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Abstract

In a modern context, organizations increasingly rely on data analysis and the importance of

data quality have accordingly become even more crucial. In this context, missing values pose

a significant challenge compromising the utility of the data. In an ideal scenario data should

be collected in a way so that the missing values are avoided, but practical and cost constraints

often make this unfeasible. Consequently, various approaches have been developed to address the

issue of missing values. Rather than discarding incomplete observations and compromising the

sample size, imputing the missing values has the potential to improve predictions and imputation

outcomes. Furthermore, it is a relatively straightforward process in terms of cost and effort.

In addition to this, Generative Adversarial Networks (GANs) have lately gained attention

as a recent breakthrough in machine learning, offering novel possibilities for data handling.

This study explores two aspects in which GANs can potentially can improve data imputation.

Firstly, the performance of an imputation-focused GAN model, GAIN, is compared against other

state-of-the-art methods through an extensive evaluation. Secondly, the impact of incorporating

synthesized data, generated by a GAN framework named CTGAN, into the training data of

imputation models is evaluated.

Our findings reveal that GAIN was outperformed by other data imputation methods. Despite

this, its potential is not questioned, as further optimization of hyperparameters and network

structure specific to the data set is believed to enhance its performance. The result of this

study however emphasizes the clear challenges of the time-consuming training and optimization

processes of GANs in general.

Conversely, the additional data generated by CTGAN had a significant positive impact on

the result of kNN imputation. Not only does the additional data strenghtens kNN imputation’s

position as the most prominent method in the study in terms of predictive performance, but it

also serves as the most significant contribution from this report as the methodology has not been

examined in previous research. Further, the practical feasibility of the method combined with

its strong results makes it suitable for practical applications. To sum up, the findings underscore

the potential for further enhancements in data imputation using GANs.
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Sammanfattning

I dagens samhälle är organisationer i allt större utsträckning beroende av dataanalys i sin beslut-

sprocess, vilket resulterat i att datakvalitet blivit ett omr̊ade som f̊att allmer uppmärksamhet.

Inom detta omr̊ade utgör saknade värden en betydande utmaning som p̊averkar datans använd-

barhet negativt. Idealt bör data samlas in p̊a ett sätt s̊a att saknade värden undviks, men

detta är ofta ogenomförbart p̊a grund av praktiska och kostnadsmässiga begränsningar. Som ett

resultat har olika metoder utvecklats för att hantera problemet med saknade värden. Istället

för att radera ofullständiga observationer och därmed kompromissa med urvalsstorleken är det

möjligt att fylla i de saknade värdena, och p̊a s̊a sätt förbättra datans användbarhet och predik-

tionsförm̊aga. Att tillämpa denna metod är dessutom en relativt enkel process sett till kostnad

och arbetsinsats.

Utöver detta har även Generativa motst̊andarnätverk (GANs) p̊a senare tid f̊att ökad upp-

märksamhet som ett genombrott inom maskininlärning och erbjuder nya möjligheter inom data-

hantering. Denna studie undersöker tv̊a aspekter där GANs har potential att förbättra ifyll-

naden av saknade värden. För det första utförs en omfattande utvärdering där prestandan hos

en GAN-modell som fokuserar p̊a att fylla i saknade värden, GAIN, jämförs med andra etabler-

ade metoder. För det andra utvärderas effekten av att addera syntetisk data genererad av en

GAN-modell vid namn CTGAN i träningsdatan för metoderna för ifyllnad av saknade värden.

Resultatet visar att andra metoder för ifyllnad av saknade värden presterade bättre än GAIN.

GAINs potential ifr̊agasätts dock inte, eftersom ytterligare optimering av hyperparametrar samt

utveckling av en nätverksstruktur som är specifik för datamängden förväntas förbättra dess pre-

standa. Det är dock viktigt att notera att denna studie visar p̊a utmaningarna i de tidskrävande

tränings- och optimeringsprocesserna.

Däremot hade den extra träningsdatan som genererats av CTGAN en signifikant positiv

effekt p̊a resultatet för metoden ’kNN imputation’. Inte bara var denna kombination den mest

framst̊aende metoden i studien när det gällde prediktionsförm̊aga, utan den utgör ocks̊a det

mest betydande bidraget fr̊an denna rapport d̊a metodiken inte undersökts i tidigare forskning.

Dessutom medför metodens praktiska genomförbarhet i kombination med dess starka resultat

att den är fördelaktig för praktiska tillämpningar. Sammanfattningsvis understryker resultatet

potentialen för ytterligare förbättringar för ifyllnad av saknade värden med hjälp av GANs.

Nyckelord

Saknade Värden, Data Imputation, Generativa motst̊andarnätverk, GAIN, CTGAN
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1 Introduction

1.1 Problem Statement

1.1.1 The Problem of Missing Values in Data Analysis

As the importance of big data increases for organizations, the complexity of data pipelines

has correspondingly grown. High-quality data is crucial for organizations to derive meaningful

insights from their data analysis, but ensuring such data standards could be difficult as the

data amounts increase. As a result, the challenge of monitoring and improving data quality has

become one of the key focus areas in modern database management systems and other data

collection applications today, where the goal is to automatically detect and resolve potential

data quality errors before the data is further analyzed [53] [28].

By ensuring high data standards within data pipelines, organizations can guarantee that

the insights derived from the data are reliable and accurate, thus enabling informed decision-

making. Poor data quality can on the other hand imply increased costs for organizations due

to incorrect analyses, which could result in missed opportunities for growth and development or

misguided decisions [73] [28]. Despite the negative consequences of poor data quality and the

recent improvements in data monitoring and improvement tools, not all data quality issues are

possible to solve automatically [5]. One of the most common data quality issues in data pipelines

today, an issue which also can be difficult to properly solve automatically, is the occurrence of

missing values [24] [34].

Missing values in a data set can be defined as values which are expected and that would

have added additional information if they were available, yet that are not [61]. The occurrence

of missing values in a data set can happen due to a variety of reasons, such as incomplete data

transfers, participant non-response in survey data, faulty equipment or any other factors which

causes unrecorded data. Regardless of the explanation, missing values present several challenges

when it comes to extracting knowledge from a data set. This issue makes analysis more difficult

as it limits the use of many machine learning models and estimators, and it can also result in

incorrect conclusions [52] [18] [39].

1.1.2 Dealing with the Issue of Missing Values for Tabular Data Sets

Fortunately, there are several ways to handle the issue of missing values. The strategies must

generally be adapted to the type of data where the missing values are encountered, and this

thesis will thus only refer to missing values in tabular data sets, meaning data structured in rows

and columns which is presented in a table. That being said, the ideal way of handling missing

data for all data types is by collecting new data and ensuring that no data is missing. However,

this is practically impossible in most cases [67].

Another possible way of dealing with missing data in tabular data sets is by applying list-

wise deletion. This method implies deletion of the data points for which at least one feature

value is missing, and is the most common way to deal with missing values in tabular data sets

in practise today [30]. While the approach ensures efficient data pipelines, it typically implies a
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loss of information and it may result in ,i.e., inadequate amount of data in order to pursue data

analysis. As a consequence, it could hinder the possibility to reach conclusions about the data

set [57].

Data imputation, i.e., filling in plausible values for the missing data, is an alternative way of

handling missing values which does not reduce the amount of available data and thus have gained

interest in recent research [28]. Data imputation done in an appropriate way can both reduce

bias as well as improve prediction accuracy [51] [9]. There exists a large number of different

imputation methods which differs in efficiency, implementation complexity and accuracy, and

getting an overview of which method that is most preferable can thus be somewhat difficult [61].

As generative artificial intelligence and deep learning has increased in popularity within

research in general, its ability to perform missing data imputation has also gained traction [74].

More specifically, the ability of Generative Adversarial Networks, GANs, to improve imputation

performance has become an area of focus - both in terms of 1) Using GANs for improving the

actual imputation [74], but also of 2) Using GANs to increase the training data amount in order

to improve the performance of imputation methods [32].

Despite the recent increase in interest, gaining an overview of how GANs can be used in both

these ways simultaneously, as well as how the GAN-based imputation method compare to other

imputation methods is difficult. This is both due to a lack of research on some aspects of the

topic, but also due to a variation of the study setups in the research that has been conducted

[74], [69], [28], [32], [47]. This study is aiming to help close this gap in research.

1.2 Previous Research and Related Work

1.2.1 Imputation Methods

As previously mentioned, a wide variety of missing data imputation techniques for tabular data

have been developed throughout the years. On a high level, the methods can be split into two

categories, discriminative methods and generative methods [69].

Discriminative methods Discriminative imputation methods aim at using information ex-

tracted from the available data to predict the missing values. Mean and Median Imputation

for continuous variables together with Mode Imputation for categorical variables are generally

considered the most simple discriminative methods for imputation. The methods work exactly

as their names describes, and replace the missing values of a particular column with the mean,

median or mode of the non-existing values in this column. While these methods are easy to

implement, they generally underestimate the variance in the data and does not take into account

the correlation between features [50].

Nevertheless, there exists a range of other more advanced discriminative imputation meth-

ods, which have proved to perform better than Mean, Median, and Mode Imputation [66]. Some

examples includes MICE [65]; an iterative imputation method based on a series of regression

models, MissForest [59]; a non-parametric iterative random forest-based model and kNN impu-

tation [63]; a method using the values an observation’s neighbors to impute the observation’s

7



missing values.

Generative methods Generative imputation methods aim to simulate the missing values

by utilizing the joint distribution of observed and unobserved values. Examples of generative

methods include algorithms based on Expectation-Maximization [19], DAEs (Denoising Auto-

Encoders) [20] and GANs (Generative Adversariral Networks). While all methods have proved to

be successful, methods based on GANs have shown superior performance [79] [74], which includes

methods such as GAIN (Generative Adversarial Imputation Nets) [74], WGAIN (Wasserstein

GAIN) [17] and a number of other extensions based on the original GAIN [47].

The imputation method GAIN was initially presented in the paper ”GAIN: Missing Data

Imputation using Generative Adversarial Nets” by Yoon et. al in 2018 [74]. The method was then

shown to outperform other discrimative and generative state-of-the-art imputation methods,

such as MICE, MissForest, Matrix Completion, Denoising Auto-Encoders, and Expectation

Maximization, both with regards to imputation accuracy as well as to prediction performance

[74]. Another study, Dong et al. [12] instead showed that GAIN showed similar performance as

MissForest when the simulated miss rate was up to 20%, yet was the best performing model for

miss rates above 50%.

Despite the result of the above-mentioned studies, other papers such as ”A benchmark for

data imputation methods” by Jäger et al. [28], have on the other hand shown that GAIN is

not the ideal imputation method when analyzing a large number of heterogeneous data sets in a

study splitting the data into test and training sets, with evaluation in terms of both imputation

performance and prediction tasks. Jäger et al. instead conclude that GAIN is outperformed

by all other models in the study, among other methods, kNN imputation and Random Forest-

based imputation in terms of both imputation and predictive performance, and that the Random

Forest-based method showes the overall strongest performance. Part of this result is additionally

confirmed by Lalande et al., whom conclude in the study ”Numerical data imputation: Choose

kNN over deep learning” [36] that kNN imputation outperforms GAIN. To sum up, the opinions

regarding the superiorness of GAIN compared to other imputation methods differ.

1.2.2 Other Approaches to Improve Performance of Imputation Methods

A completely different approach of using GANs to improve data imputation, compared to the

approach used in GAIN, was presented in the paper ”Mixed Data Imputation Using Generative

Adversarial Networks” by Khan et al. in 2022 [32]. The authors investigated if the Generative

Adversarial Network-based method CTGAN, which is a model aiming to synthesize tabular data,

could improve standard imputation methods such as MICE, MissForest, and DAEs. The authors

proved that increasing the amount of training data using CTGAN improved the imputation

performance in terms of imputation accuracy.

8



Figure 1: Illustration of how generative models that can improve data imputation, noting that
other approaches may also exist.

1.2.3 GANs to Improve Imputation Methods

To conclude, there are different ways in which GANs is suggested to potentially be able to

improve missing data imputation, either as 1) A foundation in the imputation method, e.g. as

suggested by Yoon et al. in GAIN [74], or as 2) A way of increasing training data amount in

order to improve other imputation methods, e.g. by using CTGAN as suggested Khan et al.

[32]. An overview of these different approaches is presented in Figure 1.

Despite the existence of the different methods, there is a lack of an extensive overview of

how GANs can help improve data imputation in the current research. Firstly, as presented in

Section 1.2.1, the views in literature regarding if GAIN outperforms other imputation methods

or not, differ. Secondly, it is not certain whether the two different approaches of using GANs

for data imputation presented in Figure 1, can improve imputation performance if being used

together, since this question has not been researched in literature. Lastly, the approach of

adding additional training data generated by CTGAN deserves a more rigorous examination to

establish a more robust comprehension of its potential.

1.3 Thesis Research Questions and Scientific Contributions

1.3.1 Aim of Thesis and Research Questions

The overall aim of the thesis is to explore if, and how, Generative Adversarial Network can

improve missing data imputation for tabular data, focusing on two different approaches as well

as the relationship between them. These approaches include 1) Using GANs as a foundation

9



in an imputation method, as in GAIN, and 2) Using GANs for improving the performance

of any imputation method, through increasing the amount of training data using CTGAN for

synthesizing tabular data. The aim of the thesis will be fulfilled by answering two research

questions, each with more specific sub questions.

Research question 1 How does GAIN compare to standard imputation methods when being

evaluated in an extensive way?

• Sub question 1a) How does GAIN perform compared to standard imputation methods

(Median/Mode Imputation, MICE, kNN imputation, MissForest) in a study in which:

1. The missing values are introduced in a way that resemble real life situations for both

categorical and numerical variables,

2. A training and test data set is used to train and evaluate the models,

3. The hyperparameters of GAIN are tuned for each data set using cross-validation,

4. A variety of data sets with different ratios of numerical and categorical variables is

imputed and evaluated,

5. The models are evaluated in terms of both imputation performance, execution time

and predictive performance,

6. The presented results includes standard deviation (whenever feasible for practical

applications1), and

7. The models are compared to list-wise deletion, the most common way to handle

missing data in practise today

• Sub question 1b) How does the original GAIN perform compared to a version of GAIN

more adapted to categorical data, and how does this new version of GAIN in turn perform

compared to other imputation methods when being evaluated in an extensive way?

Research question 2 How can the approach of increasing training data using CTGAN im-

prove imputation methods?

• Sub question 2a) Which imputation method (Median/Mode Imputation, MICE, kNN im-

putation, MissForest, GAIN) exhibit the greatest improvement in imputation accuracy

and predictive performance when the amount of training data has been increased using

CTGAN?

• Sub question 2b): How does the specific amount for which the training data is increased

with CTGAN impact the imputation accuracy and predictive performance?

1This will be the case for all methods with variability except MICE, due to considerably longer execution
times than other methods.
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1.3.2 Scientific Contributions

The scientific contributions of the thesis can be structured based on the two research questions.

Research question 1 This study aims to provide an extensive evaluation of how GAIN

compare to other standard imputation methods. As mentioned, there have been other studies

aiming to compare GAIN to other imputation methods but there are clear differences in the

setups between the studies. A selection of these studies is presented in Table 1. The selection

of these four studies is based on their coverage of a wide range of imputation methods, their

representation of diverse study setups found in current literature, and their specific focus on

tabular data, which aligns with the main objective of this study.

Study setup component Color coding explanation This thesis Yoon et al. [74] Dong et al. [12] Jäger et al. [28] Lalande et al. [36]

Models compared

Listwise deletion,
Median/Mode,
kNN imputation,
MICE,
MissForest,
GAIN

MICE,
MissForest,
Matrix
Completion,
DAE, EM,
GAIN

MICE,
MissForest,
GAIN

Median/Mode,
kNN imputation,
Random Forest,
Discrimative
Deep Learning,
VAE, GAIN

kNN imputation,
misGAN,
GAIN

Conclusion about GAIN
compared to other methods

GAIN is
performing
better

GAIN is
performing
better

GAIN is
performing
worse

GAIN is
performing
worse

Data sets used
Even split of
categorical /
numerical features

Majority of
numerical features

Use of training and
testing data

Yes No

Downstream prediction
after imputation

Yes No

Hyperparameter
tuning based on
used data sets

Yes No

Way of introducing
missing values for
categorical variables

After one
hot encoding

Before one hot
encoding

Cross-entropy loss
function for categorical
variables in GAIN

Yes No

Table 1: Overview of four studies comparing GAIN with other imputation methods

As seen in Table 1 the studies conducted by Jäger et al. [28] and Lalande et al. [36] claims

GAIN is outperformed by other standard imputation methods. These studies distinguishes

themselves on several factors compared to the studies conducted by Yoon et al. [74] and Dong

et al. [12], which claim that GAIN is superior. In the first mentioned two studies, the authors

does not fully optimize the GAIN model, either by not tuning the hyperparameters for each data

set or by not introducing a cross-entropy loss function. Further, they evaluate GAIN in a more

realistic real life setting by introducing missing values before one hot encoding the categorical

variables in the data sets, and in addition they are also either using a wider range of different

types of data sets or using train and testing data for their model evaluations. All these are

factors which could be the explanatory reasons as to why GAIN performs worse in the two

studies.

To conclude, the scientific contribution of research question 1a) is A) Providing an extensive

evaluation of GAIN compared to other imputation methods as well as B) Conducting a study

with realistic conditions. A) will be fulfilled by conducting a study in which train and testing data

is used, the hyperparameters for each data set are tuned and where cross-entropy is included

in the loss function. B) will be fulfilled by using data sets with a variety of numerical and
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categorical features, and by introducing missing values in a realistic way before one hot encoding

the categorical variables. Conducting the study would fill a gap in literature since no previous

study comparing GAIN with other imputation methods study has fulfilled both A) and B).

Lastly, as presented in Table 1, the studies suggesting GAIN is performing worse are differing

on aspects related to the handling or inclusion of categorical features, compared to the research

papers concluding the opposite. Thus, by answering research question 1b) this study is also

suggesting one version of GAIN which is more adapted to categorical data. This extension will

include an additional activation function, a tuning parameter for the categorical loss as well as

an updated rounding function. Comparing this version with the original GAIN model is another

scientific contribution of this study.

Research question 2 The impact of using additional synthetic training data generated by

CTGAN for data imputation accuracy has only been investigated by Khan et al. in 2022 [32].

The study has several research gaps that require further investigation and attention, gaps which

this study is aiming to fill. Firstly, the research does only evaluate performance in terms of RMSE

(Root Mean Square Error) and not by prediction accuracy. Secondly, neither kNN imputation

or GAIN are part of the imputation method alternatives in the study, and the effect of increased

training data for the generative network based imputation method GAIN has therefore never

been evaluated. Using GANs with limited data or small data sets typically leading the training

to diverge [31]. Thus investigating the influence of augmented training data on GAIN presents

an intriguing avenue for further exploration. Lastly, the amount of additional data is limited

to 100% additional data, leaving the impact of incorporating higher amounts of additional data

unexplored. The first two aspects will be answered by research question 2a) and the last aspect

will be answered by research question 2b).

1.4 Structure of Thesis

The remaining part of the thesis is structured as follows. Section 2 provides an overview of the

theoretical background required to understand the research questions and the proposed method-

ology. On a high level, this includes an overview of mechanisms of missing values in tabular

data sets, an introduction to GANs in general, a deep dive of the imputation methods used in

this thesis as well as an overview of the data synthetization method CTGAN. The methodology

of the study including the data and evaluation criteria used is presented in Section 3. Section 4

presents the results of the study, and in Section 5, those results are discussed and analyzed.

Lastly, in Section 6 the conclusions of the study are presented together with suggestions of

future work.
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2 Background

This chapter will cover the theoretical background of this thesis. Firstly, the theory of topics

related to missing values in tabular data will be presented. This includes an introduction to

tabular data, the theory behind the different missing data mechanisms for tabular data as well as

an introduction to tabular data imputation and synthesis. After this, an introduction to GANs

will be presented. Here, the prerequisites needed to understand both the imputation method

GAIN as well as the synthetization method CTGAN, which will be covered in later sections,

will be covered. This leads to a section presenting the theoretical background to the data

imputation methods used in the empirical study of this thesis. This includes an introduction

to the discriminative methods such as Median/Mode Imputation, MICE, MissForest, and kNN

imputation, as well as to the generative GAN-based method GAIN. In the final section, the

theoretical background of the method for generating synthetic tabular data, CTGAN, will be

presented.

2.1 Missing Values in Tabular Data

2.1.1 Introduction to Tabular Data

Tabular data refers to data structured in rows and columns, presented together in a table.

Every record, i.e., every observation, is stored as a row while feature characteristics for a specific

observation are stored as column values on the particular row. The dimensions are the same

throughout all rows so that each observations have the same number of feature characteristics,

with the columns in the same order.

2.1.2 Handling of Different Tabular Data Types

A table can contain data of various data types, yet a particular column only contains values

of the same datatype. The different data types includes categorical data, meaning that every

value can only take on values from a category, or numerical data, where the numerical data

can be classified as either continuous or discrete data [11]. The numerical data can generally

be analyzed after only minor data pre-processing such as for example normalization, however

for categorical variables more drastic transformations such as encoding to numerical values is

usually required [10].

Normalization of numerical variables Normalization implies scaling all values of a column

in a data set to a particular range, usually to the range [0,1] or to the range [-1,1] [1]. The

process of normalizing is required to achieve accurate results when applying statistical or machine

learning methods when there are significant differences in the ranges of the values of different

feature variables [1].

Encoding of categorical variables Encoding of categorical variables is generally required

as many statistical and machine learning method only can handle numerical values. There are
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a number of ways in which the encoding can be executed [10]. Two common ways, which will

be used in this thesis are label encoding and one-hot encoding. To illustrate, X is assumed to

be an (n × p)-dimensional data matrix, where Xis is the value of the ith observation’s value of

the the sth feature. This leads to that Xi = (Xi1, · · · , Xip) represents one observation. The two

mentioned encoding techniques can then be described as follows:

• One-hot encoding. One-hot encoding implies transforming each categorical column to

several binary columns, each binary column representing one category alternative of the

initial category. A value of 1 represents the presence of the particular category alternative,

while a value of 0 represents the absence [10]. Formally, this means that given that X has

a categorical feature for index s, the value Xis for observation i is then transformed into a

dummy vector Xis = (Xis1, Xis2, ..., Xisds) where ds is the number of possible alternative

that the categorical feature s can take, and the variables Xisds are binary.

Example: A dummy vector Xis for a feature s with 3 possible categories can be expressed

as Xis = (1, 0, 0) if Xis takes the value with an index 1. Overall, all possible choices for

Xis for the 3 categories can be summarized according to:

category Xis1 Xis2 Xis3

1 1 0 0

2 0 1 0

3 0 0 1

(1)

where a 1 in the column Xisds indicate that the observation i takes the value with an index

ds for the feature s, and a 0 in the column means that the observation does not take the

value. This means that the column of the feature s is now transformed to 3 columns for

all observations [16].

• Label encoding. Label encoding implies that each categorical alternative within a cer-

tain category is transformed to the integer. If the categories are ordered, the integer

sequence should reflect this ordering [10]. Formally, this means that an observation

Xi = (Xi1, · · · , Xip) keeps the same dimensions, although the value Xis is transformed

to an integer if s is a categorical feature.

2.1.3 Missing Data Mechanisms for Tabular Data

Missing values in a data set can be defined as values which are expected and that would have

added additional information if they were available, yet that are not [61]. Real-world tabular

data sets often contains missing values and the handling of these is a crucial challenge for data

scientists [15]. There are a number of reasons as to why data might be missing, for instance

reasons such as improper data entries, data unavailability, and data collection issues [46]. Data

can be missing according to three missing data mechanisms defined by Rubin in 1976 [54].
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Missing completely at random (MCAR) Data is considered MCAR when the probability

of missing data on a variable X is independent of the variable X itself and independent of other

variables in the data set. In a modern context and in practical situations, MCAR is often

considered unrealistic.

Missing at random (MAR) Data is considered MAR when the probability of missing data

on a variable X is not dependent on the variable X itself, but dependent on other variables

in the data set. The standard assumption is that the data is missing according to the MAR

mechanism [15].

Missing not at random (MNAR) Data is considered MNAR when the probability of

missing data on a variable X is dependent on the variable X itself.

2.1.4 Approaches for Handling of Missing Values in Tabular Data

There are three main approaches encountered in literature for handling missing values in data

sets. The first method, referred to as list-wise deletion, is a frequently used technique that

involves the removal of rows containing at least one missing value. The second is to adapt the

specific data task to tolerate missing values, however this approach will be out of scope for this

thesis. The third approach is to impute the missing data [52] [15].

Listwise deletion Listwise deletion is the most common way to handle the issue of missing

values in real-world applications today, and implies deletion of every observation for which at

least one feature value is missing [30]. The approach is a default method for many standard

data analysis packages, such as by the lm and the glm command in R as well as the regress

function in Stata. However, the approach comes with the negative aspect of often significantly

reducing the sample size, omitting important information. This is especially the case when the

number of features is large, since the probability of one observation having at least one missing

value then potentially increases [68].

Imputation of missing values Imputing missing values involves replacing absent data with

approximated or inferred values using a statistical technique [15]. When selecting an imputation

method, knowing the missing data mechanism is crucial. An incorrect assumption whether data

is missing at random can affect the proportions of certain groups in the data and introduce bias

[60]. A more detailed introduction to different imputation methods will be covered later in this

thesis.

2.1.5 Synthesizing Tabular Data

The utilization of synthetic data origins from the inception of computer vision in the 1960s, but

the common problem of insufficient amount of data in modern AI has increased the degree of

interest in the subject today. Especially deep-learning models are in many cases hindered by
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the lack of large enough training data sets, an issue which synthetic data can provide a solution

to [44].

Synthetic data is artificially produced data and could either be created from scratch based

on descriptions of the data distributions, or based on current data to produce more novel and

diverse training samples. This approach can not only extend the data set in size, but also filling

in gaps in the data distribution, supplementing situations that are missing or occurs rarely in

the original data set [48].

Some issues with synthesizing tabular data include that tabular data sets often contains

feature characteristics with various data types that needs to be handled in different ways during

synthesizing, as well as that the continuous values of a tabular data set often have complex

probability distributions, which may be difficult to sample new synthetic data from. The latest

research in the field of data science have led to the development of synthetic data generation

techniques that involve treating each column in a table as a random variable. A joint multivariate

probability distribution is modeled based on the data and the sampling is subsequently performed

from that distribution [72].

2.2 Generative Adversarial Networks

This section covers the fundamental theory of GANs. The GANs presented in this section will

not be used in the empirical studies of this thesis, however the theory presented includes knowl-

edge prerequisites for the subsequent sections, which will more in detail explain the imputation

method GAIN and the synthesis method CTGAN, which are both based on GANs.

2.2.1 Introduction to GANs

A Generative Adversarial Network (GAN) is an architecture used to generate data samples with

the same statistical distribution as the input data. The framework was originally introduced by

Ian Goodfellow et al. in 2014 [21]. The model consists of two neural networks, one generator

network, G, and one discriminator network, D. The aim of the generator network, G, is to

generate data that the discriminator network, D, will classify as real data. The aim of the

discriminator network, D, is to correctly classify real data and generated data [21].

2.2.2 Objective and Loss Functions

The initial input for the generator network, denoted as G, will be a noise variable z from a

prior distribution pz(z), which usually is a uniform or Gaussian distribution. A mapping to a

data space is represented as G (z; θg), resulting in samples x̂d. The generator G is a multi layer

perceptron neural network and thus uses the parameters θg to produce a set of outputs based

on a corresponding set of inputs. To trick the discriminator network, G tries to make pg, i.e.,

the distribution from which the data points x̂d are sampled, resemble the unknown distribution

pd of the real data x. More specifically, G aims to minimize the probability that D succeeds

in guessing that x̂d is drawn from pg rather than pd, which implies an objective function that

minimizes its loss function, described as:
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min
G

Ez∼pz [log(1−D(G(z)))] = min
G

Ex̂d∼pg [log(1−D(x̂d))] (2)

The discriminator network, D, is also a multi layer perceptron neural network represented as

D (x; θd), where θd are the parameters of the network and x representing either a real data

sample or data generated by G. The discriminator network, D, outputs a single scalar and D(x)

represents the probability that x comes from real distribution pd and not from the distribution

from which the generator samples, pg. The generator’s loss function (2) is minimized by making

the discriminator assigning a probability of D(G(z)) as close to 1 as possible. The optimal

discriminator will give a high probability when x ∼ pd and a low probability when x ∼ pg. The

discriminator therefore has an objective function which is maximizing its loss function, described

as

max
D

Ex∼pd [log(D(x))] + Ez∼pz [log(1−D(G(z)))] =

max
D

Ex∼pd [log(D(x))] + Ex̂d∼pg [log(1−D(x̂d))]
(3)

The networks are simultaneously playing a minimax game of a value function V (G,D), leading

to the combined objective function defined as

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4)

The above reasoning leads to the loss function Ld for the discriminatorD and Lg for the generator
G

Ld = logD(x) + log(1−D(G(z)))

Lg = log(1−D(G(z)))
(5)

At convergence, the generator network G will sample from the true data distribution, pd = pg.

If this state is reached, D (x; θg) =
1
2 since the discriminator then is guessing whether the data

sample x is real or generated [21].

2.2.3 Training of GANs

Stochastic Gradient Descent Neutral networks are trained using gradient back-propagation

in an iterative manner. Gradient back-propagation involves the process of computing the gradi-

ents of the loss functions using the chain rule of differentiation, which implies that the gradients

can be propagated back through the network from the final loss to the initial inputs. This

implies that the discriminator D is trained as a first step to update the parameters θd by using

the gradient ∇θdLd (θg, θd). The generator G is subsequently trained to update θg using the

gradient ∇θgLg (θg, θd) [21].
Stochastic gradient descent is generally the standard optimization algorithm for GANs, which

updates the parameters according to:
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θn+1 = θn − γ∇θnf (x; θn) , (6)

where γ is a learning parameter which determines the step-size and f (x; θn) represents the loss

functions of G and D. To reduce the computational complexity, mini-batch stochastic variation

of gradient descent is commonly used, where the samples are split into mini-batches of size m.

The parameters are then updated based on the gradients of the mini batches according to [21]:

θn+1 = θn − γ∇θn

1

m

m∑
i=1

f
(
x(i); θn

)
(7)

It can be proved that by using the batch stochastic gradient descent algorithm, GANs theoret-

ically converges to where pd = pg and D (x; θg) =
1
2 , which corresponds to sampling from the

true distribution [21].

Adam Optimizer Algorithm The Adam algorithm, used to optimize stochastic objective

functions, is widely used in training GANs. Adam was introduced to fit large data sets with

sparse gradients. Estimates of first and second moment of the gradients are used to apply

adaptive learning rates for the different parameters of the generator and discriminator network

[33].

Batch Normalization Batch normalization is a normalization technique that is applied be-

tween the layers of a neural network. It has shown to speed up training with higher learning

rates and less concern about initial parameter initialization. For a mini-batch of size m with

values B = {x1, ..xm}, the output yi is defined as

yi ← γ

 xi − µB√
σ2
B + ϵ

+ β ≡ BNγ,β (xi) (8)

where γ and β are the model parameters and ϵ a constant added for numerical stability. [27].

Activation Functions An activation function is used in a neural network to introduce non-

linearity into the output of a neuron. Common activation functions include the sigmoid, ReLU,

Leaky ReLU, tanh, and softmax function. The softmax activation function has traditionally

been used to output categorical or discrete values, by interpreting the values as probabilities and

then use the argmax function to determine the label with highest probability. One issue with this

approach is that the argmax function can not be differentiated and therefore no back-propagation

can be done to train a neural network using this activation function.

Gumbel-Softmax The Gumbel-Softmax distribution was introduced by Jang et al.[29] and

Maddison et al [40] to allow for differentiable sampling from a categorical distribution, and

thus solves the issue previously mentioned. Both authors proved that the Gumbel-Softmax
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outperforms other estimators for categorical variables. If the distribution of a categorical feature

X is represented by π, the samples are drawn from

xk =
exp ((log (πk) +Gk) /τ)∑n
i=1 exp ((log (πi) +Gi) /τ)

for k = 1, 2, . . . , n (9)

where πk is the probability that X = Xk , Gk is an independently drawn sample from the

Gumbel distribution, and where τ represents the hyperparameter temperature. As τ −→ 0, the

sampling will approaches a discrete argmax sampling, namely a one-hot representation.

2.2.4 GAN Convergence Issues

Several issues has been reported when making the original GAN framework converge to pd = pg,

which corresponds to sampling from the true distribution.

• Mode collapseMode collapse can occur when dealing with multi-modal data distributions

and is causing the generator to only produce samples from one of the categories or modes.

• Vanishing gradient The issue of vanishing gradients arises when the discriminator D

reaches a high level of proficiency in determining a real or generated sample from G, which

fails in producing sufficiently convincing samples, leading to a near-zero gradient. If the

gradient is small, it implies that the weights and biases of the early layers will not be

updated efficiently. This situation blocks the networks from further learning [70].

Because of these issues, there are many more stable variants of GANs proposed since the original

paper was released, including the WGAN [3], WGAN-GP [23], and CTGAN [72] networks

described in later sections.

2.2.5 Challenges in Using GANs for Modeling Tabular Data

Further, there are several properties that make GANs in particular challenging to apply in

tabular data generation tasks, listed by Xu et al. in the paper ”Modeling Tabular data using

Conditional GAN”, presenting an extension of the GAN model called CTGAN [72].

• Variety of data types. Tabular data sets usually consists of a mix of discrete and

continuous columns, with a variety of data types such as integers, floats, booleans, and

strings. There is accordingly a need for different activation functions in the output layer

of the network. Categorical or discrete values are most often one-hot-encoded and using

the activation function softmax, which leads to that the generator produces a probability

for each category. The issue is that this probability is most often continuous and not an

exact 0 or an exact 1, which makes it very easy for the discriminator to separate real data

from generated data. This since the real data is represented as a proper one-hot vector,

i.e, an exact 0 or an exact 1, while the generated data is a continuous probability value

between zero and one.
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• Non-Gaussian distributions. In the image data set usually modelled by the original

GAN, each data point takes a value between 0 and 255 and follow a Gaussian-like dis-

tribution which can be normalized to [−1, 1], usually using a tanh function. However,

continuous values frequently found in tabular data usually follow a non-Gaussian-like dis-

tribution, leading to the issue of vanishing gradients described in 2.2.4.

• Multi-modal distributions. Tabular data tend to be highly multi-modal, having several

modes in the distribution. Srivastava et al [58] proved that the original GAN framework

was not able to model all modes on a simple 2D data set, indicating that a more advanced

technique is needed to model complex continuous distributions.

• Imbalanced categorical columns. Categorical columns often exhibit a high degree of

imbalance, wherein a specific value occurs more frequently and thus becomes over repre-

sented. This results in that if missing a minor category the data distribution is not notably

affected, making which is hard for the discriminator to notice the minor categories as well

as poor training possibilities for these categories. However, maintaining these categories

in the synthesized data can still be important.

2.2.6 The Importance of Abundant Training Data

GANs have been shown to perform poorly in the case of limited amount of training data. With

a small amount of data during training, the discriminator often ends up over-fitting the data,

leading the training to diverge. To combat this, data augmentation can be used, with the aim

to use more augmented data while maintaining the sampling from the true original distribution.

One solution presented by Zhao et al. is Differentiable Augmentation (DiffAugment) which gen-

erated differentiable augmentations on both real and fake samples, instead of directly augment

the training data [77]. Another solution proposed by Karras et al. is an adaptive discriminator

augmentation mechanism, shown to significantly stabilizes training in limited data contexts [31].

NT Tran et al present a framework termed Data Augmentation Optimized for GAN (DAG) [62]

to enable the use of augmented data in GAN training.

2.3 Data Imputation Methods

This section will cover the theoretical foundation to the imputation methods used in the empirical

study of the thesis. The methods covered includes the discriminative methods Median/Mode Im-

putation, MICE, MissForest, and kNN imputation as well as the generative GAN-based method

GAIN.

2.3.1 Discriminative Methods

2.3.1.1 Mean, Median, and Mode Imputation Mean, median, and mode imputation

are frequently used so-called single imputation methods, which means that a single value is

used to replace the missing values. Mean imputation implies replacing the missing values in

one feature column of a tabular data set with the mean of the non-missing observations in this
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column. The process is performed for all columns, replacing each missing value in the data set

with the mean of the corresponding column. Median imputation works very similarly, but the

missing values are imputed with the median of the non-missing observations in the associated

column [42].

Mean imputation ensures that the mean of the distribution remains the same before and

after imputation. However, it have been shown that the imputation method typically distorts

other characteristics of the distribution since they ignore relationship between variables [76].

Median imputation could be a more appropriate method in case of a distribution with many

outliers, however the imputation method tends to bias variances and co-variances towards zero

as it reduces the variability between observations [56] [42].

Mode imputation implies imputing the most frequent value of the non-missing observation

of the corresponding column. It is typically used for missing nominal and categorical data [56].

2.3.1.2 MICE MICE (Multivariate Imputation by Chained Equation) has emerged as a

well-used method for handling missing data [65]. The method is based on multiple imputation,

a Monte Carlo-based technique to deal with incomplete data sets in which several values are

generated for each missing value. In other words, m different completed data sets are formed

in which the missing values are imputed based on the distributions of the variables in observed

data set, as well as the relationship between them. These m data sets are then analyzed and

the results are combined into one imputed data set [55].

The high-level algorithm of MICE consists of a number of steps:

• Step 1. Missing values are replaced with initial placeholder values (usually the mean or

mode of the variable column).

• Step 2. The first variable for imputation is chosen. All the placeholder values for this

variable are set back to missing.

• Step 3. The missing values of the one variable chosen in Step 2 are estimated using a

regression model, with all the other variables used as independent features in the model.

• Step 4. The missing values are replaced with the predictions from the regression model.

• Step 5. Steps 2-4 are iterated for each variable with missing data.

• Step 6. Steps 2-5 are repeated for a fixed number of cycles or until conversion.

The regression model in Step 3 is chosen based on the distribution of the variables. Different

software packages have slightly different default methods, but continuous variables are typically

modelled by a form of linear regression, binary categorical variables by logistic regression and

other categorical variables by multinomial logit models [65] [4].
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2.3.1.3 kNN Imputation The main idea of K Nearest Neighbor (kNN) imputation is that

missing values are imputed based on an aggregation of the values of the K nearest neighbors in

space. This entails that if a value of a particular feature is missing for one observation, this value

is imputed based on the corresponding values of this particular feature for the observation’s K

nearest neighbors. The neighbors are determined based on the distance between observations,

which in term is based on the similarity of the feature values between the different observations,

for all features. This similarity is determined in various ways depending on if the feature is

categorical or numerical [43] [16].

The overall procedure of kNN imputation can be described as follows [43]:

1. Choose metric for calculating distance between observations.

The standard way of determining the distance between observations is usually by using

the Euclidean distance, which also will be used in this study. The distance consider all

neighbors to a particular observation equally important, and is used as standard in libraries

such as Scikit-learn’s kNNImputer and MATLAB’s knnimpute [49] [26].

2. Calculate distance between observations.

To illustrate, X is assumed to be an (n×p)-dimensional data matrix where Xis is the value

of the ith observation’s value of the the sth feature. This leads to that Xi = (Xi1, · · · , Xip)

represents one observation. The formula of calculating the Euclidean distance between

two observations Xi and Xj can for numerical variables then be found as [43]:

dij = dist (Xi,Xj) =

√√√√ p∑
s=1

(Xis −Xjs)
2 (10)

where p is the total number of features.

Categorical variables must be transformed into binary variables before calculating the dis-

tance between observations. This is typically done through one-hot encoding [16]. As

described in Section 2.1.2 this entails that given that s is a categorical feature, a variable

Xis is then transformed into a dummy vector Xis = (Xis1, Xis2, ..., Xisds) where ds is the

number of possible alternatives that the categorical feature s can take. The Euclidean dis-

tance between the observations can be then calculated according to a variation of equation

(10), where an additional summation is added to sum over all possible feature values ds,

according to [25]:

dCat
ij = distCat (Xi,Xj) =

√√√√ p∑
s=1

ds∑
c=1

(zisc − zjsc)
2 (11)

3. Find optimal number of neighbors K.

The optimal number of neighbors K for a data set is usually determined through performing

cross-validation on the training data set [25] [64]. Several papers, such as Duda and Hart
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[14] and Maier et al. [41] have proposed that the number of neighbors K should be

smaller than the square root of the number of observations. One important aspect of kNN

imputation to note is that the choice of K is critical for the accuracy of the method [75].

4. Estimate and impute the missing values.

After determining the K nearest neighbors for each observation, the missing values can be

calculated as the average of the neighbor’s corresponding values [43]. One observation i

with a missing value for feature s can be imputed as X̂is according to:

X̂is =

∑K
k=1Xk

K
(12)

Xk = Xi=1...N,s | di ∈ {d1, d2, . . . , dK} (13)

where K is the optimal number of neighbors, d1 is the shortest distance of neighbor, di

accordingly the i’th rank in distance of neighbor and Xk the value of the feature s of the

neighbors of observation i.

2.3.1.4 MissForest MissForest is another imputation method suited for mixed-type data

sets with complex or non-linear relationships between the variables. The method is based on

multiple imputation using the Random Forest algorithm and was introduced by Stekhoven and

Buhlmann in 2012 [59].

The approach of the missForest algorithm can be described using an n x p-dimensional data

matrix X = (X1, X2, ..., Xp), where Xk represent an arbitrary feature. Initially, all the missing

values in the data matrix are replaced by a placeholder value, usually using the mean of the

other values of the respective features. All features Xk with missing values are then sorted based

on the amount of missing values, starting with the feature with lowest miss rate, and are then

one by one imputed by fitting a random forrest aiming to predict the feature, using the observed

values of the other features as predictors.

More formally, one can assume that a feature Xk in the data set have missing values at

the indices i
(k)
mis. This implies that the feature Xk will be the target variable that the random

forest aims to predict, and the data matrix can accordingly be split into four different sets of

observations with different notations.

1. y
(k)
obs represents the non-missing values of the feature Xk.

2. y
(k)
mis represents the missing values of the feature Xk.

3. x
(k)
mis represents all the values with indices i

(k)
mis of features other than Xk.

4. x
(k)
obs represents all the values with indices i

(k)
obs = {1, ..., n} \ i

(k)
mis of features other than Xk.

Thus, when predicting the missing values of a feature Xk, this means that a random forest model

is initially trained on the data consisting of the target variable y
(k)
obs with the predictors x

(k)
obs. This

model is subsequently used to predict the missing values y
(k)
mis using the predictors x

(k)
mis. This
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Algorithm 1 MissForest algorithm

Require: Matrix X size n× p, stopping criterion γ
Sort the features in X based on miss rate, starting with feature with lowest miss rate. S ←
sorted vector of indices
Do initial guess for missing values
while not γ do

Ximp
old ← save matrix of imputed values last iteration

for k in S do
Fit a random forest with target variable y

(k)
obs and predictors x

(k)
obs

Predict y
(k)
mis using x

(k)
mis

Ximp
new ← update the imputed matrix with the predicted values y

(k)
mis

end for
update γ

end while
return The imputed matrix Ximp

sub-process is repeated for all features containing missing values, and the overall process is then

repeated until a converging criteria is met. According to Stekhoven and Buhlmann who first

introduced the algorithm, the pseudo algorithm can be described as follows [59]:

2.3.2 GAIN

Generative Adversarial Imputation Nets (GAIN), originally proposed by Jinsung Yoon et al.

in 2018 [74], is an generative imputation method that employs the GAN framework to impute

missing values. The GAN structure with a generator network and a discriminator is used but

the generator aims correctly impute values while the discriminator aims to classify imputed data

and observed data.

We define the data vector, a random variable, as x = (x1, . . . , xd). The mask vector m =

(m1, . . . ,md) is used to indicate which of the values of x that are observed and which that

are missing. The mask vector m is taking values in {0, 1}d with a missing value is being

represented as a zero and an observed value being represented by a one. The random variable

x̃ = (x̃1, . . . , x̃d) ∈ X̃ is defined as

x̃i =

xi, if mi = 1

∗, otherwise
(14)

.

The generatorG has three inputs, realizations of x̃,m and a d-dimensional noise, z = (z1, . . . , zd).

It outputs a vector of imputed values defined as

x̄ = G(x̃,m, (1−m)⊙ z) (15)

where the imputed values are generated by conditioning on the observed values. The completed

data vector is obtained by combining the observations in x̃i with the imputed values of x̄ and is

defined as
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x̂ = m⊙ x̃+ (1−m)⊙ x̄ (16)

Rather than identifying an entire vector as real or generated, as in the ordinary GAN framework,

the discriminator D in GAIN aims to identify specific components of the vector that are observed

or imputed. The aim of the discriminator is accordingly to predict the components of the mask

vector m. The input to the discriminator D is the imputed values seen in equation (16) as

well as a random hint vector h. The hint mechanism is introduced to help D with finding

m since the authors prove that there could be multiple distributions that D would consider

optimal. This suggests that the hint vector additionally guarantees that the generator improves

its capability to fill in missing data according to the true distribution of the observed data. In

order to define h, we first introduce the random variable b = (b1, .., bd) ∈ {0, 1}d. We sample k

samples uniformly at random from {1,...d} and then set

bj =

{
1 if j ̸= k

0 if j = k
(17)

The hint vector h is then defined as, given m,

h = b⊙m+ 0.5(1− b). (18)

.

By defining h in different ways it is possible to adapt the knowledge which the discriminator

receives about m. The discriminator will output D(x̂,h), where the i -th element is the prob-

ability that that the i -th component of the completed data vector, x̂, was observed and not

imputed conditional on and X̂ = x̂ and H = h. We refer to the likelihood of forecasting the

mask m as m̂.

2.3.2.1 Objective and Loss Functions The loss function of the discriminator D is defined

in (19) loss and the network is trained to minimize its negative value as seen in (20).

LD(m, m̂,b) =
∑
i:bi=0

[mi log (m̂i)

+ (1−mi) log (1− m̂i)]

(19)

min
D
−

kD∑
j=1

LD(m(j), m̂(j),b(j)) (20)

The loss of the generator G is consists of two loss functions. The loss function applied to the

missing values seen in (21) and the reconstruction loss function applied to the observed values

seen in (22).

LG(m, m̂,b) = −
∑
i:bi=0

(1−mi) log (m̂i) (21)
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LM
(
x,x′) = d∑

i=1

miLM

(
xi, x

′
i

)
(22)

where

LM

(
xi, x

′
i

)
=

(x′i − xi)
2 , if xi is continuous

−xi log (x′i) , if xi is binary
(23)

.

The generator will be trained according to minimise the sum of the two losses, with α as a

hyperparameter to weigh the reconstruction loss, according to

min
G

kG∑
j=1

LG(m(j), m̂(j),b(j)) + αLM (x̃(j), x̂(j)) (24)

.

The aim of the discriminator D is maximize the probability of finding the mask vector m while

the aim of the generator G is to minimize the probability of D accurately predicting m. The

minimax game leads to the objective function

min
G

max
D

Ex̂,m,h

[
mT logD(x̂,h)

+(1−m)T log(1−D(x̂,h))
] (25)

The optimization problem is solved in a iterative manner. Using mini-batches of size nd, the

discriminator D is optimized using a fixed generator G. The generator is then optimized using

mini-batches of size ng with a fixed discriminator.

2.4 Generating Data

The aim of this section is to provide the theory behind the GAN-based data synthesis method

CTGAN. In the first subsection, the model WGAN is presented, an extension of GAN from

which CTGAN is developed. The second subsection will provide a deep dive of the theory

behind CTGAN.

2.4.1 WGAN

In order to understand the distinctions between CTGAN in comparison to the conventional

GAN model, it is essential to provide an explication of the WGAN model.

2.4.1.1 WGAN Model and Algorithm Arjovsky et al. introduced the Wasserstein GAN

(WGAN) in 2017 [3] with the primary aim to address the vanish gradient problem. In the

vanilla GAN, the Jensen-Shannon (JS) divergence is used to measure the distance between two

distributions Pr and Pg. In WGAN, the distance is instead expressed as the Earth-Mover (EM)

distance or Wasserstein-1, defined as

26



W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥], (26)

where Π (Pr,Pg) denotes all the set of all joint distributions γ(x, y) with marginals Pr and

Pg. The EM distance could be interpreted as the cost of transforming a distribution Pr into a

distribution Pg and γ(x, y) as a specific transportation plan.

The aim for the generator G in WGAN is to minimize the Wasserstein divergence seen in

(26). The infinimum, the greatest lower bound, is unfortunately highly intractable, since there

might be an infinite number of transportation plans. The authors are therefore rewriting (26)

using the Kantorovich-Rubinstein duality [8]. The Wasserstein divergence between pd and pg

that the generator G aims to minimize can therefore be expressed as

W (pd, pg) =
1

K
sup

∥f∥L≤K
Exd∼pd [f (xd)]− Ex̃d∼pgen [f (x̃d)] (27)

where the supremum is taken over all K-Lipschitz function f : X → R. A K-Lipschitz function

is defined as

|Dw (x1)−Dw (x2)| ≤ K |x1 − x2| ∀ (x1, x2) (28)

for a positive real constant K. In our context, this means the norm of the gradient of the

discriminator network must be at most K.

The authors proposing WGAN are naming the discriminator D the term ’critic’ instead of

the term ’discriminator’ used in the original GAN paper since it is providing feedback rather

than fully discriminating. However, in this paper, we will follow the naming of the discriminator

network D to remain consistent. Replacing f with D in equation (27) updates the minimax

game between D and G to

min
G

max
θd∈W

Exd∼pd [D(x; θd)]− Ez∼pz [D (G (z; θg) ; θd)] (29)

where all functions {Dθd}θd∈W are all K-Lipschitz for some K. Note that to ensure the K-

Lipschitz constraint, the weights θd will have to lie in a compact space W after each gradient

update, something that is solved by introducing weight clamping to a fixed range [−c, c]. Select-
ing a large value of c could result in an extensive training duration, whereas selecting a small

value could induce the occurrence of vanishing gradients.

2.4.1.2 WGAN-GP The weight clamping solution in WGAN was seen to show undesired

behaviour, and Gulrajani et al. introducted gradient penalty (WGAN-GP) [23] to combat this

issue. To ensure the Lipschitz contraint, an alternative approach was to add a gradient penalty

to the loss function for random samples z ∼ pz. The updated objective function for WGAN-GP

can be described as
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maxθd∈W Exd∼pd [D(x; θd)]− Ez∼pz [D (G (z; θg) ; θd)]

+λEz∼pz

[(
∥∇θdD (G (z; θg) ; θd)∥2 − 1

)2] (30)

where the penalty coefficient is λ set to 10 in the original paper.

2.4.2 CTGAN

The Conditional Tabular GAN (CTGAN) is a variation of a GAN first introduced by Lei Xu

and Kalyan Veeramachaneni in 2019, with the aim to successfully model and synthesize tabular

data [72].

2.4.2.1 Data Pre-processing

Categorical values CTGAN represents categorical values as a one-hot-vector as described

in Section 2.1.2, where each vector comprises zeros and a single one, located at the position

denoting the mode. The one-hot vector ci,j for a sample ci,j has |Ci|-dimensions, the number of

possible categories for the categorical column Ci.

Numerical values To deal with the complex distribution and multi-modality of numerical

values, CTGAN uses mode-specific normalization. The aim is to express a given value by a

one-hot vector β representing the mode and a scalar normalized value α. The method consists

of three steps.

1. A variational Gaussian mixture model (VGM) is used to find the number of modes, mi, for

each numerical columnNi. The resulting Gaussian mixture can be expressed as PNi(ni,j) =∑N
q=1 ωq · N (ni,j ;µq, σq) for a value ci,j where ωq , µq and σq are respectively the weight,

the mean and the standard deviation of a specific mode q.

2. The probability density for each value ni,j coming from each mode q is computed as

ρq = ωq · N (ni,j ;µq, σq) for a value ni,j .

3. From the computed probability density, one mode q∗ is sampled which is used to normalize

the value. Each ni,j is represented as a one-hot vector βi,j , filled with zeros except for a

one at the position q∗, and a scalar αi,j computed as αi,j =
ni,j−µq∗

4σq∗
.

Numerical and categorical columns are concatenated to reach the representation of a row j:

rj = α1,j ⊕ β1,j ⊕ . . .⊕ αNn,j ⊕ βNn,j ⊕ d1,j ⊕ . . .⊕ dNc,j (31)

,

where Nn and Nc represent the total number of numerical and categorical columns respectively.
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2.4.2.2 Solutions to Deal with Class Imbalance As described in Section 2.2.5, the

original GAN framework, the training does not account for imbalanced categorical columns.

This is causing minor categories to not exposed sufficiently during training since the generator

becomes biased towards the major categories. The authors proposing CTGAN are suggesting

two solutions to combat this issue, a conditional generator and training-by-sample.

Conditional vector The aim of introducing a condition into the framework is to sample xd

from pd(xd | c) and not from the unconditioned pd(xd). The vector c, a conditional vector, is

introduced in both the generator and the discriminator. We can ensure equal representation of

all categories in the training data by sampling a batch of conditional vectors c. A mask vector

is introduced to create c. Every one-hot vector di is associated with a mask vector mi defined

as

m
(k)
i =

1 if i = i∗ and k = k∗

0 otherwise.
(32)

The conditional vector c is a concatenation of the total number Nc of mask vectors

c = m1 ⊕ ...⊕mNc (33)

To put it in practice, consider a simple example of two categorical columns C1 = {A,B,C}
and C2 = {D,E}. If we desire to generate a sample with the value C, the first value of the

second column, c the mask vectors would be expressed as m1 = {0, 0, 0} and m2 = {1, 0}. The
conditional vector m2 would be computed as c = m1 ⊕m2 = {0, 0, 0, 1, 0}. To condition on

the vector in the framework, the initial input of the generator includes both the noise variable

z and the conditional vector c.

Training-by-sample Training-by-sample is introduced in CTGAN to sample the conditions

leading to the generation of a proper conditional vector c. The training-by-sample technique for

each batch of observations can be described in six steps.

1. Create Nd zero-filled mask vectors mi.

2. Select, with equal probability, a categorical column Ci. The index of the selected column

is represented as i∗.

3. Compose a PMF (probability mass function) for the values in Ci, such that the probability

mass of each category is the logarithm of its frequency in Di.

4. According to the PMF, select a category k∗.

5. Set the k∗th component of the mask vector of Ci to one.

6. Compute c according to c = m1 ⊕ ...⊕mNc
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2.4.2.3 Network architecture Both the generator and discriminator consists of two fully-

connected hidden layers, each with size 256. The loss function from the WGAN-GP framework

as seen in (30) is used to train the networks.

Generator structure The conditional vector c is fed into the generator in addition to the

noise variable z as the initial input. The generator uses batch-normalization and ReLU as the

activation function. The activation functions that are used in the output layer, are tanh for

the scalar values αi and Gumbel softmax for βi and di. The full network structure for the

conditional generator can be described as

h0 = z ⊕ c (34)

h1 = h0 ⊕ ReLU(BN(FC|c|+|z|→256(h0)) (35)

h2 = h1 ⊕ ReLU(BN(FC|c|+|z|+256→256(h1)) (36)

β̂i = gumbel0.2(FC|c|+|z|+512→|mi|(h2)), i = 1, 2...Nc (37)

d̂i = gumbel0.2(FC|c|+|z|+512→Di
(h2)), i = 1, 2...Nd (38)

α̂i = tanh(FC|c|+|z|+512→1(h2)), i = 1, 2...Nc (39)

To enforce the generator to produce samples that match the condition given by the conditional

vector an additional loss term, the cross-entropy between mi∗ and d̂i∗ , is added to the generator

loss. For a batch of n samples, the additional loss is expressed as

Lc =
1

n

n∑
i=1

(
CE

(
m

(i)
i∗ , d̂

(i)
i∗

))
(40)

Discriminator structure The discriminator uses Dropout and LeakyReLU as activation func-

tions instead of ReLU used in the generator. To prevent the issue of mode collapse, the discrim-

inator uses the PacGAN framework [38]. The input h0 to the first layer is a concatenation of 10

samples and the corresponding conditional vectors. This permits the discriminator to examine

multiple samples concurrently. The full network structure for the discriminator can be described

as

h0 = r1 ⊕ ...r10 ⊕ c1 ⊕ c10 (41)

h1 = drop(leaky0.2(FC10|r|+10|c|→256(h0)) (42)

D = drop(leaky0.2(FC256→256(h1)) (43)

β̂i = FC256→1(h2)) (44)

(45)

The loss function of the discriminator is the loss function used in a conditional WGAN-GP.

CTGAN also implements the Adam optimizer with learning rate 2 · 10−4 .
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3 Methodology

This chapter presents a detailed description of the experimental methodology undertaken to

explore the research question. The data used in the study is described, as well as the data

pre-processing methods and overall experimental approach. Finally, the evaluation framework

is presented.

3.1 Data

To evaluate the different imputation techniques, five real world data sets from different domains

commonly used within machine learning were selected. Collected from UCI Machine Learning

Repository [13] were Default of Credit Card Clients2, Bank Marketing3, Online News Popular-

ity4, and Letter Recognition5, while Mushroom Classification6 was retrieved from Kaggle. To

simplify the namings onwards, we will refer to the data sets as Mushroom, Letter, Bank, Credit,

and News. The data sets were selected due to their differences in number of observations as

well as in number of numerical and categorical columns, in order to thoroughly evaluate the

imputation methods and their performance in different contexts. Worth noting is that all nu-

merical columns are treated as continuous in the study, while all categorical are considered to

be discrete and unordered. Further, the original data sets contains no missing values. A brief

description of the data sets is presented below and a summary can be found in Table 2.

• Mushroom: The Mushroom data set contains samples from 23 species of gilled mush-

rooms. The goal is correct classify weather the mushroom is edible or poisonous. The data

set only contains categorical features.

• Letter: The Letter data set aims to classify one of the 26 capital letters in the alphabet

based on 16 primitive numerical attributes.

• Bank: The Bank data set contains data from a direct marketing campaign where the aim

is to classify weather customer will subscribe a term deposit. The full additional data set

was used with all 41188 samples and 20 inputs.

• Credit: The Credit data set contains 23 explanatory variables that aims to predict if an

individual will default or not.

• News: The News data set consists of features of articles published under a two year

period. The aim is classification of the popularity of the articles, measured by number of

shares of the article in social networks. The data set mostly contains numerical features

but 3 categorical features are found, originally one-hot-encoded.

2https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
3https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
4https://archive.ics.uci.edu/ml/datasets/online+news+popularity
5https://archive.ics.uci.edu/ml/datasets/letter+recognition
6https://www.kaggle.com/datasets/uciml/mushroom-classification
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Data set #Train #Test #N #C Task Target Target class

Mushroom 6499 1625 0 23 Classification Class Binary
Letter 16000 4000 16 0 Classification Letter Multi-class
Bank 32950 8238 10 10 Classification Term deposit Binary
Credit 24000 6000 14 9 Classification Default Binary
News 31715 7929 44 3 Regression # of shares Continuous

Table 2: Summary of data sets used in the study. The notations #N and #C represent the number of numerical
and categorical columns.

3.1.1 Data Pre-processing

Data removal The first step in the data pre-processing was to remove identifier variables and

non-predictive variables. This included removing the feature ID from the Credit data set and

removing the features url and timedelta from the News data set.

Encoding of categorical features For Median/Mode imputation and MICE, label encoding

as described in Section 2.1.2, was performed to represent categorical features, thus representing

each categorical alternative in one column as a number from 1 to the N number of possible values

in the particular column. For kNN imputation, MissForest and GAIN imputation, the technique

of one-hot encoding was used for the categorical features, also as described in Section 2.1.2. If a

feature value was missing in the data set before performing one-hot encoding for one particular

observation, then all subcategories associated with that feature were considered missing for this

observation in the resulting one-hot encoded representation.

Normalization The numerical features in all data sets was normalized to the interval [0, 1].

Before imputation the training data set with missing values was normalized, and the same nor-

malization parameters were used for the test data set. The motivation behind this approach was

to mimic real-world scenarios where complete data sets without missing values are not available

during imputation. Thus, normalization must be performed using the data sets with missing

values. For the training data sets containing additional training data generated by CTGAN, the

normalisation parameters based on the training data set with missing values including additional

CTGAN generated data were used.

To perform evaluation of the imputation performance, the normalization parameters based

on the complete training data set with no missing values were used. These normalisation param-

eters were applied on the complete test data and the imputed test data for evaluation. These

normalization parameters were also used for the cases when the model was trained with addi-

tional CTGAN data. The motivation behind this is that the imputation performance is based on

a comparison between the imputed and the original complete data sets, and the normalization

should accordingly also be based on the original data sets.

The above-mentioned approach for normalization was applied to the numerical features for

all data sets and all imputation methods.
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3.2 Experimental methodology

3.2.1 Overall experimental setup

Training and testing division and introduction of missing values Data was split into

training and testing with ratio 80% train data and 20% test data. For all five data sets, missing

values were introduced according to the MCAR mechanism. The miss rates used were 10%, 30%,

and 50%. For higher miss rates than 50%, data imputation methods might not be a feasible

solution in practical applications. Further, few studies have been conducted using higher miss

rate than 50% [46].

Synthetic data generation To evaluate the performance of research question 2, i.e., the

data imputation methods with an increased amount of training data, which going forward will

be called the augmented training data, the original training data set with missing values was

split into two data sets: Data Set A), consisting of observations with missing values and Data

Set B), formed of observations with only observed values and no missing values. Data Set B)

with only observed values was subsequently used to train a CTGAN model. The CTGAN model

was used to generate Data Set C), i.e., new additional synthetic data. All three data sets, i.e.,

A), B) and C) were concatenated to create a training data set with an increased number of rows.

The study was conducted in two different ways, by creating Data Set C) both 50% the size and

100% the size of the total training data size, i.e., of the joint amount of Data Set A) and Data

Set B). It should be noted that for certain data sets with significant levels of missing data, it was

not possible to perform the methodology due to the absence of complete rows. These include

the News data set with 30% and 50% missing values, as well as all other data sets with 50%

missing values.

Study setup With the augmented training data sets and the non-augmented training data

set, data imputation methods were used to impute the missing values. The methods used in

the study were Median/Mode Imputation, kNN imputation, MICE, MissForest, and GAIN. An

alternative to imputation, list-wise deletion of incomplete rows, were also done and evaluated

as further described in Section 3.4. The full methodology can be seen in Figure 2.
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Figure 2: Overview of experimental methodology of study.

3.3 Model Implementation, Adjustments and Tuning

3.3.1 Model Implementation in Practice

List-wise deletion In the case of list-wise deletion, all incomplete rows in the test data set

were removed and the remaining rows were then used to predict the target. For smaller data sets

and higher miss rates, this meant no complete rows were remaining and thus the methodology

could not be pursued.

Median and Mode Imputation The Median and Mode Imputation models were imple-

mented using the SimpleImputer7 library from Scikit-Learn. For continuous features, Median

Imputation was chosen over Mean Imputation, as the method is less sensitive to outliers [35].

7https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
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MICE MICE was implemented using the R package mice: Multivariate Imputation by Chained

Equations 8, developed by Van Buuren and Groothuis-Oudshoorn, the authors of the original

paper in which the model was first presented in 2011 [65]. The model was implemented using

the default settings for imputation methods, which implies using predictive mean matching for

numeric features, logistic regression imputation for binary features, polytomous regression im-

putation for features with unordered categorical data with more than two features, and lastly

proportional odds model for ordered categorical data with more than two features. The model

was only run once due to the long execution time compared to other models. Thus, a seed was

used to ensure reproducability of the study.

kNN Imputation The kNN imputation method was implemented using the kNNImputer9

package from SciKit Learn in Python. The Euclidean distance metric was used to determine

the distance between observations and the neighbor’s values were weighted uniformly to impute

the missing values. The model was only run once since it generates in the same imputed values

on every iteration.

missForest missForest was implemented using the Python library missingpy developed by

Ashim Bhattarai, a Python implementation of the original missForest model first introduced

by Bühlmann and Stekhoven [59]. The model is based on the RandomForestRegressor10 and

RandomForestClassifier11. The model was run 10 times and the average results as well as the

standard deviations were reported.

GAIN The GAIN method was obtained from its Github repository12. Two versions of the

GAIN method were employed in the study, one model following the original code without any

modifications which in this thesis will be referred to as GAIN v1, and one model were several

suggestions were applied to the original code as described in Section 3.3.2. The latter model

will be referred to as GAIN v2. Both models were run 10 times and the average results as well

as the standard deviations were reported.

CTGAN CTGAN was implemented using Synthetic Data Vault (SDV)’s model CTGAN13

based on the original paper. The suggested model parameters, found in the paper where CTGAN

was introduced [72], were used.

Hardware versions In order to ensure that the execution time was calculated in a correct and

comparable way, all imputations and evaluations have been run locally on the same machine, a

Macbook Pro (2021) with 32 GB memory, Apple M1 Pro chip, and 1 TB flash storage.

8https://cran.r-project.org/web/packages/mice/mice.pdf
9https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html

10https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
11https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
12https://github.com/jsyoon0823/GAIN
13https://sdv.dev/SDV/user guides/single table/ctgan.html
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3.3.2 Model Adjustments

kNN Imputation modifications When imputing categorical variables in a one-hot encoded

data set, it is important that only one category per original feature is imputed, i.e., that one of

the categories for each observation takes the value 1 while the other categories for this observation

is set to 0 [16].

To illustrate what this means in practice, X is assumed to be an (n × p)-dimensional data

matrix, where Xis is the value of the ith observation’s value of the the sth feature. This leads

to that Xi = (Xi1, · · · , Xip) represents one observation. If s is a categorical feature, a one-hot

encoded variable Xis is represented by a dummy vector Xis = (Xis1, Xis2, ..., Xisds), where ds is

the number of possible alternative that the categorical feature s can take. With this notation,

the statement that only one category per original feature is imputed implies that only one value

in the dummy vector Xis is allowed to be 1 for each observation i, representing the imputed

category, while the other values should be set to 0.

When applying kNN imputation, the statement that only one category per original feature

should be imputed is not always true. To ensure that this is the case, a similar strategy to

the one implemented by Faisal and Tutz [16] is used in this thesis. Faisal and Tutz presents

a variant of kNN imputation, which, with the notation introduced above and where K is the

number of optimal neighbors, initially represents each categorical value c within a feature s as

a probability:

π̂isc =
K∑

j=1

w
(
Xi,X(j)

)
X(j)sc (46)

where w
(
Xi,X(j)

)
is a weighting function determining the importance of each neighbor j.

In this thesis, all neighbors are equally important, and the probability value of one category

value c within a feature s is represented as the average of the neighbor’s corresponding values

X(j)sc, setting w
(
Xi,X(j)

)
= 1/K. To ensure that only one value in the dummy vector Xis

is set to 1 for each observation i, the value Xis is determined based on the index with highest

probability [16]:

Xisc =

1 if π̂isc = argmaxdsq=1 π̂isq

0 otherwise
(47)

GAIN modifications To adapt the original GAIN version to better deal with categorical

variables, three modifications were made to the original code implementation from the original

paper. The model based on the original code implementation will be referred to as GAIN v1 in

this thesis, while the model that includes the modifications will be referred to as GAIN v2.

Firstly, with the aim of achieving the imputation of only one category per original feature in

the one-hot encoded data set, as described above for kNN imputation, a new rounding function

was implemented. This rounding function operates with the same goal as the extension for kNN

described in Section 3.3.2. This results in that it ensures that the one-hot encoded vector of
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observation i and feature s, Xis = (Xis1, Xis2, ..., Xisds), is determined based on the category

with index c, c = 1, ..., ds, for which the initially imputed value Xisc is closest to 1, which implies

Xisc is set to 1. All other elements in the vector Xis = (Xis1, Xis2, ..., Xisds) is set to 0.

The second modification is that a different activation functions was used in the output layer

in the generator for different variable types, instead of using the same activation function for all

variable types. Due to the limitations of the softmax activation function, which traditionally

has been used to output categorical or discrete values but cannot be differentiated and does not

enable back-propagation, the Gumbel softmax was implemented for categorical variables. For

numerical variables, the sigmoid activation function was used as in the original implementation.

Additionally, this involved the inclusion of another hyperparameter, τ .

Lastly, the generator loss function (24) was updated to weigh the loss of categorical variables

separately from the loss of numerical variables, similar to done in [12]. The binary cross-entropy

loss is used to compute the categorical loss and the numerical loss remains computed as the mean

square error, as seen in equation (49) and (48), respectively, where xn represents a numerical

variable and xc represents a categorical variable, such that

LM1(xn,x
′
n) =

dn∑
i=1

mi

(
x′i,n − xi,n

)2
(48)

LM2(xc,x
′
c) = −

dc∑
i=1

mi

(
xi,c log

(
x′i,c

)
+ (1− xi,c) log

(
1− x′i,c

))
(49)

With an additional hyper parameter β, the updated generator loss function becomes

min
G

kG∑
j=1

LG(m(j), m̂(j),b(j)) + αLM1(x̃n(j), x̂n(j)) + βLM2(x̃c(j), x̂c(j)) (50)

In summary, the model GAIN v2 corresponds to the GAIN model presented in the original paper

[74], GAIN v1, with these three modifications.

3.3.3 Model Hyperparameters and Tuning

To obtain the optimal results for the methods which requires determination of hyperparameters,

a process of hyperparameter tuning was conducted using cross-fold validation. In this thesis,

this is the case for kNN imputation and GAIN, and the selected parameters for each imputation

method per data set can be found in Table 25. The performance score used for both kNN

imputation and GAIN was prediction accuracy in terms of AUROC and MSE, further described

in Section 3.4.2. Since the augmented data sets with additional data generated by CTGAN do

not contain true labels, prediction accuracy could not be performed and thus the optimal hyper

parameters for the corresponding data set with no extra data were used.

kNN Imputation kNN imputation only have one parameter to optimize, which is the optimal

number of neighbors, K. A five-fold cross validation on the training data set was performed in
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order to determine the optimal value of this parameter, measured by predictive performance.

The value of K was restricted with a maximum value as the square root of the number of

observations for each data set.

GAIN GAIN on the other hand have several parameters to optimize, and the value of one

parameter is likely to affect the optimal value of another. Thus, the optimal parameter selec-

tion for every data set and miss rate was determined through cross-fold validation with three

folds and 3000 iterations on the training data. The parameter search grid consisted of batch

size:{64, 128, 256}, hint rate:{0.1, 0.5, 0.9}, and alpha:{0.5, 1, 2, 10}, found in studies of a similar

nature [74] [47] [7] [12] [6]. The updated version of GAIN contains two additional hyperpa-

rameters. The optimal values for the hyperparameters, batch size, hint rate, and alpha were

selected for the updated version through optimization using the original version of GAIN. The

parameter search grid for the updated version then consisted of beta: {0.1, 0.5, 1, 10, 50} and

tau: {0.1, 0.5, 5, 10}.

3.4 Evaluation Framework

The evaluation of imputation performance is done based on two criteria, direct imputation

performance and prediction performance.

3.4.1 Direct Imputation Performance

According to a systematic review conducted by Thomas and Rajabi [61], which examined 2883

research papers comparing missing value imputation techniques from 2010 to 2020, Root Mean

Squared Error (RMSE) and Percentage of Correct or False Prediction (PCP or PFP) are widely

used evaluation metrics for numerical and categorical values. Consequently, these metrics will

be used in the current study as well.

Root Mean Square Error Numerical value imputation is evaluated using the Root Mean

Square Error (RMSE) between observed and imputed values [37].

RMSEnum =

√√√√ 1

n

n∑
i=1

(xi − x̂i)
2 (51)

where xi is the observed value, x̂i is the imputed value and n are the total number of missing

values.

Proportion of Falsely Classified Categorical value imputation is evaluated using the the

Proportion of Falsely Classified (PFC) entries. This is the complementary to the Proportion

Correctly Classified (PCC) [37].

PFC =

(∑n
i=1 count (yi ̸= ŷi)∑n

i=1 count(yi)

)
× 100 (52)
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Modified Root Mean Square Error To enable a concatenated evaluation of the categorical

values and the numerical values, a measurement refered to as modified RMSE (mRMSE) is used,

found in [22]. The categorical RMSE is calculated as

RMSEcat =

√√√√ 1

n

n∑
i=1

1{x̂i ̸=xi} (53)

To form the modified RMSE, (51) and (51) are concatenated according to

mRMSE =
√
(RMSEnum)2 + (RMSEcat)2 (54)

Execution time To determine which imputation methods that offer greater practical benefits,

the execution time is measured for every imputation method.

3.4.2 Prediction Performance

Prediction models The prediction models used in the study were LinearRegression14 for

data sets with regression task and the KNeighboursClassifier15 for data sets with classification

task. The task for every data set can be seen in Table 2. For the KNeighboursClassifier,

StandardScaler16 was used to standardize features and cross-validation was used to determine

the optimal value for the number of neighbors. For both models, data was split into 80% training

and 20% testing.

Prediction evaluation for classification task To measure the prediction performance for

the imputed values for classifiers the accuracy score17 and the Area under the Receiver Oper-

ating Characteristic Curve18 (AUROC) were used. These metrics are two of the most common

evaluations metrics according to [46]. To define the metrics, the notations found in Table 3 are

applied.

Predicted condition
Total population

= P + N
Predicted

Positive (PP)
Predicted

Negative (PN)

Actual
condition

Actual
Positive (P)

True Positive
(TP)

False Negative
(FN)

Actual
Negative (N)

False Positive
(FP)

True Negative
(TN)

Table 3: Confusion matrix to define TP, TN, FN and FP.

Accuracy is defined as the ratio of correct predictions to the total number of predictions.

14https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html
15https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
16https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
17https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy score.html
18https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc auc score.html
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Accuracy =
TP + TN

P +N
(55)

The Receiver Operating Characteristic (ROC) curve is plotted with True Positive Rate (TRP)

on the vertical axis and False Positive Rate (FPR), defined as

TPR =
TP

TP + FN
(56)

FPR =
FP

FP + TN
(57)

The Area Under the Receiver Operating Characteristic Curve (AUROC) is used as a summary of

the ROC curve. The values ranges from 0 to 1 where a higher value indicates a better predictor.

For data sets with multiclass target columns, the one-vs-rest approach is used, computing the

AUROC of each class against the rest and then finding the unweighted average, since it is

considered necessary to prioritize the performance of all classes equally.

Prediction evaluation for regression task To measure the prediction performance for the

imputed values for regression tasks, we use the Mean Square Error19 (MSE) defined as

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (58)

19https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean squared error.html
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4 Results

This section presents the most important results from the study. The full results are found in

the appendix.

4.1 Comparison of GAIN to Standard Imputation Methods

This section will present the results of ’Research Question 1: How does GAIN compare to

standard imputation methods when being evaluated in an extensive way?’.

4.1.1 Imputation Results

The imputation performance is determined based on the evaluation metrics presented in Sec-

tion 3.4.1. The full results are found in the appendix.

Best performing method Figure 3 shows the best performing method statistically significant

at 95% confidence level amongst the different imputation methods for different direct imputation

evaluation metrics.

Figure 3: Number of best performer statistically significant at 95% confidence level amongst the different impu-
tation methods for different direct imputation evaluation metrics.

mRMSE per data set and miss rate Figures 4 to 8 present the performance in terms of

mRMSE of different methods per data set and miss rate.
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Figure 4: Evaluation in terms of mRMSE for the different imputation methods for different miss rates for the
mushroom data set.

Figure 5: Evaluation in terms of mRMSE for the different imputation methods for different miss rates for the
letter data set.
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Figure 6: Evaluation in terms of mRMSE for the different imputation methods for different miss rates for the
bank data set.

Figure 7: Evaluation in terms of mRMSE for the different imputation methods for different miss rates for the
credit data set.
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Figure 8: Evaluation in terms of mRMSE for the different imputation methods for different miss rates for the
news data set.

Comparison of GAIN v1 to GAIN v2 Figure 9 presents the best performing method of

the two GAIN versions statistically significant at a 95% confidence level for different imputation

evaluation metrics. Figure 19 presents the best performing method of the two GAIN versions for

different imputation evaluation metrics, not taking the confidence interval into consideration.

Figure 9: Number of best performer amongst the different GAIN versions statistically significant at a 95%
confidence level for different direct imputation evaluation metrics.
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Figure 10: Number of best performer amongst the different GAIN versions for different direct imputation evalu-
ation metrics.

4.1.2 Prediction Result

The prediction performance will be determined in terms of AUROC and accuracy for all data

sets for which the main goal is classification, which is the case for all data sets except for News,

and MSE for the data sets which aims to use regression to predict the target variable. The full

results can be found in the appendix.

Best performing method Figure 11 shows the best performing method statistically sig-

nificant at 95% confidence level amongst the different imputation methods for different direct

imputation evaluation metrics. Figure 12 shows the best performing method amongst the dif-

ferent imputation methods for different direct imputation evaluation metrics when considering

the average values, not taking the confidence intervals into consideration.

Figure 11: Number of best performer statistically significant at 95% confidence level amongst the different impu-
tation methods for different prediction evaluation metrics.

45



Figure 12: Number of best performer in terms of average value amongst the different imputation methods for
different direct prediction evaluation metrics.

AUROC per data set and miss rate Figures 13 to 17 present the performance in terms of

AUROC of different methods per data set and miss rate.

Figure 13: Evaluation in terms of AUROC for the different imputation methods for different miss rates for the
mushroom data set.
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Figure 14: Evaluation in terms of AUROC for the different imputation methods for different miss rates for the
letter data set.

Figure 15: Evaluation in terms of AUROC for the different imputation methods for different miss rates for the
bank data set.
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Figure 16: Evaluation in terms of AUROC for the different imputation methods for different miss rates for the
credit data set.

Figure 17: Evaluation in terms of MSE for the different imputation methods for different miss rates for the news
data set.

Comparison of GAIN v1 to GAIN v2 Figure 18 presents the best performing method of

the two GAIN versions statistically significant at a 95% confidence level for different prediction

evaluation metrics. Figure 19 presents the best performing method of the two GAIN versions

for different prediction evaluation metrics, not taking the confidence interval into consideration.
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Figure 18: Number of best performer amongst the different GAIN versions statistically significant at a 95%
confidence level for different prediction evaluation metrics.

Figure 19: Number of best performer amongst the different GAIN versions for different prediction evaluation
metrics.

4.2 Impact of Additional Training Data using CTGAN

This section will present the results of ’Research Question 2: How can the approach of increasing

training data using CTGAN improve imputation methods?’.

4.2.1 Imputation Results

mRMSE improvements with CTGAN Figure 20 shows number of data sets that improved

statistically significant at a 95% confidence level with different amounts of additional data per

every imputation method. Figure 21 shows the average number of data sets that improved with

different amounts of additional data per every imputation method where confidence intervals are

not considered. There were nine of data sets in total in the comparison. If one two data shows

exactly the same performance with and without the augmented data, it will not be counted as

an improvement nor a reduction of result in the figures.
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Figure 20: Number of data sets that improved statistically significant at a 95% confidence level with amounts of
additional data per every imputation method in terms of mRMSE.

Figure 21: Number of data sets that improved with different amounts of additional data per every imputation
method in terms of mRMSE, not taking confidence interval into consideration.

Best performing method in terms of mRMSE Figure 22 shows number of best performer

in terms of mRMSE for every approach, different imputation methods with different amounts

of additional data, statistically significant at a 95% confidence level. Figure 23 shows number

of best performer in terms of mRMSE for every approach, different imputation methods with

different amounts of additional data, not taking the confidence interval into consideration. There

were nine number of data sets in total in the comparison.
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Figure 22: Number of best performer statistically significant at 95% confidence level amongst all the different
imputation methods including additional data in terms of mRMSE.

Figure 23: Number of best performer amongst all the different imputation methods including additional data in
terms of average mRMSE, not taking confidence interval into consideration.

CTGAN impact per method and data set in terms of mRMSE Figures 24 to 29

present the impact of additional training data per method and data set in terms of mRMSE.
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Figure 24: Impact of additional CTGAN data for Median/Mode in terms of mRMSE.

Figure 25: Impact of additional CTGAN data for MICE in terms of mRMSE.

Figure 26: Impact of additional CTGAN data for kNN imputation in terms of mRMSE.
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Figure 27: Impact of additional CTGAN data for MissForest in terms of mRMSE.

Figure 28: Impact of additional CTGAN data for GAIN v1 in terms of mRMSE.

Figure 29: Impact of additional CTGAN data for GAIN v2 in terms of mRMSE.

4.2.2 Prediction Result

AUROC improvements with CTGAN Figure 30 shows number of data sets that improved

statistically significant at a 95% confidence level with different amounts of additional data per

every imputation method. Figure 31 shows the average number of data sets that improved with

different amounts of additional data per every imputation method where confidence intervals

not considered. There were eight number of data sets in total in the comparison. If one two
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Figure 30: Number of data sets that improved statistically significant at a 95% confidence level with different
amounts of additional data per every imputation method in terms of AUROC.

Figure 31: Number of data sets that improved with different amounts of additional data per every imputation
method in terms of AUROC, not taking confidence interval into consideration.

data shows exactly the same performance with and without the augmented data, it will not be

counted as an improvement nor a reduction of result in the figures.

Best performing method in terms of AUROC Figure 32 shows the number of best

performer in terms of AUROC for every approach, different imputation methods with differ-

ent amounts of additional data, statistically significant at a 95% confidence level. Figure 33

shows the number of best performer in terms of AUROC for every approach, different imputa-

tion methods with different amounts of additional data, not taking the confidence interval into

consideration. There were nine number of data sets in total in the comparison.
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Figure 32: Number of best performer statistically significant at 95% confidence level amongst all the different
imputation methods including additional data in terms of AUROC.

Figure 33: Number of best performer amongst all the different imputation methods including additional data in
terms of average AUROC.

CTGAN impact per method and data set in terms of AUROC Figures 34 to 39

present the impact of additional training data per method and data set in terms of AUROC.
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Figure 34: Impact of additional CTGAN data for Median/Mode in terms of AUROC.

Figure 35: Impact of additional CTGAN data for MICE in terms of AUROC.

Figure 36: Impact of additional CTGAN data for kNN imputation in terms of AUROC.
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Figure 37: Impact of additional CTGAN data for MissForest in terms of AUROC.

Figure 38: Impact of additional CTGAN data for GAIN v1 in terms of AUROC.

Figure 39: Impact of additional CTGAN data for GAIN v2 in terms of AUROC.
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5 Discussion

5.1 Notations

To enable clear referencing of a specific data set in this section, we adopt a standardized notation

denoted by ”Data set name, Miss rate %”. For instance, the Mushroom data set with 10% miss

rate will be represented as ”Mushroom, 10%”. While Table 4 presents an overview of the naming

convention for the Mushroom data set, the same approach is employed for all other data sets.

Data set Miss rate % Notation

Mushroom
10 Mushroom, 10%
30 Mushroom, 30%
50 Mushroom, 50%

Table 4: Explanation of the notations used for a particular data set.

5.2 Comparison of GAIN to Standard Imputation Methods

In this section, the results of the first research question will be presented where the aim is to

compare GAIN to standard imputation methods.

5.2.1 List-wise Deletion

Deleting incomplete rows as an alternative to data imputation. In this study, applying the

approach and then performing predictions proved to be impractical for the majority of data

sets. This was due to the fact that in these cases no complete rows remained, either due to high

miss rates or due to a large number of features, since the missingness was introduced at random

across the features. For Mushroom, 10%, list-wise deletion only did yield 0.4908 in AUROC,

comparing to all other methods acheiving a higher score than 0.99, as been shown in Figure 13.

For the only data sets with 30% miss rate that there were complete rows remaining, Letter and

Bank, the accuracy score was 0. Interestingly, for Bank, 10% and Credit, 10%, the method

did yield highest accuracy score out of all methods, although the AUROC score was far from

being the best performer, as presented in Figure 11. This means that the model was good at

predicting the correct target value, however at the expense of a large number of false positives.

Overall, this demonstrates that data imputation methods are generally preferred over list-

wise deletion, particularly when dealing with higher rates of missing data, a data set with many

feature variables or when false positives must be avoided.

5.2.2 Median/Mode Imputation

The Median/Mode method showed superior performance in terms of execution time, yet was the

weakest method considering imputation performance. The predictive performance was slightly

better, yet still not competitive compared to the best models. Some aspects to note include:

• Practically feasible Median/Mode showed superior performance in terms of execution

time, as presented in Figure 3. The data set with the shortest execution time was im-
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puted in 0.0088 seconds, and the data set with the longest time in 0.1543 seconds with

Median/Mode imputation. This can be compared to the second best method in terms

of execution time, kNN imputation, which ranged from 13.0536 seconds to 1,152.8814

seconds. To conclude, Median/Mode imputation was the fastest method across all im-

putation methods compared in this study. The easy implementation and computational

efficiency are also additional factors which can explain why this method is very popular in

for practical use in industry today [45].

• Worst imputation performance of all methods in terms of mRMSE For seven out

of 15 data sets, the method showed the highest mRMSE, indicating that Median/Mode

was the poorest performing method. The model did not perform best in terms of mRMSE

for any data set, as presented in Figure 3.

• Insensitive to higher miss rates The method exhibited consistent imputation perfor-

mance, as measured by both mRMSE and AUROC, across all levels of missing data, as

shown in Table 5 and Table 8 in the Appendix. This is in contrast to other imputa-

tion methods, where the mRMSE or AUROC tended to increase/decrease significantly for

higher miss rates. For the highest miss rate, 50%, the Median/Mode method only showed

the worst performance in terms of mRMSE or AUROC for one data set, Mushroom, 50%.

The reason for this is likely that regardless of miss rates, the median or mode value is

remaining similar. As a consequence, the mRMSE or AUROC will be roughly the same

for all miss rates, and the Median/Mode method accordingly is better for higher miss rates

compared to other methods, whose performance deteriorates for as the miss rate increases.

• Better imputation performance for categorical variables than numerical For the

Bank, Letter and News data set with 10% and 30% miss rate, the RMSE for numerical

variables was approximately twice as high for the Median/Mode method as the corre-

sponding value for the MissForest method with the strongest performance, as presented

by Table 5 and Table 6 in the Appendix section. However, the difference in PFC for cate-

gorical variables was not as significant, where the value for MissForest was approximately

65-75% of the value of the corresponding PFC value for Median/Mode.

• Relatively weak predictive performance As presented in Figure 13 to Figure 16, the

Median/Mode method showed the worse performance in terms of AUROC or MSE in four

out of the 15 data sets in the study. It is accordingly clear that the predictive performance

for Median/Mode was not as poor as the imputation performance, where as mentioned the

Median/Mode method was the worst method for seven out of 15 data sets. This observation

suggests that using the median or mode value for imputation still adequately captures the

overall characteristics of the complete data set, thereby enabling the predictive model to

produce a satisfactory outcome, at least in relation to the imputation performance.

As described by Figure 12 the Median/Mode method even demonstrates the lowest MSE

score for one data set, News, 10%, as well as the highest accuracy average for one data
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set, Bank, 50%. However, the accuracy outcome lacks statistical significance at a 95%

confidence level, since GAIN v2 reports the same result. Further, Median/Mode does not

show the best average performance for any data set with regards to AUROC, suggesting

that the model can relatively accurately predict the correct target value, however at the

expense of a higher share of false positives.

5.2.3 MICE

The MICE model demonstrated inferior performance relative to alternative imputation mod-

els with regards to both execution time and the effectiveness of imputation and prediction.

Noteworthy considerations include:

• Extended execution times for large data sets The MICE model performed much

worse than all the other models in terms of execution times, likely making it inapproperi-

ate for practical purposes. As presented by Table 5, the MICE model exhibited the longest

execution time for the data set News, 10%, taking 121,295.4 seconds. In contrast, the sec-

ond slowest model, MissForest, demonstrated significantly improved efficiency, completing

the imputation process in 4,563.4597 seconds, which was more than 26 times faster than

MICE.

The reason to the extended execution times is likely that MICE is based on an iterative

fitting of a regression model between the feature variables, where the number of iterations

required to reach convergence can be high. Further, the model is based on Multiple Impu-

tation which implies fitting a number of models in each iteration, making it computational

expensive.

• Weak imputation performance MICE was not the best performing model on any data

set in terms of imputation performance, as shown in Figures 3 and 32. Further, it was the

worst model with regards to average mRMSE on two data sets, Letter, 30%, Letter, 50%,

even worse than the simplistic Median/Mode method.

The model struggled with imputing data sets with high miss rates and one possible ex-

planation for this difficulty lies in the methodology employed by MICE with creating

regressive models between the feature variables, and with high miss rates those models are

likely to not succeed in representing the data in a correct way.

• Slightly better prediction performance, yet still not competitiveMICE performed

slightly better with regards to prediction performance than imputation performance, com-

pared to the other imputation models. Especially for the Mushroom data set with only

categorical variables MICE showed strong performance, presented in Figure 13. The model

shared best performance with kNN imputation and MissForest onMushroom, 10% in terms

of both accuracy and AUROC, with the prediction metric presenting up to four decimal

places.

MICE also performed as the best model with regards to MSE on two data set with regres-

sion task News, 30% and News, 50%, as presented in Figure 17. However, the model was
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the worse model with regards to accuracy for three data sets (Letter, 30%, Letter, 50%,

Bank, 50% ), and four data sets with regards to AUROC (Letter, 30%, Letter, 50%, Bank,

50% and Credit, 50% ), as presented by Table 8.

• Potential improvement after model tuning Stef van Buuren, one of the authors of the

paper introducing MICE in “mice: Multivariate Imputation by Chained Equations” [65],

states that the performance of MICE can be improved by adapting the regression models

for the different variable types. In particular for data sets with many categories there is

a risk of that the number of fitted parameters grows too large in relation to number of

observations. Consequently, the use of the more robust regression models that are included

in the MICE package in R other than the default methods, such as cart (Classification and

Regression Trees) or rf (Random Forest Imputations), can lead to improved performance.

Nevertheless, improving MICE was out of scope for this study, and also practically infea-

sible due to the long execution times of the model. To exemplify this issue, it was not

feasible due to practical limitations to perform the imputation of MICE 10 times and find

an average and a standard deviation in this thesis, and a seed accordingly had to be used.

In conclusion, the MICE model showed worse performance compared to alternative methods

used in the study such as kNN imputation and MissForest. One potential reason is that MICE

has troubles handling non-linear relationship between feature variables, since it is based on

fitting regression models between the features in order to impute the missing values. Further,

the extended execution times of MICE leads to that the usability of the model for applications

in industry can be questioned.

5.2.4 kNN Imputation

The kNN imputation model was the best model considering predictive performance, and per-

formed second best after MissForest with regards to imputation performance as presented by

Figures 3 and 12. Additionally, it is generally considered intuitive and was considerably faster

than MissForest, leading to that it could be the most suitable method for practical applications.

A few aspects to consider include:

• Strong imputation and predictive performance kNN imputation was the second

best model in terms of imputation performance after MissForest, and particularly strong

for categorical variables. The model was the best performer for five out of the 15 data sets

when evaluating in terms of mRMSE, one data set when evaluating in terms of RMSE for

numerical variables and five data sets with regards to PFC, as presented in Figure 3.

When evaluating the predictive performance, kNN imputation was the best model with

regards to both accuracy and AUROC. As presented in Figure 11, it was the best model

in terms of accuracy for two data sets and of AUROC for three data sets when evaluating

the statistically significant results at a 95% confidence level. However, when examining

the average values, MissForest was the best method in terms of AUROC as presented by
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Figure 12. It can accordingly be concluded that the two methods were both strong and

performed very similarly.

• No variability A notable advantage of the kNN imputation model is that once the number

of neighbors k have been determined, there is no variability in the imputation results.

Additionally, considering that the execution time of kNN imputation is generally shorter

compared to MissForest, which produced the highest result, the model becomes beneficial

for practical applications as it only has to be run once.

• Hyperparameter sensitivity As presented in Section 2.3.1, kNN imputation is sensitive

to the choice of number of neighbors k. The selection of the optimal value for k in this

study is determined through cross-fold validation with the chosen k corresponding to the

number yielding the highest AUROC score for the validation data set. Nonetheless, there

are a number of ways found in literature to determine k, and examining how different values

of k would impact both the prediction and the imputation result would require substantial

efforts, being out of scope of this study. Nevertheless, it is evident that the value used for

each data set in this study impacts the result, which can be seen as a disadvantage of the

method, as it accordingly requires tuning.

There are several compelling reasons that make kNN an advantageous imputation method for

practical applications, despite showing the second best imputation performance after MissForest.

Firstly, kNN is acknowledged for its simplicity and ease of understanding, as the imputed values

are intuitively derived from the most similar observations. Secondly, the strong result is likely

a consequence of that kNN can handle complex relationships between variables in a robust way,

since the imputations are only based on the neighbor’s values. Lastly, the method is fast and is

only run once, being an important aspect in practical applications.

5.2.5 MissForest

The MissForest model showed the strongest performance with regards to imputation perfor-

mance of all models, and it was the second best model with regards to imputation performance

measured by AUROC as presented by Figures 3 and 11. There are several noteworthy aspects

to consider, including:

• Strongest imputation performance MissForest showed the strongest imputation per-

formance with regards to both mRMSE, RMSE for numerical variables as well as PFC

for categorical variables at a 95% confidence level, as is shown in Figure 3. The model

was particularly superior for numerical variables, showing the lowest RMSE for numerical

variables for all data sets except one, the Letter, 10% where kNN imputation performed

better. When evaluating the imputation models in terms of PFC, MissForest was not as

superior, yielding the best result for six out of 12 data sets followed by kNN imputation

which was the best performer for five out of 12 data sets, yet still at a 95% confidence

level.
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• Strong prediction performance for classification task Of the 12 data sets which

aimed to classify a target variable, MissForest showed best performance in terms of AU-

ROC for two data sets and best performance in terms of accuracy for one data sets,

presented in in Figure 11. It was accordingly the second best method with 95% certainty

in terms of number of data sets for which it performed best regarding prediction perfor-

mance, as kNN imputation was slightly better. In contrast, when observing only at the

average AUROC and accuracy values, MissForest was the best method as presented by

Figure 12. It was then the best method for three out of 12 data sets considering accu-

racy performance, and four out of 12 data sets considering AUROC performance. This

means that especially kNN imputation and MissForest both showed strong performance

and performed very similarly.

Despite this, when considering the News data set with a regression task, MissForest did

not show as strong performance as it was not the best model for any miss rate.

• Impact of use of standard parameters There are a number of parameters that can be

tuned when implementing MissForest, such as maximum numbers of iterations and number

of trees in the forest of the random forest models. Tuning the model was out of scope for

this study, indicating a potential for further performance enhancement of MissForest.

There are several possible reasons as to why MissForest showed such strong performance, both

with regards to imputation and prediction abilities. Firstly, as opposed to MICE assuming a

linear relationship, MissForest is known to be able to handle and capture complex relationships

between feature variables. The reason to this could be the fact that MissForest is an ensemble

learning based method that is formed by multiple decision trees, making the method able to

preserve the original distributions when imputing the data, which presumably yields better

both imputation and prediction performance. The ability of MissForest to handle large data

sets is also an advantage, even though the method is slower in regards to execution time than

alternatives such as kNN imputation.

5.2.6 GAIN

Both versions of GAIN were significantly outperformed by other methods across the different

data sets and miss rates in terms of imputation performance. The predictive performance was

comparatively better but still not as much as affecting the ranking of the imputation method

compaared to the alternatives methods in the study.

Poor imputation performance The two versions were even performing worse in terms of

mRMSE than the basic Median/Mode imputation for six out of 15 data sets including Bank,

30%, Bank, 50%, Credit, 50%, News, 10%, News, 30%, and News, 50%, as presented in Table 5

and Table 7 in Appendix. As seen in Figure 3, GAIN v2 was not the best performer for any

data set in terms of any evaluation metric. GAIN v1 was only the best performer for one data

set in terms of mRMSE and one data set in terms of RMSE cat and PFC.
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Enhanced predictive performance Despite the insufficient imputation efficiency, the pre-

dictive performance was comparatively better. Either GAIN v1 or GAIN v2 were better than

the Median/Mode method in terms of accuracy for all data set except for two. Further, when

examining the average values both GAIN versions were the best method out of all imputation

methods in terms of accuracy for two different data sets out of 12, as presented in Figure 12.

GAIN v1 was the superior model for Mushroom, 50% and Credit 50%, and GAIN v2 for Mush-

room, 10% and Bank, 10%. Both GAIN versions were the best model for these same two data

sets when evaluating based on AUROC as well, and in addition to this GAIN v2 was also the

best model for Credit, 30%. In total, one of the two GAIN versions were the best method out

of all imputation methods for five out of 12 data sets when evaluating based on AUROC, eval-

uating based on the average values. However, the variability of GAIN was comparatively high,

and it was accordingly not possible to state that a GAIN model was the best models for a data

set with 95 % certainty, explaining the result in Figure 32 where no GAIN version is the best

performer.

Challenge to converge GANs are known for their challenging training process, where both

the hyperparameters and model architecture are significantly impacting performance [2]. Making

a GAN network converge has proven to be difficult due to its structure with two neural networks,

since enhancing the performance of one network often comes at the expense of the other. To

exemplify this in the case of GAIN, the objective of the generator is to impute samples that

are so realistic that the discriminator can only classify if they are real or imputed with 50%

accuracy. However, if the GAIN framework continues training when the generator performs

much better than the discriminator, the discriminator will provide random feedback which lead

to that the overall quality of the network may collapse. Conversely, if the discriminator performs

too well, the generator may struggle to leverage the feedback effectively, hindering its ability to

discern the necessary improvements required for generating data that the discriminator believes

are sampled from the true distribution. This, in turn, can also contribute to a significantly

decreased quality of the network.

In this study, there are several possible explanatory reasons for the overall performance of

GAIN, namely:

• No convergence As seen in the Appendix, the test loss did not converge when training

the GAIN model and the loss function is behaving unstable. This entails that the model is

likely to not generalize well on unseen data, and since test and training data sets are used in

this study, this could be one explanatory reason to GAIN’s overall poor performance. This

is further strenghtened by the fact that for several papers showing solid GAIN performance,

no training and test split is done as seen in Table 1.

• Potential use of non-optimal hyperparameters The hyperparameters in this study

were selected based on cross-fold-validation, but optimally a larger grid search could have

been used to further optimize the parameters per data set. Additionally, the number of

training iterations is a parameter which have not been tuned in this study for GAIN v1,
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and instead the standard number of iterations from the original GAIN paper has been

used. To conclude, the fact that it is not certain that the global optimal hyperparameters

were found could potentially explain the poor performance of GAIN in this study.

• Model not fully adjusted to categorical data As the original code implementation

does not adapt an activation function in the output layer appropriate for categorical data,

the GAIN v1 model was expected to show poor categorical imputation performance. This

situation occured since GAIN v1 demonstrated poor overall imputation performance, in-

cluding for categorical variables. However, despite the fact that the model GAIN v2 was

developed with an adapted activation function it did still not show performance improve-

ment for categorical variables. This implies that GAIN’s ability to handle categorical

variables likely could be optimized further, and can be one reason to the models’ poor

performance.

• Variations in study set-up Compared to previous studies which have proven that GAIN

performs better than other imputation methods, this study introduces missing values

among categorical variables in a more realistic way. This implies that missing values

are introduced before the data set has been one-hot encoded just as in real life scenarios

when some values are missing, rather than after. This variation in study set up can also

be a potential explanatory reason as to why GAIN demonstrates worse performance than

other imputation methods in this study.

Potential of GAIN With this reasoning in mind it is essential to highlight that despite the

findings of this study, it is not certain that GAIN can not outperform other imputation methods.

There are a number of potential improvements of GAIN that can be investigated, and some of

them are likely to yield an improved result compared to the original version. Firstly, as with all

GAN networks it is possible to adapt the GAIN architecture to fit each data set. This for example

includes adding or removing number of layers in the generator’s or discriminator’s networks, or

adapting the size of the already existing layers. Secondly, it is possible to add, remove or adapt

different component of the network to mitigate the impact of the model’s weaknesses. The

caveats of the original GAN framework mentioned in Section 2.2.4 are applicable for the GAIN

model as well, and are the motivation behind introductions of more sophisticated models such

as SGAIN, WSGAIN-CP, and WSGAIN-GP [47]. These have shown to outperform the original

GAIN model and could therefore be interesting to further investigate.

Despite the possible improvements that have not been implemented in this study, it clearly

shows the difficulties associated with training GANs, and more specifically GAIN. In partic-

ular, the fact that this study tuned the hyperparameters through an extensive optimization

using cross-fold validation, as well as suggested several improvements presented as GAIN v2

emphasizes the challenges in training the GAIN model, especially for it to reach a level that

outperforms other state-of-art imputation methods.
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5.3 Comparison of GAIN v1 to GAIN v2

Similar in regards to imputation performance GAIN v2 was modified with the aim to

improve the handling of categorical variables. The Mushroom data set only contains categorical

variables and was anticipated to exhibit the most notable performance enhancement for GAIN

v2. In terms of the evaluation of PFC on the Mushroom data set, GAIN v2 was only superior in

terms of average PFC for miss rate 30%, as presented by Figure 4, yet it was still not possible

to state that GAIN v2 was better than GAIN v1 for this data set with 95% certainty. On the

other hand, it was possible to state that GAIN v1 was better than GAIN v2 in terms of PFC

with a confidence level of 95% for two data set, while it was only possible to state the opposite

for one data set. To sum up, GAIN v2 did not handle categorical variables better than GAIN

v1.

When considering the statistically significant result presented in Figure 9, it is clear that

regarding imputation performance the two methods showed very similar results, where GAIN

v1 was superior for three data sets in terms of mRMSE, while the corresponding number of data

sets for GAIN v2 was two. For the majority of the data sets it thus was not possible to state

which method that was superior with 95% certainty, due to the wide and overlapping confidence

intervals. Despite this, when considering the average mRMSE values as presented in Figure 10

GAIN v2 performs better than GAIN v1 in terms of mRMSE for nine out of the 15 data sets.

Similar in regards to predictive performance When considering prediction performance,

the result was very similar to the imputation performance result and it was accordingly difficult

to statistically significantly state which method of GAIN v1 and GAIN v2 that was superior. In

terms of AUROC, GAIN v1 outperformed GAIN v2 with 95% certainty for two data set, and

the corresponding number for GAIN v2 was one data sets as presented by Figure 18.

Observing the average values, GAIN v2 is superior than GAIN v1 for all miss rates for the

News data set. For the Mushroom data set, it performs better than GAIN v1 for lower miss

rates, 10% and 30%. In summary, when measuring the average AUROC score or MSE score,

GAIN v2 performs better than GAIN v1 for 10 out of the 15 data sets in the study, as presented

by Table 10. However, it is not possible to state this result at a 95% confidence level.

Conclusion and further improvements Considering the significance and emphasis placed

on hyperparameter optimization, it becomes evident that there is potential for further improve-

ment for GAIN v2. This arises from the fact that the optimal values for batch-size, alpha, and

hint-rate were directly inherited from the GAIN v1 version, with only the additional hyperpa-

rameters beta and tau being optimized. In this study, GAIN v1 and v2 performs very similarly

and the development of GAIN v2 does not alter the ranking of the model when compared to

other imputation methods.

However, GAIN v2 is outperforming GAIN v1 with regards to imputation time, since the

optimum for the model was found for approximately 3000 iterations instead of 10000 iterations

as the original GAIN implementation. This is a strength if applying GAIN since both of the
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models experience comparatively high variability of the results, and running the imputation

several times accordingly seems beneficial.

5.4 Impact of Additional Training Data using CTGAN on Different Imputa-

tion Methods

In this section, the results of the second research question will be presented where the aim is to

analyze the impact of additional training data for the different imputation methods.

5.4.1 Median/Mode

Mainly reduced performance when adding training data For Median/Mode imputa-

tion, additional data only improved the direct imputation performance in terms of mRMSE for

two data sets, Bank, 30% and Credit, 10% as presented by Figures 20 and 24. For both of

these, 50% additional data improved the result while 100% additional data worsens the result

compared to no additional data. For the remaining data sets, the addition of training data

resulted in a worse result in terms of mRMSE. In terms of predictive performance, both 50%

and 100% additional data exhibit improvements on two distinct data sets as described by Fig-

ure 34 and 30. Specifically, the performance of Credit, 10% and Credit, 30% is enhanced by 50%

additional data, while 100% additional data yields improved results for Credit, 10% and Bank,

10%. For the remaining data sets, the addition of data had a negative effect on the predictive

performance.

Potential reasons for negative impact of augmented training data Considering CT-

GAN’s objective to preserve the distribution of the initial training data set during data synthesis,

it may appear somewhat odd that the introduction of additional training data affects the out-

come. One plausible explanation for this could be that the CTGAN model fails to capture the

true underlying distribution of the initial training data. Adding more observations thus leads to

that the mode or the median of each feature variable changes, which leads to that the imputed

values with CTGAN are not the same to the imputed values without the augmented data. When

the median or mode changes for one or more columns the imputation and predictive performance

will undoubtedly also change.

The fact that adding CTGAN training data had a negative impact on the direct imputation

and predictive performance for the majority of the data sets indicates that the augmented train-

ing data accordingly has a different distribution than the original training data. As the imputed

values stems from another distribution than the true distribution, the predictive performance

reduces, and they are accordingly not as likely to predict the target variable.

5.4.2 MICE

Mainly reduced performance when adding training data MICE aims to capture the

relationships in the data for the observed values, and with more data the model could learn

from a larger sample size, and thus potentially improve the task. However, in the study, MICE
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does not achieve better imputation nor prediction performance with additional training data

generated by CTGAN for the majority of the data set, as seen in Figures 20, 25, 30 and 35. The

Mushroom, 30% is the only data set that is improved in terms of both mRMSE and AUROC.

The Bank, 10,% and Credit, 30, % data sets are the only data sets that improved in terms of

prediction performance. For the two latter, 100% additional data is superior than adding 50%

data.

Potential reasons for negative impact of augmented training data There are several

possible explanations to why adding training data using CTGAN has a negative impact on the

performance of MICE. One possible is the aspect already discussed for Median/Mode Imputa-

tion, namely that the CTGAN model fails to accurately capture the underlying distribution. For

MICE, this indicates that the regression model that aims to predict the missing values of a par-

ticular feature is impacted by data which does not fully represent the true relationship between

the features, resulting in a model which does not reflect the true data. This is especially the

case if the generated data contains outliers, as these observations are more likely to impact the

full model. Consequently, this situation increases the probability of incorrect imputed values.

Another aspect worth mentioning is that even if the training data were to enhance the

performance of MICE, it is likely not feasible from a practical standpoint. With 50% additional

data, the execution time almost doubled for some data sets. Without the augmented data,

MICE was the significantly slowest method in terms of execution time, and it is therefore to

justify a decision that makes it even slower.

5.4.3 MissForest

Various impact on direct imputation performance The MissForest algorithm shows

various outcomes regarding direct imputation performance for additional data. Out of the

nine data sets examined, it can be stated with 95% certainty that adding the augmented data

improves the result for four data sets, while it has a negative impact on the mRMSE result of

three data set. When examining the average values, the augmented data improves the result of

four data sets and worsens the result on five data set, presented in Figure 27. To sum up, it

is not clear whether the augmented data improves the result or has a negative impact, and the

conclusion can thus be made that it does not impact the imputation performance of MissForest

drastically.

The data sets that are improved includes Mushroom, 30%, Bank, 30%, Credit, 10%, and

News, 10%, and no correlation between a specific miss rate and improvement from additional

data can accordingly be found. Further, it is not possible to state if 50% or 100% additional

data impacts the result the most in terms of direct imputation performance and mRMSE, since

this differ between the data sets for which the performance is improved.

Limited impact on predictive performance Similarly to the imputation performance, it is

not possible to state with 95% certainty that the additional data improves the result of any data

set when evaluating the AUROC performance. It is only possible to state with 95% certainty
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that the 100% additional data has a negative impact on the result for one data set, as presented

in Figure 30.

When examining the average AUROC values, adding 50% of additional data implies that

AUROC is reduced for five out of nine data sets, while the result is identical for two data set

and higher for two data sets as presented by Figure 31. The corresponding value when adding

100% is four out of nine improving, three is negatively impacted and two data sets showing the

same performance with or without CTGAN data.

Potential reasons for limited impact of augmented data The result of MissForest when

adding CTGAN data is comparatively vague, and adding the data overall does not have a sig-

nificant impact on the result for the majority of the data sets. In some situations the augmented

data has a slightly negative impact, which can likely be explained with a similar reasoning as

for Median/Mode and MICE, that the CTGAN model fails to fully capture the true underlying

distribution of the original data.

The reason to MissForest appearing less impacted compared to Median/Mode and MICE

could be that MissForest does not directly use the full distribution of the data when fitting the

random forests and thus estimating the imputed values. Instead, the model chooses subsets

of features and observations to train each decision tree in the model through random feature

selection and random sampling. The slightly negative impact of adding more data could be a

result of the fact that if the distribution of the augmented data is altered, the distribution of

the subset is also likely to be slightly affected.

5.4.4 kNN Imputation

Enhanced result with additional data The kNN imputation shows significant improvement

with additional data. The performance improvement with the augmented data is most significant

when examining the prediction result, as seen in Figure 30. Adding 50% data improves the

prediction result in six out of nine data sets, and remains the same for two out of the nine data

sets. The Letter, 10% is the only data set for which adding 50% data has a negative impact,

but this difference is considered very small in terms of magnitude, corresponding to a decrease

in AUROC of 0.06%. When adding 100% data, the prediction result improves in five out of

eight data sets, and remains the same for two out of the nine data sets. It is only the Letter,

10% and News, 10% that performs worse with 100% additional data, again with the observed

difference considered to be minimal. For direct imputation performance and for a low miss rate,

10%, none of the data sets gets improved in terms of mRMSE with additional data. However,

for 30% miss rate, four out of the five data sets improves or remains the same with additional

training data.

The additional data strengthens kNN Imputation’s position as a leading performer

When assessing the performance of all methods in terms of direct imputation performance

and mRMSE, Figure 22 demonstrates that kNN imputation and MissForest without additional

data are the best performers. Introducing additional data to these methods have improved the
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results for certain data sets, however not for all and both kNN imputation and MissForest are

still considered to be the best method in terms of imputation performance.

After comparing all imputation methods in terms of predictive performance and AUROC

with the inclusion of additional training data, it is evident from Figure 32 that kNN imputation

consistently remains one of the top-performing methods. However, it is important to note that

it is only possible to determine with 95% confidence which method is superior for a few data

sets. This implies that multiple methods perform similarly well. Despite this, if one were to

select a single imputation method as the best in this study, kNN would be the preferred choice.

Furthermore, it is worth mentioning that if both kNN imputation without additional data

and kNN imputation with additional data exhibit the same best AUROC value in Figure 32,

neither of them is considered statistically significantly superior, even though they might outper-

form all other imputation methods. This suggests that the method has more instances of being

the best performer than what is depicted in Figure 5, and it is therefore beneficial to consider

the average best values when determining the optimal method.

When examining the average AUROC values, any kNN method is the best performing

method for six out of the eight data sets in comparison as presented in Figure 33. In the

study without additional CTGAN data, kNN imputation was only the best method for three

out of 12 data sets as presented by Figure 12. The additional training data thus strengthens

kNN imputation’s position as s top performer in terms of predictive performance in this study.

Potential reasons for positive impact of augmented data The discovery that incorpo-

rating training data through CTGAN substantially enhances predictive performance for kNN

imputation is an interesting founding, particularly since the utilization of augmented training

data in combination with the other methods indicates that CTGAN fails to fully capture the

underlying distribution of the original data in the generated data. Additionally, it is worth

noting that the model with additional data has improved despite the fact that the number of

neighbors, k, has been optimized using cross-validation on the data set without augmented data.

This approach was chosen since determining a k for the increased training data is not possible

without synthesizing a target variable.

To understand why CTGAN improves kNN imputation, it is crucial to fully comprehend

the basic nature of kNN imputation. The method imputes the missing values on the basis

of the non-missing values of the k nearest neighbors in the feature space. Adding more data

is likely to add more neighbors to an observation, resulting in that all observations likely gets

surrounded by more observations which are similar to themselves. An observation which already

is surrounded by many other observations, i.e., an observation that is not an outlier, is likely

to not be as impacted by the additional data when its missing values are imputed. However,

the augmented data could result in that even the outliers are surrounded by more observations

which are similar to themselves. When imputing the value of an outlier with the mean or mode

value of the non-missing corresponding values of the k nearest neighbors, it is then likely that

this value is closer to the true value, since the k neighbors now resembles the observation more.

This reasoning could be the explanation as to why the predictive performance is clearly improved
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with the augmented data.

One last notable conclusion is that augmenting more data does not necessarily lead to im-

proved performance. Surprisingly, the addition of 50% additional data outperforms the results

obtained by adding 100% data, although this difference is minimal. One possible reason for this

is that when there has been enough data generated so that the majority of all observations to

have k close neighbors, the result will not be further improved. At this point, more observations

generated by CTGAN is likely to have a negative impact, since the probability that the close

neighbors of one observation are sampled from this distribution and not the true distribution

then increases. Since it is likely that the distribution generated by CTGAN is to be differing

from the original data distribution, this will lead to that the added neighbors are not an as good

approximation of the missing values as the original neighbors.

5.4.5 GAIN

An increased amount of training data did not improve performance significantly for neither of

the GAIN versions even though GANs have previously seen to benefit from a larger amount of

training data. Further, adding larger amounts of data, i.e., adding 500% instead of 50%, had a

more negative impact on the result.

GAIN v1 There are only a few data sets for which the additional CTGAN data improved the

imputation performance for GAIN v1. Instead, for the majority of the data sets there seems

to be a decreased direct imputation performance the more additional data that was added as

presented by Figure 20 and 21. Specifically, adding 500% data is performing the worst for all

data sets except for News, 10% where it is the second worse performer. The data setsMushroom,

30%, Credit, 30%, and News, 10% are the only data sets that benefit from additional data in

terms of average lower mRMSE, but only for additional amounts 50%, 100%, and 200%. It was

only possible to state that adding CTGAN improved the result with 95% certainty for one data

set when adding 50% and 200% CTGAN data, as presented in Figure 20. For 100% and 500%

additional data, it was not possible to reach this level of certainty for any data set. It was on

the other hand statistically significant that adding CTGAN decreases imputation performance

in terms of mRMSE for five out of nine data sets when adding 50% of data, six out of nine data

sets for 100%, five out of nine data sets for 200%, and lastly seven out of nine data sets for

500%.

In contrast, when considering the average AUROC or MSE in terms of predictive perfor-

mance, adding 50% CTGAN data improves the average value seven out of nine data sets. It is

only the Letter data set for all miss rates that does not improve with this amount of additional

data as presented by Figure 38 and Tables 15 and 16 in the Appendix. The amount 50% data

is however the only extra amount of CTGAN data that seems to have a positive impact on the

average AUROC or MSE. Adding 100%, 200%, or 500% either has a negative, or only a small

positive impact, as presented by Tables 14 to 19. Despite the increase in average AUROC for

GAIN v1 when adding 50% additional data, it was not possible to state with 95% certainty that

the result was improved. As seen in Figure 30, there was no data set for which it is possible to

71



state that the AUROC value was improved with 95% certainty for any amount of CTGAN data.

The reason for this is likely the comparatively wide confidence intervals of the GAIN method.

GAIN v2 Regarding imputation performance, none of the data sets are showing lower mRMSE

for any amount of additional training data for GAIN v2 as presented in Figure 20. All of the

data sets show the same pattern of demonstrating a reduced performance the more additional

data that is added.

A few data set show higher average AUROC score with additional data, as seen by Figure 31.

The Bank data set improves with additional data for both 10% and 30% miss rate and the best

performer for the Credit data set is the Credit, 10%, 200%. Although these are exceptions and

the majority of data sets does not improve in terms of prediction. Further, as presented in

Figure 30, it can not be stated with 95% certainty that any of the data sets show an increase in

performance.

Potential reasons for negative impact of augmented training data One potential

reason to model’s poor performance is likely due to its nature, making GAIN is very sensitive

to changes in the true distribution. In the GAIN model, the goal of the generator is to learn the

true data distribution and it is therefore crucial that the augmentation by CTGAN data have

minimal impact on the overall data distribution. This finding further reinforces the hypothesis

that CTGAN failed to fully capture the true distribution, consequently adversely impacting the

performance of the GAIN model when augmented data is incorporated.

5.4.6 CTGAN

In summary, the only imputation method that showed significant benefit from additional training

data generated by CTGAN was kNN imputation and all other methods were on the contrary

negatively impacted by additional data. As previously suggested, this could be due to the lack

of ability for the CTGAN model to capture the true data distribution.

Impact of small data sample The quality of data generated by CTGAN is dependent

on the quality that the model was sampling from. For all data sets with 50% miss rates, no

complete data rows were remaining and thus no sampling could be done. For data sets with

many dimensions, in this study the News data set, miss rates on the level of 30% also left

no complete data rows. This finding reveals that this approach of using augmented data with

CTGAN is limited to data sets with lower miss rates. Even for lower miss rates, the number

of complete data rows could remain small and thus affecting the ability for CTGAN to sample

data similar to the true distribution due to the limited sample size.

Issues with complex distributions and the lack of hyperparameter tuning Even

with a larger data set to sample from, CTGAN has shown difficulties in sampling complex

distributions. Especially for mixed data type variables, long-tail distributions and skewed multi-

mode continuous variables Zhao et al. [78] showed that CTGAN fall short in solving these
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challenges and leaving room for improvement for the synthetic data generation. The absence of

hyperparameter tuning for the CTGAN model in this study could be another contributing factor

to the results obtained. The hyperparameters were adapted as they were proposed in the original

paper, without further optimization or fine-tuning. CTGAN aims to fully capture the original

data distribution, although it inevitably introduces certain alterations to the distribution. This

effect becomes more noticeable when dealing with a limited sample size and complex distributions

in the sampled data. The imputation models demonstrate varying levels of sensitivity to these

alterations, shown in their response to additional training data.
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6 Conclusions and Future Work

6.1 Comparison of GAIN to Standard Imputation Methods

This study aimed to investigate how well a GAN network, namely GAIN, performs in regards

to data imputation as compared to other state-of-art data imputation methods. Two versions

of GAIN, including the original model and an updated version tailored for categorical variables,

were evaluated alongside the other imputation techniques. The updated GAIN version incorpo-

rated additional modifications such as an updated activation function, a tuning parameter for

categorical loss, and an updated rounding function.

In terms of imputation accuracy, measured by RMSE for numerical variables and PFC

for categorical variables, both versions of GAIN were found to be outperformed by MICE,

MissForest, and kNN imputation, and in some cases even by the basic method Median/Mode.

However, when considering predictive performance measured by AUROC, both GAIN versions

showed comparatively stronger performance. When examining the average values, one of the

two version was the best performing model out of all imputation methods in this study for five

out of 12 data sets. However, the high variability of GAIN makes it impossible to state this

result significant on a 95% confidence level.

A comparison between the two GAIN versions showed that the modifications in the updated

model did not yield the desired effect for categorical variables. The overall model adjustments

led to an improved performance when examining the averages values, particularly in terms of

predictive abilities, where the updated version outperformed the original version for 10 out of

15 data sets. Again, when evaluating the result significant on a 95% confidence level, the same

conclusion can not be stated because of the variability and thus wide, overlapping confidence

intervals.

In conclusion, mainly MissForest and kNN imputation emerged as the top performers in

this study. Both MissForest and kNN imputation were considerably better than GAIN in terms

of imputation accuracy, yet all three models showed a similar performance with regards to

prediction abilities. Considering practicality, kNN imputation proved to be the best model due

to both having a low execution time as well as minimal tuning requirements, making it the most

suitable choice among the evaluated imputation methods for real-world applications.

Despite the outcomes of this research, there remains potential for the GAIN model to prove

its superiority as an imputation method. It is worth noting that the ideal network structure

and optimal selection of hyperparameters were likely not identified in this study for the given

data sets. Further investigation and refinement are necessary to fully explore the capabilities of

GAIN in data imputation.

6.2 Impact of Additional Training Data

Secondly, this study aimed to investigate the impact of adding additional training data to state-

of-art data imputation methods generated by a GAN network, namely CTGAN. Likely because

of its inability to fully capture the underlying data structure, the additional training data did not
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improve the direct imputation nor prediction performance for the majority of experiments. The

exceptions for this was MissForest which was limited impacted by the additional data as well

as kNN imputation which was improved by the additional data, specially in terms of predictive

performance.

Evaluating the overall best performers in terms of direct imputation performance measured

by mRMSE in this study, kNN imputation and MissForest, both without additional training

data, emerged as the best performers. When examining predictive performance, kNN impu-

tation with or without additional data achieved the best results for the majority of data sets.

The additional training data strengthens kNN imputation’s position as a optimal choice when

selecting imputation method.

To sum up, the additional training data significantly enhanced the predictive performance of

kNN imputation, which already without the additional data was one of the two top performing

methods. The result of this study accordingly demonstrates that combining kNN imputation

with the approach of increasing the training data using CTGAN can be a preferable choice for

practical applications where the aim is to maximize the predictive performance of a data set

with missing values.

6.3 Future Work

The limitations imposed in this study, as well as the selection of certain factors leaves room for

further research. This includes exploring the same research questions yet for MNAR and MAR

mechanisms for missing values, higher or lower amounts of missing values, different ratios of test

and training data split and higher amounts of additional training data.

In this study, CTGAN was used with the default parameters while the impact of other GAN

based synthezisers such as CTAB-GAN+ [78] and TGAN [71] warrants further investigation.

The statistical similarity between the generated data and the original data was not analyzed,

indicating the need for continued research. There remains a possibility that if the data gen-

erated by CTGAN exhibits closer statistical properties and successfully preserves the original

data distribution, numerous data imputation models could derive benefits from additional train-

ing data. Larger data sets are also considered to influence the CTGAN model positively and

demands further study.

Work that has shown to improve the GAIN model, such as SGAIN, WSGAIN-CP, and

WSGAIN-GP [47] or GAIN with variable-splitting [7] was not used in this study and invites

further analysis.
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Appendix

Direct imputation evaluation

Data set Miss %
Additional

CTGAN data%
Median/Mode MICE

mRMSE RMSE num RMSE cat PFC (%) Time (s) mRMSE RMSE num RMSE cat PFC (%) Time (s)

Mushroom

10
0 0.3955 - 0.3955 15.6410 0.0088 0.2992 - 0.2992 8.9540 16,623.0000
50 0.4026 - 0.4026 16.2103 0.0129 0.3185 - 0.3185 10.1444 30,812.9900
100 0.4035 - 0.4035 16.2828 0.0191 0.3354 - 0.3354 11.2520 35,016.3100

30
0 0.3964 - 0.3964 15.7140 0.0088 0.3071 - 0.3071 9.4312 13,624.0000
50 0.4083 - 0.4083 16.6742 0.0117 0.2919 - 0.2919 8.5197 21,595.5600
100 0.4083 - 0.4083 16.6742 0.0255 0.2864 - 0.2864 8.1997 50,137.0800

50
0 0.3978 - 0.3978 15.8236 0.0098 0.3194 - 0.3194 10.2035 9,907.0000
50 - - - - - - - - - -
100 - - - - - - - - - -

Letter

10
0 0.1555 0.1555 - - 0.0231 0.1522 0.1522 - - 798.0000
50 0.1569 0.1569 - - 0.0245 0.1776 0.1776 - - 1,247.5640
100 0.1569 0.1569 - - 0.0331 0.1831 0.1831 - - 1,769.7750

30
0 0.1551 0.1551 - - 0.0192 0.1614 0.1614 - - 634.0000
50 0.1604 0.1604 - - 0.0276 0.2054 0.2054 - - 1,304.5640
100 0.1717 0.1717 - - 0.0325 0.2179 0.2179 - - 7,200.4490

50
0 0.1561 0.1561 - - 0.0201 0.1736 0.1736 - - 469.0000
50 - - - - - - - - - -
100 - - - - - - - - - -

Bank

10
0 0.4957 0.2661 0.4182 17.4882 0.0441 0.4280 0.1585 0.3976 15.8082 27,945.0000
50 0.5012 0.2663 0.4245 18.0236 0.0705 0.4583 0.1926 0.4159 17.2990 55,749.5100
100 0.4998 0.2662 0.4230 17.8898 0.0842 0.4738 0.2041 0.4276 18.2821 70,437.8300

30
0 0.4942 0.2636 0.4180 17.4764 0.0489 0.4496 0.1823 0.4110 16.8900 19,092.0000
50 0.4927 0.2556 0.4212 17.7406 0.0650 0.4878 0.2212 0.4348 18.9012 31,385.9900
100 0.4954 0.2609 0.4212 17.7406 0.0916 0.4982 0.2320 0.4409 19.4418 56,398.3800

50
0 0.4959 0.2671 0.4179 17.4599 0.0477 0.4752 0.2148 0.4239 17.9660 13,067.0000
50 - - - - - - - - - -
100 - - - - - - - - - -

Credit

10
0 0.3412 0.0711 0.3338 11.1390 0.0482 0.2694 0.0667 0.2610 6.8145 53,815.9300
50 0.3410 0.0728 0.3332 11.1004 0.0717 0.2935 0.0773 0.2831 8.0146 62,607.1400
100 0.3413 0.0742 0.3332 11.1004 0.0957 0.3017 0.0812 0.2906 8.4432 97,838.2700

30
0 0.3366 0.0707 0.3291 10.8315 0.0479 0.2852 0.0709 0.2762 7.6288 37,228.0000
50 0.3366 0.0704 0.3291 10.8315 0.0650 0.3063 0.0700 0.2982 8.8926 73,280.6600
100 0.3367 0.0711 0.3291 10.8315 0.0874 0.3148 0.0692 0.3071 9.4295 78,805.9900

50
0 0.3376 0.0711 0.3301 10.8933 0.0447 0.3048 0.0744 0.2956 8.7387 46,321.3000
50 - - - - - - - - - -
100 - - - - - - - - - -

News

10
0 0.5046 0.1942 0.4658 21.6931 0.1543 0.3975 0.1412 0.3716 13.8075 121,295.4000
50 0.5085 0.1953 0.4696 22.0487 0.2228 0.4567 0.1874 0.4165 17.3483 167,948.8000
100 0.5098 0.1985 0.4696 22.0487 0.3152 0.4741 0.2041 0.4279 18.3069 389,598.1000

30
0 0.5046 0.1954 0.4652 21.6391 0.1478 0.4273 0.1606 0.3960 15.6822 106,131.0300
50 - - - - - - - - - -
100 - - - - - - - - - -

50
0 0.5041 0.1954 0.4646 21.5900 0.1457 0.4561 0.1840 0.4173 17.4153 95,325.6500
50 - - - - - - - - - -
100 - - - - - - - - - -

Table 5: Direct imputation performance for Median/Mode and MICE.
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Data set Miss %
Additional

CTGAN data%
kNN imputation MissForest

mRMSE RMSE num RMSE cat PFC (%) Time (s) mRMSE RMSE num RMSE cat PFC (%) Time (s)

Mushroom

10
0 0.2938 - 0.2938 8.6331 13.0536 0.2738 - 0.2738 7.4981 234.6251
50 0.2973 - 0.2973 8.8401 23.1802 0.2752 - 0.2752 7.5721 190.4786
100 0.2991 - 0.2991 8.9436 28.3888 0.2755 - 0.2755 7.5881 195.3887

30
0 0.2857 - 0.2857 8.1649 33.8431 0.2946 - 0.2946 8.6782 226.0323
50 0.2855 - 0.2855 8.1510 50.7801 0.2907 - 0.2907 8.4540 167.5020
100 0.2854 - 0.2854 8.1475 86.1779 0.2906 - 0.2906 8.4429 197.2753

50
0 0.3122 - 0.3122 9.7443 55.9795 0.3084 - 0.3084 9.5111 219.9948
50 - - - - - - - - - -
100 - - - - - - - - - -

Letter

10
0 0.0563 0.0563 - - 20.0696 0.0668 0.0668 - - 150.4569
50 0.0564 0.0564 - - 30.0753 0.0669 0.0669 - - 170.4551
100 0.0568 0.0568 - - 39.2864 0.0670 0.0670 - - 239.2756

30
0 0.0949 0.0949 - - 41.0851 0.0863 0.0863 - - 181.5598
50 0.0948 0.0948 - - 65.8943 0.0874 0.0874 - - 222.8474
100 0.0949 0.0949 - - 97.6715 0.0874 0.0874 - - 309.1806

50
0 0.1421 0.1421 - - 43.3355 0.1117 0.1117 - - 181.7431
50 - - - - - - - - - -
100 - - - - - - - - - -

Bank

10
0 0.3891 0.1201 0.3701 13.6989 242.7307 0.3601 0.0790 0.3514 12.3461 373.9059
50 0.3900 0.1204 0.3709 13.7589 429.3248 0.3623 0.0787 0.3536 12.5053 667.0185
100 0.3906 0.1215 0.3712 13.7773 680.5893 0.3627 0.0786 0.3541 12.5362 977.0187

30
0 0.3905 0.1309 0.3679 13.5349 554.8403 0.3739 0.0915 0.3625 13.1404 367.9164
50 0.3897 0.1302 0.3673 13.4922 755.7339 0.3714 0.0912 0.3600 12.9625 519.8957
100 0.3896 0.1303 0.3672 13.4845 1,090.0957 0.3735 0.0909 0.3623 13.1256 666.6593

50
0 0.4389 0.1914 0.3950 15.5999 752.8814 0.4074 0.1255 0.3876 15.0221 343.9106
50 - - - - - - - - - -
100 - - - - - - - - - -

Credit

10
0 0.2488 0.0525 0.2432 5.9145 212.3275 0.2623 0.0481 0.2578 6.6485 876.7438
50 0.2490 0.0531 0.2433 5.9188 371.5996 0.2599 0.0477 0.2555 6.5265 1,244.0736
100 0.2488 0.0534 0.2430 5.9059 561.0505 0.2587 0.0477 0.2543 6.4657 3,369.6949

30
0 0.2631 0.0548 0.2573 6.6212 412.7396 0.2731 0.0517 0.2682 7.1931 726.0621
50 0.2631 0.0548 0.2574 6.6241 615.7652 0.2827 0.0516 0.2780 7.7285 1,093.8533
100 0.2633 0.0548 0.2576 6.6342 999.9039 0.2829 0.0517 0.2782 7.7378 1,483.2502

50
0 0.2805 0.0628 0.2734 7.4761 426.9053 0.2895 0.0567 0.2839 8.0616 751.1649
50 - - - - - - - - - -
100 - - - - - - - - - -

News

10
0 0.3824 0.1138 0.3651 13.3282 200.3602 0.3807 0.0667 0.3748 14.0472 4,563.4597
50 0.3830 0.1139 0.3657 13.3746 510.4984 0.3775 0.0668 0.3716 13.8060 17,908.8383
100 0.3827 0.1140 0.3653 13.3436 977.3805 0.3778 0.0671 0.3718 13.8253 19,145.3693

30
0 0.4226 0.1319 0.4015 16.1178 815.9997 0.3978 0.0936 0.3866 14.9487 3,966.0575
50 - - - - - - - - - -
100 - - - - - - - - - -

50
0 0.4671 0.1539 0.4410 19.4521 1,082.1920 0.4082 0.1228 0.3892 15.1518 2,781.4976
50 - - - - - - - - - -
100 - - - - - - - - - -

Table 6: Direct imputation performance for kNN imputation and MissForest.
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Data set Miss %
Additional

CTGAN data%
GAIN v1 GAIN v2

mRMSE RMSE num RMSE cat PFC (%) Time (s) mRMSE RMSE num RMSE cat PFC (%) Time (s)

Mushroom

10

0 0.3012 - 0.3012 9.0751 219.3784 0.3079 - 0.3079 9.4840 86.9120
50 0.3098 - 0.3098 9.6035 220.0752 0.3532 - 0.3532 12.4776 87.3286
100 0.3147 - 0.3147 9.9063 220.2326 0.3531 - 0.3531 12.4724 87.7730
200 0.3169 - 0.3169 10.0461 202.9568 0.3682 - 0.3682 13.5687 94.6598
500 0.3307 - 0.3307 10.9378 273.9795 0.4168 - 0.4168 17.3811 89.4766

30

0 0.3106 - 0.3106 9.6935 491.4529 0.2986 - 0.2986 8.9153 133.0322
50 0.3004 - 0.3004 9.0233 320.3635 0.3001 - 0.3001 9.0064 133.6565
100 0.3029 - 0.3029 9.1750 313.3883 0.3028 - 0.3028 9.1675 133.7602
200 0.3074 - 0.3074 9.4500 292.4889 0.3041 - 0.3041 9.2513 133.6157
500 0.3120 - 0.3120 9.7363 295.5243 0.3116 - 0.3116 9.7095 134.7257

50

0 0.3023 - 0.3023 9.1395 289.4416 0.3110 - 0.3110 9.6780 133.8178
50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
500 - - - - - - - - - -

Letter

10

0 0.1307 0.1307 - - 80.7946 0.1489 0.1489 - - 32.8274
50 0.1441 0.1441 - - 82.5710 0.1552 0.1552 - - 33.5720
100 0.1447 0.1447 - - 83.0033 0.1619 0.1619 - - 28.5619
200 0.1509 0.1509 - - 86.3958 0.1704 0.1704 - - 33.3429
500 0.1565 0.1565 - - 94.0636 0.1926 0.1926 - - 33.4046

30

0 0.1410 0.1410 - - 21.2775 0.1381 0.1381 - - 7.0703
50 0.2241 0.2241 - - 22.6122 0.2266 0.2266 - - 7.4875
100 0.2421 0.2421 - - 23.4082 0.2532 0.2532 - - 7.7362
200 0.2681 0.2681 - - 26.1355 0.2557 0.2557 - - 8.6405
500 0.2691 0.2691 - - 262.0605 0.2622 0.2622 - - 10.7681

50

0 0.1535 0.1535 - - 21.3343 0.1395 0.1395 - - 6.8924
50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
500 - - - - - - - - - -

Bank

10

0 0.4571 0.1991 0.4112 16.9196 102.6840 0.4540 0.1679 0.4218 17.7947 42.2187
50 0.5078 0.2508 0.4411 19.4676 105.4820 0.5029 0.2356 0.4440 19.7166 42.6537
100 0.5263 0.2757 0.4478 20.0674 107.2780 0.5288 0.2609 0.4598 21.1567 43.0019
200 0.5255 0.2734 0.4484 20.1154 113.6608 0.5267 0.2548 0.4607 21.2282 43.6108
500 0.5389 0.2806 0.4599 21.1636 132.0192 0.5529 0.3075 0.4593 21.1036 48.4040

30

0 0.5023 0.2606 0.4289 18.4549 126.0892 0.4947 0.2301 0.4378 19.1702 54.2925
50 0.5309 0.2786 0.4515 20.3978 128.1379 0.5348 0.2655 0.4642 21.5671 52.9229
100 0.5374 0.2845 0.4556 20.7813 130.6764 0.5466 0.2746 0.4726 22.3444 54.3152
200 0.5296 0.2899 0.4429 19.6227 136.5815 0.5516 0.2769 0.4769 22.7539 55.0712
500 0.5379 0.2926 0.4511 20.3602 153.5657 0.5647 0.2919 0.4834 23.3711 59.6233

50

0 0.4960 0.2452 0.4306 18.5818 126.2219 0.5345 0.2847 0.4509 20.3589 52.2066
50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
500 - - - - - - - - - -

Credit

10

0 0.2865 0.0846 0.2723 7.4319 123.9849 0.2845 0.1039 0.2641 6.9782 47.9572
50 0.3108 0.1144 0.2889 8.3512 125.6246 0.3051 0.1329 0.2744 7.5363 48.5927
100 0.3171 0.1239 0.2919 8.5269 128.5328 0.3182 0.1428 0.2840 8.0699 49.4474
200 0.3303 0.1260 0.3052 9.3200 132.4346 0.3202 0.1422 0.2866 8.2139 50.3687
500 0.3397 0.1411 0.3089 9.5521 144.5168 0.3660 0.1492 0.3340 11.1587 53.6295

30

0 0.3028 0.1310 0.2712 7.3627 123.9755 0.3143 0.1298 0.2841 8.0744 47.7763
50 0.2955 0.0851 0.2829 8.0099 126.5915 0.3301 0.0956 0.3158 9.9887 48.3202
100 0.2977 0.0892 0.2840 8.0690 128.0890 0.3403 0.1089 0.3223 10.3919 49.1599
200 0.3100 0.0956 0.2943 8.6716 132.1302 0.3553 0.0819 0.3457 11.9597 50.2976
500 0.3249 0.0870 0.3130 9.8123 144.0905 0.3767 0.0908 0.3656 13.3710 53.6232

50

0 0.3658 0.1897 0.3084 9.6314 124.5231 0.3477 0.1960 0.2859 8.1818 49.4874
50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
500 - - - - - - - - - -

News

10

0 0.5286 0.2028 0.4877 24.0928 156.0280 0.5080 0.2025 0.4659 21.7286 60.4982
50 0.5528 0.2261 0.5040 25.6637 159.0499 0.5337 0.2478 0.4727 22.3471 58.9748
100 0.5666 0.2290 0.5172 27.5346 170.0710 0.5427 0.2632 0.4745 22.5234 58.6028
200 0.5230 0.2287 0.4699 22.3363 188.8049 0.5631 0.2803 0.4883 23.8578 60.7719
500 0.5654 0.2387 0.5121 26.4237 204.8834 0.5646 0.3019 0.4769 22.7522 65.3983

30

0 0.5818 0.3011 0.4963 24.9993 127.1362 0.5231 0.2769 0.4426 19.5948 43.1571
50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
500 - - - - - - - - - -

50

0 0.5090 0.2006 0.4676 21.9779 167.8975 0.5206 0.2352 0.4639 21.5315 60.5239
50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
500 - - - - - - - - - -

Table 7: Direct imputation performance for GAIN v1 and GAIN v2.
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Prediction evaluation

Data set Miss %
Additional

CTGAN data%
Median/Mode MICE

Accuracy AUROC MSE Accuracy AUROC MSE

Mushroom

10
0 0.9938 0.9938 - 0.9969 0.9968 -
50 0.9938 0.9938 - 0.9938 0.9942 -
100 0.9938 0.9938 - 0.9938 0.9935 -

30
0 0.9723 0.9721 - 0.9908 0.9906 -
50 0.9631 0.9620 - 0.9938 0.9938 -
100 0.9631 0.9620 - 0.9846 0.9841 -

50
0 0.9231 0.9211 - 0.9723 0.9717 -
50 - - - - - -
100 - - - - - -

Letter

10
0 0.7438 0.8666 - 0.7613 0.8777 -
50 0.7413 0.8649 - 0.7025 0.8462 -
100 0.7413 0.8649 - 0.7175 0.8547 -

30
0 0.5075 0.7431 - 0.4725 0.7265 -
50 0.4975 0.7379 - 0.4113 0.6981 -
100 0.4813 0.7301 - 0.3963 0.6884 -

50
0 0.3413 0.6585 - 0.2875 0.6327 -
50 - - - - - -
100 - - - - - -

Bank

10
0 0.8841 0.5800 - 0.8835 0.5859 -
50 0.8841 0.5800 - 0.8841 0.5883 -
100 0.8865 0.5959 - 0.8865 0.5897 -

30
0 0.8829 0.5773 - 0.8835 0.5817 -
50 0.8805 0.5717 - 0.8817 0.5683 -
100 0.8805 0.5697 - 0.8811 0.5679 -

50
0 0.8774 0.5555 - 0.8726 0.5258 -
50 - - - - - -
100 - - - - - -

Credit

10
0 0.8133 0.6224 - 0.8142 0.6244 -
50 0.8108 0.6237 - 0.8050 0.5984 -
100 0.8108 0.6194 - 0.8083 0.6221 -

30
0 0.8042 0.5921 - 0.8017 0.5992 -
50 0.8050 0.5955 - 0.8017 0.5920 -
100 0.8042 0.5936 - 0.8108 0.6064 -

50
0 0.7933 0.5824 - 0.7967 0.5600 -
50 - - - - - -
100 - - - - - -

News

10
0 - - 42,697,557.5181 - - 42,780,641.5494
50 - - 42,658,124.6885 - - 43,069,866.4412
100 - - 42,657,250.5675 - - 43,905,882.2382

30
0 - - 45,732,512.0135 - - 42,996,370.0172
50 - - - - - -
100 - - - - - -

50
0 - - 45,984,065.0999 - - 43,543,375.0009
50 - - - - - -
100 - - - - - -

Table 8: Prediction performance for Median/Mode and MICE.
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Data set Miss %
Additional

CTGAN data%
kNN imputation MissForest

Accuracy AUROC MSE Accuracy AUROC MSE

Mushroom

10
0 0.9969 0.9968 - 0.9969 0.9968 -
50 0.9969 0.9968 - 0.9969 0.9968 -
100 0.9969 0.9968 - 0.9969 0.9968 -

30
0 0.9969 0.9968 - 0.9856 0.9850 -
50 0.9969 0.9968 - 0.9877 0.9871 -
100 0.9969 0.9968 - 0.9874 0.9869 -

50
0 0.9631 0.9627 - 0.9579 0.9565 -
50 - - - - - -
100 - - - - - -

Letter

10
0 0.8638 0.9277 - 0.8465 0.9191 -
50 0.8625 0.9272 - 0.8440 0.9175 -
100 0.8625 0.9272 - 0.8440 0.9175 -

30
0 0.6688 0.8264 - 0.6704 0.8288 -
50 0.6763 0.8307 - 0.6674 0.8281 -
100 0.6738 0.8289 - 0.6683 0.8281 -

50
0 0.3888 0.6837 - 0.4764 0.7305 -
50 - - - - - -
100 - - - - - -

Bank

10
0 0.8817 0.5766 - 0.8838 0.5877 -
50 0.8835 0.5859 - 0.8834 0.5876 -
100 0.8817 0.5786 - 0.8840 0.5896 -

30
0 0.8817 0.5724 - 0.8852 0.5853 -
50 0.8841 0.5800 - 0.8863 0.5877 -
100 0.8835 0.5817 - 0.8861 0.5880 -

50
0 0.8768 0.5614 - 0.8759 0.5732 -
50 - - - - - -
100 - - - - - -

Credit

10
0 0.8133 0.6267 - 0.8029 0.5987 -
50 0.8150 0.6422 - 0.8038 0.5970 -
100 0.8117 0.6372 - 0.8026 0.5966 -

30
0 0.8067 0.6052 - 0.7988 0.5903 -
50 0.8042 0.6123 - 0.7993 0.5802 -
100 0.8033 0.6060 - 0.7986 0.5808 -

50
0 0.7992 0.5760 - 0.7947 0.5687 -
50 - - - - - -
100 - - - - - -

News

10
0 - - 42,740,918.2638 - - 43,093,960.8535
50 - - 42,740,744.7643 - - 43,126,718.5982
100 - - 42,748,974.4959 - - 43,168,362.2022

30
0 - - 45,586,818.5406 - - 43,191,254.5138
50 - - - - - -
100 - - - - - -

50
0 - - 45,950,574.0475 - - 47,293,929.6606
50 - - - - - -
100 - - - - - -

Table 9: Prediction performance for kNN imputation and MissForest.
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Data set Miss %
Additional

CTGAN data%
GAIN v1 GAIN v2

Accuracy AUROC MSE Accuracy AUROC MSE

Mushroom

10

0 0.9960 0.9958 - 0.9972 0.9971 -
50 0.9960 0.9959 - 0.9908 0.9906 -
100 0.9954 0.9953 - 0.9914 0.9913 -
200 0.9945 0.9943 - 0.9914 0.9914 -
500 0.9929 0.9929 - 0.9926 0.9924 -

30

0 0.9905 0.9904 - 0.9920 0.9918 -
50 0.9926 0.9925 - 0.9905 0.9904 -
100 0.9880 0.9879 - 0.9877 0.9876 -
200 0.9902 0.9899 - 0.9886 0.9885 -
500 0.9880 0.9879 - 0.9862 0.9861 -

50

0 0.9754 0.9752 - 0.9652 0.9645 -
50 - - - - - -
100 - - - - - -
200 - - - - - -
500 - - - - - -

Letter

10

0 0.7766 0.8832 - 0.7595 0.8749 -
50 0.7630 0.8767 - 0.7521 0.8713 -
100 0.7636 0.8766 - 0.7444 0.8676 -
200 0.7595 0.8738 - 0.7355 0.8627 -
500 0.7489 0.8683 - 0.7059 0.8474 -

30

0 0.5366 0.7604 - 0.5433 0.7630 -
50 0.4329 0.7058 - 0.4196 0.6995 -
100 0.3994 0.6886 - 0.3778 0.6778 -
200 0.3963 0.6866 - 0.3885 0.6821 -
500 0.3815 0.6785 - 0.3780 0.6763 -

50

0 0.3458 0.6615 - 0.3665 0.6722 -
50 - - - - - -
100 - - - - - -
200 - - - - - -
500 - - - - - -

Bank

10

0 0.8830 0.5819 - 0.8842 0.5887 -
50 0.8839 0.5855 - 0.8837 0.5905 -
100 0.8847 0.5872 - 0.8838 0.5858 -
200 0.8839 0.5843 - 0.8839 0.5830 -
500 0.8840 0.5864 - 0.8840 0.5810 -

30

0 0.8829 0.5723 - 0.8824 0.5691 -
50 0.8837 0.5736 - 0.8826 0.5719 -
100 0.8828 0.5704 - 0.8837 0.5736 -
200 0.8834 0.5718 - 0.8841 0.5657 -
500 0.8833 0.5708 - 0.8834 0.5668 -

50

0 0.8760 0.5500 - 0.8774 0.5511 -
50 - - - - - -
100 - - - - - -
200 - - - - - -
500 - - - - - -

Credit

10

0 0.8133 0.6204 - 0.8113 0.6198 -
50 0.8120 0.6213 - 0.8136 0.6231 -
100 0.8109 0.6176 - 0.8120 0.6220 -
200 0.8103 0.6183 - 0.8127 0.6257 -
500 0.8098 0.6186 - 0.8116 0.6203 -

30

0 0.8009 0.6050 - 0.8047 0.6152 -
50 0.8034 0.6128 - 0.8047 0.6113 -
100 0.8020 0.6072 - 0.8043 0.6074 -
200 0.8064 0.6056 - 0.8056 0.6119 -
500 0.8051 0.6047 - 0.8018 0.5968 -

50

0 0.8053 0.5926 - 0.8021 0.5886 -
50 - - - - - -
100 - - - - - -
200 - - - - - -
500 - - - - - -

News

10

0 - - 43,792,912.8591 - - 43,284,014.6813
50 - - 43,772,561.1972 - - 43,579,980.1592
100 - - 43,775,467.8340 - - 43,548,399.4015
200 - - 43,920,291.5668 - - 44,443,664.0741
500 - - 43,927,704.3533 - - 43,831,439.1618

30

0 - - 45,820,264.5270 - - 45,370,414.5048
50 - - - - - -
100 - - - - - -
200 - - - - - -
500 - - - - - -

50

0 - - 46,159,032.7703 - - 45,111,158.0332
50 - - - - - -
100 - - - - - -
200 - - - - - -
500 - - - - - -

Table 10: Prediction performance for GAIN v1 and GAIN v2.
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Data set Miss %
List-wise deletion

Accuracy AUROC MSE

Mushroom
10 0.4848 0.4908 -
30 - - -
50 - - -

Letter
10 0.0414 0.5039 -
30 0.0000 0.5000 -
50 - - -

Bank
10 0.9192 0.5000 -
30 0.0000 0.0000 -
50 - - -

Credit
10 0.8559 0.4948 -
30 - - -
50 - - -

News
10 - - 45,904,746.6624
30 - - -
50 - - -

Table 11: Prediction performance for list-wise deletion.

Confidence Intervals

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.2729, 0.2747] - [0.2729, 0.2747] [7.45, 7.5462] [223.7276, 245.5226] [0.9969, 0.9969] [0.9968, 0.9968] -
30 [0.2937, 0.2955] - [0.2937, 0.2955] [8.6236, 8.7328] [214.6165, 237.4481] [0.983, 0.9882] [0.9824, 0.9876] -
50 [0.3079, 0.3089] - [0.3079, 0.3089] [9.4787, 9.5435] [214.0553, 225.9343] [0.9529, 0.9629] [0.9514, 0.9616] -

Letter
10 [0.0667, 0.0669] [0.0667, 0.0669] - - [147.3322, 153.5816] [0.8442, 0.8488] [0.918, 0.9202] -
30 [0.0861, 0.0865] [0.0861, 0.0865] - - [178.4375, 184.6821] [0.6633, 0.6775] [0.8252, 0.8324] -
50 [0.1115, 0.1119] [0.1115, 0.1119] - - [178.036, 185.4502] [0.469, 0.4838] [0.7271, 0.7339] -

Bank
10 [0.3592, 0.361] [0.0786, 0.0794] [0.3505, 0.3523] [12.2789, 12.4133] [333.6991, 414.1127] [0.8829, 0.8847] [0.5845, 0.5909] -
30 [0.3727, 0.3751] [0.0909, 0.0921] [0.3614, 0.3636] [13.0578, 13.223] [320.3713, 367.4499] [0.884, 0.8864] [0.5789, 0.5917] -
50 [0.4065, 0.4083] [0.1241, 0.1269] [0.3867, 0.3885] [15.0212, 15.023] [341.0437, 394.7891] [0.8747, 0.8771] [0.5654, 0.581] -

Credit
10 [0.2612, 0.2634] [0.048, 0.0482] [0.2567, 0.2589] [6.593, 6.704] [819.94, 933.5476] [0.8015, 0.8043] [0.5951, 0.6023] -
30 [0.2724, 0.2738] [0.0516, 0.0518] [0.2675, 0.2689] [14.9098, 14.9876] [662.3405, 789.7837] [0.7957, 0.8019] [0.5834, 0.5972] -
50 [0.2889, 0.2901] [0.0565, 0.0569] [0.2833, 0.2845] [8.03, 8.0932] [680.6784, 821.6514] [0.7925, 0.7969] [0.5651, 0.5723] -

News
10 [0.379, 0.3824] [0.0654, 0.068] [0.3731, 0.3765] [13.9186, 14.1758] [4190.3856, 4936.5338] - - [43059959.1082, 43127962.5918]
30 [0.3969, 0.3987] [0.0934, 0.0938] [0.3857, 0.3875] [14.88, 15.0174] [3658.9087, 4273.2063] - - [43043533.1283, 43338975.8917]
50 [0.4069, 0.4095] [0.1225, 0.1231] [0.3878, 0.3906] [15.0467, 15.2569] [2542.1285, 3020.8667] - - [46501018.1449, 48086841.1751]

Table 12: Confidence intervals for MissForest with 0% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.2744, 0.276] - [0.2744, 0.276] [7.5303, 7.6139] [168.229, 212.7282] [0.9969, 0.9969] [0.9968, 0.9968] -
30 [0.2892, 0.2922] - [0.2892, 0.2922] [8.3652, 8.5428] [145.3195, 189.6845] [0.9854, 0.99] [0.9847, 0.9895] -
50 - - - - - - - -

Letter
10 [0.0668, 0.067] [0.0668, 0.067] - - [153.8289, 187.0813] [0.8425, 0.8455] [0.9166, 0.9184] -
30 [0.0872, 0.0876] [0.0872, 0.0876] - - [209.5631, 236.1317] [0.6635, 0.6713] [0.8259, 0.8303] -
50 - - - - - - - -

Bank
10 [0.3613, 0.3633] [0.0783, 0.0791] [0.3525, 0.3547] [12.4304, 12.5802] [587.0778, 746.9592] [0.8825, 0.8843] [0.5835, 0.5917] -
30 [0.3698, 0.373] [0.0906, 0.0918] [0.3584, 0.3616] [12.8431, 13.0819] [476.4998, 563.2916] [0.8856, 0.887] [0.5858, 0.5896] -
50 - - - - - - - -

Credit
10 [0.2589, 0.2609] [0.0476, 0.0478] [0.2545, 0.2565] [6.4744, 6.5786] [1055.2896, 1432.8576] [0.8024, 0.8052] [0.5945, 0.5995] -
30 [0.2814, 0.284] [0.0515, 0.0517] [0.2767, 0.2793] [7.6563, 7.8007] [1078.4313, 1109.2753] [0.7972, 0.8014] [0.5753, 0.5851] -
50 - - - - - - - -

News
10 [0.3764, 0.3786] [0.0663, 0.0673] [0.3705, 0.3727] [13.725, 13.887] [10501.8434, 25315.8332] - - [43100644.0919, 43152793.1045]
30 - - - - - - - -
50 - - - - - - - -

Table 13: Confidence intervals for MissForest with 50% additional CTGAN data.
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Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.2746, 0.2764] - [0.2746, 0.2764] [7.5421, 7.6341] [171.5507, 219.2267] [0.9969, 0.9969] [0.9968, 0.9968] -
30 [0.2897, 0.2915] - [0.2897, 0.2915] [8.3935, 8.4923] [180.1704, 214.3802] [0.9848, 0.99] [0.9869, 0.9869] -
50 - - - - - - - -

Letter
10 [0.0669, 0.0671] [0.0669, 0.0671] - - [205.8422, 272.709] [0.8421, 0.8459] [0.8431, 0.8449] -
30 [0.0872, 0.0876] [0.0872, 0.0876] - - [306.2579, 312.1033] [0.6616, 0.675] [0.8246, 0.8316] -
50 - - - - - - - -

Bank
10 [0.3616, 0.3638] [0.0782, 0.079] [0.353, 0.3552] [12.4554, 12.617] [819.2307, 1134.8067] [0.8834, 0.8846] [0.587, 0.5922] -
30 [0.3715, 0.3755] [0.0903, 0.0915] [0.3602, 0.3644] [12.9757, 13.2755] [563.2048, 770.1138] [0.8851, 0.8871] [0.5827, 0.5933] -
50 - - - - - - - -

Credit
10 [0.2576, 0.2598] [0.0476, 0.0478] [0.2532, 0.2554] [6.4105, 6.5209] [2846.8877, 3892.5021] [0.8012, 0.804] [0.5932, 0.6] -
30 [0.2818, 0.284] [0.0516, 0.0518] [0.2771, 0.2793] [7.6746, 7.801] [1390.0224, 1576.478] [0.7958, 0.8014] [0.5745, 0.5871] -
50 - - - - - - - -

News
10 [0.3768, 0.3788] [0.0662, 0.068] [0.3708, 0.3728] [13.7528, 13.8978] [16989.6809, 21301.0577] - - [43119644.3581, 43217080.0463]
30 - - - - - - - -
50 - - - - - - - -

Table 14: Confidence intervals for MissForest with 100% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.2986, 0.3038] - [0.2986, 0.3038] [8.9202, 9.23] [214.227, 224.5298] [0.9946, 0.9974] [0.9944, 0.9972] -
30 [0.2948, 0.3264] - [0.2948, 0.3264] [8.668, 10.719] [115.6952, 867.2106] [0.9866, 0.9944] [0.9865, 0.9943] -
50 [0.2991, 0.3055] - [0.2991, 0.3055] [8.9431, 9.3359] [286.7699, 292.1133] [0.9713, 0.9795] [0.9711, 0.9793] -

Letter
10 [0.1278, 0.1336] [0.1278, 0.1336] - - [80.2641, 81.3251] [0.772, 0.7812] [0.8808, 0.8856] -
30 [0.1369, 0.1451] [0.1369, 0.1451] - - [21.2092, 21.3458] [0.5231, 0.5501] [0.7535, 0.7673] -
50 [0.1436, 0.1634] [0.1436, 0.1634] - - [21.2994, 21.3692] [0.3331, 0.3585] [0.6551, 0.6679] -

Bank
10 [0.451, 0.4632] [0.1889, 0.2093] [0.4053, 0.4171] [16.4328, 17.4064] [101.4431, 103.9249] [0.8818, 0.8842] [0.578, 0.5858] -
30 [0.4793, 0.5253] [0.2399, 0.2813] [0.4116, 0.4462] [16.9722, 19.9376] [124.1753, 128.0031] [0.8819, 0.8839] [0.5678, 0.5768] -
50 [0.4823, 0.5097] [0.2302, 0.2602] [0.4162, 0.445] [17.3132, 19.8504] [125.0451, 127.3987] [0.8741, 0.8779] [0.5432, 0.5568] -

Credit
10 [0.2791, 0.2939] [0.0656, 0.1036] [0.2636, 0.281] [6.9484, 7.9154] [123.0236, 124.9462] [0.8116, 0.815] [0.617, 0.6238] -
30 [0.2922, 0.3134] [0.1069, 0.1551] [0.2657, 0.2767] [7.0632, 7.6622] [123.0503, 124.9007] [0.7968, 0.805] [0.5978, 0.6122] -
50 [0.3173, 0.4143] [0.134, 0.2454] [0.2836, 0.3332] [8.0069, 11.2559] [123.4548, 125.5914] [0.8017, 0.8089] [0.584, 0.6012] -

News
10 [0.4913, 0.5659] [0.1969, 0.2087] [0.4481, 0.5273] [20.1248, 28.0608] [154.8964, 157.1596] - - [43211882.6572, 44373943.0628]
30 [0.5467, 0.6169] [0.2889, 0.3133] [0.4529, 0.5397] [20.6258, 29.3728] [123.1843, 131.0881] - - [45299198.1798, 46341330.8802]
50 [0.4855, 0.5325] [0.1913, 0.2099] [0.4439, 0.4913] [19.7657, 24.1901] [163.5234, 172.2716] - - [45809302.3313, 46508763.2087]

Table 15: Confidence intervals for GAIN v1 with 0% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3053, 0.3143] - [0.3053, 0.3143] [9.3262, 9.8808] [219.2094, 220.941] [0.9943, 0.9977] [0.9942, 0.9976] -
30 [0.2976, 0.3032] - [0.2976, 0.3032] [8.8549, 9.1917] [319.1428, 321.5842] [0.99, 0.9952] [0.9898, 0.9952] -
50 - - - - - -

Letter
10 [0.1403, 0.1479] [0.1403, 0.1479] - - [81.2913, 83.8507] [0.7578, 0.7682] [0.8741, 0.8793] -
30 [0.2152, 0.233] [0.2152, 0.233] - - [22.5887, 22.6357] [0.4165, 0.4493] [0.6976, 0.714] -
50 - - - - - - - -

Bank
10 [0.4984, 0.5172] [0.2359, 0.2657] [0.4327, 0.4495] [18.7273, 20.2079] [104.8297, 106.1343] [0.8828, 0.885] [0.5809, 0.5901] -
30 [0.5215, 0.5403] [0.2639, 0.2933] [0.4448, 0.4582] [19.787, 21.0086] [126.6351, 129.6407] [0.8823, 0.8851] [0.5662, 0.581] -
50 - - - - - - - -

Credit
10 [0.3054, 0.3162] [0.1096, 0.1192] [0.283, 0.2948] [8.0116, 8.6908] [124.986, 126.2632] [0.81, 0.814] [0.6189, 0.6237] -
30 [0.2912, 0.2998] [0.0811, 0.0891] [0.278, 0.2878] [7.7314, 8.2884] [125.2881, 127.8949] [0.8008, 0.806] [0.6072, 0.6184] -
50 - - - - - - - -

News
10 [0.5193, 0.5863] [0.2211, 0.2311] [0.4677, 0.5403] [21.8226, 29.5048] [157.9226, 160.1772] - - [43274779.7653, 44270342.6291]
30 - - - - - - - -
50 - - - - - - - -

Table 16: Confidence intervals for GAIN v1 with 50% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3094, 0.32] - [0.3094, 0.32] [9.5733, 10.2393] [219.2325, 221.2327] [0.9939, 0.9969] [0.9953, 0.9953] -
30 [0.2995, 0.3063] - [0.2995, 0.3063] [8.9726, 9.3774] [312.4548, 314.3218] [0.9849, 0.9911] [0.9879, 0.9879] -
50 - - - - - - - -

Letter
10 [0.141, 0.1484] [0.141, 0.1484] - - [82.3464, 83.6602] [0.7566, 0.7706] [0.8733, 0.8799] -
30 [0.2345, 0.2497] [0.2345, 0.2497] - - [23.3749, 23.4415] [0.3889, 0.4099] [0.6833, 0.6939] -
50 - - - - - - - -

Bank
10 [0.5083, 0.5443] [0.2535, 0.2979] [0.4383, 0.4573] [19.2054, 20.9294] [106.2673, 108.2887] [0.8838, 0.8856] [0.5841, 0.5903] -
30 [0.5291, 0.5457] [0.2753, 0.2937] [0.4442, 0.467] [19.7482, 21.8144] [129.4719, 131.8809] [0.8818, 0.8838] [0.5655, 0.5753] -
50 - - - - - - - -

Credit
10 [0.3112, 0.323] [0.1208, 0.127] [0.2852, 0.2986] [8.1309, 8.9229] [127.5519, 129.5137] [0.81, 0.8118] [0.6145, 0.6207] -
30 [0.2938, 0.3016] [0.0851, 0.0933] [0.2808, 0.2872] [7.8833, 8.2547] [127.2921, 128.8859] [0.8, 0.804] [0.6027, 0.6117] -
50 - - - - - - - -

News
10 [0.5072, 0.626] [0.2215, 0.2365] [0.454, 0.5804] [20.8373, 34.2319] [168.9716, 171.1704] - - [43417721.4261, 44133214.2419]
30 - - - - - - - -
50 - - - - - - - -

Table 17: Confidence intervals for GAIN v1 with 100% additional CTGAN data.
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Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.314, 0.3198] - [0.314, 0.3198] [9.8626, 10.2296] [200.9038, 205.0098] [0.9929, 0.9961] [0.9943, 0.9943] -
30 [0.3052, 0.3096] - [0.3052, 0.3096] [9.3149, 9.5851] [291.0009, 293.9769] [0.9883, 0.9921] [0.9899, 0.9899] -
50 - - - - - - - -

Letter
10 [0.1468, 0.155] [0.1468, 0.155] - - [85.4667, 87.3249] [0.7508, 0.7682] [0.8692, 0.8784] -
30 [0.2587, 0.2775] [0.2587, 0.2775] - - [25.9867, 26.2843] [0.3878, 0.4048] [0.682, 0.6912] -
50 - - - - - - - -

Bank
10 [0.5131, 0.5379] [0.2566, 0.2902] [0.4418, 0.455] [19.5307, 20.7001] [112.6758, 114.6458] [0.8825, 0.8853] [0.5789, 0.5897] -
30 [0.5189, 0.5403] [0.2757, 0.3041] [0.4365, 0.4493] [19.0597, 20.1857] [135.7127, 137.4503] [0.8825, 0.8843] [0.568, 0.5756] -
50 - - - - - - - -

Credit
10 [0.3266, 0.334] [0.1229, 0.1291] [0.3006, 0.3098] [9.0348, 9.6052] [131.4675, 133.4017] [0.8081, 0.8125] [0.6145, 0.6221] -
30 [0.3041, 0.3159] [0.0834, 0.1078] [0.2881, 0.3005] [8.3088, 9.0344] [131.3688, 132.8916] [0.8044, 0.8084] [0.6, 0.6112] -
50 - - - - - - - -

News
10 [0.4895, 0.5565] [0.2243, 0.2331] [0.4335, 0.5063] [18.6812, 25.9914] [186.7986, 190.8112] - - [43572832.4217, 44267750.7119]
30 - - - - - - - -
50 - - - - - - - -

Table 18: Confidence intervals for GAIN v1 with 200% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3261, 0.3353] - [0.3261, 0.3353] [10.6351, 11.2405] [272.4958, 275.4632] [0.9909, 0.9949] [0.9929, 0.9929] -
30 [0.3096, 0.3144] - [0.3096, 0.3144] [9.5894, 9.8832] [294.1031, 296.9455] [0.9851, 0.9909] [0.9879, 0.9879] -
50 - - - - - - - -

Letter
10 [0.1539, 0.1591] [0.1539, 0.1591] - - [93.31, 94.8172] [0.7417, 0.7561] [0.8644, 0.8722] -
30 [0.2623, 0.2759] [0.2623, 0.2759] - - [262.0255, 262.0955] [0.371, 0.392] [0.6732, 0.6838] -
50 - - - - - - - -

Bank
10 [0.5312, 0.5466] [0.2714, 0.2898] [0.4508, 0.469] [20.309, 22.0182] [131.4944, 132.544] [0.883, 0.885] [0.5817, 0.5911] -
30 [0.531, 0.5448] [0.2827, 0.3025] [0.4439, 0.4583] [19.7049, 21.0155] [152.367, 154.7644] [0.8817, 0.8849] [0.5665, 0.5751] -
50 - - - - - - - -

Credit
10 [0.3334, 0.346] [0.1355, 0.1467] [0.3023, 0.3155] [9.1432, 9.961] [143.4248, 145.6088] [0.8074, 0.8122] [0.6149, 0.6223] -
30 [0.3162, 0.3336] [0.0856, 0.0884] [0.3041, 0.3219] [9.2629, 10.3617] [142.7196, 145.4614] [0.8025, 0.8077] [0.599, 0.6104] -
50 - - - - - - - -

News
10 [0.5366, 0.5942] [0.231, 0.2464] [0.4798, 0.5444] [23.1887, 29.6587] [202.3186, 207.4482] - - [43509216.1974, 44346192.5092]
30 - - - - - - - -
50 - - - - - - - -

Table 19: Confidence intervals for GAIN v1 with 500% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3034, 0.3124] - [0.3034, 0.3124] [9.2052, 9.7628] [86.2209, 87.6031] [0.9956, 0.9988] [0.9955, 0.9987] -
30 [0.296, 0.3012] - [0.296, 0.3012] [8.7575, 9.0731] [132.1886, 133.8758] [0.9876, 0.9964] [0.9872, 0.9964] -
50 [0.3068, 0.3152] - [0.3068, 0.3152] [9.4154, 9.9406] [132.7046, 134.931] [0.96, 0.9704] [0.9592, 0.9698] -

Letter
10 [0.1427, 0.1551] [0.1427, 0.1551] - - [28.0606, 37.5942] [0.7501, 0.7689] [0.8701, 0.8797] -
30 [0.134, 0.1422] [0.134, 0.1422] - - [7.04, 7.1006] [0.5289, 0.5577] [0.7552, 0.7708] -
50 [0.1379, 0.1411] [0.1379, 0.1411] - - [6.8757, 6.9091] [0.3574, 0.3756] [0.6675, 0.6769] -

Bank
10 [0.4484, 0.4596] [0.1627, 0.1731] [0.4172, 0.4264] [17.4039, 18.1855] [40.8879, 43.5495] [0.8833, 0.8851] [0.5859, 0.5915] -
30 [0.4905, 0.4989] [0.2236, 0.2366] [0.4335, 0.4421] [18.7965, 19.5439] [53.8793, 54.7057] [0.8806, 0.8842] [0.5635, 0.5747] -
50 [0.5218, 0.5472] [0.2586, 0.3108] [0.4386, 0.4632] [19.2379, 21.4799] [51.6986, 52.7146] [0.8763, 0.8785] [0.5467, 0.5555] -

Credit
10 [0.2773, 0.2917] [0.0884, 0.1194] [0.2612, 0.267] [6.8298, 7.1266] [47.2618, 48.6526] [0.8092, 0.8134] [0.6161, 0.6235] -
30 [0.3003, 0.3283] [0.1015, 0.1581] [0.2806, 0.2876] [7.8758, 8.273] [47.6234, 47.9292] [0.8017, 0.8077] [0.607, 0.6234] -
50 [0.3339, 0.3615] [0.1727, 0.2193] [0.2802, 0.2916] [7.8589, 8.5047] [45.2955, 53.6793] [0.7981, 0.8061] [0.5779, 0.5993] -

News
10 [0.4978, 0.5182] [0.1986, 0.2064] [0.4548, 0.477] [20.6952, 22.762] [59.3956, 61.6008] - - [43094852.6763, 43473176.6837]
30 [0.5079, 0.5383] [0.2499, 0.3039] [0.4372, 0.448] [19.1193, 20.0703] [42.8507, 43.4635] - - [44777825.2403, 45963003.7597]
50 [0.5119, 0.5293] [0.2185, 0.2519] [0.456, 0.4718] [20.7948, 22.2682] [54.5477, 66.5001] - - [44061464.7899, 46160851.2701]

Table 20: Confidence intervals for GAIN v2 with 0% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3483, 0.3581] - [0.3483, 0.3581] [12.1292, 12.826] [86.6777, 87.9795] [0.988, 0.9936] [0.9878, 0.9934] -
30 [0.2985, 0.3017] - [0.2985, 0.3017] [8.9086, 9.1042] [132.611, 134.702] [0.987, 0.994] [0.9869, 0.9939] -
50 - - - - - - - -

Letter
10 [0.1485, 0.1619] [0.1485, 0.1619] - - [31.2427, 35.9013] [0.745, 0.7592] [0.8676, 0.875] -
30 [0.2204, 0.2328] [0.2204, 0.2328] - - [7.4555, 7.5195] [0.4051, 0.4341] [0.6918, 0.7072] -
50 - - - - - -

Bank
10 [0.4948, 0.511] [0.2218, 0.2494] [0.4395, 0.4485] [19.3125, 20.1207] [41.7206, 43.5868] [0.8826, 0.8848] [0.587, 0.594] -
30 [0.5269, 0.5427] [0.2633, 0.2677] [0.4546, 0.4738] [20.6768, 22.4574] [52.1487, 53.6971] [0.881, 0.8842] [0.5619, 0.5819] -
50 - - - - - - - -

Credit
10 [0.2982, 0.312] [0.1249, 0.1409] [0.2694, 0.2794] [7.2584, 7.8142] [48.0022, 49.1832] [0.812, 0.8152] [0.6187, 0.6275] -
30 [0.3215, 0.3387] [0.0893, 0.1019] [0.3066, 0.325] [9.4078, 10.5696] [47.9587, 48.6817] [0.8011, 0.8083] [0.6051, 0.6175] -
50 - - - - - - - -

News
10 [0.528, 0.5394] [0.2439, 0.2517] [0.4667, 0.4787] [21.7793, 22.9149] [57.5541, 60.3955] - - [43348039.2994, 43811921.019]
30 - - - - - - - -
50 - - - - - - - -

Table 21: Confidence intervals for GAIN v2 with 50% additional CTGAN data.
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Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3499, 0.3563] - [0.3499, 0.3563] [12.2453, 12.6995] [86.6742, 88.8718] [0.9885, 0.9943] [0.9913, 0.9913] -
30 [0.3002, 0.3054] - [0.3002, 0.3054] [9.0082, 9.3268] [132.902, 134.6184] [0.9857, 0.9897] [0.9876, 0.9876] -
50 - - - - - - - -

Letter
10 [0.1551, 0.1687] [0.1551, 0.1687] - - [26.7616, 30.3622] [0.7327, 0.7561] [0.8616, 0.8736] -
30 [0.249, 0.2574] [0.249, 0.2574] - - [7.7111, 7.7613] [0.3671, 0.3885] [0.6725, 0.6831] -
50 - - - - - -

Bank
10 [0.5204, 0.5372] [0.2527, 0.2691] [0.4518, 0.4678] [20.4224, 21.891] [42.0437, 43.9601] [0.8815, 0.8861] [0.5798, 0.5918] -
30 [0.5408, 0.5524] [0.2707, 0.2785] [0.467, 0.4782] [21.8194, 22.8694] [53.539, 55.0914] [0.8823, 0.8851] [0.5674, 0.5798] -
50 - - - - - - - -

Credit
10 [0.3123, 0.3241] [0.1324, 0.1532] [0.2793, 0.2887] [7.8003, 8.3395] [48.7641, 50.1307] [0.8099, 0.8141] [0.6183, 0.6257] -
30 [0.334, 0.3466] [0.101, 0.1168] [0.3165, 0.3281] [10.0177, 10.7661] [48.5467, 49.7731] [0.7994, 0.8092] [0.5972, 0.6176] -
50 - - - - - - - -

News
10 [0.5377, 0.5477] [0.2564, 0.27] [0.4695, 0.4795] [22.0492, 22.9976] [58.0198, 59.1858] - - [43315326.3176, 43781472.4854]
30 - - - - - - - -
50 - - - - - - - -

Table 22: Confidence intervals for GAIN v2 with 100% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.3611, 0.3753] - [0.3611, 0.3753] [13.0471, 14.0903] [86.1335, 103.1861] [0.9888, 0.994] [0.9914, 0.9914] -
30 [0.302, 0.3062] - [0.302, 0.3062] [9.1186, 9.384] [132.5648, 134.6666] [0.9847, 0.9925] [0.9813, 0.9957] -
50 - - - - - - - -

Letter
10 [0.1668, 0.174] [0.1668, 0.174] - - [31.6325, 35.0533] [0.7285, 0.7425] [0.8592, 0.8662] -
30 [0.2492, 0.2622] [0.2492, 0.2622] - - [8.6048, 8.6762] [0.3777, 0.3993] [0.6763, 0.6879] -
50 - - - - - -

Bank
10 [0.5208, 0.5326] [0.2436, 0.266] [0.4556, 0.4658] [20.761, 21.6954] [43.4649, 43.7567] [0.8827, 0.8851] [0.5784, 0.5876] -
30 [0.5444, 0.5588] [0.2669, 0.2869] [0.4708, 0.483] [22.1787, 23.3291] [54.4483, 55.6941] [0.883, 0.8852] [0.5603, 0.5711] -
50 - - - - - - - -

Credit
10 [0.3156, 0.3248] [0.1313, 0.1531] [0.2845, 0.2887] [8.0889, 8.3389] [49.993, 50.7444] [0.8104, 0.815] [0.6222, 0.6292] -
30 [0.3483, 0.3623] [0.0805, 0.0833] [0.3385, 0.3529] [11.4721, 12.4473] [49.743, 50.8522] [0.8019, 0.8093] [0.6055, 0.6183] -
50 - - - - - - - -

News
10 [0.5552, 0.571] [0.2755, 0.2851] [0.4791, 0.4975] [22.9612, 24.7544] [59.9456, 61.5982] - - [42619301.2938, 46268026.8544]
30 - - - - - - - -
50 - - - - - - - -

Table 23: Confidence intervals for GAIN v2 with 200% additional CTGAN data.

Data set Miss% mRMSE RMSE num RMSE cat PFC (%) Execution time (s) Accuracy AUROC MSE

Mushroom
10 [0.4088, 0.4248] - [0.4088, 0.4248] [16.7056, 18.0566] [88.3342, 90.619] [0.9893, 0.9959] [0.9924, 0.9924] -
30 [0.3085, 0.3147] - [0.3085, 0.3147] [9.5154, 9.9036] [133.9008, 135.5506] [0.9832, 0.9892] [0.9861, 0.9861] -
50 - - - - - - - -

Letter
10 [0.1851, 0.2001] [0.1851, 0.2001] - - [32.673, 34.1362] [0.6976, 0.7142] [0.8431, 0.8517] -
30 [0.2571, 0.2673] [0.2571, 0.2673] - - [10.7458, 10.7904] [0.3673, 0.3887] [0.6707, 0.6819] -
50 - - - - - -

Bank
10 [0.5477, 0.5581] [0.2988, 0.3162] [0.4549, 0.4637] [20.6953, 21.5119] [48.0821, 48.7259] [0.8833, 0.8847] [0.5756, 0.5864] -
30 [0.5576, 0.5718] [0.285, 0.2988] [0.477, 0.4898] [22.7527, 23.9895] [59.1162, 60.1304] [0.8823, 0.8845] [0.5615, 0.5721] -
50 - - - - - - - -

Credit
10 [0.3596, 0.3724] [0.1398, 0.1586] [0.3296, 0.3384] [10.86, 11.4574] [53.0683, 54.1907] [0.8102, 0.813] [0.6164, 0.6242] -
30 [0.3704, 0.383] [0.0895, 0.0921] [0.3591, 0.3721] [12.8964, 13.8456] [52.9473, 54.2991] [0.7982, 0.8054] [0.587, 0.6066] -
50 - - - - - - - -

News
10 [0.5597, 0.5695] [0.2942, 0.3096] [0.4715, 0.4823] [22.2362, 23.2682] [64.7452, 66.0514] - - [43570695.6523, 44092182.6713]
30 - - - - - - - -
50 - - - - - - - -

Table 24: Confidence intervals for GAIN v2 with 500% additional CTGAN data.
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Hyperparameter selection

Data set
Miss
rate %

kNN GAIN v1 & v2 GAIN v2
k batch-size hint-rate alpha beta tau

Mushroom
10 41 128 0.1 0.5 0.5 0.5
30 41 256 0.1 2 50 1
50 41 256 0.1 10 1 5

Letter
10 11 256 0.9 2 0.1 10
30 11 64 0.1 2 10 1
50 11 64 0.1 10 10 10

Bank
10 13 64 0.1 1 0.5 1
30 13 128 0.1 10 0.1 0.5
50 13 128 0.1 2 0.1 5

Credit
10 53 64 0.1 2 0.5 10
30 53 64 0.1 10 1 0.5
50 53 64 0.1 2 10 5

News
10 19 256 0.9 1 0.5 0.5
30 19 128 0.9 1 50 0.1
50 19 256 0.5 1 10 1

Table 25: Summary of the optimal hyperparameters for the methods kNN, GAIN v1 and GAIN v2 for each data
set.
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GAIN Train and Test Loss

Figure 40: GAIN v1 train and test loss for one run for the mushroom data set with 10% missing
values.
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Figure 41: GAIN v1 train and test loss for one run for the letter data set with 30% missing
values.
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Figure 42: GAIN v1 train and test loss for one run for the bank data set with 50% missing
values.
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Figure 43: GAIN v1 train and test loss for one run for the credit data set with 50% missing
values.
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Figure 44: GAIN v1 train and test loss for one run for the news data set with 30% missing
values.
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