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Ⅰ 

Abstract 

This article discusses the challenges associated with maintaining water quality, particularly the issue 
of eutrophication, and the importance of technology advancements for monitoring and managing 
water quality. The potential of machine learning is highlighted, along with the importance of 
affordable and effective water quality monitoring techniques. The study aims to identify factors 
contributing to eutrophication in Sweden, using various regression models, including Random Forest 
and XGBOOST. The exploratory data analysis showed that environmental parameters may not have a 
strong linear relationship with chlorophyll concentration, but other variables such as nutrient 
availability and light may play a more important role. The random forest model produced the most 
accurate predictions. The study also discusses the importance of technology diffusion in promoting 
sustainable water management practices in the Global South and emphasizes the need for 
collaboration between developed and developing countries. 
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1. Introduction   

1.1. Water quality and Sustainable Development Goals 

Water is a vital resource to the Earth, supporting not only aquatic life but the entire ecosystem. 

The quality and quantity of water are critical to the health and wellbeing of human and other creatures. 

However, the rapid pace of industrial development and population growth has put significant pressure 

on water resources (Jamil & Shehab, 2021; Simeonov et al., 2003). As a result, water resources become 

vulnerable to pollution, depletion, and degradation. This has led to a lack of access to clean water for 

people, especially to those who live in developing countries (Rozenberg & Fay, 2019; Thacker et al., 

2019). It is critical to take action to protect and preserve water resources to ensure that they remain 

accessible, clean, and sustainable for future generations.  

 

The importance of water resources is reflected in the fact that two of the Sustainable Development 

Goals (SDGs), namely SDG 6 and SDG 14, are dedicated to addressing water-related issues. SDG 6 

focuses on universal access to clean water and sanitation, while SDG 14 emphasizes the conservation 

and sustainable use of marine and freshwater resources. However, achieving these goals is becoming 

increasingly challenging due to various factors, including unexpected environmental changes in water 

bodies. Such changes, which can include alterations in water temperature, pH, nutrient levels, and 

dissolved oxygen concentrations, etc, can have significant impacts on aquatic ecosystems and the 

human communities that depend on them (Carmichael & Boyer, 2016; Chorus & Welker, 2021; Sin & 

Lee, 2020; Smith, 2003). Therefore, regular water quality monitoring can help the scientists and 

governments to understand the situation and deal with the ill effects as soon as possible (Mavukkandy 

et al., 2014; Noori et al., 2010). 

 

Eutrophication is one of the most notorious water problems in the world, characterized by an 

excessive buildup of nutrients, such as nitrogen and phosphorus, in water bodies. The process of 

eutrophication is often caused by the discharge of untreated wastewater and agricultural runoff into 

waterways (Conley et al., 2009; Newcomer Johnson et al., 2016). Eutrophication can lead to harmful 

algal blooms (HABs), decreased water quality, and the depletion of oxygen levels, which can be 

detrimental to aquatic life and human health (Andersen et al., 2017; Carmichael & Boyer, 2016; 

Dimitra Kitsiou & Michael Karydis, 2019; Gregersen et al., 2023; Pawlak et al., 2009; Plateau Lake 

Water Quality and Eutrophication, 2023; Schindler, 1977; Scholten et al., 2005; Zhang et al., 2020). 

According to the study in 2018, over 60 % of total water bodies were eutrophic (Wang et al., 2018). 
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Furthermore, eutrophication can have far-reaching economic consequences, affecting industries such 

as fishing, tourism, and water treatment (Boesch et al., 2001; Dodds et al., 2009; Garcia-Hernandez et 

al., 2022; Jimeno-Sáez et al., 2020; Smith, 2003). With climate change exacerbating the problem 

(Howarth et al., 2006), developing solutions to monitor and manage water quality and HABs has 

gained considerable global attention (Yajima & Derot, 2017), and advanced techniques to forecast can 

be instrumental in this effort. 

 

1.2. Monitoring water quality for sustainable development 

Although there are various operational methods available for inspection, monitoring, and data 

collection, many of them can be time-consuming and expensive in practice. The current monitoring 

methods used by authorities typically involve taking water samples directly from the site of interest 

and transporting them to laboratories where they are analyzed using spectrophotometry techniques. 

However, this process can be time-consuming and may take from one day to several weeks depending 

on the schedule and delivery times (Palmer et al., 2015). This delay in obtaining the results can hinder 

timely actions to be taken to prevent further degradation of water quality. Moreover, this method is 

often labor-intensive and can be costly (J. Chen et al., 2013; Papenfus et al., 2020). Meanwhile, long-

term monitoring projects may experience data gaps due to budget constraints or a lack of funding 

(Pinto et al., 2013). To overcome these challenges, it is crucial to investigate and implement more 

efficient and cost-effective techniques for monitoring and data collection. Additionally, it is essential 

to ensure sustained data collection over the long term, which should be affordable and accessible to 

developing countries. 

   

In addition to monitoring, forecasting eutrophication can be an efficient and valuable tool in improving 

efforts to address water-related problems. By analyzing historical data and current water quality 

information, a forecast model can forecast future changes in water quality, such as the potential for 

harmful algal blooms or changes in nutrient levels. This can enable water managers and policymakers 

to take proactive measures to prevent or mitigate potential negative impacts on aquatic ecosystems 

and human communities. For instance, a forecast model can provide early warnings of potential 

harmful algal blooms, allowing water treatment plants to adjust their treatment processes accordingly, 

or advising recreational users to avoid swimming in affected areas. In addition, by identifying areas at 

risk of eutrophication, forecast models can help guide land-use planning and decision-making to 

reduce nutrient inputs into water bodies, such as implementing best management practices in 

agriculture or wastewater treatment.  
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Monitoring programs often collect a vast amount of data that can be challenging to analyze and 

interpret due to its complexity and size (Gurjar & Tare, 2019). The cost of conducting these monitoring 

projects, and building forecast models, can be a significant barrier for vulnerable countries, making it 

difficult to maintain them for an extended period. While advanced technologies offer promising 

solutions for monitoring eutrophication, they can be expensive and limited in their applicability. As a 

result, there is a need for more efficient and cost-effective methods that can provide real-time or 

forecast models on water quality. Meanwhile, technological solutions can play a crucial role in 

managing water resources and preventing water pollution if they are developed and disseminated 

effectively. 

 

1.3. Research Aim and objectives 

This thesis aims to tackle the critical issue of forecasting and preventing unexpected 

environmental changes in water bodies, with a specific focus on forecasting algae blooms. The primary 

objective is to identify effective and affordable parameters for forecasting algae concentration and 

discuss how technological solutions for monitoring and forecast modeling can be applied to 

sustainability challenges related to water. 

 

In order to achieve the objectives, this thesis research asks one overarching question and four sub 

questions: 

 

What is the extent of predictive power that basic environmental factors have on chlorophyll 

concentrations (CHL) based on historical data and how complicated do the predictive models need to 

be?  

1. Can univariate statistical correlations forecast chlorophyll concentrations? 

2. Can univariate polynomial linear regression forecast chlorophyll concentrations? 

3. Can multiple linear regression forecast chlorophyll concentrations? 

4. Can machine learning models forecast chlorophyll concentrations? 

 

Identifying the most influential factor in forecasting CHL in water bodies is crucial, as it can aid in 

pinpointing the critical factors that contribute to algae growth and developing more accurate 

predictive models. After presenting the findings of the study, I will delve into the implications of these 

results for the diffusion and implementation of technological solutions aimed at addressing water 

quality challenges around the world. This will involve exploring the potential transferability of the 
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methods and techniques used in this study to other contexts, as well as examining the broader socio-

economic, political, and environmental factors that may affect the adoption and impact of such 

solutions. By doing so, this study can contribute not only to the understanding of eutrophication in 

Skåne län but also to the broader global efforts to promote sustainable water management practices.  
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2. Background and approach 

2.1. Technological solutions and diffusion 

In response to the challenges of climate change, technologies have advanced in a more 

efficient, cost-effective, and sustainable way to achieve the SDGs. From renewable energy to food 

production, technology solutions have the potential to transform how we approach sustainable 

development. However, the diffusion of these technologies can be a challenge, particularly in 

developing countries, where technical and financial limitations may hinder their widespread adoption. 

 

The theory of diffusion of innovations posits that a novel idea or product will gradually propagate 

throughout a particular group or community as time passes (Rogers, 2003). Consequently, individuals 

within that society will modify their behavior in order to conform to these new developments. The 

theory suggests that the rate and pattern of adoption of a new technology is influenced by various 

factors. There are five stages of the adoption process to new technology: knowledge/awareness, 

persuasion, decision, implementation, and confirmation/continuation. Additionally, there are several 

key elements that affect the adoption process, including innovation, adopters, communication 

channels, time, and the social system (Rogers, 2003).  

 

Take Carbon Capture and Storage as a notable example of technology solutions to climate change. 

This approach can potentially address the issue of greenhouse gas emissions while also producing a 

useful resource. The development of such technologies is crucial for the mitigation of climate change 

and the creation of a more sustainable future. Initially, in the knowledge/awareness stage, scientists 

and stakeholders disseminated information to catch the attention of the public. People recognized 

the severity of climate change and sought to develop technologies to capture carbon from the air. In 

the persuasion stage, the benefits of adopting new techniques, such as effectively capturing carbon 

emissions and slowing down the rate of warming, were presented to other stakeholders. The decision 

stage involved policymakers deciding whether to invest in or implement the new technology in a 

specific area. In the implementation stage, the innovation was adapted to the study area, policies 

were developed to support the technology, and feedback was used to improve it. Finally, in the 

confirmation stage, stakeholders evaluated the effectiveness of the technology in reducing 

greenhouse gas emissions and mitigating climate change, as well as the costs and benefits of using the 

technology.  

In the case of carbon capture and storage, the successful diffusion of this innovation is influenced by 

various factors. The key elements include the innovation itself, which refers to the techniques of 
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carbon capture and storage, and the potential adopters, who could be various stakeholders such as 

researchers, government officials, and energy companies. Effective communication channels, such as 

research journals, academic conferences, and other media platforms, are also essential for 

disseminating information and promoting adoption. The adoption process for this technology is likely 

to be a long and complex one, requiring significant investment in time, resources, and infrastructure. 

Finally, the broader social, economic, and political systems in which innovation operates, collectively 

referred to as the social system, will also play a critical role in determining the success of carbon 

capture and storage as a means of mitigating greenhouse gas emissions.  

 

Despite the importance of technological solutions in achieving sustainable development goals, the 

access to the latest technology is not always universal, and vulnerable countries often face significant 

delays in implementing new technology. Developing countries, particularly those in the Global South, 

face a range of socio-economic challenges, including limited resources and infrastructure, a shortage 

of technical expertise, and political and regulatory barriers, hindering their progress (Hanson et al., 

2017; Sano et al., 2013).  

 

Only when technological solutions have become increasingly accessible and user-friendly, resulting in 

easier adoption and diffusion. For example, the use of emerging technologies such as blockchain, 

artificial intelligence, and the Internet of Things (IoT) can further accelerate the diffusion of sustainable 

technology solutions in the developing countries. These technologies have been massively applied to 

various uses in daily life from fully automated factories and smart home systems (Kravchenko et al., 

2017).  

 

2.2. Effective and Affordable Water Quality Monitoring Techniques 

In recent years, with advancements in technology and research, there has been a continuous 

improvement in the methods used for monitoring and managing eutrophication. These improvements 

have included the development of new sensors and devices for monitoring soil composition, nutrient 

levels, and other important environmental factors, as well as the use of machine learning algorithms 

and other advanced analytical tools to analyze and interpret the data collected.  

 

To effectively and affordably monitor water quality, a thorough understanding of the environmental 

factors that promote algal growth is necessary. Algal growth in bodies of water can be prevented by 

monitoring the biomass of algae and related factors such as chlorophyll (CHL), phosphorus, and 
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nitrogen concentrations (Chapman et al., 1996; Malek et al., 2011). Traditionally, optical sensor-based 

techniques have been used to measure these parameters, with CHL serving as the primary 

photosynthetic pigment and a reliable indicator of total algal biomass in surface water (Boyer et al., 

2009; Carneiro et al., 2014; Li et al., 2018; O’Sullivan & Reynolds, 2004). However, there are some 

limitations to the use of traditional methods. For example, the experimental optical sensors for 

chlorophyll are often unportable or expensive, and there is a risk of sample pollution during delivery. 

It is important to be aware of these limitations to ensure accurate and reliable data collection.  

 

One such technology is quantitative ocean color remote sensing, which is used to sense the 

concentration of chlorophyll (CHL) in water bodies using shortwave infrared bands. However, this 

method is limited in its applicability to coastal and inland water bodies due to atmospheric 

interference (J. Chen et al., 2013). Other advanced technologies, such as fluorescence spectroscopy 

and hyperspectral imaging, have been explored for their potential to monitor eutrophication, but their 

efficacy in real-world settings remains to be fully tested and evaluated (Alminagorta et al., 2021).  

 

Portable real-time CHL sensors offer the advantage of providing more immediate and on-site 

measurements, but they do come with certain limitations. From the previous studies, environmental 

factors such as temperature, pH, dissolved oxygen (DO), weather, nutrient levels, and electrical 

conductivity (EC) have been shown to be strongly related to or promote algal growth (Beretta-Blanco 

& Carrasco-Letelier, 2021; Gardner-Dale et al., 2017; J. Kim et al., 2022; Liu et al., 2010; Ras et al., 2013; 

Shoener et al., 2019). Therefore, it is necessary to monitor these factors in order to assess and prevent 

eutrophication.  Recent advancements in sensor technology have resulted in more affordable and 

portable sensors, which have made water quality monitoring more accessible and convenient for 

researchers. For instance, it is now possible to use simpler sensors to detect basic environmental 

parameters and input the data into a well-developed model to obtain the other more complicated 

factors. By adapting forecasting models to these new sensors, researchers can optimize water quality 

monitoring techniques, resulting in more accurate and cost-effective water quality monitoring. The 

development of such methods can significantly aid in the timely management of water resources and 

the prevention of water pollution. 

To improve the efficiency of monitoring, statistical methods have been employed in combination with 

sampling. Statistical methods such as cluster analysis (CA) and principal component analysis (PCA) 

have also been employed with sampling to improve the efficiency of monitoring (Simeonov et al., 

2003). Additionally, linear regression is a widely used statistical model that is used to describe the 

relationship between variables, assuming that there is a linear correlation between them (Mendenhall 
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& Sincich, 2012; Sen & Srivastava, 1997). Multiple Linear Regression (MLR) is a simple yet effective 

linear regression model used for predicting outcomes based on linear relationships between 

variables.These methods reduce the burden on local authorities by providing a more streamlined and 

cost-effective approach to collecting and analyzing data. By using historical data and statistical 

methods to identify trends and point sources, Pinto et al. (2013) was able to optimize the design of 

future monitoring programs and focus on the areas that are most critical for maintaining water quality. 

This approach can also help to prioritize resources and funding for monitoring programs and make 

them more cost-effective. 

 

2.3. Machine Learning Methods 

In recent years, the development of open-source machine learning software and cloud-based 

platforms has democratized access to these tools. This has enabled businesses, individuals, and 

organizations to leverage the power of machine learning without significant financial investments. 

Therefore, the widespread availability of machine learning technology has facilitated its diffusion, 

which is essential for achieving sustainable development goals. 

 

The emergence of machine learning (ML) has revolutionized various fields since the mid-20th century 

with the early developments in artificial intelligence (AI) (Michalski & Anderson, 1982). However, it 

was only after the rise of big data analysis that the power of ML was taken seriously. During the 1980s 

and 1990s, researchers developed a range of ML algorithms, including decision trees, support vector 

machines, and Bayesian networks, among others. These algorithms were used in a variety of 

applications, such as speech recognition, computer vision, and natural language processing. With the 

advent of big data in the 21st century, machine learning has become even more crucial in several fields 

such as finance, healthcare, and marketing. Today, ML algorithms are used in a wide range of 

applications, from image recognition to fraud detection to personalized recommendation systems. 

The usefulness of machine learning is also reflected in sustainability, where it can help address 

complex challenges. For instance, ML algorithms can optimize crop yields, reduce waste, and improve 

soil health. By analyzing data on soil quality, weather patterns, and crop performance, machine 

learning can assist farmers in making more informed decisions about planting, fertilization, and 

irrigation (K et al., 2023). Overall, machine learning provides a promising tool to better understand 

sustainability challenges and develop effective solutions. 
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The ability of Machine Learning (ML) to analyze complex datasets and generate accurate predictions 

has made it an integral part of various fields, especially in the realm of water quality forecast (Nearing 

et al., 2021). There are numerous ML methods available, each with its own strengths and weaknesses 

(de Vita et al., 2022; Khullar & Singh, 2020). 

 

Artificial Neural Networks (ANN) have proven to be a useful ML method in various fields due to their 

ability to mimic the functioning of the human brain (Cho et al., 2011; Fausett, 1994; Haykin, 1994). 

ANN consists of several layers and has been widely applied to address various water quality issues on 

a large scale (Campolo et al., 1999; E. Kim et al., 2019). However, the number of hidden layer neurons 

is crucial to ensure the prediction accuracy of the ANN. If the number of hidden layer neurons is too 

low, it will compromise the prediction accuracy, and if it is too high, the modeling process would 

become computationally expensive and time-consuming (Charulatha et al., 2017).  

Support vector machines (SVM) is another well-established ML method that is effective in solving both 

classification and regression problems. This method can handle nonlinear data and achieve high 

accuracy in predictions (Yusri et al., 2022).  

 

Random Forest (RF) is an ensemble learning method that utilizes a collection of decision trees to 

enhance predictive accuracy. RF has the advantage of handling incomplete data and still achieving 

satisfactory results (Breiman, 2001; Díaz-Uriarte & Alvarez de Andrés, 2006; Fang et al., 2021). The RF 

model, like many other models, is also prone to overfitting (Breiman, 2001).  A study for water quality 

conducted in 2021 reported that the achieved accuracy of RF was 92.94% (Xu et al., 2021). 

Extreme Gradient Boosting (XGBOOST) is an ensemble learning method that combines the strengths 

of multiple decision trees and gradient boosting. It can solve various problems related to regression, 

classification, ranking, and user-defined prediction tasks with high accuracy and efficiency (T. Chen & 

Guestrin, 2016; Yusri et al., 2022). A study conducted in 2022 revealed that XGBOOST achieved high 

levels of accuracy, precision, and recall, specifically 95%, 96%, and 96%, respectively (Garabaghi et al., 

2022).  

 

Machine learning (ML) methods have revolutionized various fields, including water quality forecasting, 

due to their ability to analyze complex datasets and generate accurate predictions. They offer 

numerous benefits over traditional methods and have proven to be effective in solving different types 

of problems. However, instead of relying on expensive and complex models for forecasting the 

concentration of chlorophyll (CHL), this research would utilize two efficient and readily available ML 

methods that are well-suited to the dataset obtained. 
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3. Methodology 

3.1. Thesis Roadmap  

The research will commence by investigating the data features and testing the simplest 

statistical model (i.e., correlation) to establish the presence of any significant univariable factor that 

strongly influences the growth of algae. If no such factor is identified, the univariable polynomial 

regression and multiple regression model will be explored to determine if either of these models is a 

better fit. Ultimately, the Random Forest and XGBOOST machine learning models will be introduced 

to the dataset to determine the best fit for the data. 

 

3.2. Study area and data collection 

Sweden is a country that has set up goals to make significant progress in the reduction of 

eutrophication in its water bodies. To achieve this, the Swedish government launched the Sweden 

Zero Eutrophication (SZE) project, which aimed to reduce nutrient inputs to the Baltic Sea and achieve 

good environmental status by 2021. The SZE project used a combination of monitoring methods to 

assess the effectiveness of measures taken to reduce nutrient inputs. Additionally, the project 

involved collaboration between government agencies, NGOs, and stakeholders to develop and 

implement measures to reduce nutrient inputs (Naturvardsverket, n.d.). The SZE project serves as an 

example of a comprehensive approach to addressing eutrophication through monitoring and 

collaborative efforts. Unfortunately, many countries around the world lack the financial resources 

necessary to address environmental threats through targeted projects or programs. 

 

Specifically, this study focuses on Skåne län, the most southern province in Sweden, also known as 

Scania County. Skåne län is an agricultural region with a high population density, comprising around 

13 percent of Sweden's total population and covering around 3 percent of the country's land area. It 

is home to around 500 lakes larger than 0.01 square kilometers, many of which have a rich plant and 

animal life, giving them significant natural value (Henestål et al., 2021). Most of the counties in Skåne 

län have a warm humid continental climate, while a small part of the counties located near the coast 

belong to the Oceanic climate zone. 

 

Agricultural dominance in Skåne län has led to significant issues with eutrophication (IVL, 2021). 

Region Skåne reports that the region's land serves 30 percent of the entire food chain in Sweden, with 

food products being the largest export goods. Therefore, the wastewater from the agricultural land 
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became a critical issue. It’s important to understand the factors contributing to eutrophication in this 

region and develop accurate forecasting models to mitigate its effects. The average yearly 

temperature in this region of interest is 9.65ºC, with a precipitation level of approximately 90.02 

millimeters per year (Weather and Climate, n.d.). 

 

The environmental data used in this study was obtained from Miljödata, a database managed by 

Sveriges lantbruksuniversitet (SLU). This database has been collecting land, water, and environmental 

data since 1943, with a particular focus on water bodies and agricultural lands in Sweden. The dataset 

used contained crucial environmental variables such as chlorophyll  concentration (CHL, µg/L), pH, 

electrical conductivity (with the correction value at 25 degree, EC, mS/m), turbidity, dissolved oxygen 

(DO, mg/L), water temperature (T, °C), turbidity (FNU), concentration of total phosphorus (P, µg/L) 

and total nitrogen (N, µg/L), sampling date, and location (municipality), among others. The data 

covered a vast range of catchments and surface water in Skåne län, spanning almost 50 years, from 

June 3rd, 1973, to October 25th, 2022. The source of the collected data can be found in Figure 1, which 

shows that most of the data was collected from the middle part of Skåne län's lakes, Västra and Ö stra 

Ringsjön. However, due to limitations in the Python database, it is difficult to accurately depict the 

appearance of Skåne län. Therefore, the entire country of Sweden was used instead. 

 

Weather data was collected using the OpenWeather One Call API 3.0, which provided information on 

ambient temperature, atmospheric pressure, latitude, longitude, cloud coverage, visibility, wind 

speed, wind direction, rain volume for the last hour, and snow volume for the last hour. The reason 

why I collected the weather data was because the CHL can also be affected by factors such as sunlight, 

temperature, precipitation, and wind speed (M. Chen et al., 2011; Wu et al., 2014). This information 

was used to complement the environmental variables in the analysis and provide a more 

comprehensive understanding of the factors affecting CHL in the water bodies. The database 

limitations include the lack of exact time of sample collection and the potential bias in using a fixed 

time of 12 pm for weather data collection, which may not accurately represent the weather conditions 

throughout the day in Skåne län. 
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Figure 1. Map of Sweden and the sampling lakes from 1953 to 2022 generated from Python.  
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3.3. Data analysis 

The data was imported from Microsoft Excel into Python and analyzed using Pandas. 

Exploratory data analysis (EDA) is an essential preliminary step that helps us understand the data, 

identify patterns and relationships, detect outliers, and generate hypotheses about the underlying 

process generating the data. It also involves visualizing and summarizing the data using various 

statistical and techniques, which informs the machine learning process in several ways. First, EDA can 

help to identify the most relevant variables for the machine learning task, which can reduce the 

dimensionality of the data and improve the performance of the model. Second, EDA can help to 

identify the relationships between the variables, which can inform the choice of the modeling 

approach and the selection of the appropriate algorithms. Third, EDA can help to identify the 

distributional properties of the data, which can inform the selection of the appropriate data 

preprocessing and transformation techniques. In this study, EDA was employed to analyze and 

investigate the data sets collected from Miljödata, allowing us to identify critical indicators and 

summarize the findings.  

 

The first stage of the study models involved using univariate linear regression to investigate the 

relationship between two variables, where one variable is considered the dependent variable and 

the other variable is considered the independent variable. I utilized univariate linear regression as 

the basic stage of prediction to determine the relationship between CHL, which served as the 

dependent variable, and the various environmental parameters, including pH, T, EC, DO, P, and N, 

which were considered the independent variables. 

 

To ensure comparability across the remaining stages, I applied data scaling to the dataset. By scaling 

the dataset, I standardized the range of values for each variable to fall within a similar numerical 

range. This process enabled us to reduce the potential impact of variables with larger values on the 

prediction models, which could have led to biased results. Then, the extreme values were removed 

from the scaled training dataset. To apply with other models, the dataset was split into a training set 

and a test set using the 80/20 rule to prevent overfitting of the models, with 80% of the data used 

for training and 20% for testing.  

 

For the second stage, I use multiple linear regression and Polynomial regression (PR). Multiple linear 

regression (MLR) is a statistical method that can be used to examine the association between a 

dependent variable and several independent variables simultaneously. The method has been applied 

to classify and model environmental data to prevent misinterpretation of environmental monitoring 
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data (Reisenhofer et al., 1996). In this study, I performed multiple linear regression to forecast the 

CHL based on several environmental parameters. The multiple linear regression model allows us to 

assess the contribution of each independent variable to the variation in CHL, while controlling for the 

effects of the other variables. Like MLR, PR is a technique used in machine learning to model the 

relationship between a dependent variable and one or more independent variables as well. However, 

while MLR models a linear relationship between the variables, polynomial regression allows for 

modeling of nonlinear relationships (Ahmed et al., 2019). It is important to note that increasing the 

degree of the polynomial may also lead to overfitting, where the model becomes too closely tailored 

to the training data and does not generalize well to new data. It has been utilized for monitoring 

water quality due to its ability to capture data influenced by both natural and artificial factors that 

are often distributed non-linearly (Huang et al., 2017). 

 

Machine learning is a branch of AI that involves developing models that can learn from data without 

being explicitly programmed. Unlike traditional regression models, machine learning models can 

capture complex or nonlinear relationships that might exist in the data, which can lead to more 

accurate predictions. Additionally, machine learning models can handle large amounts of data and 

discover hidden patterns that might be overlooked by traditional statistical methods. To develop 

accurate predictive models, two commonly used machine learning models were applied in this study: 

Random Forest and XGBOOST. Random Forest is a decision tree-based ensemble learning algorithm 

that is capable of handling nonlinear relationships between input and output variables. It constructs 

multiple such decision trees and combines them to achieve a more precise and consistent prediction. 

XGBOOST, on the other hand, is an optimized gradient boosting algorithm that combines weak 

prediction models to make more robust and accurate forecasts. The performance of these models was 

evaluated using various metrics such as mean absolute error (MAE), mean squared error (MSE), and 

coefficient of determination (R2). The model with the lowest MAE and RMSE values and the highest R2 

value was considered the best performing model.  

 

To find the best fitting model, I need to set up the hyperparameters. Hyperparameters are parameters 

that are set prior to the training process and cannot be learned during training. These parameters 

affect the behavior of the model during training and can have a significant impact on its performance. 

Choosing the appropriate hyperparameters is crucial for achieving the best possible performance of 

the model on the given task. The random forest models used two hyperparameters: "n_estimators," 

which set the number of trees to build before taking the maximum voting or averages of predictions. 

While a higher number of trees can perform better, it also generates results slower. Another 



15 

hyperparameter was "random_state," which ensures that the same results are always produced when 

given the same parameters and training data. The other hyperparameter was “max_depth”, which 

limited the depth of the tree. In contrast, the hyperparameters for XGBOOST models in this study were 

more complicated and included max_depth, min_child_weight, gamma, subsample, 

colsample_bytree, and learning_rate. "max_depth" specifies the maximum depth of a tree, 

"min_child_weight" specifies the minimum sum of instance weight (hessian) needed in a child, 

"gamma" specifies the minimum loss reduction required to make a further partition on a leaf node of 

the tree, "subsample" specifies the subsample ratio of the training instances, "colsample_bytree" 

specifies the subsample ratio of columns when constructing each tree, and "learning_rate" specifies 

the step size shrinkage used in updates to prevent overfitting. 

 

Overall, the machine learning techniques employed in this study allowed us to identify which 

environmental parameters have the strongest impact on CHL and to develop accurate predictive 

models that can be used to inform management decisions related to water quality. The results of the 

data analysis and modeling are presented in the next section. 

 

This research is conducted in collaboration with Vaquita Technologies, a company specializing in 

software and sensor solutions for water quality assessment. The collaboration has provided invaluable 

expertise and resources, playing a vital role in the development and implementation of the research 

methodology. The findings presented in this study are conducted with the commitment to impartiality 

and objectivity. The aim of this study is to advance knowledge in the field and make meaningful 

contributions to the broader sustainability science community. 
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4. Results  

4.1. Traditional statistical models 

The descriptive statistics of the environmental parameters and their scaled counterparts were 

presented in Table 1. The average CHL was found to be 13.19 µg per liter, which is within the range of 

concentrations typically observed in freshwater systems. The sampling day of the year, as indicated 

by the variable "Day of a year," occurred on average at 188.13, approximately at the beginning of July. 

This suggests that the data was collected during the summer months, which is a period when 

freshwater systems are often susceptible to eutrophication. The latitude of Skåne län is 55.9903° N, 

13.5958° E, which is consistent with the coordinates in the data, namely 56.04 ° N, 13.35 ° E. The pH 

value of the water samples was observed to be neutral, with a mean value of 7.66. The water 

temperature (T) was found to be 12.18 °C, which is also typical of freshwater systems during the 

summer months. The concentration of total phosphorus (P) was measured to be 38.07 µg per liter, 

while the concentration of total nitrogen (N) was 1351.72 µg per liter. The dissolved oxygen content 

was 10.81 mg per liter, which is within the acceptable range for freshwater systems. The electrical 

conductivity (EC) was observed to be 23.12 milli Siemens per meter, while the turbidity was found to 

be 4.26 FNU.  

 

The first analysis (univariate pairwise correlations) showed weak relationships between the 

environmental parameters and the CHL, as indicated by the correlation coefficients between CHL and 

the different parameters (see Figure 2). The Spearman rank correlation test revealed that turbidity 

had the most significant relationship with CHL, followed by the concentration of total phosphorus and 

electrical conductivity. However, it should be noted that the high correlation coefficient between CHL 

and turbidity might be due to the presence of algae, which can block sunlight and lead to increased 

turbidity, while also contributing to higher CHL (Keller et al., 2018).  

 

On the other hand, factors such as the date of the year, water temperature, latitude, longitude, 

dissolved oxygen, and pH value had weak or no relationships with CHL. This suggests that these 

environmental factors are not good predictors of CHL and that other factors, such as nutrient 

availability and light availability, may play a more important role. Overall, the results showed that 

there was little to no direct relationship between the CHL and weather factors, indicating that other 

environmental variables may need to be considered in order to accurately predict CHL in freshwater 

systems. 
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In the first stage of analysis, I utilized scatter plots to visualize the relationship between CHL and 

various environmental parameters. It shows the scatter plots for T(a), pH(b), (c) EC, (d) Turbidity, (e) 

P, (f) N, (g) Longitude, (h) Latitude, (i) day of a year, and (j) DO. Among these variables, temperature 

did not show a clear relationship with CHL, as the scatter plot exhibited a wide range of values. In 

contrast, scatter plots for pH, electrical conductivity, turbidity, total P concentration, and dissolved 

oxygen appeared to cluster in certain areas, suggesting a potential relationship with CHL. However, it 

is important to note that scatter plots may not always reveal the full picture of the relationships 

between variables. In this study, I found weak correlations between CHL and several environmental 

factors in the scatter plots, which is consistent with the results in Figure 2. Based on these findings 

and previous studies, I speculate that CHL may be influenced by a variety of environmental factors. 

Thus, it is crucial to consider all relevant variables in constructing multiple linear regression models to 

better understand the complex relationship between CHL and environmental parameters.  

 

To ensure comparability for the rest of the analysis, I scaled the dataset. While scaling does not change 

the relationship between variables, it standardizes the range of values across variables, allowing for 

easier comparison of the magnitudes of coefficients in the MLR models.  

 

For the second stage, I performed multiple linear regression (MLR) using the training dataset. The 

model was then applied to the testing data, and the results were visualized in Figure 3. The R2 value 

of the multiple linear regression was 0.42, which dropped to 0.04 in the test set, indicating poor 

predictive performance. These findings suggest that accurately predicting CHL based solely on 

environmental parameters might be challenging using a linear model. However, it is still possible that 

there are non-linear relationships between the variables. To explore this possibility, I employed 

polynomial regression as an alternative approach. 

 

Although the polynomial regression model appeared to fit well when applied to the training set, as 

shown in Figure 4, there was a significant deviation from the model when applied to the test set. This 

result suggests that polynomial regression may not be a suitable approach for predicting CHL in this 

case.  
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Table 1. Descriptive statistics of environmental parameters.  

 

CHL 
Day of  

a year 
Latitude Longitude pH Temperature P DO EC Turbidity N 

Mean 13.19 188.13 56.04 13.35 7.66 12.18 38.07 10.81 23.12 4.26 1351.72 

STD 7.12 88.78 0.21 0.18 0.58 6.56 73.47 1.74 9.90 2.58 604.53 

Min 4.10 14.00 55.48 13.04 6.38 0.60 5.00 6.70 7.50 0.90 410.00 

25% 6.70 133.00 55.89 13.28 7.20 5.50 18.00 9.60 10.90 2.60 900.00 

50% 12.00 194.00 56.09 13.31 7.66 12.80 27.00 10.60 25.50 3.60 1300.00 

75% 19.00 230.00 56.28 13.55 8.10 18.30 38.00 12.00 29.30 5.30 1700.00 

Max 27.00 349.00 56.35 13.98 9.04 22.90 880.00 15.80 51.90 16.00 4100.00 
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Figure 2. The heatmap of Spearman’s rank correlation coefficient (rs).



20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3. Multiple linear regression model with testing dataset generated by Python.  
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                   Figure 4. Polynomial Regression generated by Python.  
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4.2. Machine Learning Models 

To identify the most effective models for predicting chlorophyll concentration, I applied two 

existing machine learning (ML) algorithms, Random Forest (RF) and XGBOOST model, to the dataset 

and evaluated their performance.   

 

As illustrated in Figure 5(a) and 5(b), the Random Forest model produced a much better fit on the 

training data compared to the traditional statistical models, with an R2 value of 0.88. The model also 

performed well in predicting the CHL in the test set, with an R2 value of 0.69, which was higher than 

the multiple linear regression and polynomial models. These findings suggest that the Random Forest 

model can effectively predict the CHL based on environmental parameters. 

 

Next, the XGBOOST model was used to predict the CHL. Although the XGBOOST model's performance 

on the test set was not as strong as the Random Forest model, with a mean squared error (MSE) of 

72.94, the training set was well-predicted, as shown in Figure 5(c) and (d). MSE suggests that the 

XGBOOST model's predictions on the test set were not as accurate as the RF model, which had a higher 

R-squared value. The resulting hyperparameters for the XGBOOST model were colsample_bytree = 

0.6, gamma = 0.2, learning rate = 0.1, max depth = 7, min_child_weight = 1, and subsample = 1.0. The 

results of the XGBOOST model were similar to those of the Random Forest model, indicating the 

potential of machine learning models in predicting CHL. 

 

Overall, my findings suggest that machine learning models, such as Random Forest, are highly effective 

in predicting CHL based on environmental parameters. This model is particularly promising for future 

water quality prediction and monitoring efforts in Skåne län. By providing insight into the complex 

relationships between environmental parameters and CHL, machine learning models can aid in better 

understanding and managing the water quality in the region. 
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Figure 5. Random Forest models and XGBOOST models generated by Python. (a) Random Forest model based 
on training dataset. (b) Random Forest model based on testing dataset. (c) XGBOOST model based on training 
dataset. (D) XGBOOST model based on testing dataset. 
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5. Discussion 

5.1. Using Statistics to Predict Water Quality 

To investigate the relationship between basic environmental factors and chlorophyll 

concentrations (CHL), this study aimed to determine the extent of predictive power of various models 

based on historical data. The main research question was supported by four sub-questions that 

explored the efficacy of univariate linear, multiple linear regression, polynomial linear regression, and 

machine learning models in forecasting CHL. Analysis of the results revealed that basic environmental 

factors such as EC, DO, and pH may not have a strong linear relationship with CHL, at least based on 

the historical dataset in Skåne län. The simple linear regression model and polynomial model were 

found to be inadequate in achieving accurate predictions. However, the random forest (RF) model 

produced significantly better forecasts. 

 

To illustrate the inner workings of the RF model, Figure 6 presents a decision tree that represents its 

underlying structure. Random forests are composed of multiple decision trees, each of which is 

generated through a random selection of features and observations. With the aid of this decision tree, 

the visualization of the results of the Random Forest (RF) model is made easier. This is because the 

decision tree breaks down the complex process of the RF model into a series of simple, logical steps 

that can be easily understood. By following the path of the decision tree, it is possible to see the 

specific criteria that the model uses to classify the data and make predictions.  

 

In Figure 6, the decision tree starts by identifying that all the turbidity levels of the data are below 11.5 

FNU. This leads to the data set being divided into two paths: the green path to the right for data with 

turbidity below 11.5 FNU, and the red path to the left for data with turbidity levels above 11.5 FNU. 

Figures 6(a) and 6(b) provide a closer look at the original figure 6. Following the green path, the data 

is subjected to another specific criterion, where P (phosphorus) levels are checked against a threshold 

value of 107.0 µg/L. If P is higher than this value, the data takes the red path to the left. If it is lower, 

the data continues along the green path. The next box in the green path checks if T (temperature) is 

below 20 °C. If T meets this criterion, the decision tree leads to a prediction of CHL (chlorophyll) at 

25.0 µg/L. The initial model was configured to have a maximum depth of 4 layers. However, if the 

dataset size is larger, the depth can be increased up to 100 layers to improve the precision of the 

results. Overall, this decision tree helps to provide a clear and structured framework for understanding 

how the RF model operates. It also helps to highlight the specific variables and criteria that the model 

uses to make predictions. This information is essential for interpreting the results of the model and 
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for assessing its accuracy and reliability. (The decision tree figure was recreated using an online 

decision tree maker called Miro, using the original model generated from Python.) 

 

In our study, we found that the RF model outperformed traditional statistical models and XGBOOST in 

terms of forecasting accuracy. This finding is consistent with other studies such as Mozo et al., who 

also reported better results with the RF model (Mozo et al., 2022). For example, a study conducted by 

Xu showed that the RF model could achieve an accuracy rate of up to 92.94% for nearshore waters 

(Xu et al., 2021). However, it should be noted that some studies have pointed out that while the RF 

model can predict in the right direction, its accuracy still needs improvement, as reported by Shin et 

al. (2020) and Yajima & Derot (2017). Furthermore, there are some studies that suggest XGBOOST 

performs better than the RF model in certain cases. For example, a study reported a higher accuracy 

rate of 96.9696% using XGBOOST (Garabaghi et al., 2022). However, it is important to note that the 

choice of the model ultimately depends on the specific characteristics of the data and the research 

objectives. In our case, the RF model was the most suitable for our data set and research question. 

 

In line with our findings, a recent study conducted by Huang in 2022 also concluded that P is the 

primary factor influencing CHL, while turbidity does not have a significant impact (Huang et al., 2022). 

This reinforces the validity of our research and suggests that our model is effective in identifying key 

factors affecting CHL levels. Additionally, it is worth noting that during the development of our model, 

we excluded outliers to prevent bias. However, a recent study has revealed that RF models have good 

noise immunity and are not highly sensitive to outliers (Xu et al., 2021). This finding suggests that the 

exclusion of outliers may not be necessary when using RF models for CHL forecasting. Further research 

is needed to explore the extent to which outliers can be included in the data set without negatively 

impacting the accuracy of the model. Overall, the combination of our findings and those from other 

studies suggests that RF models are a promising tool for forecasting CHL levels and have potential 

applications in a variety of contexts. 

 

One limitation of the study was that the remaining data collected over almost 50 years was fewer than 

expected, as I wanted the full data with all parameter values to be applied in the model. Additionally, 

the experimental methods used to measure the total concentration of phosphorus and nitrogen were 

not always the same, as the methods improved over time. However, the data is comparable. Despite 

these limitations, the RF model was able to process predictions even with limited amounts of data. As 

studies about diffusion and water quality monitoring with machine learning are still relatively scarce, 

the RF model's ability to work with limited data is a crucial advantage. 
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Figure 6. Decision Trees based on the Random Forest model. (Full picture) 
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Figure 6. (a) Decision Trees based on the Random Forest model.   
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Figure 6. (b) Decision Trees based on the Random Forest model. 
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5.2. Technological Solutions for Sustainable Development 

Technological innovation has the potential to make significant contributions to sustainable 

development, but it requires the diffusion of technology. However, advanced technology is often 

expensive, making it more accessible to wealthy countries in the Global North than to poor countries 

in the Global South. Technology diffusion is the process by which a new technology gains 

acceptance, ownership, and use by the members of a social group (Odekon, 2015). Most industrial 

nations' economic growth has been significantly influenced by the international diffusion of 

technology (Soete, 1985). The United Nations' promotion of the SDGs has brought attention to the 

importance of sustainable development. For example, monitoring and managing the water quality 

is a common issue in the Global South, where countries often face geographical limitations. 

Advanced technology, such as monitoring water quality using precise sensors or equipment, is not 

as easily accessible to the Global South as it is to the Global North. While the UN raised the concerns 

of water quality and the drinking water security remains a prominent issue that affects 

socioeconomic and human development, the countries in the Global South often face technical and 

financial limitations. Such limitations may affect the applicability of easy and affordable methods, 

raising the question of whether these methods can provide a sustainable solution for 

underprivileged communities. ML methods have been examples of technology innovation that apply 

efficiently in the water quality in simulating different types of problems. In my vision, I expect that I 

can use cheaper sensors to approach basic parameters and get the CHL from the ML model. 

Nevertheless, the findings of the study indicate that the prediction of CHL based solely on the 

selected environmental parameters was not entirely successful.  

 

Water quality management is a common issue in the Global South, where countries often face 

technical and financial limitations. This raises the question of whether affordable methods can 

provide a sustainable solution for underprivileged communities. In this study, I explore the use of 

machine learning models to achieve accessible and approachable access to clean and safe water 

resources.  

 

In the context of technology diffusion, water quality has been recognized as a significant concern. 

While this study has made significant progress in developing a model for forecasting chlorophyll and 

harmful algal blooms, further improvements are necessary to create a more comprehensive and 

reliable model. This may include the integration of real-time sensor data to improve the accuracy 

and reliability of the model. Additionally, the results of this study may be used to encourage further 
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research and development in the field of water quality monitoring and management. One of the key 

benefits of this model is that it may be implemented in countries or areas with limited laboratory 

resources, providing decision-makers with a valuable tool for managing water quality. However, this 

will require the availability of suitable sensors, and sufficient data to build reliable models in new 

locations. In order to collect accurate and comprehensive data, a range of basic environmental 

parameter sensors such as thermometer, pH meter, EC, and DO sensors are necessary. Additionally, 

precision equipment such as chlorophyll sensors and sensors for P or N will also be required to 

obtain more detailed information. The use of such sensors will ensure that the collected data is both 

reliable and comprehensive, allowing for the development of accurate models that can be used for 

forecasting chlorophyll and harmful algal blooms. In the long term, financial assistance may be 

required to facilitate the diffusion of this technology and its eventual confirmation as a valuable tool 

for sustainable water management practices. Therefore, this study represents an essential step 

towards the goal of promoting sustainable water management practices globally, and it provides a 

foundation for further research in the field of water quality monitoring and management. 

 

The diffusion of the model developed in this study would require careful consideration of the key 

elements of innovation, adopters, communication channels, time, and the social system (Rogers, 

2003). The innovation is the use of machine learning to monitor and manage water quality, which 

may require significant investment in technology and personnel. The adopters of the technology 

could potentially encompass a wide range of stakeholders, including water management agencies, 

researchers, policymakers, and other relevant actors in sectors such as agriculture, and tourism. 

Communication channels could include scientific journals, conferences, and workshops to 

disseminate information about the model and its potential benefits. The time needed for adoption 

and adaptation of the model may be long, and ongoing monitoring and evaluation would be 

necessary to ensure its effectiveness. Finally, the social system, which includes the broader social, 

economic, and political systems in which the model would operate, would need to be considered. 

This would include factors such as governance structures, funding mechanisms, and public 

perception of the technology. Overall, the successful diffusion of the model would require a 

collaborative and interdisciplinary approach involving various stakeholders and addressing the 

challenges of adoption and implementation in different social contexts. 

 

The exploration and development of alternative approaches to promote the widespread adoption 

of advanced technology in the Global South is crucial. Collaboration between developed and 

developing countries can facilitate the diffusion of technology, build capacity, share knowledge, and 
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transfer technology, all of which can contribute to sustainable development. In addition, engaging 

local communities in the development and implementation of technology solutions can increase 

their sense of ownership, promoting the sustainability of the solutions. By working collaboratively 

with innovators, investors, and policymakers, sustainable technologies can be more effectively 

promoted and adopted, facilitating their diffusion. It is important to note that economic 

development alone does not necessarily solve the problem of poor water quality but rather 

transforms it and lays the foundation for future solutions. By considering these approaches and 

exploring the challenges and opportunities associated with technology diffusion, a better 

understanding of how technology can be effectively diffused to promote sustainable water 

management practices in the Global South can be achieved. 

5.3. Limitations and Future Research  

This study has several limitations that should be acknowledged to provide a clear 

understanding of the research findings. Firstly, the dataset employed in this study only covers a 

limited time range due to the experimental data's lack of integrity. Although this study still achieved 

significant findings, some models require a massive amount of data to build a comprehensive and 

precise model, and a more extended time range could yield more robust results. Secondly, the study 

does not include weather data due to the weak relationships observed. The original data did not 

record the sampling time, making it impossible to obtain accurate weather data. Therefore, the 

exclusion of weather data could have potentially influenced the results. Thirdly, this study only 

considers basic environmental factors and uses data solely from Sweden. Although these factors 

provide insight into the relationship between chlorophyll concentration and the environment, the 

addition of more parameters, such as biochemical oxygen demand (BOD), chemical oxygen demand 

(COD), and dissolved organic matter, could enhance the model's accuracy and provide further 

insight. Furthermore, the impact of environmental factors on chlorophyll concentration in water 

bodies may differ across countries due to differences in geography, climate, and land use patterns. 

Therefore, it is crucial to test the model's performance on data from different countries to ensure 

its validity and reliability for the diffusion of technology. However, given the scope and limitations 

of the study, the current selection of variables was deemed appropriate. 

 

In future studies, real-time monitoring should be considered to combine with the forecast models 

to improve or verify the accuracy of the models. This approach has the potential to significantly 

enhance water resource management, protect aquatic ecosystems and human health, and 

contribute to achieving the Sustainable Development Goals related to water. As discussed in the 
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limitations section, more complete water quality data is needed to develop a more robust model 

from different countries, and other factors, such as latent factors that may require expensive 

sensors to study, should also be included. Furthermore, field studies in countries in the Global South 

can be conducted to test the model's performance and ensure that these countries can also benefit 

from the diffusion of technology. In addition, investigating the effect of different land use patterns 

and agricultural practices on chlorophyll concentrations in water bodies can provide valuable insight 

into the factors that influence water quality. 

 

To further promote the diffusion of technology for sustainable water management practices in the 

Global South, it is important to consider the role of government policies and regulations. From 

training local technicians and engineers to developing local factories and manufacturing industries, 

it will help the locals step away from the threat of poverty gradually and decrease the 

unemployment rate. Creating a supportive regulatory system and environment is also crucial to 

protect the environment and monitor the pollutants and hazards in the wastewater. With the 

support, the technology could adapt to the local context and meanwhile evaluate sustainability with 

economic growth. 
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6. Conclusion 

This study investigated the use of statistical and machine learning models to predict 

chlorophyll concentrations based on environmental parameters in Skåne län, Sweden. The results 

indicated that the Random Forest (RF) model was the most effective in producing accurate 

predictions. Despite the study's limitations, such as a small dataset and inconsistent measurement 

methods for total phosphorus and nitrogen, it examined the diffusion of technology in water quality 

management for sustainable development, particularly in the Global South. The challenges and 

opportunities of technology diffusion were discussed, and the importance of collaboration with local 

communities to promote sustainable technologies was emphasized. Future research could 

investigate the use of machine learning models for water quality monitoring and explore alternative 

approaches to promote technology diffusion. By addressing these issues, the study suggests that 

sustainable water management practices can be promoted and that access to clean and safe water 

resources can be improved for all communities, regardless of their economic status. 
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8. Annex 

8.1. Annex 1 

Table 2. Descriptive statistics of scaled environmental parameters.  

 CHL 
Day of  

a year 
Latitude Longitude pH Temperature P DO EC Turbidity N 

Mean 0.32 0.53 0.66 0.32 0.47 0.57 0.03 0.42 0.35 0.20 0.23 

STD 0.17 0.25 0.23 0.19 0.20 0.28 0.02 0.20 0.22 0.14 0.15 

Min 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 

25% 0.16 0.36 0.47 0.25 0.32 0.37 0.02 0.29 0.08 0.11 0.13 

50% 0.30 0.62 0.70 0.29 0.45 0.58 0.02 0.37 0.41 0.16 0.24 

75% 0.48 0.63 0.91 0.54 0.63 0.80 0.04 0.55 0.49 0.25 0.32 

Max 0.32 0.53 0.66 0.32 0.47 0.57 0.03 0.42 0.35 0.20 0.23 
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8.2. Annex 2 

 
Figure 7. Maps of Skåne län. 
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8.3. Annex 3 

 

Figure 8. The scatter plot for mono-linear regression. Different parameters to CHL. 
(a) T, (b) pH, (c) EC, (d) Turbidity, (e) P, (f) N, (g) Longitude, (h) Latitude, (i) day of a year, (j) DO.  


