i pi = 1.

In these cases, a well defined state vector representation |ϕ⟩ for the whole system does not
exist. Instead, it is useful to define a density operator ϱ̂ ∈ H as

ϱ̂ ≡
∑
i

pi|ϕi⟩⟨ϕi|. (6)

Given some orthonormal basis {|ϕi⟩ : i = 1, 2, ..., dimH}, any density operator can be written
in matrix form with elements ϱ̂ij ≡ ⟨ϕi|ϱ̂|ϕj⟩. In this representation, the diagonal elements
ϱ̂ii represent populations and give the probability for the system to be in state |ϕi⟩, while
the off-diagonal elements ϱ̂ij (i ̸= j) are referred to as coherences and indicate the presence
of superposition of the basis-states within the system. Because of this, we formulate a
normalization condition for all density operators, namely

Tr{ϱ̂} = 1. (7)

Due to the properties of the trace operation, the holds true for any choice of basis we decide to
represent ϱ̂ in. In addition, we see that ϱ̂ needs to be positive and Hermitian (i.e. ⟨ϕi|ϱ̂|ϕi⟩ ≥ 0
and ϱ̂† = ϱ̂, for any {|ϕi⟩}).

Equation (6) shows that density operators are a generalization of state vectors, as any
pure state vector can be represented through as a density operator, while the converse is not
always true. To distinguish the cases in which a density operator ϱ̂ can be fully described by
a state vector, we introduce the notion of purity 0 ≤ P (ϱ̂) ≤ 1. According to this parameter,
all pure states are characterized by P (ϱ̂) = 1, in these cases there exist a pure state |ϕ⟩ such
that ϱ̂ = |ϕ⟩⟨ϕ|. Given any density operator ϱ̂, the purity of the system is defined as

P (ϱ̂) ≡ Tr
{
ϱ̂2
}
. (8)

For systems of unit purity, the expectation value for a given observable Â is given by Eq. (1).
Although, for systems with P (ϱ̂) < 1 there exist no pure state vector representation and
Eq. (1) does not hold anymore. In these cases, the expectation value of some observable Â
can be shown to take the form

⟨Â⟩ ≡ Tr
{
Âϱ̂

}
. (9)

The time evolution of closed mixed ensembles can also be treated through the formalism of
unitary evolutions (see Eq. (3)). Consider a quantum statistical ensemble characterized by
a density operator of the form ϱ̂(t0) =

∑
i pi|ϕi(t0)⟩⟨ϕi(t0)|. Using Eq. (3), we see that the

time evolved state for ϱ̂ is ϱ̂(t) = Û(t, t0)ϱ̂(t0)Û †(t, t0). Differentiating this equation gives the
Liouville-von Neumann equation

d

dt
ϱ̂(t) = i

[
ϱ̂(t), Ĥ

]
. (10)
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Assume we had a composite quantum system (here we focus on bipartite systems for
simplicity),described by a density matrix ϱ̂SE. It is useful to define a reduced state for sub-
system S, by introducing the partial trace operation

ϱ̂S = TrE {ϱ̂SE} =
∑
i

⟨ϕE
i |ϱ̂SE|ϕE

i ⟩, (11)

where {|ϕE
i ⟩} are the basis states for sub-system E. Equation (10) is valid only until the mix-

ture does not interact with some external environment. If we wished to study the dynamics
of a mixture ϱ̂S ∈ HS coupled to some external environment ϱ̂E ∈ HE, Eq. (10) would still
hold if we considered the evolution of the closed product state ϱ̂SE = ϱ̂S⊗ ϱ̂E between system
and environment. In principle, after evolving the product state according to Eq. (10), one
can find the final state of ϱ̂S via means of Eq. (11) such that

ϱ̂S(t) = TrE

{
Û(t, t0)ϱ̂SE(t0)Û †(t, t0)

}
. (12)

Although Eq. (12) is an exact dynamical equation, analytically solving this equation is often
challenging. There are several possible models that can be used to approximate Eq. (12).
Among these approximate methods, one can derive a Markovian master equation known as
the ”Lindblad master equation” for the evolution of a system ϱ̂S coupled to one or more
environments [10,26]

∂tϱ̂S ≡ Lϱ̂S = i
[
ϱ̂S, Ĥ

]
+
∑
k

Γk

(
Ĵkϱ̂SĴ

†
k −

1

2

{
Ĵ†
kĴk, ϱ̂S

})
(13)

= i
[
ϱ̂S, Ĥ

]
+
∑
k

ΓkD[Ĵk]ϱ̂S, (14)

where we have introduced L as the Lindblad superoperator describing the time evolution

of ϱ̂ and the dissipator superoperators D[Ω̂]ϱ̂ ≡ Ω̂ϱ̂Ω̂† − 1
2

{
Ω̂†Ω̂, ϱ̂

}
for any operator Ω̂.

In Eq. (14) the operators Ĵk are usually referred to as Lindblad operators and typically
describe particle and energy exchanges with the environment, while Γk characterize the rate
at which these exchanges occur. For example, consider a one qubit system coupled to a single
environment k. Using the {|0⟩, |1⟩} computational basis, the Lindblad operator is written as
Ĵk = |1⟩⟨0|, which describes the excitation event of the qubit due to the interaction with its
environment. The validity of Eq. (14) is established by a weak coupling strength between ϱ̂S
and its environment, and by the correlations between system and bath remaining negligible
over time [1, 10,26].

2.2 Entanglement

In this thesis we focus on bipartite entanglement, but note that multipartite entanglement
also exists. Physicists often refer to uncorrelated quantum systems as separable. This is
because two uncorrelated pure quantum systems with state vectors |ϕA⟩ and |ϕB⟩ can be
described as a single product state |ϕAB⟩ = |ϕA⟩ ⊗ |ϕB⟩ (see Eq. (5)). For such a system,
the two subsystems are independent, and any interaction with either system will leave our
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knowledge about the other unchanged. A pure state that cannot be written like this is said
to be entangled. More rigorously, the bipartite systems considered in this thesis live in the
complex vector space H = H1 ⊗H2, where dimH1 = dimH2 = 2. Using the computational
basis {|0⟩, |1⟩}, this vector space can be shown to be spanned by the four maximally entangled
Bell state basis

|Ψ±⟩ =
1√
2
(|01⟩ ± |10⟩), |Φ±⟩ =

1√
2
(|00⟩ ± |11⟩). (15)

Figure (1) shows an illustration of the corresponding density operator for two of the four
states in Eq. (15): the height of each bar indicates the absolute value of the corresponding
element in the matrix, while the color of each bar provides information about their complex
phase. A remarkable feature of the states in Eq. (15) arises upon measuring the state of either
one of the particles comprising the whole system. Upon doing so, one recovers the state of
this particle to be either |0⟩ or |1⟩ with 50% probability. Although, being the whole system
in a pure state, the act of measuring a single particle allows for the complete characterization
of the total state, thus affecting the measurement outcome on the second system, regardless
of the distance between the two.

|00

|01

|10

|11
|00 |01 |10 |11

0.0

0.1

0.2

0.3

0.4

0.5

a)

|00

|01

|10

|11
|00 |01 |10 |11

0.0

0.1

0.2

0.3

0.4

0.5

b)

Figure 1: Elements of two density operators constructed using two of the four maximally entangled Bell-
states (see Eq. (15)). The bar height indicates the absolute value of the corresponding element, while the
color encodes the complex phase of each element. The pure states whose density matrix we are showing here
are: a) |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩), b) |Φ−⟩ = 1√

2
(|00⟩ − |11⟩).

On the other hand, mixed entangled states are defined as those that cannot be written as
ϱ̂AB =

∑
j pj ϱ̂

j
A⊗ ϱ̂jB [2], where pj are positive constants ensuring the normalization condition

in Eq. (7). This definition of entanglement suggests a binary classification between entangled
and non entangled states. For instance, for mixed state entanglement, this definition does
not provide any insight of how much entangled, or how useful a given state is for quantum
information processes. As an example, we can consider the mixed state ϱ̂AB = p|Ψ+⟩⟨Ψ+|+
(1 − p)|00⟩⟨00|, with 0 ≤ p ≤ 1. For p → 0, the state becomes fully separable, while it is
maximally entangled when p → 1. It is thus not clear how useful the entanglement is for
small values of p. To resolve such issues, several measures have been introduced, attempting
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to quantify the amount of entanglement of a given state [27–29]. Such measures have been
postulated as to satisfy a number of conditions; here we discuss the most commonly used
conditions. Firstly, for any entanglement measure E of a given state ϱ̂ we have 0 ≤ E(ϱ̂) ≤ 1,
where E(ϱ̂) > 0 for any entangled state. Moreover, E(ϱ̂) = 0 for separable states, while
E(ϱ̂) = 1 for any of the Bell-states. Lastly, entanglement measures are defined as monotonic
state quantities under any local operation and classical communication (LOCC) Λ(ϱ̂) [2, 27]

E(Λ(ϱ̂)) ≤ E(ϱ̂). (16)

In short, LOCC operations are all operations that can be independently performed on sin-
gle subsystems of a quantum system and involve only classical communication between the
subsystems. As an example one could think of trying to distinguish an entangled state (see
Eq. (15)) of two particles shared between two observers (say Alice and Bob). To do so Alice
and Bob could use a classical channel, say a telephone line, to compare the results obtained
upon separately measuring the state of the respective particles, thus revealing the initial state
of the joint system. This is an important property of entanglement measures, as it suggests
that the entanglement within a system cannot be increased through local operations alone.

In this thesis we quantify the entanglement content of a given state ϱ̂ using the entangle-
ment measure known as concurrence. However, as discussed below in detail, concurrence does
not necessarily indicate how useful the entanglement content of ϱ̂ is for quantum information
processes. To this end, it is instructive to benchmark the ability of ϱ̂ in performing non-
classical tasks, such as quantum teleportation and violating Bell’s inequality, see Secs. 2.2.2
and 2.2.3.

2.2.1 Concurrence

Concurrence is an entanglement measure that tries to quantify the resources needed to pro-
duce non-separable states between a pair of two-level systems (i.e. qubits) [30]. The concur-
rence of a bipartite qubit system state ϱ̂ takes the form

C(ϱ̂) = max{0, λ0 − λ1 − λ2 − λ3}, (17)

where {λi} are the eigenvalues of the Hermitian operator R =
√√

ϱ̂ϱ̂′
√
ϱ̂, sorted in decreasing

order (i.e. λ3 < λ2 < λ1 < λ0) and where ϱ̂′ = (σ̂y ⊗ σ̂y) ϱ̂
∗ (σ̂y ⊗ σ̂y) is the spin-flipped state,

and σ̂y = i(|1⟩⟨0| − |0⟩⟨1|) is the Pauli-y matrix and ϱ̂∗ is the complex conjugate of ϱ̂ taken
element wise. In this thesis, we focus on systems coupled to external reservoirs. Due to this
coupling, most coherences of our systems will vanish, leaving us with states whose density
matrix ϱ̂ can be written in the form (see chapter 3)

ϱ = N


ϱ0 0 0 0
0 ϱ1 α 0
0 α∗ ϱ2 0
0 0 0 ϱ3

 , (18)

where N is a constant ensuring the normalization condition for density matrices. In these
cases, the expression for the concurrence of the system assumes the simplified form

C(ϱ̂) = max {2N (|α| − √
ϱ0ϱ3) , 0} . (19)
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Using Eq. (17) to obtain the concurrence of any of the Bell-states and that of any maxi-
mally mixed state (i.e. P (ϱ̂) = 0.25), we note that this quantifier is successful in classifying
maximum entangled states and non-entangled states. However, concurrence is not capable of
accounting for all non-classical resources contained in a system. To show this, consider the
entangled state |ϕp⟩ = √

p|01⟩+√
1− p|10⟩ for p ∈ (0, 1). This state is Bell non-local, thus ca-

pable of showcasing non-local behaviours for any value of p. However, according to Eq. (19)
the concurrence for this state can reach arbitrarily small values C(|ϕp⟩⟨ϕp|) = 2

√
p− p2.

Additionally, there exist a non-ordering theorem that prevents two separate entanglement
measures to agree on the entanglement content of different states [31]. This means that, for
a general set of states, concurrence will predict a unique ordering based on the amount of
entanglement contained in these, while another measure could predict an entirely different
ordering. To account for these shortcomings, in our studies we include two additional entan-
glement quantifiers to asses the performance of a given state in operating purely non-classical
tasks, these being quantum teleportation and Bell non-locality.

2.2.2 Teleportation

Quantum teleportation is a quantum communication protocol through which two observers,
say Alice and Bob, are allowed to send copies of qubit states to each other. In a general
quantum teleportation scheme, teleportation is achieved via means of a classical communica-
tion channel and two additional fully entangled qubits, which enable a higher teleportation
fidelity that would be achievable classically [32,33]. In a general quantum teleportation pro-
tocol, Alice and Bob share a pair of entangled qubits represented by the state ϱ̂. Alice then
wants to send to Bob a qubit state |ψ⟩. To achieve this, she projects |ψ⟩ and her part of ϱ̂
onto the basis of the four maximally entangled states in Eq. (15) and sends the result to Bob
via some classical communication channel. Bob then applies a unitary transformation on his
side of ϱ̂ based on the projection outcome obtained by Alice. At the end of this protocol, if
ϱ̂ constituted a maximally entangled state, Alice has successfully sent |ψ⟩ to Bob with 100%
fidelity. In this thesis, the fidelity of this protocol quantifies the closeness between the state
obtained by Bob, and the initial state |ψ⟩.

The focus of this thesis does not rely on the specifics of the algorithm that renders this
protocol possible. Rather, we are here interested in the fidelity f for this task given a set
of entangled qubits. The fidelity for this protocol takes the form f = 1+2F

3
[18, 34], where

F is defined as the singlet fraction for ϱ̂. In general, the singlet fraction for a general state
has no closed form. However, for states of the form of Eq. (18) the singlet fraction takes the
form [18]

F (ϱ̂) =

{
α + ∆

2
if (1 + 2α− 2∆) ≤ 0

max{α + ∆
2
, 1−∆

2
} otherwise

(20)

where ∆ = N (ϱ̂1 + ϱ̂2) (see Eq. (18)). In the best case, a classical implementation of the
protocol can only achieve a fidelity f = 2

3
, thus, for a state portraying purely non classical

behaviours, the singlet fraction must lie F (ϱ̂) > 1
2
.
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2.2.3 Non-Locality

The last entanglement quantifier studied in this thesis is Bell’s inequality. In 1935 Albert
Einstein, Boris Podolsky and Nathan Rosen (EPR) published a paper in which they argued for
the incompleteness of quantum mechanics [35]. EPR suggested that quantum mechanics was
unable of capturing all the variables needed to make definite predictions about the outcome
of a measurement. In EPR’s view, there should exist hidden variables that a successful
theory should be able to account for, thus eliminating the probabilistic nature of quantum
mechanics. EPR’s argumentation was in part driven by the seemingly non local properties
of entangled states, as measuring one part of an entangled system would affect the rest of
the system in a seemingly instantaneous way, regardless of distance. The question regarding
the completeness of quantum mechanics remained largely unanswered until 1964. In this
year, John S. Bell published a paper in which he addressed the concerns raised by EPR.
In his paper, John Bell put forward an experimentally verifiable inequality that, if violated,
would prove the impossibility of a local realist hidden variable theory [36]. Ever since Bell’s
publication in 1964, a series of experiments denoted as Bell tests have been performed in
order to establish the existence of such hidden variable theories [37–39].

In short, Bell’s inequality can be reconstructed via the consideration of a thought exper-
iment. Suppose that a third party (Charlie) is capable of preparing pairs of particles in a
controlled way. Once a pair is prepared, Charlie distributes the two particles between two
observers, Alice and Bob. Upon receiving their particles, Alice and Bob perform a measure-
ment on their particle, by randomly deciding to measure either one of two properties PQ and
PR, for Alice, PT and PS for Bob. For simplicity, let us assume that the measurements can
yield outcomes ±1. Let us then consider Alice’s particle to have value Q for property PQ

and value R for property PR. Analogously, let us assume Bob’s particle to have value S for
property PS and value T for property PT . Now suppose that p(s, q, r, t) is the probability
for the joint system to be such that S = s, Q = q, R = r, T = t before the measurement.
Note that the probabilistic nature for the measured properties arises for the necessity of
considering Charlie’s imperfect preparation, or as a consequence of noisy equipment. Let
E(x(s, q, r, t)) =

∑
s,q,r,t xp(s, q, r, t) represent the expectation value of the input quantity x,

we then have [11]

E(QS +RS +RT −QT ) =
∑
sqrt

p(s, q, r, t)(qs+ rs+ rt− qt) (21)

= E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2, (22)

where the inequality of Eq. (22) comes about as we have that QS +RS +RT −QT = ±2.
The inequality presented in Eq. (22) is known as CHSH inequality from the initials of

those who first derived it John F. Clauser, Michael A. Horne, Abner Shimony and Richard A.
Holt (CHSH) [40]. In this thesis, we study the CHSH of our states to quantify the non-local
properties of our results. For states taking the form presented in Eq. (18), the inequality is
expressed as [18,41]

CHSH = 2
√

8α2 + (2∆− 1)2 −min{4α2, (2∆− 1)2} ≤ 2, (23)

where ∆ = N (ϱ̂1 + ϱ̂2) (see Eq. (18)). From this, we gather that for any state capable of
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portraying non-local behaviours, the CHSH must lie above 2, where a maximally entangled
state (see Eq. 15) is capable of obtaining at most CHSH = 2

√
2.

2.3 Heat in Open Quantum Systems

In Ref. [1] it was shown that a non-zero heat current is necessary to generate steady state
entanglement. Furthermore, in Ref. [42] an expression for a critical heat current required to
generate entanglement in the studied thermal engines was derived. It is therefore useful to
provide a short discussion of how heat currents are calculated for systems weakly coupled to
their environment.

For an open system coupled to several thermal environments of various temperatures,
there will be a flow of heat through the system. In general the total energy change of an

open system is calculated through Eq. (9) as Ė = Tr
{
ϱ̂∂tĤ

}
+ Tr

{
Ĥ∂tϱ̂

}
. The engines

studied in this thesis are autonomous, and therefore need no external agent to operate.
Because of this, the Hamiltonian of the system is time independent, which allows us to

simplify the expression for the energy change within the system to Ė = Tr
{
Ĥ∂tϱ̂

}
. The

heat flow between the system and bath k is then defined as

Q̇k = Tr
{(
Ĥ − µkN̂

)
Lkϱ̂

}
, (24)

where N̂ is the number operator of particles within the system, µk is the chemical potential

of bath k (µk = 0 for bosonic baths) and Lkϱ̂ =
∑

i Γk,i

(
Ĵk,iϱ̂Ĵ

†
k,i − 1

2

{
Ĵ†
k,iĴk,i, ϱ̂

})
is the

Lindblad superoperator arising from the coupling with bath k [43, 44]. In this thesis we use
Eq. (24) to study the relation between the entanglement generation properties of the studied
systems and the heat provided by the coupled environments.

2.4 Measurements in Quantum Mechanics

In this section we present the formalism of measurements in quantum mechanics. We begin
with a brief introduction of von-Neumann (projective) measurements, as often introduced in
early quantum mechanics courses. We then discuss generalized quantum measurements.

2.4.1 von-Neuman Measurements

It is often the case in quantum mechanics that, when speaking about measurements, physi-
cists refer to a special class of measurements called projective measurements (also known
as von-Neumann measurements or strong measurements) [11, 45]. Given an observable Â
with eigenstates {|a⟩ : a = 1, 2, ..., amax}, the system is projected onto one of the possible
eigenstates, and the outcome of the measurement is given by the corresponding eigenvalue.
For example, given a state |ϕ⟩ = ∑

a ca|a⟩, a projective measurement on |ϕ⟩, would project
the system onto state |a⟩ with probability |ca|2. That is, after the measurement we know the
state of the system, but the initial state is destroyed.

Note that the repeated use of projective measurements can give rise to a phenomenon
known as the quantum Zeno effect [46–48]: this phenomenon freezes systems in one state,
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preventing them from evolving any further. The Zeno effect arises as a consequence of the
instantaneous destruction of the coherences within the system. To circumvent this problem,
we construct a measurement operator with the ability to preserve coherences, but with the
added drawback of recovering only partial information from a quantum system.

2.4.2 Generalized Quantum Measurements

We now discuss generalized quantum measurements, describing a much broader class of mea-
surements than von-Neumann measurements. Although projective measurements represent
only a subclass of all possible measurements, their formalism can be used to describe a wider
variety of measurement operations [25,46]. In this thesis, we use projective measurements to
construct operations capable of extracting only partial information about a given observable
Â: i.e. weak measurements. As a consequence of the increase in the uncertainty of the mea-
surement outcomes, both the system’s dynamics suppression and coherence erasure problem
will disappear.

In general, any set of generalized measurement operators
{
M̂z

}
must satisfy the com-

pleteness relation ∑
z

M̂ †
zM̂z = 1, (25)

which ensures that the probabilities of obtaining any outcome from the measurement op-
erations add to unity. In the scenario of strong measurements, the measurement operators{
M̂z

}
are represented by projection operators, where z denotes the measurement outcome.

A useful example is the measurement of a qubit in the computational {|0⟩, |1⟩} basis, where
M̂0 = |0⟩⟨0| and M̂1 = |1⟩⟨1|. Formally, the third postulates of quantum mechanics states
that measuring ϱ̂ =

∑
i pi|ϕi⟩⟨ϕi| with a measurement operator M̂z updates the system as [11]

ϱ̂z =
∑
i

pi
M̂z|ϕi⟩√

⟨ϕi|M̂ †
zM̂z|ϕi⟩

⟨ϕi|M̂ †
z√

⟨ϕi|M̂ †
zM̂z|ϕi⟩

(26)

=
M̂zϱ̂M̂

†
z

Tr
{
M̂ †

zM̂zϱ̂
} , (27)

where ϱ̂z is the updated state conditioned on the outcome z (see appendix C for a discussion

on conditional and non-selective states), while pz = Tr
{
M̂ †

zM̂zϱ̂
}
represents the probability

of obtaining outcome z and ensures the normalization condition of Eq. (7). In contrast to
the description provided in Sec. 2.1, the update Eq. (27) is non-linear in ϱ̂ and leads to
non-unitary dynamics. This can be understood as a consequence of introducing a measuring
apparatus in the form of an external environment which renders Eq. (10) no longer true.

We now study a special class of measurement operators known as Gaussian measurements.
Given an observable Â with eigenstates {|a⟩ : a = 1, 2, ..., amax} and eigenvalues {a : a =
1, 2, ..., amax}, we define a measurement operator Ŵ (z) as the gaussian weighted sum of
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projections onto the eigenstates of Â

Ŵ (z) ≡
(
2κ

π

) 1
4

e−κ(z−Â)
2

, (28)

where κ is a standard deviation related parameter and z is a continuous variable labelling the
possible measurement outcomes. In principle, we could have defined a measurement operation
weighted with some other function. However, the choice of using Gaussian measurements
stems from the popularity of these within experimental settings. Given the definition in
Eq. (28), the only condition that Ŵ (z) has to satisfy, is therefore the completeness relation
(see Eq. (25))

∫∞
−∞ Ŵ †(z)Ŵ (z)dz = 1 [11,25] (for proof of completness refer to appendix A).
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Figure 2: Graphs illustrating the probability distribution for results obtainable through a weak measurement
of a single qubit (here Â = σ̂z). The leftmost figure shows the probability distribution in the weak regime
(i.e. κ → 0); the rightmost figure shows the same distribution, in a strong measurement regime (i.e. κ → ∞);
the center figure shows the probability distribution for an intermediate measurement strength. The vertical
red lines are positioned at z = −1 and z = 1 for reference.

From Eq. (28), we see that Ŵ (z) represents a superposition of gaussian curves centered
at the possible measurement outcomes z. Additionally, as κ → ∞, Ŵ (z) approaches the
definition of a δ-function centered at z (projective limit); thus, we define κ as the measurement
strength parameter. Figure 2 illustrates the effect of κ on the probability distribution P (z) for
measuring outcome z for a qubit initialized in a maximally mixed state (i.e. ϱ̂ = 1

2
(|0⟩⟨0| +

|1⟩⟨1|) in the {|0⟩, |1⟩} computational basis). From Fig. 2, we see that as κ → ∞ the
probability distribution narrows to the two possible outcomes z = ±1 (i.e. projective limit).

2.4.3 Continuous Measurements

Above we discussed the scenario where a single measurement is performed. In many setups,
such as semiconductor quantum dots, it is common to perform time continuous measure-
ments [49–51]. For our purposes, these measurements cannot be projective. If they were,
the coherence of the system would quickly vanish. Instead, we need to perform weak mea-
surements in a continuous fashion, in order to preserve the coherences within the system.
In this section we construct a formalism for measurement operations capable of extracting
information in a continuous way. To avoid the quantum Zeno effect, it is necessary that each
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measurement becomes infinitely weak, we thus set κ = λdt, such that κ→ 0 as dt→ 0 [25,52].
We then use Eq. (28) to define a continuous measurement operator K̂(z) as

K̂(z) ≡
(
2λdt

π

) 1
4

e−λdt(z−Â)
2

. (29)

Through a similar analysis as the one conducted when presenting Eq. (28), we see that as
dt → 0, the width of K̂(z) varies as 1/dt1/2: thus, the lower dt, the more uncertainty in the
measurement outcome. Notice that, given a fixed dt, it is now λ that defines the measurement
strength. The measurement outcome z is then modelled as a stochastic variable as a result
of the stochastic nature of measurements in quantum mechanics [25,52], which we write as

z = ⟨Â⟩+ ∆W

(8κ)1/2∆t
, (30)

where ∆W is a normal distributed random white-noise variable with zero-mean. Thus, we
also require ∆W to be uncorrelated with itself at different times, i.e. ⟨∆W (t1)∆W (t2)⟩ =
δt1t2 , where δt1t2 is the Kronecker delta function in discrete processes or the Dirac delta
function in a continuous limit.

With Eq. (29), we have derived the form of an operator capable of characterizing the
measurement backaction effects onto the measured system. In theory, it is then possible to
model a continuously monitored system by having dt → 0. In this limit, the evolution of a
continuously monitored conditional state is designed as

ϱ̂tf (z) = eLdtM (zn)...e
LdtM (z1)ϱ̂0, (31)

where we have defined the superoperator M (z)ϱ̂t =
K̂(z)ϱ̂K̂†(z)

Tr{K̂†(z)K̂(z)ϱ̂} , while L represents the

free evolution Lindblad superoperator found in Eq. (14). In appendix D, we make use of
Eq. (31) to derive an expression for the evolution of a continuously monitored non-selective
state, otherwise evolving according to Eq. (14). There, we find

∂tϱ̂t = Lϱ̂t + λD[Â]ϱ̂t. (32)

Compared to Eq. (14), Eq. (32) contains an additional dissipator term describing how the
system is dephased in the observalble Â’s eigenbasis.

2.5 Feedback

In this section we introduce the formalism of continuous feedback control. In general, con-
tinuous feedback is implemented by

ϱ̂t+dt(D) = eL(D)dtM (z)ϱ̂t, (33)

where M (z)ϱ̂t = K̂(z)ϱ̂K̂†(z)

Tr{K̂†(z)K̂(z)ϱ̂} represents the measurement action, while L(D) represents

the feedback controlled dynamics of the system, with L(D) written in Lindblad form (see
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Eq. (14)) and the filtered measurement outcome D being defined as (see appendix E for
additional details)

D(t) = D(t0)e
−γ(t−t0) + γ

∫ t

t0

eγ(s−t)z(s)ds, (34)

where γ represents the bandwidth of the detector, which characterizes the detector’s response
rate as 1/γ and where D(t0) represents the filtered measurement outcome obtained at the
initial time t0. The definition of Eq. (34) can be seen as a convollution of the measure-
ment outcomes z with some lorentzian function in Fourier-space, thus it represents a general
filtering process valid independently from the choice of observable Â.
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Figure 3: Results obtained from a quantum Monte Carlo simulation for a qubit system (initiated in |10⟩⟨10|).
The left most graph represents the measurement outcome z over time (see Eq. (30)). We see that the variance
for z becomes far too great in the continuous limit, and no useful information can be extracted. The right
most graph shows the filtered measurement outcomes. We see that the chosen filtering method is capable of
returning useful information that can be used in the feedback protocol.

In Fig. 3, we illustrate the effect of the detector’s bandwidth, by numerically evolving a qubit
system initiated in |10⟩⟨10| through a Monte Carlo simulation. In Fig. 3.a, the signal z(t) is
generated in the detector with a white noise distribution in accordance with Eq. (30). The
circuitry of the detector filters out the the high frequency noise according to Eq. (34), and
we read off D(t) (see Fig. 3.b).

2.5.1 Quantum Fokker-Planck Master Equation

It is in general the case that, when dealing with continuous measurement and feedback
protocols, the system state is either numerically evolved according to stochastic differential
equations (see Eq. (33)), or otherwise analytically evolved according to Markovian master
equations which are limited to a linear dependence in the measured signal [53]. An exception
to this comes from a recent development in the theoretical description of feedback control [54],
in which a quantum Fokker-Planck master equation (QFPME) for continuous feedback con-
trol was derived. In short, this formulation can be obtained by averaging Eq. (33) over all
possible outcomes D(t), but leaving the last outcome D fixed. This procedure then gives

∂tϱ̂t(D) = L(D)ϱ̂t(D) + λD[Â]ϱ̂t(D)− γ∂DA(D)ϱ̂t(D) +
γ2

8λ
∂2Dϱ̂t(D). (35)
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The density operator ϱ̂(D) is then defined as the joint system-detector state, where the non-
selective system representation is given by ϱ̂t =

∫
dDϱ̂t(D) and where p(D) = Tr{ϱ̂t(D)}

provides the probability distribution for outcome D to be measured.
Equation (35) is subdivisible into three main terms: the first term on the RHS represents

the feedback controlled evolution, which takes the form of a Lindblad master equation and
allows for arbitrary dependence on the measurement outcome D. The second term instead
characterizes the decoherence of the system in the eigenbasis of observable Â. Lastly, the
remaining two terms define a Fokker-Planck equation for the detector time evolution, where:

the term proportional to γ represents the drift term with coefficient A(D)ϱ̂ ≡ 1
2

{
Â−D, ϱ̂

}
,

while the term proportional to γ2 characterizes the diffusion of the probability distribution.
The detector is therefore treated as a probability distribution in D-space. This distribution
then drifts alongD according to −γA(D)ϱ̂, whilst its spread onD its dictated by the diffusion

term γ2

8λ
∂2Dϱ̂t(D). In short, the detector is modelled as a stochastic walker relaxing towards

a value dictated by the system state.

2.5.2 Separation of Time Scales

In general, Eq. (35) is typically limited to numerical integration. However, in this section we
explore one additional approximation in order to recover an analytically treatable equation.
This is achieved by separating the different time scales in Eq. (35). Each of the different
terms in the RHS of Eq. (35) provides a different mechanism comprising the joint system
plus detector dynamics. All of these mechanisms are then characterized by different time
scales, that is: the measurement backaction is governed by a time scale ϑba ≈ 1/λ while the
detector evolution time scale scales as ϑd ≈ 1/γ. Lastly, the feedback controlled evolution
is governed by a time scale ϑf ≈ 1/Λ, where Λ is the largest time scale defining parameter
within L(D)ϱ̂t. In the limit γ ≫ Λ, λ, we then have ϑd ≪ ϑba, ϑf . This limit is understood as
the instance in which the detector evolves much faster than the system, thus allowing for a
complete resolution of the system dynamics. Note that if the chosen observable Â introduces
no backaction, we can safely neglect the γ ≫ λ limit. For γ ≫ Λ, λ we can, to leading order,
write Eq. (35) as [54]

∂tϱ̂t(D) ≈ −γ∂DA(D)ϱ̂t(D) +
γ2

8λ
∂2Dϱ̂t(D), (36)

describing the dynamics of the detector. The stationary state of Eq. (36) can be written as

ϱ̂t(D) =
∑
ij

Gij(D)Vij ϱ̂t, (37)

where we introduced the projection operator Vij ϱ̂ = ⟨ai|ϱ̂|aj⟩|ai⟩⟨aj| = ϱ̂ij|ai⟩⟨aj| for the

eigenstates of observable Â : Â|ai⟩ = ai|ai⟩ and Gij(D) =
√

4λ
πγ
exp(−4λ

γ
(D − ai+aj

2
)2). The

stationary state of the detector P (D) = Tr {ϱ̂t(D)} is thus a combination of Gaussian curves
centered at the eigenvalues of the observable. The interplay between λ and γ determines the
noise of the detector. By replacing Eq. (37) into Eq. (35) and integrating over D leaves us
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with a master equation for the evolution of the system alone

∂tϱ̂t = λD[Â]ϱ̂t +

∫ ∞

−∞
dDL(D)

∑
ij

Gij(D)Vij ϱ̂t. (38)

In contrast to Eq. (35), by specifying the form for the feedback dependent term L(D), it is
possible to solve the integral in the above differential equation.
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3 Systems and Feedback Protocol

As stated, the motivation behind this thesis is to answer the question of whether the entan-
glement generation of the quantum thermal engines presented in Ref. [1] could be increased
by the introduction of some continuous feedback protocol. To answer this question, we bench-
mark our results against results obtained in previous studies of the systems [1, 18]. The two
engines considered in these are of two types: a bosonic thermal-bath-driven engine and a
fermionic thermal-bath-driven engine. In this section, we therefore characterize these sys-
tems and discuss their dynamics in the absence of measurement and feedback. For each one
of these we then include the levels of entanglement achievable under optimal choice of pa-
rameters for all discussed entanglement quantifiers. In this section we also present a detailed
characterization of the studied protocol, highlighting its design and functionality.

3.1 The Bosonic Thermal Engine

The bosonic engine (Fig. 4) is comprised of two resonant qubits coherently coupled to each
other with a strength denoted by g. The two qubits are separately coupled to two bosonic
thermal reservoirs of temperature Tc and Th, where Tc < Th.

Figure 4: The bosonic thermal engine is comprised by two coherently interacting resonant qubit systems.
In this engine two bosonic thermal reservoirs are separately coupled to the two qubits and a temperature
bias is applied such that Th > Tc.

To characterize the local states of the respective qubits we use the eigenbasis of the Pauli-z
operator. With this choice of basis states, the system Hamiltonian takes the form

Ĥ = E (|1⟩⟨1| ⊗ 1+ 1⊗ |1⟩⟨1|) + g (|01⟩⟨10|+ |10⟩⟨01|) , (39)

where E is the energy spacing of either qubit (see Fig. 4) and will be set to E = 1 s−1 in
the rest of this thesis. The bipartite system evolves according to a Lindblad master equation
(see Eq. (14)) of the form

∂tϱ̂ = LBϱ̂t = −i
[
Ĥ, ϱ̂t

]
+

∑
ν=c,h

(
Γ+
ν D[Ĵν ] + Γ−

ν D[Ĵ†
ν ]
)
ϱ̂t. (40)

In the above, the Lindblad operators Ĵν (Ĵ†
ν) represent the processes by which the joint

system can receive (lose) one excitation from the baths. More specifically, they take the form

Ĵh = 1⊗ σ̂+, Ĵc = σ̂+ ⊗ 1, (41)
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where σ̂+ = |1⟩⟨0| and 1 is the identity operator. As an example, the Lindblad operator Ĵh
(Ĵ†

h) corresponds to the process through which the hot qubit absorbs (releases) one quantum
of energy. The rates Γ±

ν at which each of these processes occur, are then determined by the
coupling strenghts Γc, Γh and the Bose-Einstein distribution of each environment

Γ+
h = ΓhnB(Th), (42)

Γ+
c = ΓcnB(Tc), (43)

Γ−
h = Γh(1 + nB(Th)), (44)

Γ−
c = Γc(1 + nB(Tc)), (45)

where nB(Tν) = 1/(eE/Tν − 1), Tν is the temperature of bath ν and we have set kB = 1.
Note that ϱ̂t takes the form of Eq. (18). Most of the off-diagonals of ϱ̂t can be put to
zero as they are uncoupled from the rest of the elements, and thus vanish in the stationary
limit because of bath induced dephasing. However, note that the system Hamiltonian (see
Eq. (39)) coherently couples the subspace of the system spanned by the |01⟩ and |10⟩ states.
This indicates that, in the long time limit, the system will have surviving coherences only
within the coherently coupled subspace, as the coupling with the environments will degrade
all other off-diagonal terms. More rigorously, we use Eq. (40) to write the dynamic equation
for the coherences α within the coherently coupled subspace of the engine

α̇ = ig(ϱ̂01 − ϱ̂10)−
1

2
[Γc (1 + 2nB(Tc)) + Γh (1 + 2nB(Th))]α, (46)

where ϱ̂ij ≡ ⟨ij|ϱ̂|ij⟩. Given a sufficiently high value of g, the coherent coupling is therefore
capable of sustaining non-zero level of coherence within the coherently coupled subspace of
the system. While, for stronger coupling to the baths, the dissipative term in Eq. (46) will
take over, fully degrading also these coherences in the long time limit. In either case, the
system will evolve to reach a steady state of the form of Eq. (18).

3.2 The Fermionic Thermal Engine

The fermionic engine is comprised of a double quantum dot, where the dots are coherently
coupled to each other with a strength denoted by g. The dots have equal energy ε and
are separately coupled to fermionic thermal reservoirs of temperature Tc and Th, with Th >
Tc. Here, the energy levels of the dots are placed well above the chemical potential µν

of either bath. In this thesis we set µc = µh = 0 and ε = 1 s−1. In order to describe
the interaction between two fermions simultaneously inhabiting the two dots, a Coulomb
repulsion proportional to U is added (see Fig. 5). We further assume a strong intra-dot
Coulomb repulsion allowing only one fermion to occupy each dot at a time.
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Figure 5: The fermionic thermal engine is comprised by two coherently coupled quantum dots. In this
engine two fermionic thermal reservoirs are separately coupled to the two dots and a temperature bias is
applied such that Th > Tc.

To characterize the system, we use the basis {|0⟩, |C⟩, |H⟩, |CH⟩} respectively denoting the
the states where no dot is occupied, only the cold dot is occupied, only the hot dot is occupied
and both dots are simultaneously occupied. Using this basis, the system Hamiltonian takes
the form

Ĥ = ε (|C⟩⟨C|+ |H⟩⟨H|) + g (|C⟩⟨H|+ |H⟩⟨C|) + (2ε+ U) |CH⟩⟨CH|, (47)

In Eq. (47), U represents the interdot Coulomb repulsion strength. This term has the effect
of raising the energy cost for the doubly occupied state, thus limiting the population within
this level.

The system dynamics are then dictated by a Lindblad master equation of the form

LFϱ̂t = −i
[
Ĥ, ϱ̂t

]
+

∑
ν=c,h

(
Γ+
ν D[Ĵν ] + Γ−

ν D[Ĵ†
ν ]
)
ϱ̂t + LCHϱ̂t. (48)

In Eq. (48), the Lindblad operators Ĵν describe the processes through which fermions tunnel
into either dot Ĵc ≡ |C⟩⟨0|, Ĵh ≡ |H⟩⟨0|. Note that the dissipator for these Lindblad operators
act in a similar fashion to the ones in Eq. (40). In fact, it is possible to derive an analogous
expression to Eq. (46) for the coherences within the coherently coupled subspace of the
fermionic engine. From this, we would again see that for sufficiently strong coherent coupling
g, the coherences within this subspace would survive, despite the coupling to the thermal
baths. Thus, we conclude that, in the long time limit, this engine approaches the form
of Eq. (18). The rates Γ±

ν for the tunneling events are then characterized by the coupling
strength to the respective bath Γν and the Fermi-Dirac distribution nF(Tν) = 1/(e(ε−µν)/Tν+1)
for ν ∈ {c, h}

Γ+
ν = ΓνnF(Tν), Γ−

ν = Γν(1− nF(Tν)). (49)

Lastly, the term LCH in Eq. (48) contains all information regarding the transitions involving
the doubly occupied state |CH⟩. In appendix B, we provide the form for LCH. From LCH, we
note that in the large U limit, the doubly occupied state takes on the profile of an exponential
decaying function in time. In this thesis we focus on the scenario in which U → ∞ thus, we
can safely neglect the LCH term, as the doubly occupied state is prohibited.
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3.3 Prior Work

In this section we report the results obtained in Refs. [1,18], for the steady state entanglement
generation of the engines presented in Secs. 3.1 and 3.2. As discussed, the form taken by
either engine in its steady state is given in Eq. (18). This implies that the concurrence of
either engine is calculated through Eq. (19). The authors in Ref. [1] determine an optimal
choice of parameters under which the steady state concurrence for the bosonic engine reaches
C(ϱ̂∞) ≈ 0.093 (at Γ+

c = 0; Γ−
c /E = 0.01; Γh/E = 1.14 · 10−4; Tc/E = 0.01), while, the

steady state concurrence for its fermionic counterpart reaches C(ϱ̂∞) ≈ 0.25 (at Γ+
c = 0;

Γ−
c /E = 0.05; Γh/E = 0.05; Tc/E = 0.01; U → ∞) (for a complete analytical treatment of

the fermionic system’s free evolution see appendix F). The heat maps shown in Fig. 6 portray
the concurrence as a function of the inter-qubit strength g and the temperature of the hot
bath Th, for both the bosonic thermal engine (see Fig. 6.a) and its fermionic counterpart
(see Fig. 6.b). We note that, in terms of concurrence, the fermionic engine outperforms its
bosonic counterpart.

a) b)

Figure 6: Heat maps for the concurrence of the bosonic and fermionic thermal machines under choice of
optimal parameters presented in Refs. [1]. Both maps were plotted as a function of the inter-qubit strength
g and the temperature of the hot bath Th. In their maximum region, the bosonic engine (a)) arrives at
concurrence values up to C(ϱ̂∞) ≈ 0.093 (at Γ+

c = 0; Γ−
c /E = 0.01; Γh/E = 1.14 · 10−4; Tc/E = 0.01),

while its fermionic counterpart reaches C(ϱ̂∞) ≈ 0.25 (at Γ+
c = 0; Γ−

c /E = 0.05; Γh/E = 0.05; Tc/E = 0.01;
U → ∞)

The difference in the concurrence generation of the two engines is to be attributed to the
presence of interdot Coulomb repulsion within the fermionic system, which allows for more
population to be transferred to the coherently coupled subspace (see Eq. (19)). Furthermore,
the monotonic behaviour of the concurrence in the fermionic system as function of Th is
explained by studying the dephasing rates for the fermionic engine. From Eq. (48) we note
that the coherences α ≡ ⟨C|ϱ̂|H⟩ within the coherently coupled subspace have the dynamical
equation

α̇ = ig (ϱ̂C − ϱ̂H)−
1

2

(
Γ−
c + Γ−

h

)
α (50)

where ϱ̂i ≡ ⟨i|ϱ̂|i⟩ for i ∈ {|C⟩, |H⟩}. From Eq. (50) we note that in the limit Th → ∞, the
decay rate Γ−

h approaches a constant value as it is proportional to the Fermi-Dirac distribution
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nF(Th). On the other hand, the same is not true for the bosonic thermal engine. Equation (46)
shows that for Th → ∞ the dissipation within the system diverges as the Bose-Einstein
distribution nB(Th) diverges with diverging temperature. This difference explains how the
fermionic engine is capable of sustaining high concurrence values for higher temperatures,
while the bosonic engine’s concurrence degrades fairly quickly.

Although both engines do posses the ability of generating steady state entanglement, the
authors of Ref. [18] demonstrate that the generated entanglement is not enough to neither
perform teleportation with a high enough fidelity, nor portray non-local behaviours by vio-
lating the CHSH inequality (see steady state obtained in Eq. (107)). In the next section we
therefore introduce a feedback protocol capable of increasing the entanglement generation of
both engines.

3.4 The Protocol

As illustrated in Fig. 7, the implemented feedback procedure is a two-step process. While
Fig. 7 depicts the bosonic engine, an analogous illustration could be made using the fermionic
engine. The protocol proceeds as follows: the system is allowed to freely evolve until the
detector measures a single excitation within the two qubits (D < 0 in Fig. 7). When that
happens, the hot bath is decoupled from the engine, thus preventing excitations from leaving
to the hot bath. The coupling to the hot bath is then switched back on whenever the
detector measures the bipartite qubit system in either the doubly ground state |00⟩⟨00| or
doubly excited state |11⟩⟨11| (D > 0 in Fig. 7) .

Figure 7: An illustration of the developped feedback protocol. This example is visualized for the bosonic
engine. However, the reasoning holds for the fermionic engine as well. The system is left to evolve until a
single excitation is measured within the bipartite qubit system (the observable used in the bosonic case is
ÂB = |00⟩⟨00| + |11⟩⟨11| − (|01⟩⟨01| + |10⟩⟨10|)). When that happens, the feedback forces the hot bath to
decouple from the rest of the engine. If the qubit system is then detected in the doubly ground state |00⟩⟨00|
or doubly excited state |11⟩⟨11|, the feedback process recouples the hot bath to the rest of the open system.

The development of the protocol is the outcome of several intuitions. Firstly, as Th > Tc we
expect most of the excitations to enter the system through the hot bath coupling. Therefore,
by decoupling this bath, we force the majority of the excitations to be coherently exchanged
between the two qubits (see Eq. (39)), thereby generating entanglement. Furthermore, by
decoupling the hot bath, we decrease the bath induced decoherence.

To detect single excitations within the bosonic engine, we have selected the parity ob-
servable ÂB ≡ σ̂z ⊗ σ̂z = |00⟩⟨00| + |11⟩⟨11| − (|01⟩⟨01| + |10⟩⟨10|), where σ̂z is the Pauli-z
operator. This observable returns outcomes D > 0 when the state is measured to have
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more than one or no excitations, while it instead returns D < 0 when a single qubit lies
in its excited state. Furthermore, continuous parity measurement on qubit systems have
been demonstrated in laboratory settings, thus keeping this protocol experimentally rele-
vant [55, 56]. For the fermionic engine, the observable used to detect single fermions then
takes the form ÂF ≡ |0⟩⟨0| − (|C⟩⟨C| + |H⟩⟨H|). Although, seemingly arbitrary, one could
think of this observable as corresponding to a charge detector symmetrically placed in be-
tween the dots to measure the presence of single fermions. As for the bosonic observable,
the measure of ÂF returns outcomes D > 0 when the system is measured to contain no
fermions, while it instead returns D < 0 when one fermion resides in the system. As for
parity measurements, continuous charge detection measurements have also been realized in
laboratory settings treating quantum dots systems [49].

The feedback procedure illustrated in Fig. 7 can be more rigorously formulated by setting
the coupling strength Γh to be dependent on the filtered measurement outcome D through a
Heaviside step function θ(D)

Γh(D) = Γhθ(D). (51)

Through Eq. (51) we rewrite the term L(D) in Eq. (38) as

Lq(D)ϱ̂ = θ(D)Lq(Γh)ϱ̂+ [1− θ(D)]Lq(Γh = 0)ϱ̂, (52)

where q ∈ {F,B} labels which engine we are evolving. Inserting Eq. (52) into Eq. (38) allows
us to perform the integration over all outcomes D

∂tϱ̂t = λD[Âq]ϱ̂t +

∫ ∞

−∞
dDL(D)

∑
ij

Gij(D)Vij ϱ̂t (53)

= λD[Âq]ϱ̂t +

∫ ∞

−∞
dD (θ(D)Lq + (1− θ(D))Lq(Γh = 0))

∑
ij

Gij(D)Vij ϱ̂t (54)

= λD[Âq]ϱ̂t +

[
Lq

∑
ij

(∫ ∞

0

dDGij(D)

)
+ Lq(Γh = 0)

∑
ij

(∫ ∞

−∞
dDGij(D)

)

−Lq(Γh = 0)
∑
ij

(∫ ∞

0

dDGij(D)

)]
Vij ϱ̂t (55)

= λD[Âq]ϱ̂t + LνOqϱ̂t + Lq(Γh = 0)ϱ̂t − Lq(Γh = 0)Oqϱ̂t. (56)

In Eq. (56) we defined the superoperator Oq as being proportional to the feedback error

probability η ≡ 1
2

[
1− erf

(
2
√

λ
γ

)]
. Note that we interpret Oq as characterizing the error

rates of the detector. That is, Oq describes the probability for the detector to erroneously
apply feedback, given a measurement strength λ. Given the definition for η, we see that for
high measurement strengths (i.e. λ ≫ γ) η → 0 and feedback is applied correctly. Instead,
for low measurement strength values (i.e. λ ≪ γ), η → 1

2
. Here, little information can be

extracted with each measurement, and feedback is randomly applied 50% of the times.
To describe the approach used to solve Eq. (56), we note that Eq. (56) is linear in the

system representation ϱ̂t. Thus, the dynamics of the system can be rewritten in a vector
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differential equation by vectorizing ϱ̂t as ρt, so that

∂tρt = Lqρt. (57)

In Eq. (57), the Lindblad operator Lq is a d× d matrix, where d is the dimensionality of the
vector ρt. From Eq. (56) it is straightforward to show that Lq preserves the Hermicity and
normalization condition (7) of ϱ̂t. Additionally, rewriting Eq. (56) into a vector differential
equation allows for a straightforward way to compute the steady state solution ρ∞. By
definition, ∂tρ∞ = 0, and thus, the steady state solution corresponds to the eigenvector of
the operator Lq with eigenvalue zero, or in other words, to the kernel of the matrix Lq. In
general, rewriting ϱ̂ into a state vector ρ would lead us to deal with a 16-dimensional vector.
However, upon few considerations, we can reduce the number of degrees of freedom that we
need to study.

As mentioned, the steady state of either engine takes the form of Eq. (18). This suggests
that, for steady state calculations, we can reduce our efforts to 6 degrees of freedom in
the bosonic case, while, for the fermionic engine, we can reduce them to 5, as we consider
the limit of U → ∞, thereby prohibiting the |CH⟩ state. Thus, we unwrap the bosonic
density operator ϱ̂ as ρ = (ϱ̂00, ϱ̂01, ϱ̂10, ϱ̂11, α, α

∗)T , where ϱ̂ij ≡ ⟨ij|ϱ̂|ij⟩ and α ≡ ⟨10|ϱ̂|10⟩.
Under this unwrapping, the error superoperator OB takes on the form of a diagonal matrix
OB ≡ diag(1− η, η, η, 1− η, η, η), while the Lindblad superoperator LB takes the form

LB=


−Γ+

c − (1− η)Γ+
h ηΓ−

h Γ−
c 0 0 0

(1− η)Γ+
h −ηΓ−

h − Γ+
c 0 Γ−

c ig −ig
Γ+
c 0 −Γ−

c − ηΓ+
h (1− η)Γ−

h −ig ig
0 Γ+

c ηΓ+
h −(1− η)Γ−

h − Γ−
c 0 0

0 ig −ig 0 −1
2

(
Γ+
c + Γ−

c + ηΓ+
h + ηΓ−

h

)
0

0 −ig ig 0 0 −1
2

(
Γ+
c + Γ−

c + ηΓ+
h + ηΓ−

h

)

. (58)

For the fermionic engine, we unwrap the matrix representation of ϱ̂ as a one-dimesional
vector ρ = (ϱ̂0, ϱ̂C, ϱ̂H, α, α

∗), where ϱ̂j ≡ ⟨j|ϱ̂|j⟩ for j ∈ {0,C,H} and α ≡ ⟨C|ϱ̂|H⟩. With
this unrapping, the error superoperator takes the form OF = diag(1 − η, η, η, η, η), whilst
Eq. (56) can be reformulated as a vector differential equation ∂tρt = LFρt, where

LF =


−(1− η)Γ+

h − Γ+
c Γ−

c ηΓ−
h 0 0

Γ+
c −Γ−

c 0 ig −ig
(1− η)Γ+

h 0 −ηΓ−
h −ig ig

0 ig −ig −1
2

(
Γ−
c + ηΓ−

h

)
0

0 −ig ig 0 −1
2

(
Γ−
c + ηΓ−

h

)

 . (59)

In both Eqs. (58), (59) we note the absence of an explicit dependence on λ (i.e. without
accounting for η). This is explained by the choice of observables Âq. In both cases, the
chosen observable does not provide any backaction in the coherently coupled subspaces of
the system, (i.e. D[Âq] = 0). This feature is qualitatively explained by the impossibility of

using Âq to distinguish within which qubit (dot) are the excitations (fermions) lying.
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4 Results

In this section, we present the results obtained for the systems discussed in chapter 3. Firstly,
we present analytical results for the steady state of each system. Then, we analyze how
robust the results are under different non-ideal conditions. We specifically consider imperfect
isolation, where the hot bath is only partially isolated from the hot qubit. We also investigate
the effect of an additional external environment on the obtained results. Finally, we study
the behavior of the systems in the transient regime. This enables us to determine whether
any of the steady states can be achieved in a finite amount of time.

4.1 Fermionic System

Here we present the results obtained for the feedback controlled evolution of the fermionic
system presented in Sec. 3.2. The null-space of the Lindbladian expressed in Eq. (59) takes
the form of Eq. (18), where

ϱ0 =
(
Γ−
c + Γ−

h η
) (

Γ−
c Γ

−
h η + 4g2

)
, (60)

ϱ1 =
(
Γ+
c Γ

−
h η

(
Γ−
c + Γ−

h η
)
+ 4g2

(
Γ+
c + Γ+

h (1− η)
))
, (61)

ϱ2 =
((

Γ−
c

)2
Γ+
h (1− η) + Γ−

c Γ
+
h Γ

−
h η (1− η) + 4g2

(
Γ+
c − Γ+

h (1− η)
))
, (62)

ϱ3 = 0, (63)

α = −2ig
(
Γ−
c Γ

+
h (1− η)− Γ+

c Γ
−
h η

)
, (64)

where the normalization constant is N = ϱ0 + ϱ1 + ϱ2. Using Eq. (19) to obtain the steady
state concurrence for this system, leads us to the expression C(ϱ̂∞) = 2|α|N . Thus, through
Eq. (64) we note that, for this system, the concurrence is a monotonically increasing function
of the measurement strength λ. This arises as consequence of choosing the operator ÂF as
the measured observable. In Sec. 3.4, we discussed how the backaction from measuring this
observable is null within the coherently coupled subspace. This property is reflected by the
monotonic increasing nature of C(ϱ̂∞) with respect to λ. This suggests us to consider the
limit λ → ∞, thus recovering projective measurements for this choice of observable (see
Sec. 2.4). Within the projective limit the detector is capable of correctly capturing the state
of the system with null uncertainty in the measurement outcome, thus leading to correctly
applied feedback at all times. Lastly, in order to obtain optimal entanglement generation we
set Tc → 0 [1, 18]. Here the concurrence is expressed as

C(ϱ̂∞) = 2|α|N (65)

=
gΓcΓ

+
h

g2
(
Γc + 2Γ+

h

)
+ 1

4
Γ2
cΓ

+
h

. (66)

An analytical derivation of the maximal concurrence is found by solving the system of equa-
tions established by ∇C(ϱ̂∞) = 0, where ∇ ≡ (∂g, ∂Γc , ∂Γ+

h
). By doing so, we note that C(ϱ̂∞)

is a monotonically increasing function of Γ+
h . As the Fermi-Dirac distribution is bounded,

C(ϱ̂∞) is maximized in Γh → ∞. Thereby, the results shown in this section are derived in
the limit Γh ≫ Γc. However, in later sections we relax this assumption.
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Figure 8: Heat maps obtained of the analytical results for the fermionic system. The maps show the steady
state concurrence, purity, CHSH inequality or singlet fraction change as a function of the interdot interaction
strength g and the temperature of the hot bath Th. As per the analytical derivations, the concurrence
graph shows the maximum concurrence to lie at around C(ϱ̂∞) = 1√

2
. Whithin the same region, the CHSH

inequality reaches valeus CHSH ≈ 2.4, while the singlet fraction reaches F ≈ 0.85. The dashed line in each
plot represents the value of g for optimal concurrence. In addition, each plot can be subdivided into four
separate regions, as highlighted in the purity plot. Here we use Γ−

c /E = 10−3; Γh = 100Γc; Tc/E = 10−2.

In Fig. 8, we plot the concurrence, purity, CHSH value and singlet fraction for the fermionic
system as function of the coherent coupling strength g and temperature of the hot bath
Th. Let us firstly focus on the results obtained for the concurrence. Here, we note the
monotonically increasing behaviour of C(ϱ̂∞) with respect to Th for any fixed g. This result
is in agreement with the observation made for the behaviour of C(ϱ̂∞) with respect to Γ+

h .
Additionally, we also note the presence of a high concurrence region; within the considered
limits, we derived an analytical expression for C(ϱ̂∞) enclosed by this area

C(ϱ̂∞) =
4gΓc

8g2 + Γ2
c

. (67)

We now observe that the maximum solution is found to be at g = Γc

2
√
2
(see dashed line in

Fig. 8). This solution for g corresponds to the high concurrence region of Fig. 8, where we
obtain an analytical value of C(ϱ̂∞) = 1√

2
. Within the same region, we see that the CHSH

value reaches values around ∼ 2.43 while the singlet fraction approaches ∼ 0.85. In both
cases, the obtained values lie well above the lower bounds set in Sec. 2.2, and the stationary
state can be considered as non-classical.
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Figure 9: The system’s steady state in the region of high concurrence (see region 4 within purity plot of
Fig. 8). In this region the state populations are nearly completely reshuffled within the coupled subspace of
the system, thus approaching the form of a pure Bell state (see Fig. 1.a).

Through the purity plot displayed in Fig. 8, we note that within the same region of optimal
concurrence, the purity increases due to the feedback protocol. Figure 9 is a stationary state
within the high concurrence region of Fig. 8. We see that the state is similar to the form of
the maximally entangled Bell state |Ψ±⟩ in Eq. (15). Furthermore, from Fig. 9, we see that
the strong interdot Coulomb repulsion is prohibiting the doubly occupied state |CH⟩, thus
allowing for more population to be reshuffled within the desired subspace.

All of the heat maps in Fig. 8 share a similar contour profile, which allows us to equally
divide each of them into four separate regions, as illustrated in the purity plot of Fig. 8. In
Fig. 10 we show four bar plots for ϱ̂∞ corresponding to each region.
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Figure 10: Four example system state representations for the four highlighted regions in the purity plot of
Fig. 8.

To establish the origin of the highlighted regions, we note that each of these is characterized
by a separate parameter regime. For instance, let us consider the region labelled by the index
”1”. As Th → 0, we reach unit purity since since Γ+

h → 0, which reduces the possibility of
occupying the hot qubit, as no fermion can enter the system. The system thus resides in the
pure state |0⟩⟨0|. The second highlighted region is characterized by low purity, indicating a
highly mixed state. The state representation confirms this by showing that all allowed levels
share an equivalent amount of population (see Fig. 10). Here, the hot bath temperature sets
an equivalence between the jump-in and jump-out rates Γ+

h ≈ Γ−
c . Therefore, ϱ̂0 = ϱ̂1 ≈ ϱ̂2

as can be see from Eqs. (60)-(62). Region 3 is denoted by low purity and concurrence. In
this region, g ≥ Γ+

h ,Γ
−
h , favoring Rabi oscillations between the cold and hot qubit. For

fast oscillations, the coherence is suppressed by phase averaging, as discussed in [57], thereby
leading to low concurrence. The fourth region is the high entanglement region. In this region,
the balance between incoherent and coherent interactions allows for a buildup of coherence,
thus leading to higher concurrence.

4.2 Bosonic System

Here we present the results for the bosonic thermal machine presented in Sec. 3.1. The null-
space of the Lindbladian shown in Eq. (58) is derived to be in the form of Eq. (18). As the
measurement produces no backaction, we again consider an infinite measurement strength
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λ → ∞, such that feedback is applied correctly at all times. By again considering the limit
Tc → 0 we find the system steady state to be

ϱ̂∞ = N


g2Γc 0 0 0
0

(
1
4
Γ2
c + g2

)
Γ+
h

i
2
gΓcΓ

+
h 0

0 − i
2
gΓcΓ

+
h g2Γ+

h 0
0 0 0 0

 , (68)

where N =
[
Γcg

2 +
(
2g2 + 1

4
Γ2
c

)
Γ+
h

]−1
is a normalization factor. The concurrence of Eq. (68)

reads

C(ϱ̂∞) =
gΓcΓ

+
h

g2
(
Γc + 2Γ+

h

)
+ 1

4
Γ2
cΓ

+
h

. (69)

This equation coincides with Eq. (66). In fact, as we will see, many of the results for
the fermionic and bosonic engines are equivalent when λ → ∞. To find the maximum
concurrence, we solve the system of equations ∇C(ϱ̂∞) = 0, and find again, as for the
fermionic engine, that C(ϱ̂∞) is a monotonically increasing function, that approaches its
maximum as Γ+

h → ∞. In Fig. 11, we plot the concurrence, purity, CHSH value and singlet
fraction under the condition of Γh ≫ Γc as function of g and Th.
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Figure 11: Heat maps of the analytical results, for the bosonic system. The maps show how the steady
state concurrence, purity, CHSH inequality or singlet fraction change as a function of the interdot interaction
strength g and the temperature of the hot bath Th. As per the analytical derivations, the optimal values
across all entanglement measures exactly match with those obtained in Fig. 8. The dashed line in each plot
represents the value of g for optimal concurrence. Here we use Γ−

c /E = 10−3; Γh = 100Γc; Tc/E = 10−2.

As for the results obtained for the fermionic thermal machine, we note that the concurrence
presents a high concurrence region, for which we derived the analytical expression in the limit
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Γh ≫ Γc

C(ϱ̂∞) =
4gΓc

8g2 + Γ2
c

. (70)

Equation (70) has its maximum, at g = Γc

2
√
2
(see dashed line in Fig. 11), where C(ϱ̂∞) = 1√

2
.

By studying the singlet fraction and CHSH we find that these quantities have the same value
as in the fermionic engine (i.e. CHSH ≈ 2.43 and F ≈ 0.85). Lastly, from Fig. 11, we note
that, within the region of high entanglement, the stationary state (depicted in Fig. 12) is
similar to the maximally entangled Bell state |Ψ±⟩ of Eq. (15).

Figure 12: The system’s steady state in the region of high concurrence (see concurrence plot in Fig. 11). In
this region the state populations are nearly completely reshuffled within the coupled subspace of the system,
thus approaching a maximally entangled Bell state (see Fig. 1.a).

By comparing the results of Secs. 4.1 and 4.2, we see that the two engines perform
equivalently. This is in contrast to Sec. 3.3, where the fermionic engine produced a higher
concurrence in the absence of measurement and feedback. The equivalence is a result of the
assumptions Tc → 0, λ→ ∞ and γ ≫ max{g,Γc,Γh}. In this regime, the stationary states of
both engines are prohibited from occupying the doubly excited state, even when the Coulomb
repulsion is set to U = 0 in the fermionic case. To understand why this is the case, we study
the Liouvillian for the Bosonic engine in the limits Tc → 0, λ→ ∞ and γ ≫ max{g,Γc,Γh}

LB =


−Γ+

h 0 Γ−
c 0 0 0

Γ+
h 0 0 Γ−

c ig −ig
0 0 −Γ−

c Γ−
h −ig ig

0 0 0 −Γ−
c − Γ−

h 0 0
0 ig −ig 0 −1

2
Γ−
c 0

0 −ig ig 0 0 −1
2
Γ−
c

 . (71)

From Eq. (71) we see that under the listed assumptions, the equation of motion for state
|11⟩⟨11| takes the profile of an exponential decay

ϱ̂11(t) ∝ e−(Γ
−
h +Γ−

c )t, (72)

thus explaining the lack of |11⟩⟨11| population in the system steady state. This quantitative
explanation suggests that the protocol is capable of recovering the behavior of a Coulomb
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interaction-like term for the bosonic system, without requiring us to manually introduce it
into the equations.

In order to obtain a more qualitative understanding of why the |11⟩⟨11| state is prohibited,
we have schematized an illustration in Fig. 13 representing the transitions described by the
Liouville superoperator in Eq. (71).

Figure 13: A schematic illustration of the transition described by the Liouville superoperator in Eq. (71).
From this illustration we see that the doubly excited state is achievable as an initial condition for the machine,
although the evolution does not allow transitions through this state.

Let us consider the system initialized in the doubly excited state (see Fig. 13). As per our
assumptions, the detector has the ability to promptly and accurately distinguish this state.
Here, the feedback protocol does not activate as θ(D > 0) = 1. The system dynamics remain
unchanged until one of the qubit loses its excitation to the respective bath, at which point
θ(D < 0) = 0, thereby terminating the connection with the hot bath. As the temperature of
the cold bath is assumed to be zero, the excitation rate from the cold bath into the system
is zero (i.e. Γ+

c = 0). As a result of the hot bath’s complete decoupling from the system, any
remaining excitation can only exit the system through the coupling with the cold bath. When
this occurs, the detector responds immediately and accurately to the change by reconnecting
the hot bath to the system (θ(D > 0) = 1). The system then continues to evolve through
chains of states that will never include the |11⟩⟨11| state.

It is important to emphasize that the appearance of this effect is highly dependent on the
simultaneous realization of all three assumptions concerning λ, γ, and Tc. If Tc were set to
any value other than zero, the cold bath would be able to supply excitations to the system,
leading to transitions |01⟩⟨01| → |11⟩⟨11|. Additionally, if λ were set to a finite value, the
detector might fail to detect excitations within the system, leaving the coupling to the hot
bath open. Lastly, if γ was not set to be the largest parameter, a slower detector response
time would allow for an excitation to be redistributed within the system before the coupling
to the hot bath was shut.
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4.3 A Different Parameter Regime

The results obtained in Sec. 4.1 and 4.2 reveal a symmetry between the entanglement gen-
eration of the two engines. This attribute has us wondering whether the feedback protocol
makes the two engines equivalent. To address this question we explore a different parameter
regime than the one studied in Sec. 4.1 and 4.2, by adjusting the values of Γc and Γh, whilst
keeping the remaining parameters fixed. In Fig. 14, we illustrate the steady state concurrence
for both the bosonic (Fig. 14.a) as well as the fermionic (Fig. 14.b) thermal machines as a
function of the hot bath temperature, for different choices of coherent coupling strength g.
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Figure 14: Graphs illustrating the concurrence as a function of Th for both the bosonic thermal machine
(a)) and the fermionic thermal machine (b)). The graphs were obtained in the parameter regime Γh = Γc.
Here, the bosonic thermal mahcine produces higher concurrence than its fermionic counterpart in terms of
entanglement generation. Here we used Γ+

c = 0; Γ−
c /E = 10−2; Γh = Γc; Tc/E = 10−2; λ → ∞.

To obtain the results shown in Fig. 14 we relax the requirement of Γh ≫ Γc by setting Γh = Γc,
whilst keeping λ → ∞. As a result, we see that, the bosonic thermal engine outperforms
its fermionic analog, which disproves the notion of the two machines performing equivalently
under the feedback protocol.

To explain the origin of this discrepancy, we derived an analytical expression that estab-
lishes a relation between the thermal heat current from the hot bath and the concurrence of
each respective machine (refer to appendix G for a derivation)

CF(ϱ̂∞) =
Q̇h

gε
, CB(ϱ̂∞) =

Q̇h

gE
. (73)

The derived expression provides a useful insight for the relation between heat current and
concurrence. The concurrence can be directly inferred by measuring the heat current and
does not require quantum state tomography. Equation (73) further explains why the bosonic
engine outperforms the fermionic one in Fig. 14. As Th → ∞

Γ+
h →

{
Γh/2 Fermions
∞ Bosons

(74)

and the heat current is allowed to reach higher values in the bosonic engine than in the
fermionic one, thereby explaining why the bosonic system can generate more entanglement.
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It has to be noted that Eq. (73) remains valid also when relaxing the condition λ → ∞
for the fermionic engine. This is because the high interdot Coulomb repulsion prohibits the
doubly excited state.

4.4 Imperfect Isolation

Here we study the effect of imperfect isolation of the hot bath. Specifically, we examine the
entanglement generation when the hot bath is partially isolated. To achieve this, we propose
a variation of the protocol in which

Γh(D) = Γhθ(D) + (Γh − δ) [1− θ(D)] (75)

where 0 ≤ δ ≤ Γh is a constant, representing the degree of imperfect isolation. This analysis
is of experimental relevance, where perfect isolation can be hard to achieve.
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Figure 15: These plots show the concurrence, CHSH value and singlet fraction of the fermionic thermal
machine as function of δ, for different choices of temperature of the hot bath Th. Here we see the effect of
only partly isolating the hot bath from the system. Here we used Γ−

c /E = 10−3; Γh = 100Γc; Tc/E = 10−2;
g/E = 3.5 · 10−4

Figure 15 portrays the concurrence (Fig. 15.a), CHSH value (Fig. 15.b), and singlet fraction
(Fig. 15.c) of the fermionic thermal machine as a function of δ, at varying temperatures
of the hot bath Th. The dashed lines in Figs. 15.b, 15.c highlight the lower bounds for
classical behaviour. From Fig. 15, we can deduce that higher values of Th result in a more
favorable level of entanglement within the system, aligning with the findings in Sec. 4.1. It
is noteworthy that regardless of the chosen temperature, Fig. 15 illustrates that the isolation
level required for the system state to possess a useful quantity of entanglement must be
above 80%. This highlights the significance of appropriate isolation in the optimization of
entanglement generation in the fermionic thermal machine.
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Figure 16: These plots show the concurrence, CHSH value and singlet fraction of the bosonic thermal
machine as function of δ, for different choices of temperature of the hot bath Th. Here we see the effect of
only partly isolating the hot bath from the system. Here we used Γ−

c /E = 10−3; Γh = 100Γc; Tc/E = 10−2;
g/E = 3.5 · 10−4

Figure 16 illustrate the concurrence (Fig. 16.a), CHSH value (Fig. 16.b) and singlet fraction
(Fig. 16.c) of the bosonic thermal machine as function of δ, for various hot bath temper-
atures Th. In contrast to the fermionic engine, there are significant differences. Firstly,
the fermionic machine achieves non-zero concurrence at considerably lower isolation values,
than the bosonic machine. Additionally, we note that the system must be above 95% iso-
lated to contain any useful amount of entanglement. Lastly, unlike the fermionic machine,
for the bosonic machine, different Th values have varying impacts on different entanglement
measures. This scenario is analogous to the free evolution case, where the bosonic thermal
machine had an optimal hot bath temperature (see Sec. 3.3), as the dephasing within the
bosonic machine becomes dependent on Th.

In the context of imperfect conditions, an interesting difference between the bosonic and
fermionic thermal machines arises. Specifically, in the imperfect isolation regime, the bosonic
engine can become doubly excited, as the hot bath can provide excitations even when another
excitation is already present. This is not the case for the fermionic machine, where the infinite
Coulomb repulsion term prohibits the doubly excited state, thus allowing for a higher level
of entanglement. This disparity is evident in the graphs presented in this section, where
the absence of the Coulomb repulsion term in the bosonic machine reduces the amount of
entanglement it can produce at lower isolation proportions. Thereby, under these conditions,
the fermionic machine is again capable of outperforming its bosonic counterpart in terms of
entanglement production.

4.5 Robustness Against External Decoherence

In this section, we present a model to investigate the impact of external dephasing. This
was approached within the same parameter regime explored in Sec. 4.1 and 4.2. To model
external decoherence, we introduce an exponential dampening term for the coherences (see
Eqs. (58),(59)) via the inclusion of an additional damping term Γφ, such that

α̇ = ig(ϱ̂01 − ϱ̂10)−
1

2

(
Γ−
c + Γφ

)
α. (76)
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Although, this treatment of the exponential dampening term might appear arbitrary, it is
important to note that a microscopical derivation for this model was provided in Ref. [58].
Here we present the results obtained for the fermionic machine, and note that the bosonic
engine behaves equivalently. In Fig. 17 we plotted the concurrence (Fig. 17.a), CHSH values
(Fig. 17.b) and singlet fractions (Fig. 17.c) for the fermionic thermal machine, as a function
of Γφ.

0.00 0.02 0.04 0.06 0.08 0.10
Γϕ/E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
(%
∞

)

a)

0.00 0.02 0.04 0.06 0.08 0.10
Γϕ/E

2.0

2.1

2.2

2.3

2.4

2.5

C
H
S
H

b)

0.00 0.02 0.04 0.06 0.08 0.10
Γϕ/E

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F
(%
∞

)

c)

Figure 17: To study the robustness of the fermionic thermal machine against external decoherence, we plot
here the different entanglement measures as function of external dephasing. Here we used Γ−

c /E = 10−3;
Γh = 100Γc; Tc/E = 10−2; Th/E = 15; g/E = 3.5 · 10−4.

The plots above illustrate that the dephasing decreases the amount of entanglement produced.
When the strong Γφ limit is reached, the machines’ systems are purified to the |01⟩ (bosonic)
or |H⟩ (fermionic) state. This occurs because the coherent dynamics are suppressed due to the
strong decoherence of the off-diagonals, thus leaving the engines with an excitation incapable
of escaping the hot bath-coupled qubit. Although the system is still capable of violating Bell’s
inequality, the system concurrence approaches zero, similarly to the discussion in Sec. 2.2.1.
Overall, these findings shed light on the balance between entanglement generation of the
described protocol and decoherence due to additional environments.

4.6 Transient Regime

In this section we study the transient regime in the evolution of each thermal machine. Our
aim is to establish the required time scale to obtain the found steady state entanglement
values, thereby determining the feasibility of experimentally implementing the presented
protocol. To do so, we integrate the Lindblad equations derived in Sec. 3.4 and arrive at the
expression ϱ̂t = eLqtϱ̂0 for q ∈ {F,B}, where ϱ̂0 corresponds to the initial condition of the
system. Since we found the doubly excited state of each machine to exhibit an exponential
decay profile in time (see Eq. (72) and Sec. 3.3), we initialize the system state as ρ =
(1/3, 1/3, 1/3, 0, 0, 0).
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Figure 18: Here we plot concurrence (a), CHSH (b) and singlet fraction (c) over time for either thermal
machine. The curves show how steady state entanglement is reached in a finite amount of time, using
the initial condition ρ = (1/3, 1/3, 1/3, 0, 0, 0). Here we used Γ−

c /E = 10−3; Γh = 100Γc; Tc/E = 10−2;
Th/E = 15; g/E = 3.5 · 10−4; dt = 0.05.

Figure 18 illustrates the transient entanglement production of the bosonic thermal engine ac-
cording to the concurrence (Fig. 18.a), CHSH value (Fig. 18.b) and singlet fraction (Fig. 18.c).
The results obtained for the fermionic engine hold similar resemblance, thus we do not show
them here. From Fig. 18 we note that the entanglement production over time according to
each measure has very similar behaviours. More importantly, we note that the steady state
entanglement values obtained in Sec. 4.1, 4.2 are achievable in a finite amount of time. Using
the parameters chosen in this thesis the steady state would be reached in roughly 8000 s.
However, note that this can be shortened by accurately choosing a higher Γc value. Lastly,
we also note that our equations predict slightly higher entanglement values are achievable
within the transient regime.
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5 Conclusion and Outlook

In conclusion, we developed a continuous feedback control protocol capable of increasing the
entanglement generation of the studied thermal engines. The developed protocol improves
the concurrence generation by roughly three times in the fermionic engine, and roughly
seven times in the bosonic case, compared to a feedback and measurement free evolution.
Furthermore, in contrast to the results obtained in the absence of measurement and feedback,
we show that the entanglement generated through the presented protocol is useful in an
operational sense, as both engines are capable of quantum teleportation with relatively high
fidelity, and violate Bell’s inequality. In addition, we explored the robustness of the developed
protocol under a series of different physical conditions. We determined that, independently
of the engine, the hot bath must be at least 80% isolated, and any lower isolation value would
render the generated entanglement useless. Furthermore, we studied the robustness of the
generated entanglement against external decoherence. Here we found the systems to remain
operationally useful at high coupling strengths with external environments, whilst assuming
a faster detector response rate. Moreover, we studied the practicality of experimentally
implementing either engine. This was done by verifying that the engines would require a
finite amount of time to reach their steady state, roughly 8000 s, but note that lower times
could be achieved by selecting a higher Γc value.

We have also provided a detailed discussion regarding effects of the presented implemen-
tation. We find that the protocol is capable of emulating the dynamics obtained by the
presence of a strong repulsion term between the qubits of either engine. As we showed, this
feature allows the bosonic engine to produce concurrence values that are equivalent to the
ones produced by the fermionic engine. This is a distinctive result as, in the free evolu-
tion case, the fermionic engine was capable of greatly outperforming its bosonic counterpart.
This difference is established by the presence of a repulsion term within the fermionic engine,
which is however difficult to phenomenologically justify in the bosonic engine. In addition,
the developed protocol is shown to establish a direct relation between the heat from the hot
bath and the concurrence of either engine. This result suggests that the entanglement gener-
ated in an experimental setting through this feedback protocol could be determined without
the use of quantum state tomography.

Overall, the investigation presented in this thesis opens the door to new possible explo-
rations. Firstly, it has to be recognized that the limit of a detector faster than all other
system dynamics is not achievable by most experimental settings. Through our equations it
is clear that relaxing this limit cannot be but detrimental for the entanglement generation
of either engine. However, an in depth study of the system dynamics in a slower detector
limit is necessary in order to make predictions regarding the performance of the presented
protocol in an experimental setting. Secondly, the derivation of a direct relation between
concurrence and heat currents opens the doors to questions regarding entanglement wit-
nesses and the energy cost for entanglement generation. It would be instructive to find a
relation when simultaneously relaxing the limits of λ → ∞ and γ ≫ {g,Γc,Γh}. We believe
that a deeper characterisation of the relation between heat and entanglement could allow for
a better understanding of the entanglement generation properties of autonomous quantum
thermal engines. Lastly, the presented protocol could be extended to more sophisticated
engines. For instance, it could be interesting to relax the strong intra-dot repulsion in the
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fermionic engine. This would allow for more than one fermion to exist in either dot. Through
such exploration one could extend the present study to multipartite entanglement and study
the effects of the protocol on more interesting systems in regards to quantum computation
processes.
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Appendices

A Completness of Weak Measurement Operators

In this section we show the derivation required to establish the completness relation
∫∞
−∞ Ŵ †(z)Ŵ (z)dz =

1. Let us start by expanding for the expression of the weak measurement operators∫ ∞

−∞
Ŵ †(z)Ŵ (z)dz =

(
2κ

π

) 1
2
∫ ∞

−∞

(
e−κ(z−Â)

2)†
e−κ(z−Â)

2

dz (77)

=

(
2κ

π

) 1
2
∫ ∞

−∞
e−2κ(z−Â)

2

. (78)

To arrive at Eq. (78) we assumed the hermitianity of the operator z− Â, which for a suitable
choice of Â is easily ensured. The continuation of the derivation follows the standard approach
taken in deriving the result of Gaussian integrals. We start by defining I as the expression
of Eq. (78). We then perform a u-substitution, such that x ≡ z − Â ⇒ dz = dx. We
then consider the integral I2 instead and move to polar coordinates r =

√
x2 + y2 and

ϕ = tan−1( y
x
) as such

I2 =
2κ

π

∫ ∞

−∞

∫ ∞

−∞
e−2κ(x+y)2dxdy (79)

=
2κ

π

∫ 2π

0

∫ ∞

0

e−2κr2rdrdϕ (80)

=
1

π

∫ 2π

0

[
−1

2
e−2κr2

]∞
0

dϕ = 2

[
−1

2
e−2κr2

]∞
0

= 1 (81)

⇒ I =
√
I2 = 1. (82)

B Transitions Involving the Doubly Occupied State

The Lindblad master equation for the free evolution of the fermionic system can be written
as LFϱ̂ = LCϱ̂+ LHϱ̂+ LCHϱ̂. In Sec. 3.3 we provided a full expression for the the terms LC

and LH, thereby showing their relation to the transition events due to interactions with the
cold and hot bath respectively. On the other hand, LCH contains all information regarding
the transitions involving the doubly occupied state |CH⟩

LCH =ΓcnF(ε+ U, Tc)D[|CH⟩⟨H] + ΓhnF(ε+ U, Th)D[|CH⟩⟨C]+
+ Γc(1− nF(ε+ U, Tc))D[|H⟩⟨CH] + Γh(1− nF(ε+ U, Th))D[|C⟩⟨CH], (83)

where D[Ô]ϱ̂ ≡ Ôϱ̂Ô† − 1
2

{
Ô†Ô, ϱ̂

}
for any operator Ô. In the limit U → ∞, the system’s

dynamics are greately simplified. In this limit, the term LCH reduces to an equation which
describes only transitions where the system abandons the doubly occupied state |CH⟩. More-
over, using Eq. (48) we obtain the equation of motion for the element ϱ̂CH ≡ ⟨CH|ϱ̂|CH⟩ to
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be

lim
U→∞

∂tϱ̂CH = −(Γh + Γc)ϱ̂CH, (84)

which has solution ϱ̂CH ≈ e−(Γc+Γh)t. These results suggests that, in the long time limit, the
doubly occupied state is prohibited. This can be also qualitatively understood by considering
that two strongly interacting electrons would repel eachother, thus limiting the number of
dots that can be simultaneously occupied.

C Interpretation of Post-Measurement States

In this section, we present a brief discussion regarding the interpretation of post-measurement
representations of mixed states.

Consider we were given a mixture of different pure states represented by the density
operator ϱ̂ =

∑
i p(i)|ϕi⟩⟨ϕi|. Now suppose that we wished to perform a measurement on the

system via the measurement operator M̂z, wherem corresponds to the measurement outcome
for measuring ϱ̂: the state of the system after such measure would be given by

ϱ̂z =
M̂zϱ̂M̂

†
z

Tr
{
M̂zϱ̂M̂

†
z

} =
M̂zϱ̂M̂

†
z

pz
, (85)

where pz = Tr
{
M̂zϱ̂M̂

†
z

}
corresponds to the probability of obtaining outcome z and serves

the purpose to normalize the state ϱ̂z, as required by Eq. (7). By expanding Eq. (85) into
the outerproduct of the state vectors of the system, we can use Bayes theorem to write

ϱ̂z =
∑
i

p(i)

pz
M̂z|ϕi⟩⟨ϕi|M̂ †

z (86)

=
∑
i

p(i)

pz
p(m|i)|ϕm

i ⟩⟨ϕm
i | (87)

=
∑
i

p(i|z)|ϕz
i ⟩⟨ϕz

i |. (88)

In the above equations we have defined |ϕz
i ⟩ ≡ M̂z |ϕi⟩√

p(z|i)
as the post measurement representation

of the state vector |ϕi⟩. Given the result obtained in Eq. (88) we define ϱ̂z as a conditional
(selective) state: i.e. the state of the system given z was measured. Let us now consider the
case in which we do not normalize ϱ̂z, such that ϱ̂′ ≡ pzϱ̂z. In this case we can use Eq. (87)
together with some probability theory to write

ϱ̂′ =
∑
i

p(z, i)|ϕz
i ⟩⟨ϕz

i |. (89)

The equation expressed above can be interpreted as representing the joint state of system
and outcome: similar expressions are referred to as non-selective states. Non-selective states
are interpreted as systems that have been measured, but whose outcome has been ignored.
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In this thesis we have encountered both conditional and non-selective states. As an
example, Eq. (33) is a conditional state, as the final expression for ϱ̂ is dependent on the
measurement outcome D. On the other hand, Eq. (68) is a clear example of non-selective
state. One could, in theory, start from the conditional state in Eq. (33) and arrive at a non
selective steady state by repeatedly applying the measurement superoperators M (z) and L
such that

ϱ̂tf (z) = eLdtM (zn)...e
LdtM (z1)ϱ̂(0). (90)

The final expression obtained by the above procedure is defined as a ”trajectory”. By aver-
aging over several of these trajectories we get rid of the measurement outcome dependency,
such that we obtain the non selective steady state

ϱ̂tf =

∫ ∞

−∞
ϱ̂tf (z)dz (91)

D Master Equation for Measurement Backaction

In this section, we derive a differential equation to describe the measurement backaction on a
system freely evolving according to Eq. (14). We start by dividing time into discrete steps of
duration dt. We then, iteratively measure the system and let it evolve. Thus, at time t+ dt
the system is in state

ϱ̂t+dt(z) = eLdtM(z)ϱ̂(t). (92)

In the above, we defined M(z)ϱ̂ = K̂(z)ϱ̂K̂†(z) and Lϱ̂ as the superoperator representations
for the measurement and time evolution (see Eq. (14),(29)) operations. In order to obtain an
expression for the non-selective state representation, we integrate Eq. (92) over all possible
outcomes z

ϱ̂t+dt = eLdt
∫ ∞

−∞
dzM(z)ϱ̂(t) (93)

= eLdt
(
2λdt

π

)1/2 ∫ ∞

−∞
dze−λdt(z−Â)

2

ϱ̂(t)e−λdt(z−Â)
2

(94)

= eLdt
(
2λdt

π

)1/2 ∫ ∞

−∞
dz

∑
ij

e−λdt[(z−Ai)
2+(z−Aj)

2]|ai⟩⟨ai|ϱ̂(t)|aj⟩⟨aj|. (95)

To arrive at the last equality in the above derivation, we have inserted the completeness
relation 1 =

∑
i |ai⟩⟨ai| twice. The orthonormal states |ai⟩ are chosen as the eigenstates of

the observable Â with eigenvalue Ai (i.e. Â|ai⟩ = Ai|ai⟩). Computing the integral in Eq. (95)
leads to

ϱ̂(t+ dt) = eLdt
∑
ij

e−λdt(−AiAj+
1
2
A2

i+
1
2
A2

j )|ai⟩⟨ai|ϱ̂(t)|aj⟩⟨aj| (96)

≈ (1 + Ldt)
∑
ij

[
1− λdt

(
−AiAj +

1

2
A2

i +
1

2
A2

j)

)]
|ai⟩⟨ai|ϱ̂(t)|aj⟩⟨aj| (97)

= ϱ̂(t) + dtLϱ̂(t) + λdt

(
Âϱ̂(t)Â− 1

2

{
Â2, ϱ̂(t)

})
. (98)
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In the second line of the above derivation we have expanded the exponential term up to first
order in dt. This approximation is not to be considered detrimental for the derivation, as, in
the next step, we consider the continuous limit dt→ 0. In this limit we use the definition of
a derivative to write the final expression for the master equation

dϱ̂(t)

dt
= Lϱ̂(t) + λD[Â]ϱ̂(t), (99)

where we introduced the superoperator D[Â]ϱ̂ = Âϱ̂Â− 1
2

{
Â2, ϱ̂

}
to represent the measure-

ment backaction. Equation (99) is similar to Eq. (14) with the addition of an extra term
proportional to the measurement strength λ. The additional term represents the measure-
ment backaction, and it has the effect of adding a dampening term to the coherences of
ϱ̂.

Briefly, we now show that in the limit dt → 0 we obtain the commutation relation
eLdtM(z)ϱ̂ = M(z)eLdtϱ̂. To do so, we derive master equation (99) starting from the dif-
ferential increment ϱ̂t+dt(z) = M(z)eLdtϱ̂ instead. By following the steps used to derive
Eq. (99), we arrive at the expression

ϱ̂(t+ dt)− ϱ̂(t)

dt
= Lϱ̂(t) + λ

(
Âϱ̂(t)Â− 1

2

{
Â2, ϱ̂(t)

})
+ λdt

(
ÂLϱ̂(t)Â− 1

2

{
Â2,Lϱ̂(t)

})
, (100)

in the limit dt→ 0 the third term on the right-hand side of the above relation vanishes, while
the left-hand side approaches the definition of a derivative, leaving us with Eq. (99).

E Filtering

When measuring an arbritrary observable of a system, we use the parameter z(t) to label
the measurement outcomes. The use of Eq. (30) leads to the variance of z to diverge in the
continuous limit ∆t→ 0, as

Var[z(t)] =
1

4λ∆t
. (101)

This implies that in the continuous limit, the information extracted in the form of z(t) will
serve no use. To show this, we ran a Monte Carlo simulation for the time evolution of a
continuously monitored system, where we set ∆t to be the system smallest parameter. The
simulation was made so that it would return a conditional state , starting from a system
initialized in ϱ̂i = |10⟩⟨10| state. The results shown in Fig. 3 show how z(t) does not provide
any useful information, as its fast oscillatory behaviour and high variance, make it impossible
to distinguish the state of the system at any given time. To obtain any useful information
we need to process the measurement outcomes. In order to clean the outcomes z(t) we need
to filter out the higher frequency behaviour of the signal. To do so we make use of the
convolution in Eq. (34). To obtain the results obtained in Fig. 3 we used Eq. (34), to derive
a Markovian update equation

D(t+ dt) = D(t) + γdt[z(t)−D(t)] (102)
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Though seemingly arbitrary, the convolution in Eq. (34) behaves as a low pass filter by re-
moving all fast oscillatory behaviours and outputting a signal with time independent variance
(see rightmost plot in Fig. 3)

Var[D(t)] =
γ

8λ
. (103)

We can convince ourselves of the filtering properties of Eq. (34) by studying its spectral
density function. That is, if we consider the Fourier transform of Eq. (34), we find it to be
the product of the signal z(t), in Fourier space, and a Lorentzian function centered at the
origin (note that t ≥ 0 and thus we can write t → |t|). From this, it is clear that D(t)
contains only low valued frequency components of z(t), as the higher frequency components
are filtered out by the rapidly decaying tail of the Lorentzian function obtained through the
Fourier transform of the exponential term.

F Analytical Treatment of Free Evolution Scenario

In this section we study in more detail the free evolution of the fermionic thermal engine.
Note that an analogous treatment of the free evolution of the bosonic engine can be made
using the same techniques presented in this section. For the ease of the reader, we here
restate the details needed to reconstruct the dynamics of the fermionic engine. Using the
occupation number basis, the system’s Hamiltonian is

Ĥ = ε (|C⟩⟨C|+ |H⟩⟨H|) + g (|C⟩⟨H|+ h.c.) + (2ε+ U) |CH⟩⟨CH|, (104)

where the term U represents the interdot Coulomb interaction energy. Due to the coupling
to the thermal environments, the system dynamics are described by the Lindblad equation

∂tϱ̂t = −i
[
Ĥ, ϱ̂t

]
+

∑
j=C,H

(
Γ+
j D[|j⟩⟨0|] + Γ−

j D[|0⟩⟨j|]
)
+ LCH, (105)

where the tunneling probabilities are given by Γ+
j ≡ ΓjnF(ε, Tj) and Γ−

j ≡ Γj(1− nF(ε, Tj)),

where nF(ε, T ) ≡ 1
e(ε−µ)/T+1

is the Fermi-Dirac distribution (note kb ≡ 1) and Γj is the
coupling strength to bath j. Lastly, the term LCH contains all information regarding the
transitions involving the doubly occupied state |CH⟩ (see appendix B). Note that we here
consider the limit case U → ∞, which allows us to safely discard the LCH, as the |CH⟩ state
is prohibited.

As Eq. (105) is linear in the system’s state ϱ̂, it can be rewritten in a matrix-vector multi-
plication fashion, by unwrapping ϱ̂ into a vector ρt, such that ρ ≡ (⟨0|ϱ̂|0⟩, ⟨C|ϱ̂|C⟩, ⟨H|ϱ̂|H⟩, α, α∗)T

where α ≡ ⟨C|ϱ̂|H⟩, leading to the differential equation ∂tρt = LFρt. The superoperator LF

is then written as a 5× 5 matrix with form

LF =


−Γ+

c − Γ+
h Γ−

c Γ−
h 0 0

Γ+
c −Γ−

c 0 ig −ig
Γ+
h 0 −Γ−

h −ig ig
0 ig −ig −1

2

(
Γ−
c + Γ−

h

)
0

0 −ig ig 0 −1
2

(
Γ−
c + Γ−

h

)

 . (106)
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The steady state ϱ̂∞ is then given by the eigenvector ρ∞ of LF whose eigenvalue is zero (i.e.
the null-space of LF), as ∂tϱ̂∞ = LFϱ̂∞ = 0. Thus, by calculating the kernel of Eq. (106) we
find

ϱ̂∞ =
1

N
[(
Γ−
c + Γ−

h

) (
4g2 + Γ−

c Γ
−
h

)
|0⟩⟨0|+

(
Γ+
c Γ

−
h (Γ

−
c + Γ−

h ) + 4g2(Γ+
c + Γ+

h

)
|C⟩⟨C| +

+
(
Γ−
c Γ

+
h (Γ

−
c + Γ−

h ) + 4g2(Γ+
c + Γ+

h )
)
|H⟩⟨H|+ 2ig

(
Γ−
c Γ

+
h − Γ+

c Γ
−
h

)
(|H⟩⟨C| − |C⟩⟨H|)

]
, (107)

where N ≡
(
Γ−
c + Γ−

h

) (
4g2 + Γ−

c Γ
−
h + Γ−

c Γ
+
h + Γ+

c Γ
−
h

)
+8g2(Γ+

c +Γ+
h ) is a normalization fac-

tor. Optimal parameters for mamimal concurrence of Eq. (107) are then obtainable analyti-
cally by solving the differential equations ∇C(ϱ̂∞) = 0, or numerically through methods such
as simulated annealing. Upon doing so, one would find an optimal value of C(ϱ̂∞) ∼ 0.25,
however, the state ϱ̂∞ obtained this way would not be able to violate Bell’s inequality nor
reproduce quantum teleportation.

G The Relation Between Heat and Entanglement

In this section we derive Eq. (73). In Sec. 2.3 we established that the change in energy within

our systems is defined as Ė = Tr
{
Ĥ∂tϱ̂

}
. In the limit of a fast detector, we replace ∂tϱ̂t =

L(D)ϱ̂t(D) and separate the Lindblad operator into the terms concerning the interaction
with the two baths (i.e. Lc and Lh). To obtain a result for non-selective states we then
integrate over all outcomes D

Ė = Tr
{
Ĥ∂tϱ̂

}
(108)

=

∫ ∞

−∞
dDTr

{
ĤL(D)ϱ̂(D)

}
⟩ (109)

=

∫ ∞

−∞
dD

(
[1− θ(D)] Tr

{
ĤLcϱ̂(D)

}
+ θ(D)

(
Tr

{
ĤLcϱ̂(D)

}
+ Tr

{
ĤLhϱ̂(D)

}))
(110)

= Tr
{
(Ĥ − µcN)Lcϱ̂

}
+ Tr

{
(Ĥ − µhN)LhOϱ̂

}
+ µcIc + µhIh (111)

= Q̇c + Q̇h + µcIc + µhIh (112)

In the above we have separated the heat into a component representing the thermal heat
current Q̇ν and into a component representing the heat arising from the particle heat current
Iν . In the limiting cases of Tc → 0 and λ → ∞ we use the steady state results derived in
Sec. 4.1 to write the expression for the steady state heat currents

Q̇c = − g2εΓcΓ
+
h

g2
(
Γc + 2Γ+

h

)
+ 1

4
Γ2
cΓ

+
h

, Q̇h =
g2εΓcΓ

+
h

g2
(
Γc + 2Γ+

h

)
+ 1

4
Γ2
cΓ

+
h

. (113)

As a first check we note that the above expressions return the expected result Q = Qc+Qh =
0. Furthermore we note that we can use the above expression to write the system concurrence
in Eq. (113) as a function of the heat current CF(ϱ̂∞) = Qh/gε. An analogous derivation can
be made for the bosonic system, which then recovers the relation CB(ϱ̂∞) = Qh/gE.
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Upon relaxing the λ→ ∞ condition, one finds the heat current from the hot bath to be

Qh =
g2(1− η)εΓcΓ

+
h

−Γc

(
−g2 − 1

4
η2

(
Γ−
h

)2)
+ (1− η)Γ+

h

(
Γ2
c

4
+ 1

4
ηΓcΓ

−
h + 2g2

)
+ 1

4
ηΓ2

cΓ
−
h + ηg2Γ−

h

,

(114)

which one can show to be related to the system concurrence as CF(ϱ̂∞) = Qh/gε. However,
the same is not true in the bosonic case.
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