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Abstract III

Abstract

Oftentimes solids are described by uniform, periodic lattices. In reality, however, there
is often some disorder on some of the sites in the lattice. This disorder may come from,
for example, there being a different type of atom or tightly bound electrons resulting in a
larger on-site potential, affecting the electronic properties of the lattice. In this thesis the
electronic properties of square, periodic lattices with a number of these impurity sites are
studied. The main electronic properties that are studied are the electronic energies of the
lattice, and the density of states. Several properties of the impurity sites are also studied.
The Hamiltonians that describe the different lattices were created with the tight-binding
model. Two models for the placements of impurities were considered. The binary mixture
model which considers random placements of disorders and the Falicov-Kimball model
which considers thermodynamic placements of disorder. The results from these models
were discussed and compared. For the Falicov-Kimball model a Monte Carlo algorithm
was developed to examine the system and provide accurate results. Some papers that had
previously looked at approximate solutions to the Falicov-Kimball model were examined
and some of the results were recreated in the hope that the developed program could be used
as a benchmark for approximate solutions. Recreations of works with similar algorithms
were very accurate and for the more approximate solutions my simulations shared all of the
important characteristics. The efficiency of the Monte Carlo algorithm was evaluated by
first studying a benchmark smaller system that could be calculated and verified by hand
and then using a benchmark of a previous paper that solved the systems in a similar way.
It was determined that the Monte Carlo algorithm worked as expected.
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List of abbreviations

DOS - Density of states
BM - Binary mixture
FK - Falicov-Kimball
ND - The number of impurity sites
NDD - The number of diagonally connected impurity sites
NAD - The number of horizontally and vertically connected impurity sites
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1 Introduction and background

Within the field of solid-state physics, a common way of describing the behaviours of atoms
and their electrons in a solid is with a uniform, periodic lattice. In reality, this description
is not completely accurate and there are usually some sites on the lattice which have some
types of impurities on them. This disorder may come from, for example, there being a
different type of atom compared to the rest of the lattice or electrons that are tightly
bound to an atom resulting in a larger on-site potential, affecting the electronic properties
of the lattice.

The aim of this thesis is to study properties of electrons in square periodic lattices in
the presence of disorder. This is done on two different models. One model is examined
using a Monte Carlo algorithm [1], or more specifically a Metropolis-Hastings algorithm
[2], and the other model is studied by a more random sampling. Although the Monte Carlo
algorithm is a Metropolis-Hastings algorithm, it will still be referred to as a Monte Carlo
algorithm. Where and how the impurity sites are placed depends upon the model.

The first model, the binary mixture model, or BM model, does not consider any thermody-
namic properties nor the previously generated lattices when generating disorder configura-
tions. Instead, each iteration generates a completely random disorder configuration.

The second model, the Falicov-Kimball model [3], or FK model, utilizes a Monte Carlo
algorithm to generate and propose new lattice configurations which can be accepted or
rejected based on the energetic properties of the configuration and the temperature. The
FK model is widely used for investigating a variety of different phenomena such as crystal-
lization [4], metal-insulator transitions [5][6][7], and many more. Finding solutions to the
FK model is therefore of great interest. Many of these papers use different approximations
to solve the FK model, often leading to some information being lost, mostly regarding finer
details. The FK model has however been solved exactly for infinite dimensions by multiple
methods such as using an equation of motion technique [8] and by using mean-field theory
[9], which has been shown to be an effective solution in other studies like Ref. [10].

This thesis is focused on solving the FK model exactly for cases that were discussed in
some of the aforementioned papers. In this way the developed Monte Carlo algorithm
could be used as a benchmark for other approximate solutions, especially studies in two
dimensions. The efficiency of the developed Monte Carlo algorithm was also evaluated as
well as several properties of the studied lattices for certain important cases.
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2 Theory

2.1 The tight-binding model

The tight-binding model is a model that describes the motion of electrons in a solid [11]. It
simplifies their motions to be highly localised, either being on the locations of the atoms in
the solid or having a chance to tunnel to an adjacent site. This model can be generalized for
real-world lattices in all three dimensions, which makes it quite useful for studying both
simple and more realistic cases. The tight-binding model is used for describing single-
electron systems but can be used for multi-electron systems if it is assumed that there is
no interaction between the electrons which is the case for this thesis.

2.1.1 The tight-binding Hamiltonian

The tight-binding Hamiltonian takes the form of a matrix with dimensions related to
the number of sites on the lattice that is being studied. The energy eigenvalues of the
Hamiltonian, ϵi, are the possible energies that the electrons in the system can have. Plotting
them as a function of energy gives the density of states, DOS, of the system.

We first consider the one-dimensional case which is simply a straight line of atoms. When
an electron sits on the nth atom we denote the quantum state as |n⟩. These states are
orthogonal to each other which means that

⟨n|m⟩ = δnm. (1)

In a case where the electrons are considered to be completely localized the Hamiltonian
would be very simple.

H = E0

∑
n

|n⟩ ⟨n| . (2)

The Hamiltonian in Eq. 2 describes the electrons being stuck on their sites and only
consists of a main diagonal of the on-site energy, E0. As mentioned earlier, the tight-
binding model also considers a probability of tunnelling between two different states. We
add a term to the Hamiltonian that consists of |m⟩ ⟨n| terms where m and n once again
are sites on the lattice. The notation |m⟩ ⟨n| signifies an electron moving from site n to
m. For the tight-binding model, these sites have to be neighbours or m = n ± 1. As one
can see, the direction of tunnelling does not matter. We also add a hopping parameter,
t, which is related to the tunnelling probability. The tunnelling probability is given by
t2

E2
0
. Adding the hopping parameter to the Hamiltonian one gets the final Hamiltonian, to

describe one-dimensional systems. [12]

H = E0

∑
n

|n⟩ ⟨n| − t
∑
n

(|n⟩ ⟨n + 1| + |n + 1⟩ ⟨n|) . (3)

As a matrix, this Hamiltonian still has the main diagonal consisting of E0, but it now
also has hopping parameters on other places. The lattice is considered to be periodic,
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meaning that the first and last atoms are neighbours and that tunnelling between them is
allowed.

The Hamiltonians for two and three-dimensional lattices are described in the same way
and have an obvious similarity to the one-dimensional formulation as well. Instead of the
states being just an integer, |n⟩, we have them as vectors, |r⟩: [13]

H = E0

∑
r

|r⟩ ⟨r| − t
∑
⟨rr′⟩

(|r⟩ ⟨r′| + |r′⟩ ⟨r|) . (4)

The sum index of the tunnelling term indicates that we only sum over neighbouring
sites.

For a two-dimensional lattice, tunnelling does not only happen between atoms n and n±1
but also to n±N where N is the length of a side in the real-world lattice. A figure showing
an example of a two-dimensional lattice with a side length N = 4 can be seen below in
Fig. 1.

Figure 1: A two-dimensional lattice with a side length of N = 4.

It is clear that for example two of the neighbours to site 4 are sites 0 and 8, satisfying the
condition of n and n±N being neighbours.

2.1.2 Adding impurity sites to the tight-binding model

When creating the regular tight-binding Hamiltonians, as detailed in section 2.1.1, the sites
were considered to have on-site energies of E0. This on-site energy comes from properties
of the atoms in the lattice. It does not come as a surprise that adding impurities to the
lattice, in the form of either other types of atoms, other stationary electrons, or some
sort of reshaping of the lattice, would affect the on-site energy. For simplicity’s sake the
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impurity sites are chosen to have on-site energies of u = E0 + w where w is the added
energy from the disorder. These impurity energies of u simply replace E0 on the main
diagonal of the Hamiltonians for the sites that are disordered. It is important to note that
certain papers that are referred to in this thesis follow a different naming convention, and
refer to impurities as f-electrons and what here are called electrons as c-electrons.

2.2 The statistical properties of the systems

2.2.1 The Fermi-Dirac distribution and its uses

The Fermi-Dirac distribution is a probability distribution detailing the probability of
fermions, such as electrons, occupying a certain energy eigenstate, ϵi. It is given by
f(ϵi, µe, β) = 1

e(ϵi−µe)β+1
, with µe being the electronic chemical potential, and where β

is introduced as β ≡ 1
kBT

. The units are chosen such that kB is set to 1, essentially making
β the inverse temperature. An important use for the Fermi-Dirac distribution in this thesis
is calculating the total energies of the different disorder configurations. The total electronic
energy of a system is given by the sum of all ϵi of the Hamiltonian multiplied with the
Fermi-Dirac distribution to determine whether they are occupied or not. The total energy
is also adjusted for the number and filling of the disorders.

E =
∑
ϵi

f(ϵi, µe, β) · (ϵi − µe) − µdND. (5)

Here ND is the number of impurity sites and µd fills a similar purpose to µe, but instead
determines the number of the impurities. The electronic system is half-filled.

2.2.2 The partition function

When considering a system with M possible microstates all with respective energies Ei

for i = 1, 2, ...,M , the possibility of each microstate appearing depends on its respective
energy and the partition function. Here, these microstates are represented by different
disorder configurations. The canonical partition function is described by a sum over all
possible disorder configurations with a dependence on their respective energies and the β
of the system. [14]

Z =
∑
i

e−βEi . (6)

For a disorder configuration i with energy Ei, the probability of that configuration appear-
ing is given by

P =
e−βEi

Z
. (7)
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3 Method

For this thesis I wrote three main pieces of code, one for simulating the BM and FK model
each, and one for reading the data to create plots. The entire code was created from
scratch. For both models, the corresponding program was set to run over a set number of
iterations with each iteration generating a new disorder configuration. The data from the
runs were then saved so that they could be read and plotted in a separate file.

All of the calculations were done in Python and the finished code for a general run of
the FK model can be seen in Appendix B. The runs were performed on multiple different
devices, including v3-n2, a computer node at the Division of Mathematical Physics.

3.1 The observables

The main electronic property that was chosen to be studied was the DOS. From each
Hamiltonian, the eigenvalues were calculated and added to histograms to create the DOS,
of the lattice. For plotting the DOS, a smooth and continuous function is wanted. To
get this instead of just a list of discrete numbers, the ϵi were added to small bins. This
also reduced the impact that rounding errors had. The bins were chosen to be ≈ 0.01t
wide. For the FK, model the eigenvalues also played another role. They were also used
to calculate the total energy of the systems, which in turn was used to determine whether
proposed Monte Carlo moves would be accepted or not.

At every iteration, information about the number and relative placements of the impurity
sites were collected. The configurations that “survived” the most proposed changes along
with the last standing configuration were saved. Finally, histograms of ND, as well as the
number of pairs of impurity sites that were diagonal neighbours to each other, which we
call NDD, were plotted. The number of pairs of either horizontal, or vertical neighbours,
which we denote NADD, were plotted together with NDD.

3.2 Constructing the Hamiltonians

The Hamiltonian for a one-dimensional lattice is quite trivial. Tunnelling between sites can
only happen left to right or right to left leading to the tunnelling term of the Hamiltonian
only being below and to the right of the main diagonal. For a lattice consisting of four
atoms the resulting matrix can be seen below in Fig. 2.

E0 −t 0 −t
−t E0 −t 0
0 −t E0 −t
−t 0 −t E0


Figure 2: The tight-binding Hamiltonian for a one-dimensional lattice with N = 4.
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When translating to the two and three-dimensional cases, what counts as a neighbour
becomes a bit more complicated. The one-dimensional case is as previously mentioned a
straight line with equidistant sites. For example, the neighbours of site 3 are naturally 2
and 4. When considering a two-dimensional lattice such as the one in Fig. 1, the neighbours
of site 3 are 2, 0, 15, and 7. Translating this to the Hamiltonian this means that we would
have −t at matrix indices [3,2], [3,0], [3,15], and [3,7] as well as their conjugates. The size
of the Hamiltonians also depend on the number of dimensions, with the one-dimensional
case having the shape N x N and the two-dimensional case N2 x N2 where N is the linear
size of the lattice. As described earlier the impurity sites had on-site energies of u = E0+w
instead of simply E0.

3.3 Binary mixture and Falicov-Kimball

Two different models were examined, the BM model and the FK model. The base Hamilto-
nians of both systems as well as the parameters being held constant were the same in both
models. Most of these parameters are given in units of t i.e. t = 1. For each simulation,
the lattice side length, N = 2 or N = 16, and the non-disordered on-site energy, E0 = 0t
were all held constant. The probability of each site having an impurity, p = 0.5 was also
held constant. The BM model simply had a parameter adjusting the probability of each
site having an impurity, but for the FK model µd had to be set to u/2 to get the same
result. Both β and u were varied to examine different situations.

3.3.1 Binary mixture

The BM model was the simpler of the two models. For each iteration a new, randomly
generated disorder configuration with no relation to the previous one was created and the
eigenvalues that arose from this new Hamiltonian were saved to the DOS histogram.

3.3.2 Falicov-Kimball

The FK model, first proposed in Ref. [3], is one of the simpler models for describing
interactions between immobile disorders on the atomic sites and mobile electrons. The
mobile electrons are sometimes referred to as c-electrons with the added disorders being
called f-electrons. Even though it is quite simple, this does not mean that the solutions
are easy to find.

The method used in this thesis to solve the FK model employs a Monte Carlo algorithm,
or more precisely a Metropolis-Hastings algorithm, to find disorder configurations that are
more energetically favourable or configurations to which there can be a thermal excitation.
This means that there is a strong dependence on the temperature when choosing whether
to accept or reject proposed new configurations. For each iteration, a new disorder con-
figuration was proposed and the energies for both the current and new Hamiltonian were
calculated using Eq. 5 and compared. If the proposed disorder configuration resulted in a
Hamiltonian with a lower energy, it immediately got accepted as the starting point for the
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next iteration. If the new configuration instead resulted in a higher energy, the probability
of this new configuration being accepted was given by the ratio of the probabilities given
by Eq. 7. The resulting probability of the proposed change being accepted, Pexcitation was
therefore given by

Pexcitation = e−β(Enew−Eold). (8)

For each iteration the current Hamiltonian’s ϵi were added to the DOS histogram. ND,
NAD, and NDD were also saved.

The Monte Carlo updates used for this method was quite simple, only consisting of one
type of move, flipping. This move chose a rectangular area of varying size somewhere on
the lattice, changing all of the impurity sites within the area to non-impurity sites and the
opposite for the non-impurity sites. The different sizes of flipping areas all had probabilities
associated with them, with the small flipping areas generally having larger probabilities
than the larger ones.

When choosing the moves to add to a Monte Carlo algorithm it is important to consider
the concept of detailed balance, nicely described in [15] with the quote “Corresponding
to every individual process there is a reverse process, and in a state of equilibrium the
average rate of every process is equal to the average rate of its reverse process”. In other
terms, at equilibrium the probability of any given move should be the same as its opposite
[16]. The flipping move automatically considers detailed balance by being its own opposite
move. For ND = N2

2
there is an equally large chance for a impurity site to become a

non-impurity site as the opposite since there are equally many impurity and non-impurity
sites. If ND > N2

2
there is a larger probability for ND to decrease than increase due to

there being more impurity sites than non-impurity sites and the flipping occurring at a
random position would consequently be more likely to decrease ND. This way the flipping
move always works towards an equilibrium position.

A list of the used moves along with their respective probabilities is detailed in Appendix
A.
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4 Results and discussion

Both of the models follow the same general routine for each iteration. First a new disorder
configuration is generated. As previously discussed, the way that these configurations
are generated depends on the model being examined. Secondly, the configurations ϵi and
total energy are calculated. Thirdly, all of the relevant observables are saved for later
plotting. Finally, a new configuration is generated and in the case of the FK model, the
new configurations energy is used to determine whether the new configuration will be used
for the next iteration. The process is then repeated.

4.1 The Falicov-Kimball model

4.1.1 Results for the 2 × 2 lattice

Although considering a 2 × 2 lattice is a bit limiting in regards to the DOS, it is a useful
benchmark since it can be easily calculated and verified by hand. Calculating the distri-
butions of ND is especially easy using Eq. 7. The results of these distribution for different
β are seen below in Fig. 3.

ND

Pr
ob

ab
ili

ty

0 1 2 3 40

0.2

0.4

0.6

0.8

1

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

= 0.1t = 1t = 3t = 10t

Figure 3: The respective probabilities for all ND in the 2 × 2 lattice for several different
values of β.

The theoretical probability distributions are also calculated with Eq. 7 and can be seen
along values obtained from the Python program for β = 1 and β = 10. Here, and for the
rest of the thesis, µd = u

2
. This means that N2

2
is the most probable value for ND. Due

to the probabilistic nature of the simulation, it takes quite a few iterations for the values
from the program to align with the theoretical values. For a 2 × 2 lattice it takes around
50 000 iterations before the theoretical values are reached.
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Table 1: The theoretical probabilities from Eq. 7 and the probabilities obtained from the
program of the different ND appearing in a configuration for β = 1.

ND Probability calculation with Eq. 7 Probability from program
0 0.024 0.024
1 0.24 0.24
2 0.48 0.48
3 0.24 0.24
4 0.024 0.024

Table 2: The theoretical probabilities from Eq. 7 and the probabilities obtained from the
program of the different ND appearing in a configuration for β = 10.

ND Probability calculation with Eq. 7 Probability from program
0 0 0
1 0.005 0.005
2 0.99 0.99
3 0.005 0.005
4 0 0

The probability for different ND as a function of β can also be plotted as shown below
in Fig. 4. Note that the probabilities for ND = 1 and ND = 3 as well as ND = 0 and
ND = 4 are the same and they are therefore plotted as one. This gives us a better idea of
how ND evolves as the temperature changes and more clearly shows when we go from ND

distributions having other values than ND = 2 to only consisting of ND = 2.

0 2 4 6 8
10 2

10 1

100

Pr
ob

ab
ili

ty

ND=0,4
ND=1,3
ND=2

Figure 4: The probabilities for different ND as functions of β.
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Figure 5: The two most energet-
ically favourable cases in the 2×2
lattice. The black squares repre-
sent impurity sites and white sites
represent non-impurity sites.

The energies of the different configurations can also be
studied. All configurations with either 0, 1, 3, or 4 only
have one unique value of their energies. This is due to
the sites themselves having no intrinsic properties, so
it does not matter where the impurity sites are placed.
For the ND = 2 case, there are two different types
of configurations. Four of the six possible microstates
have the two impurity sites being placed on adjacent
sites. One can consider a “impurity site vector“, d,
which connects two neighbouring impurity sites to be
either d=(1,0) or d=(0,1).

The other possible configuration has the two impurity
sites being diagonally connected or connected by d =
(1, 1). The configurations containing a d=(1,1) vector had considerably lower energies
than the ones containing d=(1,0) or d = (0, 1). Figures of how the two different cases for
d=(1,1) look can be seen in Figure 5, with the black squares representing impurity sites
and white sites represent non-impurity sites.

4.1.2 Discussion for the 2 × 2 lattice

From tables 1 and 2 one can quite clearly see that the values from the program align
very nicely with the theoretical values. From Fig. 4, there is a clear correlation between
decreasing temperatures and increasing probability of ND = 2. All of these observations
combined support the idea that the Monte Carlo works as intended.

The 16 × 2 lattice also shows why only flipping either a single, or a small number of
sites could be problematic. From either of the two most common configurations in Fig.
5, the other could not be reached with a single small Monte Carlo move. For the other
configuration to be reached it had to go through multiple less energetically favourable
moves. For larger β it would basically be impossible for both of the cases in Fig. 5 to be
studied in the same run. To avoid similar cases in the 16 × 16 lattice, moves that flipped
large parts of the lattice and even moves that flipped the entire lattice were added.

4.1.3 Results from the 16 × 16 lattice

From studying the 16 × 2 lattice, it is clear that NDD and NAD play a large role in
determining the likelihood of certain configurations appearing. The distributions of NDD

and NAD are shown for two different values of β in Fig. 6.
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Figure 6: Distributions of the probabilities for NDD and NAD for β = 0.5 and β = 10.
Note that probabilities of NDD and NAD individually add up to 1.

When plotting NDD and NAD for different values of β as seen in Fig. 6, one sees a clear
splitting up of the two distributions, with NDD becoming much larger for increasing β
whilst NAD tends to be much smaller. The NAD distribution never seems to overtake
the NDD distribution regardless of β and for smaller β, both values start moving towards
N2

2
.

Something else that can be examined is the distribution of ND for different values of β.
Two of these distributions can be seen below in Fig. 7.
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Figure 7: The distribution of ND for β = 0.5 and β = 10. Note the logarithmic scale.
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Unsurprisingly much fewer ND are represented for larger β. Similarly to with the 16 × 2
lattice it could also be interesting to plot the evolution of ND as a function of β for a
few different ND. These were chosen to be at and close to ND = N2

2
. As expected, the

probability of ND = 128 appearing greatly increases as β increases. The probabilities
for ND that are further away from N2

2
reach zero much faster than those closer to N2

2
.

Interestingly for ND = 123 it seems to be relatively constant until it starts decreasing at a
β ≈ 8. This aligns nicely with Fig. 7 where ND ≈ 123 seems to be essentially the same for
β = 0.5 and β = 10. One can also see how further increasing β from Fig. 7b would result
in the probability for ND ≈ 123 to start decreasing.

0 2 4 6 8 10
0.00
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0.04
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0.08

0.10

0.12

0.14

Pr
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ND = 128
ND = 123
ND = 118

Figure 8: The probabilities for different ND as functions of β. ND were chosen at, and
close to the equilibrium of N2

2
= 128.

The DOS is very important for determining electronic properties of lattices and is therefore
also studied. One aspect that can be studied from the DOS is the conducting ability of
the lattice. Insulators can be recognized by their DOS being separated into two different
peaks. Metals, on the other hand, have their DOS as a single peak. Typical DOS for
metals and insulators at two different β are plotted.
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Figure 9: a-b) Typical DOS for metals for two different values of β. c-d) Typical DOS
for insulators for two different values of β.

4.1.4 Discussion for the 16 × 16 lattice

As was noticed from the 16 × 2 lattice, it was clear that a d=(1,1) led to much lower E
compared to configurations with d=(1,0) or d=(0,1). This was also the case for 16 × 16
lattice where there was a very strong correlation between larger NDD and smaller E.
This connection is quite clearly seen in Fig. 6 where regardless of temperature NDD >
NAD.

Along with the energy of each configuration, β also plays a large role in determining whether
new configurations with larger energies than the previous one are to be accepted or not.
The equation determining the probability of these configurations being accepted, Eq. 8,
is important to analyse. For small β, the difference in energy matters less as opposed to
for large β where the energy difference is amplified by β. As mentioned earlier, there is a
strong correlation between NDD and lower energies which in turn naturally means that more
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probable disorder configurations should have larger NDD. This correlation does hold, but
we once again see a strong temperature dependence with the distribution of NDD and NAD.
For small β, the NDD and NAD distributions move closer towards each other and there is
a large overlap. For increasing β, NDD also increases while NAD decreases. For sufficiently
large β ⪆ 3, the energy difference is the largest contributor to whether configurations are
accepted or not which eventually leads to the most energetically favourable pattern, with
NAD ≈ 0, being a checkerboard pattern. The speed at which this checkerboard pattern is
reached and the rarity of deviations from it are also strongly related to β. On the other
hand, smaller values of β lead to almost every proposed change being accepted, making
it so that many more ND are represented and the checkerboard pattern that was seen for
larger β never really appears.

The DOS in Figures 9a and 9b are for typical metals while 9c and 9d are for typical
insulators. The determining factor whether the DOS are for metals or insulators was u,
while β played the role of affecting the number of different configurations being examined.
Comparing two DOS with equal u, one can see that increasing β mostly added towards
the already most commonly occurring energies while having fewer of the values in between
the two largest peaks. This comes as a quite natural consequence from the previously
mentioned fact that larger β meant that a smaller number of configurations are studied,
with the most energetically favourable configurations occurring even more often.

4.2 The binary mixture model

Due to the previously discussed lack of dependence of temperature for the BM model,
the probability distribution of ND simply becomes the same as a normalized binomial
distribution of the number of microstates for each ND.

The DOS is much more interesting, especially when comparing with the FK model. Figure
10 shows the DOS for two different values of u. In Fig. 10a the DOS is representative of a
typical metal DOS while Fig. 10b shows the DOS typical for insulators. At each iteration,
the eigenvalues of the current Hamiltonian were added to the DOS histograms. After all
iterations the DOS was normalised.
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(a) The DOS for u = 2 in the BM model.
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(b) The DOS for u = 10 in the BM model.

Figure 10: The DOS from the BM model for two values of u. They bear a strong
resemblance to the DOS in Figures 9a and 9c.

4.2.1 Discussion from the binary mixture model

Since DOS for metals and insulators were created for both the BM model and FK model
it could be interesting to compare them. The DOS in Fig. 10 are therefore compared to
those Fig. 9 for their respective values of u. It is clear that the BM DOS bears a larger
resemblance to the FK DOS for smaller β as opposed to larger β. Due to the fact that for
each iteration a new configuration is generated and accepted, the binary mixture model
is similar to what is done with in the FK model for an infinite temperature, where every
proposed change would be accepted. There are naturally some differences, mainly with
how the new configurations are generated. The Monte Carlo algorithm has a few different
moves it can propose with different probabilities assigned to them with, in general, smaller
changes being more probable to be proposed than larger changes. This is very different
to the BM that always generates completely random configurations. For a completely
different configuration to be generated in the Monte Carlo algorithm, it has to run through
a multitude of different configurations before reaching one that is completely different from
the first one. Since the binary mixture generates a completely random configuration for
each iteration, there is no problem with having to go through all the intermediate steps
before reaching the completely new configuration. Since each configuration was generated
without any consideration of previous ones the computing time each iteration took was
quite short.

As discussed previously, there are clearly some merits to using the simpler binary mixture
model in comparison to the Monte Carlo algorithm in the FK model. Two aspects make the
BM model much faster compared to the FK model. Firstly, that a wider range of different
configurations can be examined in a smaller number of iterations, and secondly, that each
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iteration in itself takes a shorter time. The BM model is, however, less realistic due to its
lack of dependence on temperature. As discussed earlier, there are some clear similarities
between the DOS for the BM model and the DOS for FK model with an infinitely large
temperature. The main difference between the two models is that the BM sacrifices a bit of
realism and flexibility in what systems can be examined in exchange for faster computing
while the FK does the opposite.

4.3 Comparison to literature and evaluation of the program

For this section the FK model was used since all of the examined literature also considers
the FK model.

In this thesis, the DOS for a multitude of different lattices with different disorder configu-
rations has been studied. This is something that has been done before, both with methods
similar to the ones employed in this thesis and more approximate solutions. A paper that
has solved the FK model in the same way as this thesis is Ref. [17], just with N = 20
instead of N = 16. The reason for why my recreation used N = 16 is simply that the
rest of the thesis used that lattice size. This paper could prove a useful benchmark. Three
of the DOS from Ref. [17] are recreated to see whether the results generated from the
program are accurate.
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Figure 11: A useful benchmark from a paper that found solutions to the FK model in
a similar way to what was done in this thesis. a) DOS from M. Thoss, M. Žonda, J.
Okamoto. Physical Review B,100,075124, 2019 [17] for a lattice with N = 20. Used with
permission from the American Physical Society. b-d) Recreations of the DOS in a) by
using the program written for this thesis.

This figure contains three different cases for different values of T and u. We note the
use of T instead of β i.e T = 0.06t gives β = 16t. Comparing Figures 11b, 11c, and
11d to the three DOS in Figure 11a one can see that all of the main characteristics were
nicely recreated. It is important to note that there is a difference in the sizes of the
lattices that were examined. Ref. [17] considered a 20 × 20 lattice while my DOS were
16×16. This is definitely something that could have affected the results. Each Hamiltonian
has N2 eigenvalues, so even a small change in lattice size adds quite a large number of
eigenvalues. Adding more eigenvalues, which is the case for larger lattices, consequently
leads to smoother DOS with a smaller amount of peaks. Furthermore, there could also be
some minor differences due to how the bins were created or other programming factors. In
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general, the recreations align very nicely with the benchmark DOS.

Finding the DOS has also been done by other studies using different approximate methods
which makes it useful to compare the more exact results from the program when using the
same starting parameters. One of these studies that solve the system in a more approximate
fashion is Ref. [18]. Here a parquet dual fermion approach is taken, which is an extension
to dynamical mean field theory. Dynamical mean field theory has been used to exactly
solve infinite-dimensional systems, but when used for finite-dimensional systems, such as
in Ref. [18] it yields a more approximate solution. Similarly to [17] a figure detailing the
obtained DOS is given in the paper, which can be seen in Fig. 12a.
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Figure 12: A spectral function from a previous paper that solved the FK model in a more
approximate way was recreated. a) A figure from K. Astleithner, A. Kauch, T. Ribic and
K. Held. Physical Review B, 101:165101, 2020. [18] showing the spectral function obtained
from using dual parquet equations to solve the FK model. Used with permission from the
American Physical Society. b) Recreation of the three spectral functions seen in a).

Here there are some important remarks to be made. It is quite obvious that the amplitude
of the DOS, especially for larger u does not match that in a). Right next to the peaks,
there is a significant dip in the DOS with roughly the same magnitude as that of the peak.
If one were to average these out, one would obtain something similar to the approximate
solution in a). Disregarding the amplitudes, the shapes of the DOS, with their steeper
edges towards the middle, as well as their behaviours at the very edges align nicely with
the those in a). Due to the use of frequencies in s) the x-axis values are different. As a
result of normalisation, this also affects the general amplitudes of the DOS, and explains
why the amplitude in b) is different from a).

Another situation where using a Monte Carlo algorithm to solve the FK model could be
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useful is when examining Mott transitions. Mott transitions are metal-insulator transitions
that occur due to changes of potentials, such as u in this thesis. The transition between
metal and insulator can be seen in the DOS, where the transition is noted by a separation
of the DOS from one peak to two [19]. A paper regarding this transition is [20], although
it considers an infinite dimensional system instead of the two-dimensional which is studied
in this thesis. This paper mainly studies the central kink that appears within the DOS for
decreasing temperatures. Although there are many other differences in the DOS, the central
kink is successfully reproduced by my code. Note that only the DOS for T = 0.25, T = 0.5,
and T = 1 are recreated.
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Figure 13: The DOS from a previous paper that studied the central kink that arises for
decreasing temperatures was recreated with my code. a) A figure from R.D. Nesselrodt, J.
Canfield, and J.K. Freericks. Journal of Superconductivity and Novel Magnetism, 33:2419,
2020. [20] showing how the central kink of the DOS changes for varying temperatures. b)
Recreations of the DOS seen in a) for three different temperatures.

Note that due to the values of the DOS outside of the relevant area, the DOS with the
largest values in Fig. 13a becomes the one with the lowest values in Fig. 13b.

Another paper that examines a very similar system is Ref. [21], which uses yet another
way of getting solutions to the FK model. Typical DOS for both metals and insulators
have already been plotted in Fig. 9.

Even though the developed Monte Carlo algorithm seems to give satisfactory results, it can
still be useful to discuss the possible downfalls and what was done to lessen the possible
errors. Due to there being no intrinsic properties of each site, this also means that mirrored
or rotated versions of a certain disorder configuration would be equivalent in all respects.
If a very energetically favourable configuration would arise, it would take multiple less



4 Results and discussion 20

energetically favourable moves to reach a mirrored version of the configuration, or really
any other energetically favourable configuration that is different from the first. This would
be highly unlikely. This problem was previously discussed when looking at the 16 × 2
lattice. It was decided that to make it possible for both of these energetically favourable
configurations to be reached during a single run by introducing moves that flip a large
number of sites at the same time.

The number of sites that remain the same over a number of iterations is also something
that could be of interest when studying the effectiveness and efficiency of the Monte Carlo
algorithm. Every 50th iteration, the disorder configuration was saved and compared to
the previously saved configuration. The number of sites that had changed between these
two points was determined and eventually plotted as a function of the total number of
iterations which can be seen in Fig. 14 for different values of β.

Iteration

N
um

be
r 

of
 d

iff
er

en
ce

s

0 1000 2000 3000 4000 50000

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

= 1t = 5t = 10t

Figure 14: The number of differences between the first and last disorder configuration
in 50 iteration intervals as a function of the total number of iterations for three different
values of β.

As seen in Fig. 14 the autocorrelation depends heavily on β. For smaller β, there is a higher
probability for less energetically favourable configurations to be accepted in accordance
with Eq. 8. In the opposite case, when β is larger, changes essentially stop happening when
an energetically favourable configuration has been reached. The Monte Carlo simulation
essentially gets stuck in a local minimum. Due to this, plots for larger β converge towards
smaller values while smaller β have larger values.

These plots suggest some improvements to the program. As seen in the plot for β = 10t
it is clear that roughly the first 1000 values are simply a warm up for the Monte Carlo
algorithm. It is therefore reasonable to skip over the first 1000 configurations and to not
use them for the DOS, ND, etc. This change should improve the results for larger β while
not really affecting runs for smaller β and was therefore added.
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The autocorrelation is especially impactful for large β. Here the energy landscape is very
steep, and the simulation tends to get stuck in local minima. Very few moves would take
the system out of this minimum, and even then it is very likely that the next move would
put the system back into the previous configuration. For small β the system never really
reaches such a point. Even if it does, there is still a large probability of the system getting
out of it.

For the purpose of creating the plots in Fig. 14 the flipping of the entire lattice was
omitted. As mentioned previously, the resulting energy is the same and simply represents
the same lattice from a different point of view. This leads to almost all 256 lattice sites
being different from the previous measurements resulting in a plot entirely consisting of
values of around 256.
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5 Conclusion and Outlook

This thesis studied several properties of disordered lattices in the tight-binding model for
two different models: the binary mixture model and the Falicov-Kimball model. The
Hamiltonians used to describe the systems were created from the tight-binding model.
Python programs were written to study both the BM model and FK model with a Monte
Carlo algorithm being developed for studying the FK model.

In general, the program succeeded very well with recreating the DOS from the examined
papers. Due to the wide variety of topics for which the DOS were recreated there were
different conventions in how variables were presented, and what aspects of the DOS were
relevant, which led to some minor differences between the original and recreated DOS.
There is also the matters of binning the DOS. The width of the used bins was never
specified in any of the papers, making it a bit more difficult to precisely recreate the
DOS.

For the BM model, a 16 × 16 lattice was considered with each site having a probability of
0.5 to be a impurity site with an added potential to it. For each iteration, the eigenvalues
of the Hamiltonian were calculated and added to the DOS. After the DOS was updated, a
completely new disorder configuration was generated, and the process was repeated for a
set number of iterations

The BM model resulted in much faster calculations but with fewer physical parameters
being taken into account. The distribution of different ND is simply a binomial distribu-
tion, following the same distribution as the number of microstates per ND. Due to the
completely random generation of each disorder configuration, there was no real reason to
study anything regarding the properties of the placements of the impurity sites. The DOS
closely resembled the DOS obtained from the FK model for small β. This is because small
values of β mean that essentially every proposed move was accepted, leading to a somewhat
similar process to that of the BM model.

The FK was studied for two different lattice sizes: one 16×2, and one 16×16. The 16×2 was
mainly used to benchmark the accuracy of the program, since it is also easily calculated by
hand. It was also used to see locally what effects lead to the most energetically favourable
situations. The 16×16 case had many more variables that were studied. Here the quantity
and relative locations of the impurity sites, the change of ND as a function of β, and the
DOS were all studied.

As previously discussed, the FK model is used to study a multitude of different phenomena
and many papers have tried finding solutions for the model. The DOS presented in some
of these papers were recreated. The accuracy of these recreations varied with the main
differences in starting parameters being differences in the number of dimensions, sizes of
the lattices, and naturally what approximate methods were used in the papers.

The hope with this thesis is that it can be used as a tool to benchmark approximate
solutions. In that way it could help develop more accurate tools for solving the FK model
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in two-dimensional systems. By providing these exact solutions improvements could be
done to approximate methods with the eventual hope of being able to exactly solve the
two-dimensional system in the same way that has been done for the infinite-dimensional
system.

For the future of this project, there are still some things that could be upgraded with most
of them focused on improving the efficiency of the Monte Carlo algorithm. The first thing
that could be done, is to study the efficiency of different types of proposed moves could be
studied such that a more efficient set of moves could be chosen to yield satisfactory results
in a smaller number of iterations. In a similar matter, the probabilities of the different
moves could also be continuously updated to yield results faster. This does however entail
a problem, namely the question of when the actual calculations should be done and when
the data should be used to update the probabilities of different moves. Finally, the thing
that takes the most time when running the program is the calculation of the eigenvalues
and the energies of each configuration that arise from these. The Hermitian nature of
the Hamiltonians is already used to reduce the calculation time but if anything could be
done to further increase the speed of which the eigenvalues and energies are found it would
significantly reduce the time the program takes to run.
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Appendix A

Table 3: Table showing the respective probabilities for different sizes of flipped areas that
were used in the Monte Carlo algorithm for the Falicov-Kimball model.

Size of flipped area Probability
1x1 0.49
2x2 0.15
2x1 0.1
1x2 0.1
4x4 0.05
4x1 0.025
1x4 0.025
6x6 0.02

10x10 0.01
16x16 0.03

The different areas as well as their respective probabilities were arbitrarily chosen. That
smaller areas were chosen to have higher probabilities but the specific probabilities were
randomly chosen.

Appendix B

1 """

2 Created on Thu Mar 2 12:22:00 2023

3

4 @author: carlp

5 """

6 import numpy as np

7 import h5py as h5py

8 import time

9 import matplotlib.pyplot as plt

10 import random as random

11 import sys

12

13 hfont = {’fontname ’:’serif ’}

14 csfont = {’fontname ’:’Comic Sans MS’}

15 plt.rcParams[’font.size’] = 15

16

17 flipnumber =0

18 movenumber =0

19

20 st = time.time()

21 N=16

22 E0=0
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23 t=1

24 Iterations= 2000000

25 NoBins =2633

26 binLowerE =-5

27 binUpperE =15

28 betaList =[]

29 wList =[]

30

31

32 prob128 =[]

33 prob123 =[]

34 prob118 =[]

35

36 flipProb =1

37 moveProb =0

38 np.set_printoptions(threshold=sys.maxsize)

39

40 def neighbors(x,y):

41 yield(x+1,y)

42 yield(x-1,y)

43 yield(x,y+1)

44 yield(x,y-1)

45 def nearestNeighbors(x,y):

46 yield(x+1,y)

47 yield(x,y+1)

48 def diagnNeigbors(x,y):

49 yield(x+1,y+1)

50 yield(x-1,y+1)

51 def BaseHamiltonian(E0 ,t,N):

52 DiagonalArray=np.zeros(N**2)

53 for i in range(len(DiagonalArray)):

54 DiagonalArray[i]=E0

55 MarkHamill=np.diag(DiagonalArray)

56 for y in range(N):

57 for x in range(N):

58 nFrom=y*N + x

59 adjacent=neighbors(x,y)

60 for neighborIndex in adjacent:

61 if neighborIndex [0]== -1:

62 nToNegative=neighborIndex [1]*N + neighborIndex [0]

63 nTo=N+nToNegative

64 elif neighborIndex [1]== -1:

65 nToNegative=neighborIndex [1]*N + neighborIndex [0]

66 nTo=N**2+ nToNegative

67 elif neighborIndex [0]==N:

68 nToNegative=neighborIndex [1]*N + neighborIndex [0]

69 nTo=nToNegative - N

70 elif neighborIndex [1]==N:

71 nToNegative=neighborIndex [1]*N + neighborIndex [0]

72 nTo=nToNegative - N**2

73 else:
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74 nTo=N*neighborIndex [1]+ neighborIndex [0]

75 MarkHamill [(nFrom ,nTo)]+=-t

76 return(MarkHamill)

77

78 def FermiFunc(Beta ,Eig ,ChemE):

79 return (1/(np.exp((Eig -ChemE)*Beta)+1))

80

81

82 def PotentialMatrix(w,N):

83 ProbabilityArray=np.random.choice(2,N**2,p=pArtay)

84 VMatrix=np.diag(ProbabilityArray)

85 VMatrix=w*VMatrix

86 DisorderCount=np.count_nonzero(ProbabilityArray)

87 return(VMatrix ,DisorderCount ,ProbabilityArray)

88

89

90

91 def NumberOfElectrons(Beta ,ChemE ,DOS):

92 return sum(DOS_E*FermiFunc(Beta , E, ChemE) for DOS_E ,E in zip(DOS ,

IntegrationArray))*width

93

94 def Bins(EigenValues):

95 hist , bin_edges = np.histogram(EigenValues , NoBins ,(binLowerE ,

binUpperE))

96 return ((hist ,bin_edges))

97

98 def Energy(ChemE , Beta ,EigenValues ,Disorders ,ChemU):

99 return sum(FermiFunc(Beta ,EigenValues[i],ChemE)*( EigenValues[i]-ChemE

) for i in range(len(EigenValues))) - ChemU*Disorders

100

101 def move(w,Array):

102 NewDisorderArray=Array.copy()

103 nonzero=np.nonzero(NewDisorderArray)[0]

104 listOfZeroNeighbours =[]

105 while len(listOfZeroNeighbours)==0:

106 d=random.choice(nonzero)

107 listOfZeroNeighbours =[]

108 moveNeighbors =[item for item in nearestNeighborList if d in item]

109 for i in range(len(moveNeighbors)):

110 if NewDisorderArray[moveNeighbors[i][0]]!= NewDisorderArray[

moveNeighbors[i][1]]:

111 listOfZeroNeighbours.append(moveNeighbors[i][0])

112 listOfZeroNeighbours.append(moveNeighbors[i][1])

113 listOfZeroNeighbours=list(filter(lambda a: a != d,

listOfZeroNeighbours))

114 moveTo=random.choice(listOfZeroNeighbours)

115 NewDisorderArray[moveTo ]=1

116 NewDisorderArray[d]=0

117 VMatrix=np.diag(NewDisorderArray)

118 VMatrix=w*VMatrix

119 DisorderCount=np.count_nonzero(NewDisorderArray)
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120 return(VMatrix ,DisorderCount ,NewDisorderArray)

121

122 flipProbabilities =[0.49 ,0.15 ,0.1 ,0.1 ,0.05 ,0.025 ,0.025 ,0.02 ,0.01 ,0.03]

123 flipMoves =[(1 ,1) ,(2,2) ,(2,1) ,(1,2) ,(4,4) ,(4,1) ,(1,4) ,(6,6) ,(10,10)

,(16,16)]

124 def flipBlock(w,Array ,move):

125 NewDisorderArray=Array.copy()

126 row=random.randint(0, N-1)

127 column=random.randint(0,N-1)

128 for i in range(column ,column+move [0]):

129 for j in range(row ,row+move [1]):

130 if i>N-1:

131 i = i - N

132 if j>N-1:

133 j=j-N

134 realIndex=j*N+i

135 if NewDisorderArray[realIndex ]==0:

136 NewDisorderArray[realIndex ]=1

137 else:

138 NewDisorderArray[realIndex ]=0

139 VMatrix=np.diag(NewDisorderArray)

140 VMatrix=w*VMatrix

141 DisorderCount=np.count_nonzero(NewDisorderArray)

142 return(VMatrix ,DisorderCount ,NewDisorderArray)

143

144

145 def ListOfNeighbours(N):

146 verHorNeighborList =[]

147 diagNeighborList =[]

148 #First part for Horizontal and Vertical Neighbours

149 for y in range(N):

150 for x in range(N):

151 nFrom=y*N + x

152 adjacent=nearestNeighbors(x,y)

153 for neighborIndex in adjacent:

154 if neighborIndex [0]== -1:

155 nToNegative=neighborIndex [1]*N + neighborIndex [0]

156 nTo=N+nToNegative

157 elif neighborIndex [1]== -1:

158 nToNegative=neighborIndex [1]*N + neighborIndex [0]

159 nTo=N**2+ nToNegative

160 elif neighborIndex [0]==N:

161 nToNegative=neighborIndex [1]*N + neighborIndex [0]

162 nTo=nToNegative - N

163 elif neighborIndex [1]==N:

164 nToNegative=neighborIndex [1]*N + neighborIndex [0]

165 nTo=nToNegative - N**2

166 else:

167 nTo=N*neighborIndex [1]+ neighborIndex [0]

168 verHorNeighborList.append ((nFrom ,nTo))

169 #Diagonal elements
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170 diagonal=diagnNeigbors(x, y)

171 for neighborIndex in diagonal:

172 if neighborIndex [1]==N:

173 if neighborIndex [0]==N:

174 nTo=0

175 elif neighborIndex [0]== -1:

176 nTo=N-1

177 else:

178 nTo=N*neighborIndex [1]+ neighborIndex [0]-N**2

179 else:

180 if neighborIndex [0]==N:

181 nTo=N*neighborIndex [1]+ neighborIndex [0]-N

182 elif neighborIndex [0]== -1:

183 nTo=N*neighborIndex [1]+ neighborIndex [0]+N

184 else:

185 nTo=N*neighborIndex [1]+ neighborIndex [0]

186 diagNeighborList.append ((nFrom ,nTo))

187 return(verHorNeighborList , diagNeighborList)

188

189

190 nearestNeighborList , diagNeighborList=ListOfNeighbours(N)

191 IntegrationArray = np.linspace(binLowerE ,binUpperE ,NoBins)

192 pArtay=np.array ([0.5 ,0.5])

193 H0=BaseHamiltonian(E0 , t, N)

194 noNearestNeighborList =[]

195 noDiagNeighborList =[]

196 for w,Beta in zip(wList ,betaList):

197 u=E0+w

198 ChemU=u/2

199 ChemE=u/2

200 HistAmplitude=np.zeros(NoBins)

201 excitation ,other=0,0

202 DisorderList =[]

203

204 V,Disorders ,DisorderArray=PotentialMatrix(w, N)

205 Hamiltonian=V+H0

206 Eig=np.linalg.eigh(Hamiltonian)

207 EigVal=Eig [0]

208 CurrentE=Energy(ChemE ,Beta ,EigVal ,Disorders , ChemU)

209

210 noChangesList =[]

211

212 for CastleItter in range(Iterations):

213 P=random.uniform (0,1)

214 if P>flipProb: #Move

215 NewV ,NewDisorders ,NewDisorderArray = move(w,DisorderArray)

216 movenumber +=1

217 else: #Flipping of block

218 typeOfFlip=np.random.choice(len(flipProbabilities),p=

flipProbabilities)
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219 NewV ,NewDisorders ,NewDisorderArray = flipBlock(w,

DisorderArray ,flipMoves[typeOfFlip ])

220 flipnumber +=1

221 NewHamiltonian=NewV+H0

222 NewEig=np.linalg.eigh(NewHamiltonian)

223 NewEigVal=NewEig [0]

224 NewE=Energy(ChemE ,Beta ,NewEigVal ,NewDisorders ,ChemU)

225 ExcitedOrNot=random.uniform (0,1)

226

227

228 if NewE <= CurrentE or ExcitedOrNot <=np.exp(-Beta*(NewE -CurrentE)):

229 CurrentE=NewE

230 EigVal=NewEigVal

231 Disorders=NewDisorders

232 DisorderArray=NewDisorderArray.copy()

233 excitation +=1

234 else:

235 other +=1

236

237

238 #Calculate the number of diagonal disorder neighbors

239 #and vertical/horizontal disorder neighbors

240 noNearest =0

241 noDiagonal =0

242 for i in range(len(nearestNeighborList)):

243 if DisorderArray[nearestNeighborList[i][0]]==1 and

DisorderArray[nearestNeighborList[i][1]]==1:

244 noNearest +=1

245 for i in range(len(diagNeighborList)):

246 if DisorderArray[diagNeighborList[i][0]]==1 and DisorderArray

[diagNeighborList[i][1]]==1:

247 noDiagonal +=1

248 noNearestNeighborList.append(noNearest)

249 noDiagNeighborList.append(noDiagonal)

250

251

252

253 if CastleItter % 50 == 0:

254 A=DisorderArray.copy()

255 if CastleItter % 50 == 49:

256 B=DisorderArray.copy()

257 noChanges=len(DisorderArray)-np.count_nonzero(A==B)

258 noChangesList.append(noChanges)

259 noChangesArray=np.array(noChangesList)

260

261

262 #Saves # of disorders and adds to DOS histogram

263 if CastleItter >=1000:

264 if CastleItter % 10 == 0:

265 DisorderList.append(Disorders)

266 HistCurrent = Bins(EigVal)[0]
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267 HistAmplitude=np.add(HistAmplitude ,HistCurrent)

268

269 #Calculate the number of diagonal disorder neighbors

270 #and vertical/horizontal disorder neighbors

271 noNearest =0

272 noDiagonal =0

273 for i in range(len(nearestNeighborList)):

274 if DisorderArray[nearestNeighborList[i][0]]==1 and

DisorderArray[nearestNeighborList[i][1]]==1:

275 noNearest +=1

276 for i in range(len(diagNeighborList)):

277 if DisorderArray[diagNeighborList[i][0]]==1 and

DisorderArray[diagNeighborList[i][1]]==1:

278 noDiagonal +=1

279 noNearestNeighborList.append(noNearest)

280 noDiagNeighborList.append(noDiagonal)

281

282

283 #Take the middle between every set of two bin edges

284 xListForPlot =[]

285 for i in range(NoBins):

286 xListForPlot.append ((Bins(EigVal)[1][i]+Bins(EigVal)[1][i+1]) /2)

287

288 width =((( Bins(EigVal)[1][1] - Bins(EigVal)[1][0])))

289 #Normalization see 06/02 in notebook

290 HistAmplitudeNormalized = HistAmplitude /(N**2*(( Iterations -1001) /10)*

width)

291

292 #Check if normalization is 1

293 Sum=sum(HistAmplitudeNormalized[i]* width for i in range(len(

HistAmplitudeNormalized)))

294 print(’Integral over everything ’,Sum)

295

296 differentDisorders =[]

297 for i in range(N**2+2):

298 differentDisorders.append(i)

299

300 #Histograms of number of disorders

301 disAmplitude=np.histogram(DisorderList ,bins=differentDisorders)[0]

302 disAmplitudeNormalized=disAmplitude /(( Iterations -1001) /10)

303 #Histogram of number of neighbors

304 nearestAmplitude=np.histogram(noNearestNeighborList ,bins=

differentDisorders)[0]

305 diagonalAmplitude=np.histogram(noDiagNeighborList ,bins=

differentDisorders)[0]

306

307

308 del differentDisorders [-1]

309

310

311
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312

313 #Beta probability scatterplot

314 prob128.append(disAmplitudeNormalized [127])

315 prob123.append(disAmplitudeNormalized [122])

316 prob118.append(disAmplitudeNormalized [117])

317

318

319 #ChangeOverTime

320 changeOverTimeX=np.arange(0,Iterations ,50)

321 figDetails=plt.figure(figsize =(8,6),dpi =600)

322 ax=plt.gca()

323 plt.gcf().subplots_adjust(bottom =0.12 , left =0.11)

324 ax.plot(changeOverTimeX ,noChangesArray ,color=’teal’)

325 plt.xlabel(’Iteration [eV]’ ,**hfont)

326 plt.ylabel("DOS" ,**hfont)

327 # plt.bar(xListForPlot ,HistAmplitudeNormalized ,width=width ,color=’

teal ’)#,edgecolor=’black ’,facecolor=’blue ’)

328 plt.savefig(f’ChangeOverTimeu{u}beta{Beta}.pdf’,format="pdf",dpi =600)

329 plt.text (0.05 ,0.9 ,rf’$\beta={Beta}t$’,fontsize =20 ,**hfont ,transform=
ax.transAxes)

330 plt.show()

331

332 hf=h5py.File(f’ChangeOverTime{w}{Beta}.h5’, ’w’)

333 RunningVariables =[N,E0 ,t,Iterations ,Beta ,u,width]

334 hf.create_dataset(’noChangesArray ’,data=noChangesArray)

335 hf.create_dataset(’changeOverTimeX ’,data=changeOverTimeX)

336 hf.create_dataset(’RunningVariables ’,data=np.array(RunningVariables))

337 hf.close()

338

339

340 #DOS plotting.

341 figDetails=plt.figure(figsize =(8,6),dpi =600)

342 ax=plt.gca()

343 plt.gcf().subplots_adjust(bottom =0.12 , left =0.16)

344 ax.bar(xListForPlot ,HistAmplitudeNormalized ,width=width*1,color=’teal

’)

345 plt.xlabel(’E/t’ ,**hfont)

346 plt.ylabel("DOS" ,**hfont)

347 # plt.bar(xListForPlot ,HistAmplitudeNormalized ,width=width ,color=’

teal ’)#,edgecolor=’black ’,facecolor=’blue ’)

348 plt.text (0.05 ,0.9 ,rf’$\beta={Beta}t$’,fontsize =20 ,**hfont ,transform=
ax.transAxes)

349 plt.text (0.05 ,0.8 ,rf’$u={u}t$’,fontsize =20 ,**hfont ,transform=ax.
transAxes)

350 plt.savefig(f’DOSu{u}beta{Beta}.pdf’,format="pdf",dpi =600)

351 plt.show()

352

353 hf=h5py.File(f’DOS{w}{Beta}.h5’, ’w’)

354 RunningVariables =[N,E0 ,t,Iterations ,Beta ,u,width]

355 hf.create_dataset(’HistAmplitude ’,data=HistAmplitude)
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356 hf.create_dataset(’HistAmplitudeNormalized ’,data=

HistAmplitudeNormalized)

357 hf.create_dataset(’xListForPlot ’,data=xListForPlot)

358 hf.create_dataset(’RunningVariables ’,data=np.array(RunningVariables))

359 hf.close()

360

361

362

363

364

365 #Disorder plotting.

366 figDetails=plt.figure(figsize =(8,6),dpi =600)

367 ax=plt.gca()

368 plt.gcf().subplots_adjust(bottom =0.12 , left =0.16)

369 ax.bar(differentDisorders ,disAmplitudeNormalized ,width =0.8, color=’

teal’)

370 ax.set_xlim (75 ,181)

371 ax.set_yscale(’log’)

372 plt.xlabel(r"$N_{D}$" ,**hfont)
373 plt.ylabel("Probability" ,**hfont)

374 plt.yticks ([0.1 ,0.5 ,1 ,0.05 ,0.01] , [r’$10^{-1}$’, r’$5 x 10^{ -1}$’, r’

$1$’, r’$5 x 10^{ -2}$’, r’$10^{-2}$’])
375 plt.text (0.05 ,0.9 ,rf’$\beta={Beta}t$’,fontsize =20 ,**hfont ,transform=

ax.transAxes)

376 plt.text (0.05 ,0.8 ,rf’$u={u}t$’,fontsize =20 ,**hfont ,transform=ax.
transAxes)

377 plt.savefig(f’Disu{u}beta{Beta}.pdf’,format="pdf",dpi =600)

378 plt.show()

379

380 hf=h5py.File(f’Dis{w}{Beta}.h5’, ’w’)

381 RunningVariables =[N,E0 ,t,Iterations ,Beta ,u,width]

382 hf.create_dataset(’differentDisorders ’,data=differentDisorders)

383 hf.create_dataset(’disAmplitudeNormalized ’,data=

disAmplitudeNormalized)

384 hf.create_dataset(’RunningVariables ’,data=np.array(RunningVariables))

385 hf.close()

386

387

388 #Plotting number of diagonal neighbors and closest neighbors

389 nearestAmplitudeNormalized=nearestAmplitude /(( Iterations -1001))

390 diagonalAmplitudeNormalized=diagonalAmplitude /(( Iterations -1001))

391 figDetails=plt.figure(figsize =(8,6),dpi =900)

392 ax=plt.gca()

393 plt.gcf().subplots_adjust(bottom =0.12 , left =0.11)

394 ax.bar(differentDisorders ,nearestAmplitudeNormalized ,width =0.8, color=

’orange ’, alpha=1,label=r’$N_{AD}$’)
395 ax.bar(differentDisorders ,diagonalAmplitudeNormalized ,width =0.8, color

=’teal’,alpha =0.7, label=r’$N_{DD}$’)
396 plt.xlabel("Number of type of neighbour" ,**hfont)

397 plt.ylabel("Probability" ,**hfont)



References

398 plt.text (0.05 ,0.9 ,rf’$\beta={Beta}t$’,fontsize =20 ,**hfont ,transform=
ax.transAxes)

399 plt.text (0.05 ,0.8 ,rf’$u={u}t$’,fontsize =20 ,**hfont ,transform=ax.
transAxes)

400 plt.legend ()

401 plt.savefig(f’Neighbour{u}beta{Beta}.pdf’,format="pdf",dpi =900)

402 plt.show()

403

404 hf=h5py.File(f’Neighbor{w}{Beta}.h5’, ’w’)

405 RunningVariables =[N,E0 ,t,Iterations ,Beta ,u,width]

406 hf.create_dataset(’differentDisorders ’,data=differentDisorders)

407 hf.create_dataset(’nearestAmplitude ’,data=nearestAmplitudeNormalized)

408 hf.create_dataset(’diagonalAmplitude ’,data=

diagonalAmplitudeNormalized)

409 hf.create_dataset(’RunningVariables ’,data=np.array(RunningVariables))

410 hf.close()

411

412

413 #ScatterPlot prob vs beta

414 figDetails=plt.figure(figsize =(8,6),dpi =600)

415 ax=plt.gca()

416 plt.gcf().subplots_adjust(bottom =0.12 , left =0.16)

417 ax.plot(betaList ,prob128 ,’o’,color=’teal’)

418 ax.plot(betaList ,prob123 ,’o’,color=’darkslateblue ’)

419 ax.plot(betaList ,prob118 ,’o’,color=’orange ’)

420 ax.set_xlim (0 ,0.7)

421 plt.xlabel(r’$\beta$’, ** hfont)

422 plt.ylabel(’Probability ’, ** hfont)

423 # plt.bar(xListForPlot ,HistAmplitudeNormalized ,width=width ,color=’teal ’)

#,edgecolor=’black ’,facecolor=’blue ’)

424 plt.savefig(f’ScatterPlotBetaProb{u}beta{Beta}.pdf’,format="pdf",dpi =600)

425 plt.show()

426

427

428 hf=h5py.File(f’ChangeOverTime{w}{Beta}.h5’, ’w’)

429 RunningVariables =[N,E0 ,t,Iterations ,Beta ,u,width]

430 hf.create_dataset(’betaList ’,data=betaList)

431 hf.create_dataset(’prob118 ’,data=prob118)

432 hf.create_dataset(’prob123 ’,data=prob123)

433 hf.create_dataset(’prob128 ’,data=prob128)

434 hf.create_dataset(’RunningVariables ’,data=np.array(RunningVariables))

435 hf.close()

436

437 et = time.time()

438 print(f’ Time {et -st}’)


