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Abstract
This thesis aims to investigate possible correlations between charm production and baryon
production in proton-proton collisions through three-particle correlations. The question
attempted to be answered is where, for a given charmed baryon, the balancing anti-
charm particle and balancing anti-baryon are located. The relative azimuthal angle ∆ϕ
and pseudorapidity ∆η between the trigger charmed baryon, light baryons and charmed
mesons are calculated for different combinations of quantum numbers in the triplet of
particles, using data simulated with the event generator Pythia8. Two different data
sets are considered: forced charm production, in which each event starts with a primary
hard scattering producing a cc pair back-to-back, and minimum bias. Two approaches
are taken to answer the research question. Firstly, the balance function for the triplet of
a trigger charmed baryon, light baryon with opposite baryon number to the trigger and
charmed meson with opposite charm quantum number than the trigger is produced. This
balance function is corrected for possible uncorrelated pairs and shows the true correlation
between baryon number and charm quantum number conservation. Secondly, the baryon
pair is restricted to a certain interval in momentum space and the effect on the charmed
particle’s placement is investigated. It is found that with forced charm production in
place, the balancing charmed particle is produced back-to-back to the balancing baryon.
The charmed hadrons are produced back-to-back in azimuthal angle and are uncorrelated
in pseudorapidity. The baryons with opposite baryon number are found close to each
other in momentum-space. In the more realistic case of minimum bias events, both the
balancing baryon and balancing charmed particle follow each other and are found close
to the triggering charmed baryon. These results can be understood when considering the
production mechanisms used in the event generator.
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Popular Science Summary
When ions are heated up to extreme temperatures they undergo a phase transition into
so called quark-gluon plasma (QGP), an extraordinary type of matter in which the funda-
mental particles building up protons and neutrons move more or less freely. It is believed
that the early universe was made up of this hot and dense mixture, so by studying the
behaviour of this fluid we can learn more about how the building blocks of our universe
were once formed. To understand the quark-gluon plasma, we must first understand the
basic building blocks of matter. The fact that matter is made up of atoms and that these
in turn consist of protons, neutrons and electrons is something most people learn about in
high school. But in fact, protons and neutrons can be split into even smaller elementary
particles called quarks. There are three pairs of quarks - up and down, strange and charm,
and top and bottom. Protons are made up of one down and two up quarks, but more
exotic particles are made up of other combinations of two or three of these quarks and
their corresponding antiparticles.

When nuclei collide at very high energies, they can create conditions similar to those
in the early universe. This is done at particle accelerators such as the Large Hadron
Collider (LHC) at CERN, producing so called "little Bangs". The droplet of QGP which
is formed in these collisions exists for a very short time, before decaying into showers of
particles that are detected and analysed. Many theoretical predictions for properties of
the QGP have been proposed and confirmed by experiments, such as the abundances and
spatial distributions of the produced particles. However, recently signatures previously
attributed to QGP were also found in proton-proton collisions. This was a big shock to
the high-energy physics community since the QGP was not expected to form in collisions
of smaller particles – there simply is not enough time. As researchers, we want to under-
stand what is going on in these collisions and this thesis hopes to contribute to a small
piece of this puzzle.

The particles produced in the collision are spread out in space around the collision point.
By considering the relative positions of these particles, we can determine at what time in
between collision and detection they are produced, which in turn gives clues about the pro-
duction mechanisms, i.e. how they are produced. In this work, so called charmed particles
are considered. These are exotic particles that include a charm (or anti-charm) quark and
one or two other quarks, most often the up and down quarks. The proton-proton colli-
sions are simulated using a model called Pythia, which is a Lund-based theoretical model
often used in high-energy physics. It simulates the produced particles, their propagation
towards the detectors and their decay into new particles. All of this information is in the
analysis used to find the spatial distribution of the charmed particles in a so called three-
particle correlation. In essence, this is a topological map which tells you the probability
to find the protons and other charmed particles, if you have a charmed baryon at the
origin. The results of this work may in future research be compared to experimental data
to enable the evaluation of the theoretical models describing proton-proton collisions.
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1 Introduction
Particle collisions are one of the keystones in modern high energy physics, allowing us
to probe the subatomic world by colliding highly energetic particles with each other and
essentially backtracking the collision by detecting the particles produced. Proton-proton
collisions are "simple" systems to investigate nuclear matter and are considered guides
for more sophisticated processes such as nucleus-nucleus collisions. The strong coupling
constant, which determines the interaction strength of the strong force, decreases with
energy, so the physical nature of the proton-proton collisions varies with the energy scale.
Hard interactions involving high energy transfer can be described by perturbative quan-
tum chromodynamics (QCD). However, large contributions to particle production are the
soft interactions, which are not described by perturbative QCD and demand other models.
One of the most widely used models for the generation of high energy collision events in
particle physics is the Lund-based Monte Carlo model Pythia8. Executing the program
produces the final stage products of the collisions, including information such as particle
type, momentum and multiplicity.

QCD is one of many areas of research in which there is a need for a constant inter-
play between theoretical models and experimental results and consequently, there is a
clear need of defining observables to compare. This project will focus on quantum num-
ber production. More specifically, this project aims to investigate whether there is a
correlation between the production of baryon number and the production of charm or not
by probing the kinematics of charmed baryons, charmed mesons, and other light baryons
produced in proton-proton collisions. Information about such dynamics is gathered by
constructing so called three-particle correlation functions. This is done via the particles’
relative azimuthal angle ∆ϕ in the transverse plane and their relative longitudinal pseu-
dorapidity ∆η. In essence, we ask the question: if we produce a charmed baryon in a
proton-proton collision, where are the balancing light baryon and the balancing charmed
meson produced?

This project will produce a three-particle correlation between trigger charmed hadrons,
charmed mesons with opposite charm quantum number than the trigger, and light baryons
produced to conserve baryon number in the collision. Proton-proton collisions will be sim-
ulated using the Monte Carlo simulator Pythia 8.309 [1], both for forced hard production
of cc quark pairs and minimum bias. The correlation function between charmed baryons,
charmed mesons and light baryons is sensitive to the mechanisms of charm production,
fragmentation and hadronisation. Therefore, investigating the correlations of these parti-
cles might give insight into when and where in the collision the charmed particles are found
– both in relation to themselves and in relation to other baryons. This gives information
about the dominant production mechanisms in the event generator. Arguably most im-
portantly, measuring the correlation function of the charmed baryons, mesons, and light
baryons using simulated data allows for future comparison with experimental data and
can provide guidance on tuning the generators. Furthermore, the correlation function can
possibly function as a signature of particle production in small systems. These studies
are important not only for providing a better understanding of the underlying physics
in proton-proton collisions but also for possible modifications of the interpretations of
correlation functions in other high energy physics areas, such as heavy ion physics.

1
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2 Theory
Before going into the details of this thesis, an introduction to particle physics and the
Standard Model will be presented, followed by an overview of particle detection in the
ALICE detector [2] and an outline of Pythia8, the event generator used to simulate the
particles.

2.1 The Standard Model

Figure 1: Schematic table of the particles
in the Standard Model. Figure taken from
[3].

The Standard Model of particle physics
describes all known fundamental parti-
cles and three of the four forces in na-
ture; the strong, the electromagnetic and
the weak force. The particles build-
ing up matter, called fermions, include
two groups named quarks and leptons.
Each group consists of six particles and
their corresponding antiparticles, which
are related to each other in pairs, or
"generations", ordered from lowest mass
(and thus most stable) to highest mass
(and least stable). All stable matter
in the universe is made up of parti-
cles belonging to the first generation -
"up quarks" and "down quarks". More
exotic, unstable particles include quarks
from the second generation, "strange
quarks" and "charm quarks", and third
generation, "top quarks" and "bottom
quarks".

In addition to the fermions, the Standard Model also includes four force carriers which are
the particles giving rise to forces between other particles. These are the photon, the gluon,
the Z-boson and the W-boson. The weak force is mediated by the W- and Z-bosons. These
massive particles couple to all fermions, as well as to themselves. The electromagnetic
and the weak force are described by a unified gauge theory called quantum electrodynam-
ics (QED). At shorter distances (higher energies) both the electromagnetic and the weak
interaction strength increase. Coupling constants which vary with energy scale are called
running coupling constants, an effect which is even more important for the strong force
coupling constant.

Nuclear matter is held together by the strong force, which is described by QCD and
mediated by the gluon. As the name suggests, the strong force is the strongest of the
forces. Gluons couple to so called "colour charge", an additional quantum number asso-
ciated with quarks and gluons. Colour charge comes in three colours: red (r), green (g)
and blue (b), and the corresponding anticolours. All particles seen in nature are colour-
neutral, either in a triplet of all three colour charges (rgb) or as a doublet of colour and
anticolour. As a result, there are two main groups of hadrons: baryons (qqq or qqq) and

2
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mesons (qq). The gluon also carries colour-charge, namely a colour and an anti-colour,
and can therefore self-interact. The larger the distance (lower energy), the more the
gluon can self-interact and the stronger the interaction strength becomes. As a result, the
force between quarks increases as they are pulled apart. In collider experiments, quarks
are pulled apart with so much energy that showers of new particles are formed, called jets.

Elementary particles in the Standard Model carry many so called quantum numbers which
are said to be intrinsic to them, such as spin, electric charge and lepton number. Quantum
numbers describe values of conserved quantities in dynamical quantum systems, normally
taking integer or half-integer numbers. The quantum numbers of interest in this thesis are
the flavour charm and the baryon number. Charm, C, represents the difference between
the number of charm quarks (nc) and charm antiquarks (nc) present in a particle,

C = nc − nc̄. (1)

Charm is conserved in strong and electromagnetic interactions, but not in the weak in-
teraction because of flavour mixing. Baryon number B is defined as

B =
1

3
(nq − nq̄), (2)

where nq is the number of quarks and nq̄ the number of antiquarks. Particles with baryon
number ±1 are called baryons, while particles with baryon number 0 are called mesons.
The baryon number is a strictly conserved quantum number, meaning that the sum of
the baryon number of all incoming particles equals the sum of the baryon number of all
outgoing particles resulting from a reaction [4].

Since this thesis focuses on the possible correlation between charm production and baryon
production, the hadrons of special interest in this thesis are the charmed hadrons and light
baryons. Some particle properties are listed in Table 1, 2 and 3. The Particle Data Group
(PDG) numbering scheme is used as an identifier in particle generators such as Pythia
and is taken from [5].

Particle Antiparticle Quarks Mass [MeV/c2] C B Mean Lifetime [s] Decays PDG
Λ+
c Λ−

c udc 2286.46± 0.14 +1 +1 (2.00± 0.06)× 10−13 [p,K−, π+] 4122
Ξ+
c Ξ−

c usc 2471.0± 0.4 +1 +1 (4.42± 0.26)× 10−13 [Ξ−, 2π+] 4232
Ξ0
c Ξ0

c dsc 2471.0± 0.4 +1 +1 (1.12± 0.13)× 10−13 − 4132
Ω0
c Ω0

c ssc 2697.5± 2.6 +1 +1 (268± 24)× 10−15 − 4332

Table 1: Charmed baryons used in analysis and some of their physical properties, namely
antiparticle, quark content, mass, charm number, baryon number, mean lifetime, most
common decay products and PDG code [6].

Particle Antiparticle Quarks Mass [MeV/c2] C B Mean Lifetime Decays PDG
p p uud 938.272 0 +1 > 3.6× 1029 years - 2212
n n udd 939.565 0 +1 879.4 s p, e−, νe 2112

Table 2: Light baryons used in analysis and some of their physical properties [7] [8].

3
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Particle Antiparticle Quarks Mass [MeV/c2] C B Mean Lifetime [s] Decays PDG
D0 D0 cu 1864.84± 0.17 +1 0 (1.040± 0.007)× 10−12 [K,µ, e, π]± 421
D+ D− cd 1869.62± 0.20 +1 0 (4.101± 0.015)× 10−13 [K, e, π]± 411
D+

s D−
s cs 1968.47± 0.33 +1 0 (5.00± 0.07)× 10−13 [K,π]± 431

Table 3: Charmed mesons used in analysis and some of their physical properties [9] [10].

2.2 Small and Large System Collisions

Figure 2: Left: Production of cc pair
as a result of initial head on interactions.
Since the momentum in the lab frame is
zero, the quark pair is produced back-to-
back. Right: Production of cc pair as a
result of gluon pair production. Since the
gluon has a forward momentum in the lab
frame, the quark pair is also boosted in
the lab frame and more likely to be in
close proximity to each other.

The strong force and the mechanisms of
QCD can be probed via particle collisions,
by analysing the particles produced. These
collisions range in scale from small systems,
such as proton-proton collisions, to large
system collisions, such as heavy-ion colli-
sions. Scattering processes at high energy
hadron colliders can be classified as either
hard or soft, depending on the amount of
momentum exchange between the interact-
ing partons. Hard processes can be de-
scribed using perturbative QCD to good pre-
cision, but perturbation theory fails to pre-
dict soft processes due to the large coupling
constant, making the soft processes less well-
understood. As a result of the large mass
of the charm quark, they are produced in
hard processes, visualised in Figure 2. Pro-
duction of lighter quarks, such as up and
down quarks, are mainly produced in soft
processes. Although the understanding of QCD and its production mechanisms in differ-
ent collision systems has increased drastically over the past decades, there are still many
unanswered questions.

In 2001, early results from the Relativistic Heavy-Ion Collider (RHIC) indicated that
in head-on lead-lead collisions the majority of the collision energy was deposited into a
medium whose expansion was well described by relativistic hydrodynamics. Further ex-
periments showed that this exotic state of matter, called the quark-gluon plasma (QGP),
had a very low viscosity, a temperature of around four trillion Kelvin and is composed
of deconfined quarks. The standard description of these large system collisions has been
tested with great detail and many signatures of the QGP such as radial and anisotropic
flow and associated flow coefficients vn, jet quenching and strangeness enhancement have
been found [11]. However, signatures previously attributed solely to the QGP have also
been found in smaller systems – mainly collective behaviour and strangeness enhance-
ment [12] [13]. This is puzzling since the lifetime of the system formed in these collisions
should be too short to undergo any phase transition necessary to produce QGP. This begs
the question of whether our current understanding of large systems is incorrect, or if the
descriptions of smaller systems are incomplete. Whatever the answer, it highlights the
importance of further understanding small system collisions and the basic properties of
QCD [14].

4
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2.3 Particle Detection

Large collision systems are the main object of study for the heavy-ion detector ALICE (A
Large Ion Collider Experiment) at CERN, which focuses on the strong interaction sector
of the Standard Model. Its main objective is to detect the particles produced in heavy
ion collisions, but comprehensive data is taken during proton-proton runs as reference
data for the heavy-ion program. Particles are identified by the characteristic signatures
they leave in the detector, consisting of a set of components stacked in layers around the
collision point. The main tracking system of ALICE is the inner tracking system (ITS)
and the time projection chamber (TPC), which together are able to record most charged
particles traversing it and identifying them through means such as specific ionisation en-
ergy loss and time of flight (TOF) measurements. Neutral particles can be reconstructed
through their decay products [2].

Even though this thesis is based on simulated data, it is for future purposes still in-
teresting to consider how the particles of interest would be detected with the ALICE
detector. The Λ+

c decays as Λ+
c −→ pK−π+ with branching ratio (BR) (6.35 ± 0.33)%,

Λ+
c −→ pK0

s with BR= (1.58 ± 0.08)%, and Λ+
c −→ e+µeΛ with BR= (3.8 ± 0.4)%.

The K0
s decays into pions and the Λ into a proton and a pion. The charged tracks in

these decays are reconstructed using the central barrel detectors. The neutral K0
S and Λ

are identified based on the V-shaped decay topology. The identification of pions, kaons,
protons and electrons is based on the specific energy loss dE/dx in the TPC detector
and time of flight measurements [15]. D mesons are identified via the decay channels
D0 −→ K−π+ with BR= (3.89 ± 0.04)%, D+ −→ K−π+π+ with BR= (8.98 ± 0.28)%
and D0

s −→ ϕπ+ −→ K+K−π+ with BR= (2.27± 0.08)% [16].

The coordinates used to describe the direction of a track in particle collisions are the
azimuthal angle ϕ and the Lorentz invariant pseudorapidity η as seen in Figure 3. The
pseudorapidity is related to the longitudinal angle θ of the three-momentum to the beam-
line through

η = − ln

(
tan

(
θ

2

))
. (3)

Particles travelling parallel to the beam have pseudorapidity η = ±∞, while trajectories
perpendicular to the beam have pseudorapidity η = 0. The ALICE central barrel detector
has a pseudorapidity range of |η| < 0.88 [2]. The azimuthal angle ϕ is the polar angle
in the x-y plane perpendicular to the beam axis. The origin is chosen arbitrarily, but
in simulations it is usually chosen to be in the same direction as the leading track and
thus changes from event to event. The azimuthal plane is divided into three regions. The
toward side is ϕ ∈ [−π/3, π/3], the away side ϕ ∈ [2π/3, 4π/3], and the traverse region
ϕ ∈ [π/3, 2π/3] and ϕ ∈ [4π/3, 5π/3].

5
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z-axis

x-axis

y-axis

towards

away

Figure 3: Left: The pseudorapidity η. The z-axis is along the beamline and θCM is the centre
of mass scattering angle. Right: The azimuthal angle ϕ.

2.4 Particle Correlations

Information concerning collectivity, which in itself has been considered a signature of
QGP, can be gathered through measuring particle correlations, often parametrised via
the particles’ relative angle ∆ϕ = ϕ1 − ϕ2 and ∆η = η1 − η2. Some examples of correla-
tions include hadronic resonances giving rise to two-particle correlations, hard scattering
of partons from incoming hadrons resulting in jets, and low momentum transfer scatter-
ing resulting in long-range correlations in pseudorapidity as a consequence of momentum
conservation [14]. These correlation functions are sensitive to production mechanisms and
are therefore a useful tool when probing QCD.

A two-particle correlation function C(2) is defined as

C(2)(∆η,∆ϕ) =
1

Npairs

d2Npairs

d∆ηd∆ϕ
(4)

where ∆η and ∆ϕ are the differences in pseudorapidity and azimuthal angle respectively
between the trigger particle and the associated particle, and Npairs the number of trigger
associated pairs. In this thesis, the correlation function is normalised with respect to the
number of triggers, Ntrig, giving the associated yields per trigger

C(2)(∆η,∆ϕ) =
1

Ntrig

d2Npairs

d∆ηd∆ϕ
. (5)

Two-particle correlations are a well-used tool in particle physics. This can be expanded
to three-particle correlations, C(3), given by

C(3)(∆η1,2,∆η1,3,∆ϕ1,2,∆ϕ1,3) =
1

Ntrig

d4Ntriplets

d∆ϕ1,2d∆ϕ1,3d∆η1,2d∆η1,3
. (6)

where 1 denotes the first trigger particle and 2 and 3 are the two other particles in the
triplet [17]. In this thesis, particle 1 corresponds to the charmed baryon, particle 2 is the
light baryon and particle 3 is the charmed meson. Using this definition, correlation func-
tions for different combinations of charm quantum number and baryon quantum number
will be created, to produce a so called balance function [18]. This is explained more in
detail in section 3.

6
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2.5 Pythia

The data used to produce the three-particle correlations in this thesis is simulated using
the Monte Carlo event generator Pythia8. In a simplified explanation, one can say that the
event starts with two initial particle beams approaching each other. When the particles
collide, partons interact with each other over a variety of energy scales through both hard
and soft processes, producing new partons. These branch into final state parton showers.
Because of the non-perturbative nature of QCD, it is not possible to derive the hadronic
parton distributions from first principle, so an interplay between theory and experimental
data is vital for the parametrisations. The colour-charged partons are converted into
colour-neutral hadrons in a process called hadronisation. In Pythia, these fragmentations
are modeled as so called string fragmentation. The model describes the linear confinement
of the colour singlet qq jet as a massless, one-dimensional string. As the distance increases,
the tension in the string increases to a point in which it breaks and a new qq pair(s) are
produced. If the quark pair has a transverse mass, they cannot be produced in the same
point and need to tunnel through a forbidden region. This tunnelling probability is given
by

1

κ

dP
d2p⊥

∝ exp(−πm2
⊥/κ) = exp(−πm2/κ) exp(−πp2⊥/κ), (7)

where m⊥ is the traverse mass of the quark, κ the string tension and p⊥ the traverse
momentum. The non-zero mass suppression is viewed as a free parameter and tuned to
data. Using this, one can see that in string breaking processes the production of charm
compared to up and down quarks is suppressed by a factor of

exp(−π(m2
c −m2

ud)/κ) ≈ 10−11. (8)

The string-breaking producing the triplet ΛC , p and D0 is shown in Figure 4 [1].

Figure 4: Schematic illustration of one possible way the strings break to produce a Λc, p and
D0, where the cc pair have been produced through hard processes.

3 Method
Before describing the method used in this work, it is necessary to present a note on the
particles used in the analysis and introduce some notation regarding them. To increase the
statistics, we look at all triplets of charmed baryons, light baryons and charmed mesons.
Most of these are Λ+

c (Λ
−
c ), D0(D0) and protons or neutrons but other particles, as listed

in Tables 1, 2 and 3, are also included. To simplify, a more concise notation is used as
explained in Table 4 below.

7
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Notation Explanation
Λ All charmed baryons (see table 1), with charm number +1 or -1 and baryon number

+1 or -1. These are the triggering particles.
p All light baryons (see table 2) with the same baryon number as the associated trig-

gering charmed baryon.
p All light baryons with the opposite baryon number as the associated triggering

charmed baryon.
D All charmed mesons (see table 3) with the same charm number as the associated

triggering charmed baryon.
D All charmed mesons with the opposite charm number as the associated triggering

charmed baryon.

Table 4: Notation for the particles used henceforth.

3.1 Particle Generation

3.1.1 Pythia

The particles used for the analysis of this work are produced using the Monte Carlo
simulator Pythia 8.309, which is described in more detail in section 2.4. When running
the simulation, a number of conditions are placed on the production. Namely,

1 pythia.readString("HardQCD:gg2ccbar = on");
2 pythia.readString("HardQCD:qqbar2ccbar = on");
3 pythia.readString("ParticleDecays:limitTau0 = on");
4 pythia.readString("ParticleDecays:tau0Max = 0");

where the two first lines force a cc production back-to-back in the primary hard scattering,
and the last two lines ensure that the charmed baryons do not decay weakly. A set of
data is also produced with minimum bias, where the heavy quark pair is not forced to
be produced in the primary hard scattering. The ALICE central barrel detector has
a pseudorapidity range of |η| < 0.88. This restriction is not relevant when simulating
particles, but to make future comparison of results easier, the restriction |η| ≤ 1 is placed
on the simulated particles. Before an event is saved to a separate file, it is checked to
ensure that it includes at least one charmed baryon, one charmed meson and one light
baryon. The multiplicity of the events for the forced charm production and minimum bias
is shown in Figure 5, showing that if the cc production is not forced in the primary hard
scattering, it happens at higher multiplicities.

Figure 5: Left: Multiplicity of the events for the forced charm (FC) production. Right:
Multiplicity of the events in the minimum bias (MB) case.
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3.1.2 Toy Model

A simple toy model for particle production was constructed using a pseudo-random num-
ber generator. In each event, a fraction of the particles were assigned η and ϕ randomly
in the chosen intervals |η| ≤ 1 and ϕ ∈ [0, 2π]. Half of the remaining particles in the event
were given a random η and ϕ within Gaussian distributions centred at some random η1
and ϕ1 respectively, and σ = 0.1. The rest of the particles were set η and ϕ from Gaussian
distributions centred at ϕ2 = ϕ1+π and a random η2 to simulate back-to-back jets. A pos-
sibility of assigning each particle an identifying integer was included, to separate between
"different" particles. The toy model was then used to test out two- and three-particle
correlations. The balance function, which will be explained shortly, was also tested using
the toy model to ensure that it showed no correlation when none were simulated.

3.2 Correlation Functions

The analysis is done in C++, using the ROOT framework [19]. To construct the corre-
lation functions between charmed baryons, charmed mesons and light baryons, ∆η and
∆ϕ between the particles in each triplet are calculated. The charmed baryon is chosen as
the trigger particle, such that for each charmed baryon the azimuthal angle and pseudo-
rapidity to all charmed mesons and light baryons within the same event is determined.
In total, four correlations for different combinations of quantum numbers in the triplet
are constructed: opposite baryon number and opposite charm C1, opposite baryon num-
ber and same charm C2, same baryon number and opposite charm C3, and finally same
baryon number and same charm C4. Each of these is assigned a four-dimensional his-
togram (THn), which is filled with (∆ϕΛ,p(p),∆ϕΛ,D(D),∆ηΛ,p(p),∆ηΛ,D(D)) depending on
the combinations of the quantum numbers of Λ, p(p) and D(D). Rotational symmetry
for the azimuthal angle is ensured by adding or removing 2π from ∆ϕ if it is outside of
the chosen range [−π/2, 3π/2].

As a result of the acceptance range in η, the correlation functions will showcase a sym-
metric background behaviour. For a one-dimensional case, this would look like a triangle
centered at the origin and stems from the fact that there will be significantly more parti-
cles with ∆η = 0 than ∆η = 2. To see signals which are only due to inherent correlations
between particles, this acceptance factor needs to be removed. In practice, this is done by
considering correlations between particles which are completely uncorrelated – the only
"signal" in this correlation function is that of the acceptance. To do so, the triggering
charmed baryons are correlated to charmed mesons and light baryons produced in the ten
prior events. These are called "mixed event correlations" and are normalised in such a
way that the probability for a triplet of particles being close to each other is unity, which
means that they are normalised with respect to (∆ϕΛ,p,∆ϕΛ,D,∆ηΛ,p,∆ηΛ,D) = (0, 0, 0, 0).
The correlation functions of particles within one event are divided by the mixed event
correlations to obtain what henceforth is called "signal correlation functions", which is
visualised in Figure 6. In order to produce the actual correlation functions

C(3)
n (∆ϕΛ,p,∆ϕΛ,D,∆ηΛ,p,∆ηΛ,D) =

1

Ntrig

d4N

d∆ϕΛ,pd∆ϕΛ,Dd∆ηΛ,pd∆ηΛ,D
, (9)

the histograms are scaled with the total number of triggers, NΛ, and the binwidths of
the histogram. These four-dimensional objects are projected on two of the four axes in
order to visualise the results, using the "Projection" command defined for THn ROOT
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Figure 6: Left: Same-event two-particle correlation function for charmed baryons and light
baryons with opposite baryon number. Middle: The acceptance, which is the correlation of
particles from mixed events, B(∆η(Λ, p),∆ϕ(Λ, p)) normalised to one. Right: The same-event
two-particle correlation function after correcting for the acceptance by dividing the left plot by
the middle plot.

objects and scaling with the binwidth of the axis not projected over. This produces four
projected signal correlation functions for each of the four signal correlation functions:

C(3)
n (∆ϕΛ,p∆ηΛ,p) =

1

Ntrig

d2N

d∆ϕΛ,pd∆ηΛ,p
=

1

Ntrig

∫
d4N

d∆ϕΛ,pd∆ϕΛ,Dd∆ηΛ,pd∆ηΛ,D
d∆ηΛ,Dd∆ϕΛ,D

(10)

C(3)
n (∆ϕΛ,D∆ηΛ,D) =

1

Ntrig

d2N

d∆ϕΛ,Dd∆ηΛ,D
=

1

Ntrig

∫
d4N

d∆ϕΛ,pd∆ϕΛ,Dd∆ηΛ,pd∆ηΛ,D
d∆ηΛ,pd∆ϕΛ,p

(11)

C(3)
n (∆ϕΛ,p∆ϕΛ,D) =

1

Ntrig

d2N

d∆ϕΛ,pd∆ηΛ,p
=

1

Ntrig

∫
d4N

d∆ϕΛ,pd∆ϕΛ,Dd∆ηΛ,pd∆ηΛ,D
d∆ηΛ,Dd∆ηΛ,p

(12)

C(3)
n (∆ηΛ,p∆ηΛ,D) =

1

Ntrig

d2N

d∆ηΛ,pd∆ηΛ,D
=

1

Ntrig

∫
d4N

d∆ϕΛ,pd∆ϕΛ,Dd∆ηΛ,pd∆ηΛ,D
d∆ϕΛ,pd∆ϕΛ,D.

(13)

The correlation functions can be looked at from two different perspectives; the magnitude
and the shape. In general, the overall shape informs about the relative strengths of the
different production mechanisms, while the magnitude depends on the combined strength
of said production mechanisms.

3.3 Balance Function

Next, the balance function is created. This is the "true" three-particle correlation function
representing the balanced particle triplet, corrected for the possible two-particle correla-
tion between only the charmed baryon and light baryon, or charmed baryon and charmed
meson. This correlation function shows where the Λ, p are compared to the Λ, D (as well
as the corresponding charge conjugates). The balance function is constructed as follows:

Cbalance = C1 − C2 − C3 + C4. (14)

The correlation needs to be corrected for random combinations, that is, particles pro-
duced in different interactions where the correlation is not between all particles within
the triplet. To remove any random combinations of charmed baryons and charmed mesons
with opposite charm quantum number, the correlation of charmed baryons and charmed
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mesons with the same charm quantum number, C2, is subtracted. Note that this builds
on the assumption that random pairs of Λ and D (and the charge conjugates) behave the
same way as pairs of Λ and D (and the charge conjugates) since these do not conserve
charm quantum number. For weak interactions, all four correlations will have the same
probability, but in strong interactions – which is what we are interested in – we can say
that particle pairs with the same charm quantum number ought to be comparable to
uncorrelated particle pairs with opposite charm quantum number, produced in different
interactions. Similarly, random pairs of charmed and light baryons with opposite baryon
numbers are removed by subtracting the correlation function of the same baryon number
and opposite charm quantum number, C3. At this point, the same baryon number and
same charm have been removed one too many times since C2 and C3 both include triplet in
which all three particles are uncorrelated, which is corrected for by adding the correlation
function corresponding to these triplets, C4, back in. The projection procedure described
earlier is applied to the balance function, such that four two-dimensional histograms are
produced.

3.4 Ranges

In addition to the balance function, the possible correlation between baryon number and
charm quantum number is investigated by only considering ∆ϕΛ,p(p) and ∆ηΛ,p(p) in a fixed
range. On the four-dimensional signal correlation functions, a range is set on axis 0 and
2, corresponding to ∆ϕΛ,p(p) and ∆ηΛ,p(p). Four different ranges are considered:

(1) : |∆ϕΛ,p(p)| < 0.3, |∆ηΛ,p(p)| < 0.2 (3) : |∆ϕΛ,p(p) − π| < 0.3, |∆ηΛ,p(p)| < 0.2

(2) : |∆ϕΛ,p(p)| < 0.3, |∆ηΛ,p(p)| ≤ 2 (4) : |∆ϕΛ,p(p) − π| < 0.3, |∆ηΛ,p(p)| ≤ 2.

The ranges are implemented by using the function "SetRangeUser". The four-dimensional
correlation functions are produced and projected in the same manner as described earlier
but divided by a different trigger, namely N

(x)
Λ,p(p) as described in Table 5. The same is

done for the signal correlation functions without a set range, where the trigger is instead
NΛ,p(p). Using these triggers, the correlation functions will show the number of associated
charmed mesons per light baryon and charmed baryon pair, relative to the position of
the charmed baryon. The signal correlation functions with a set range are divided by the
signal correlation functions without a set range. This fraction is in turn projected onto
∆ϕΛ,D(D) and for each of the four ranges, all four correlations are plotted in the same plot
so that the overall shapes of the fractions are comparable.

3.5 Triggering

Below, an explanation and numerical value are given to all the triggers used in the analysis,
both for the forced charm production and minimum bias.

11
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Notation Explanation Value FC Value MB
NΛ All charmed baryons produced in the events. 14347194 4847221
NΛ,p(p) All pairs of charmed baryons and light baryons with

the same (or opposite) baryon number produced in the
event.

4044910 (8149890) 4766760 (6697598)

N
(1)
Λ,p(p) All pairs of charmed baryons and light baryons with the

same (or opposite) baryon number, within range (1).
66622 (559278) 77065 (382161)

N
(2)
Λ,p(p) All pairs of charmed baryons and light baryons with the

same (or opposite) baryon number, within range (2).
363731 (1782233) 419901 (1185115)

N
(3)
Λ,p(p) All pairs of charmed baryons and light baryons with the

same (or opposite) baryon number, within range (3).
77165 (90194) 93861 (98740)

N
(4)
Λ,p(p) All pairs of charmed baryons and light baryons with the

same (or opposite) baryon number, within range (4).
414581 (490868) 500659 (525684)

Table 5: Explanation of the triggers used in the analysis. These were counted during
the particle generation of Pythia and are therefore each particle or pair is not necessarily
part of an analysed triplet.

4 Results and Discussion
Next, the results of the analysis are presented and discussed. The results are obtained by
analysing all particles listed in Tables 1, 2 and 3, but the analysis was also run on triplets
only consisting of Λ+

c , D0 and p (and the corresponding antiparticles). This did not change
the results visibly, other than decreasing the size of the data set. The projections of the
correlation functions are notated as C(∆ϕΛ,p(p),∆ϕΛ,D(D)), where

C(∆ϕΛ,p(p),∆ϕΛ,D(D)) =
1

NΛ

d2N

d∆ϕΛ,p(p)d∆ϕΛ,D(D)

, (15)

The same goes for the other projections, as defined in equation (10)-(13). As a result
of the triggering used, the amplitude of these three-particle correlations describes the
number of times a triplet is found within the given coordinates for any Λ(Λ̄) in the event.
The one-dimensional correlation function used for the ranges is notated as C(∆ϕΛ,D(D)),
where

C(∆ϕΛ,D(D)) =
1

NΛ,p(p)

dN

d∆ϕΛ,D(D)

. (16)

The triggers for the ranges are done with respect to particle pairs, as described in Table
5. All plots presented are projections of the four-dimensional three-particle correlation
functions.

4.1 Correlation Functions Forced Charm Production

Firstly, a qualitative discussion of the four separate correlation functions is presented. In
this section, only a certain subset of the projections are shown, but the remaining figures
can be found in the Appendix. In general, with the forced charm production active in the
particle generation, the charmed baryon and charmed meson with opposite charm number
are found back-to-back, while the charmed baryon and light baryon with opposite baryon
number are found in the same jet peak, near in phase space. For the same baryon number,
it tends to be disfavoured for the charmed baryon and light baryon to be produced close
to each other. The same goes for the same charm number.
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4.1.1 Projection on ∆ϕΛ,p(p) and ∆ϕΛ,D(D)

Figure 7 shows the four different correlation functions projected on ∆ϕΛ,p(p), ∆ϕΛ,D(D).

Figure 7: Correlation functions projected on ∆ϕΛ,p(p), ∆ϕΛ,D(D) for the four different combi-
nations of baryon and charm number. Λ, D and p are as defined in Table 4.

The correlation function for the opposite baryon number, opposite charm, is shown in the
upper left corner of Figure 7. We can see a clear peak at (∆ϕΛ,p,∆ϕΛ,D) = (0, π), showing
that the baryon and meson with opposite charm quantum number are mainly produced
back-to-back, while the particles with opposite baryon number, i.e. the charmed baryon
and the proton or neutron, are produced close together in the azimuthal angle. There is
also a smaller peak around (∆ϕΛ,p,∆ϕΛ,D) = (π, π), showing the situation in which the
compensating charmed meson and baryon are both produced back-to-back to the trigger-
ing charmed baryon.

In the lower left corner of Figure 7, the same projection of the four-dimensional object
is shown for the correlation of the opposite baryon number and same charm. Similarly
to the opposite baryon opposite charm correlation function, the particles with balancing
baryon number are close together. The charmed hadrons are distributed in ∆ϕ, with a
disfavouring of being close together.

In the upper right corner of Figure 7, the correlation function for the same baryon num-
ber and opposite charm is shown, dominated by the initial forced production of cc̄ pair
back-to-back, while the charmed baryon and light baryon do not seem to, in this triplet,
favour any particular placement.

Lastly, the same baryon number same charm correlation is shown in the lower right
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corner of Figure 7. Here we can see that ∆ϕΛ,D ≈ ∆ϕΛ,p is favoured, while ∆ϕΛ,p = 0
and ∆ϕΛ,D = 0 is disfavoured. This can be understood with the argument that it is hard
to produce a triplet with the same charm and same baryon number in close proximity to
each other since this demands more particle production to balance the quantum numbers,
and thus more energy.

4.1.2 Projection on ∆ηΛ,p(p) and ∆ηΛ,D(D)

Figure 8 shows the correlation functions projected on ∆ηΛ,p(p) and ∆ηΛ,D(D), complement-
ing the discussion above.

Opposite Baryon Opposite Charm Same Baryon Opposite Charm

Opposite Baryon Same Charm Same Baryon Same Charm

Figure 8: Correlation functions projected on ∆ηΛ,p(p), ∆ηΛ,D(D) for the four different combi-
nations of quantum numbers, using the forced charm production.

In the upper left corner of Figure 8 the projection on pseudorapidity for the correlation
function of opposite baryon opposite charm is shown. For the opposite baryon opposite
charm, we see that the baryons are produced close to each other in pseudorapidity, while
the charmed hadrons do not seem to favour any particular ∆η.

In the lower left corner of Figure 8, the same projection is shown for the correlation
of opposite baryon number and same charm. Similar behaviour as in the opposite baryon
opposite charm can be seen in this triplet, although less prominent. It seems to be dis-
favoured for the charmed hadrons to be produced close to each other.

In the upper right corner of Figure 8 the correlation function for the same baryon opposite
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charm triplets is shown. The baryons with the same baryon number are disfavoured to
be in close proximity, while the charmed hadrons again do not show much preference.

Lastly, the same baryon same charm correlation function projected on ∆ηΛ,p, ∆ηΛ,D is
shown in the lower right corner of Figure 8. This correlation function shows no clear
correlations.

4.1.3 Discussion

To summarise the correlation functions for the different combinations of quantum num-
bers, we can see that opposite baryon number particles show a tendency to be close to
each other in momentum-space, while the same baryon number particles showcase an
anti-correlation near each other. This can most clearly be seen in the projections of the
correlation functions over pseudorapidity. The charmed hadrons with opposite charm
are located back-to-back in azimuthal angle but distributed in pseudorapidity, indicating
that the initial hard scattering is the main production mechanism of charm quarks. The
same charm particles are either uncorrelated or show an aversion to closeness. It should
be noted that the amplitudes of these four correlation functions presented vary drasti-
cally, with the opposite baryon number opposite charm having substantially more counts
than the three others, reiterating why this is the combination of quantum numbers we are
mostly interested in when looking for possible correlations. The correlation functions with
the same charm particles have the lowest amplitude and the least amount of statistics, as
this is a heavily suppressed production. The correlation functions presented above also
include triplets in which there is no correlation between all three particles. It is therefore
not possible to with certainty know which production mechanisms is the most dominant,
which is why we need the balance function (see section 4.3).

4.2 Correlation Functions Minimum Bias

Next, the correlation functions for the minimum bias data, in which not every event starts
initially producing a cc pair back-to-back, are presented in a similar manner. Compared
to the forced charm production, in the minimum bias the distribution of charmed baryons
and charmed mesons changes significantly while the distribution of charmed baryons and
light baryons stays practically the same. It is still unfavoured to produce the same baryon
number or charm close together in phase space and the opposite baryon number particles
are still produced within the same jet peak. The opposite charmed meson is now instead
produced in close proximity to the charmed baryon. This mainly affects the correlations
functions in which the charmed hadrons have opposite charm number.

4.2.1 Projection on ∆ϕΛ,p(p) and ∆ϕΛ,D(D)

Below, the projection on ∆ϕΛ,p(p), ∆ϕΛ,D(D) of the four correlation functions for minimum
bias is shown.
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Figure 9: Correlation functions projected on ∆ϕΛ,p(p), ∆ϕΛ,D(D) for the different combinations
of quantum numbers, using the minimum bias data.

The projection on ∆ϕΛ,p, ∆ϕΛ,D of the opposite baryon opposite charm correlation func-
tion is shown in the upper left corner of Figure 9. We can see that the significance of the
ridges in ∆ϕΛ,D and ∆ϕΛ,p have changed compared to the forced charm production. In
the forced charm production, the ∆ϕΛ,D = π dominates, while the ridge around ∆ϕΛ,p = 0
is much smaller. In the minimum bias, the latter dominates, with a smaller ridge around
∆ϕΛ,D = 0. The balancing particles tend to be close to the triggering charmed baryon.
There is also a slight diagonal ridge where ∆ϕΛ,p = ϕΛ,D and the balancing baryon follows
the balancing charm.

The same projection is shown in the lower left corner of Figure 9 for the opposite baryon
same charm correlation function. Removing the initial forced charm production does not
significantly change the shape of this correlation function. The same charmed particles
are produced similarly as in the forced charm production, with the balancing baryon be-
ing close to the trigger particle and the charmed meson disfavouring being close to the
charmed baryon.

The upper right corner of Figure 9 shows the same baryon opposite charm correlation
function. The bias of proximity between opposite charm particles seen in the opposite
baryon opposite charm is also visible in the same baryon opposite charm correlation func-
tion. It is interesting to note that the same baryon number particles are mainly located
back-to-back, as can be seen in the diffused peak on the away side.

Lastly, the same baryon same charm projection is shown in the lower right corner of
Figure 9. The same baryon same charm in minimum bias is similar to the forced charm
production since they are not as affected by removing the forced charm production. Par-
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ticles with the same quantum number as the trigger are mainly back-to-back with it,
disfavouring closeness.

4.2.2 Projection on ∆ηΛ,p(p) and ∆ηΛ,D(D)

Figure 10 shows the correlation functions projected on ∆ηΛ,p(p), ∆ηΛ,D(D) for the minimum
bias.

Figure 10: Correlation functions projected on ∆ηΛ,p(p), ∆ηΛ,D(D) for the different combinations
of quantum numbers, using the minimum bias data.

Firstly, the opposite baryon opposite charm correlation function is shown in the upper left
corner of Figure 10. Both the balancing charmed meson and the balancing light baryon
are located close by the triggering charmed baryon, with a peak at ∆ηΛ,p = ∆ηΛ,D = 0.

The opposite baryon same charm projection is shown in the lower left corner of Fig-
ure 10. The ridge around ∆ηΛ,p = 0 clearly shows that the baryons are close to each
other. The charmed baryon and meson, which in this triplet have the same charm num-
ber, are spread out with a slight disfavouring of proximity.

The upper right corner of Figure 10 shows the projection of the same baryon opposite
charm correlation function. The opposite charmed particles in the triplet are close to each
other in pseudorapidity, while the baryon with the same baryon as the trigger particle is
spread out in pseudorapidity relative to the trigger. Again, we see a slight disfavouring
of close proximity.

Lastly, the same baryon same charm correlation function is shown in the lower right
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corner of Figure 10. There is again no clear correlation in pseudorapidity between the
particles in the triplet with the same baryon number and same charm.

4.2.3 Discussion

We can see that in the minimum bias, the charmed particles with opposite quantum
numbers are located close to each other both in azimuthal angle and pseudorapidity. This
is in stark contrast to the forced charm production where the cc pair is produced back-
to-back in azimuthal angle and spread out in pseudorapidity. This indicates that the cc
pairs are more likely to be produced from a hard gluon with transverse momentum in
the lab frame (see Figure 2, right) than in the initial hard scattering (see Figure 2, left).
Another feature that is visible in the projections of the correlation functions on ∆η is
that the signal for the opposite baryon opposite charm looks to partly be composed of
the signals of the other correlation functions. This highlights again the importance of the
balance function since only looking at the opposite baryon opposite charm three-particle
correlation does not show the correlations that are purely between baryon and charm
number production. In other words, the opposite baryon opposite charm correlation also
includes particle triplets in which not all particles are produced on the same string in
Pythia, so we cannot yet use this to understand the all production mechanisms at play.

4.3 Balance Function Forced Charm Production

Next, we present the balance function as defined in equation (14), projected on all four
relevant combinations of axes as given by equation (10)-(13).

Figure 11: Projections of the balance function for baryon number and charm,
C(∆ϕΛ,p,∆ϕΛ,D,∆ηΛ,p,∆ηΛ,D), for forced charm production, where Λ, p and D are defined
as in Table 4.
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In the balance function the random combinations of Λ, p and Λ, D are removed, by
assuming that pairs from different interactions should behave equivalently to the uncor-
related pairs of Λ, p and Λ, D. Looking at the upper two plots, we can see that there
is a real three-particle correlation between charmed baryons, light baryons and charmed
mesons. If this would not be the case, the balance function would cancel out and be flat.
The ∆ϕΛ,p, ∆ϕΛ,D projection is similar to the opposite baryon number opposite charm
presented prior, but is here corrected for uncorrelated, random pairs of particles. This
enhances the significance of the peak at (∆ϕΛ,p,∆ϕΛ,p) = (0, π), telling us that the bal-
ancing charmed particle is produced back-to-back to the pair of the triggering charmed
baryon and the balancing baryon. The peak in ∆ϕΛ,D on the away side is a result of
the forced charm production, as has been mentioned in earlier discussions. This is even
more clear in the lower right corner, showing the projection of ∆ϕΛ,D and ∆ηΛ,D, which
highlights the back-to-back correlation in azimuthal angle. Each event starts with a hard
scattering producing a cc pair, which are back-to-back in ϕ but distributed in η for the
total momentum to be conserved. In the projection of the balance function on pseudo-
rapidity, we see that the balancing charmed meson is spread out in η, while the baryons
have similar transverse momentum and are located close to each other in η. Note that
if ∆ηΛ,p ∈ [0,−2] then ∆ηΛ,D ∈ [0,−2] as well (the same goes for the other side of the
range), as a result of the acceptance range |η| ≤ 1. The close proximity of the baryons
is also visible in the lower left corner of Figure 11, showing the projection of the balance
function on ∆ηΛ,p and ∆ϕΛ,p where opposite baryon number particles are produced near
in phase space.

These results can be understood by considering the production of particles in Pythia.
Since the balance function has been corrected for uncorrelated, random particle pairs, it
describes a scenario in which all three particles in the triplet are formed on the same string
in Pythia, as was shown in Figure 4. In Pythia, the charm anti-charm quarks are placed
on the ends of the strings, since they are only produced in hard processes. With initial
hard scattering producing the cc, these are back-to-back for momentum conservation rea-
sons. The string breaks into quark antiquark and diquark pairs producing new particles.
To produce the baryons of interest, the string has to break into two quark antiquark pairs
of up and down quarks (and the corresponding antiparticles) so that the baryons travel
together in momentum space. This is consistent with what is observed in the projections
of the balance function. It should also be noted that the results have now been discussed
as though all particles analysed are Λ+

c (Λ
−
c ), D0(D0) and p(p). Similar arguments can

be made for triplets made up of other particles. Furthermore, the analysis was also done
selecting only Λ+

c (Λ
−
c ), D0(D0) and p(p), giving the same results but with significantly

smaller data sets.

To summarise the balance function: if forced charm production is in place, there is a
correlation between baryon number and charm number production, namely the balancing
charm being produced back-to-back in ϕ to the balancing baryon number, and evenly
distributed in η. The particles with opposite baryon number are produced close together
in momentum-space, while the particles with opposite charm quantum number are back-
to-back in azimuthal angle and evenly distributed in ∆η. This can be explained by
considering the production mechanisms present in the string model used in Pythia to
generate the particles.
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4.4 Balance Function Minimum Bias

Next, we present the balance function for the minimum bias, where the condition on initial
charm production is removed. The four projections of the balance function as defined in
equation (10)-(13) are shown in Figure 12.

Figure 12: Projections of the balance function for baryon number and charm,
C(∆ϕΛ,p,∆ϕΛ,D,∆ηΛ,p,∆ηΛ,D), for minimum bias, where Λ, p and D are defined as in Ta-
ble 4.

We see that the shape of the projection on ∆ϕΛ,p, ∆ηΛ,p remains unchanged compared to
the forced charm production, while the other three projections change significantly. The
baryon balancing the trigger is produced close to it, both in pseudorapidity and azimuthal
angle. Without the forced charm production, the balancing charmed hadron is also pro-
duced close to the trigger, mainly following the balancing baryon. This can be seen in
the upper two plots, showing the projections on ∆ϕΛ,p, ∆ϕΛ,D and ∆ηΛ,p, ∆ηΛ,D. The
main peak in the projection on the azimuthal angle is located at ∆ϕΛ,p = ∆ϕΛ,D = 0, but
there is a small ridge along the diagonal where the balancing charmed meson follows the
balancing light baryon. There is still a slight spread in the distribution of the charmed
hadrons, which is also visible in the projection of the balance function over the pseudo-
rapidity. The peak is still located at ∆ηΛ,p = ∆ηΛ,D = 0. The baryons travel together
with the charmed meson being close to them, if a bit more diffused in momentum space.
This can also be seen in the lower right corner of Figure 12 showing the projection of
the balance function on ∆ϕΛ,D, ∆ηΛ,D. The base level of this projection is above zero,
with a preference of ∆ϕΛ,D = ∆ηΛ,D = 0, but it is interesting to note that the peak in
the correlation function of the charmed hadrons is much more diffused than the baryons.
This could mean that the charmed particles are produced before the baryons, giving them
more time to spread out.
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For the minimum bias, the hard initial correlation of ∆ϕΛD = π is removed. In practice,
this means that the charm pairs produced via pair-production of gluons become more
significant than with the forced charm production in place. Since the hard gluons have
a high transverse momentum in the lab frame, the quark pair can travel close together.
However, since the charm quark is massive compared to the up, down and strange quark,
it is heavily suppressed in the string breakings in Pythia and the cc will still be mainly
located at the end of the strings. We would therefore expect some spread in ∆ϕΛ,D, but
with a localised peak at ∆ϕΛ,D = ∆ηΛ,D = 0. The same arguments as for the light baryon
production with forced charm production holds for the light baryons with minimum bias.
This behaviour shows up as expected in the balance function. There is no excess signal
around ∆ϕΛ,D = π, showing that in a more realistic case most of the initial, head-on hard
scatterings do not generally produce cc pairs.

To summarise, in the case of the minimum bias the dominating correlation is that the bal-
ancing baryon and balancing charmed particle both follow the triggering charmed baryon.
There is also a slight tendency for the balancing charmed meson to be located anywhere
in momentum space compared to the balancing baryon. In addition, there is a slight
tendency for the balancing baryon and balancing charmed meson to follow each other
independently of the triggering charmed baryon.

4.5 Ranges Forced Charm Production

Next, we present the results for another approach to investigate possible correlations of
baryon and charm quantum number, namely the ranges. These are obtained by requiring
the light and charmed baryon pair to be produced somewhere in phase space and inves-
tigating what this does to the charmed meson. The set range correlation is compared to
the no set range correlation by means of dividing the set range correlation projected on
∆ϕΛ,D(D) and ∆ηΛ,p(p) with the original, no set range. This fraction is in turn projected
on ∆ϕΛ,D(D), giving

C ′(∆ϕΛ,D(D) )

C(∆ϕΛ,D(D) )
=

(
1

N
(x)
Λ,p(p)

dN ′

d∆ϕΛ,D(D)

)
/
(

1

NΛ,p(p)

dN

d∆ϕΛ,D(D)

)
. (17)

The fractions are shown in Figure 13 for the four ranges listed in section 3.4. The cor-
relation functions with set range, before and after taking the fraction, are shown in the
Appendix.

It should be noted that because the triggering method is different for these correlation
functions than for the correlation functions used to produce the balance function, it is
not possible to quantitatively compare the two. We will therefore qualitatively discuss
the graphs rather than focus on the numerical values given by the fraction. The fraction
in essence tells you how large the probability is to find the charmed pair at a certain ∆ϕ
when the pair of baryons is fixed in a range of ∆ϕ, with respect to the probability it has to
be found there when the baryon pair is not fixed. If the location of the light baryon would
not influence the charmed mesons, these fractions would all be flat at a certain value.
This observable is something which was worked out from scratch in this project and a lot
of trial and error was involved with regards to triggering, visualisation and interpretation.
Further development of this observable would possibly give more clear results.
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Figure 13: The fraction of the correlation functions with a set range on ∆ϕΛ,p(p) and ∆ηΛ,p(p)
with the original correlation function, for forced charm production. The fraction is projected on
∆ϕΛ,D(D).

We start with looking at the opposite charm opposite baryon correlation. When the pair
of baryons is required to be close to each other in phase space, as in the upper two graphs
of Figure 13, the charmed pair of particles tends to be back-to-back. This is of no surprise
and confirms what we have seen in previous correlations. In the initial hard process where
the charm anti-charm pair is generated, the quarks are back-to-back. When the string
tension increases and eventually breaks forming a diquark pair, producing the charmed
baryon and light baryon, these tend to follow each other. Interestingly enough, there is
also a small signal around ∆ϕΛ,D = 0, where the charmed meson follows the baryons.
Comparing the upper two graphs to the two lower graphs in Figure 13 in which the
baryon pair is forced to be back-to-back, we see that there is a much more narrow peak
on the away side for ∆ϕΛ,D. When the charmed baryon and the light baryon are required
to be back-to-back, the light baryon follows the charmed meson. The string breaking
producing the uu quark pair shared by the charmed meson and light baryon becomes
more significant than the diquark breaking. We still have a broad peak where the balanc-
ing charm is back-to-back to the balancing baryon and thereby close to the trigger particle.

The same baryon, opposite charm data show a similar preference for the opposite charm
to be produced to the away side when the baryons are close together. What is interest-
ing is that if the baryons are produced back-to-back, the peak at ∆ϕΛ,D = π is much
smaller than for the opposite baryon, opposite charm. This is most likely because the uu
quarks of the baryon and charmed meson are not shared by the same string. The same
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baryon same charm shows that the charmed meson follows the light baryon. Because
the charmed hadrons have the same charm quantum number they are either produced
on different strings or through an additional, unlikely string-breaking producing charm
anti-charm pairs. In essence, these are "random" pairs of particles. The opposite baryon
same charm correlation shows no preference. These two correlations are also the datasets
with the largest uncertainties. The reason for this is that this configuration would require
two cc pairs to be produced within the same event, which is highly unlikely to happen.

4.6 Ranges Minimum Bias

Lastly, Figure 14 shows the fractions of the correlation functions with applied range and
the correlation functions with no applied range, using the minimum bias data.

Figure 14: The fraction of the correlation functions with a set range on ∆ϕΛ,p(p) and ∆ηΛ,p(p)
with the original correlation function, for minimum bias. The fraction is projected on ∆ηΛ,D(D).

The changes of the ranges when going from forced charm production to minimum bias are
again caused by the increase of the significance of the gluon pair-producing quark pairs,
removing the prominent correlation at ∆ϕΛ,D = π. As a result of this, opposite baryon
opposite charm has a slightly more significant peak at ∆ϕΛ,D = 0 when ∆ϕΛ,p = 0. We
have more charmed hadrons being close together than in the forced charm production.
The charmed meson seems to follow the light baryon given by the peak around ∆ϕΛ,D = π
when ∆ϕΛ,p = π. There is still a low, broad peak where the charmed meson is produced
back-to-back to the baryons. This could be a result of initial hard scattering processes and
is a behaviour that is not as clearly visible in the balance function. When the baryons are
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forced to be back-to-back in azimuthal angle, the charmed meson follows. Similarly to the
forced charm production, the same baryon opposite charm correlation behaves similarly to
the opposite baryon opposite charm when ∆ϕΛ,p = 0 but not when ∆ϕΛ,p = π, highlighting
the fact that the correlation is between balancing charm and baryon. If the light baryon
in the triplet is not balancing the trigger, the charm does not seem to follow it. It seems
like the meson in the same baryon same charm correlation follows the baryon, while the
opposite baryon same charm is relatively constant. However, the opposite baryon same
charm and same baryon same charm have the smallest data sets, indicating again that it
is unlikely to produce triplets which do not balance the quantum numbers.

5 Conclusion and Outlook
The aim of this thesis was to investigate the possible correlation between the production
of baryon number and charm quantum number. This was done through the means of
three-particle correlations, in which the relative momentum-space coordinates ∆ϕ and
∆η were calculated between the triggering charmed baryon and the associated charmed
meson and light baryon, for different combinations of quantum numbers. The data used in
the analysis was simulated using the event generator Pythia8. Three-particle correlations
are not used as widely as their two-particle counterparts, so challenges such as triggering,
normalisation, visualisation and interpretation had to be tackled.

The three-particle correlations showed that the opposite baryon number particles show a
strong correlation through near side peaks, where the trigger and the associated particle
are produced close to each other in phase space. In the case of the same baryon number
particles, there seems to rather be an anti-correlation on the near side, where the pro-
duction of other baryons with the same baryon number is disfavoured near the trigger
particle. A similar behaviour exists in the same charm correlations. For the opposite
charm correlations, the forced charm production and minimum bias show two very differ-
ent pictures. In the case of the forced charm production, there is a clear ridge around π
in relative azimuthal angle, evenly distributed in pseudorapidity. In the minimum bias,
there is instead a preference for closeness, both in pseudorapidity and azimuthal angle,
with a peak on the near side.

In the collision, all quantum numbers need to be conserved, so any excess of the in-
volved quantum numbers needs to be balanced by opposite quantum numbers. As a
result, particle pairs with the same quantum number are likely to be from different in-
teractions, i.e. different strings. The behaviour seen in these correlations is rather a
consequence of overall momentum conservation in the underlying event than correlations
between individual particles produced. To investigate the true correlation between bal-
ancing charm and baryon number and answer the research question, the balance function
is constructed. This balance function shows clear signals, indicating that the production
of these particle triplets and their quantum numbers is not random in momentum space.
The balance function shows that in the case of forced charm production, the balancing
charm is produced back-to-back to the balancing baryon. The balancing baryon follows
the triggering charmed baryon in momentum space. For the minimum bias, the balancing
charm mainly follows the balancing baryon, which in turn follows the triggering charmed
baryon. In other words, the triplet seems to travel together through momentum space.
The charmed meson is, with respect to the triggering charmed baryon, more diffused in
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momentum space compared to the light baryon.

Another way the question posed in this thesis was answered was to require the baryon pair
to be located in a certain ∆ϕΛ,p(p) interval and see what that does to the ∆ϕΛ,D(D). These
ranges tell a similar story as the balance function. In the minimum bias, the balancing
charm follows the balancing baryon. This is also, to a much smaller extent, visible in the
charm production. The charm production is still dominated by the forced cc pair back-
to-back. As has been mentioned these ranges are not, as of yet, fully finished observables.
Further development of this method is highly recommended.

As has been discussed, the results presented can be understood through the lens of the
string model for particle production in Pythia. Since the charm quarks are heavy, they
are located on the ends of strings. In the case of the forced charm production, each event
starts with a hard scattering producing a cc pair back-to-back. The string between them
breaks into quark and di-quark pairs producing the balancing light baryon, which shares
a diquark pair with the charmed baryon and is therefore close to it, and the charmed
meson. In the case of the minimum bias not every event starts with the cc pair being
back-to-back, and so the cc pair produced via gluon pair-production, which is close to-
gether in phase space, becomes more significant.

One obvious future step is to compare the results presented to experimental data, once
available. Other correlation studies, focusing on strange particles, found that strangeness
and baryon number conservation are more localised in Pythia than in experimental data
[17]. It would be interesting to see if that also applies to charmed particles. It should
be noted that for comparing to experimental data the minimum bias results should be
considered. In the wait for the higher energies and multiplicities at LHC and other par-
ticle accelerators needed to produce enough statistics with charmed hadrons, there are
further steps that could be taken within the constraints of simulated data. The current
set of data is either forced charm production or minimum bias. In the forced charm pro-
duction, the correlations are dominated by the hard scattering correlation of ∆ϕΛ,D = π,
while the minimum bias includes many production mechanisms. It might be interesting
to make these correlation functions depend also on the transverse momentum, to probe
the production at different energy scales throughout the collision. It would also be in-
teresting to apply the same analysis on simulated data using other extensions of Pythia,
such as the so called junctions, or even completely different event generators. Another
approach would be to increase the multiplicity of the events used in the analysis and ap-
proach larger system collisions, to see if the production mechanisms for charm and baryon
number observed in these proton-proton collisions are different in large collision systems.
Probing the production of quantum numbers in large systems might also give insight into
the thermalisation and hadronisation of the QGP.
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7 Appendix

7.1 Forced Charm Production

7.1.1 Correlation Functions

Below, the correlation functions for all four combinations of quantum numbers are shown
projected over all four axes.

Figure 15: Projections of the correlation function for opposite baryon opposite charm,
forced charm production.

Figure 16: Projections of the correlation function for same baryon opposite charm,
forced charm production.
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Figure 17: Projections of the correlation function for opposite baryon same charm,
forced charm production.

Figure 18: Projections of the correlation function for same baryon same charm, forced
charm production.
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7.1.2 Ranges Before Division

Below, the projections of correlation functions on ∆ϕΛ,D(D), ∆ηΛ,D(D) for all four combi-
nations are shown when ∆ϕΛ,p(p) and ∆ηΛ,p(p) are fixed in the ranges (1)-(4). The order
is as follows: upper right corner shows range (1), upper left corner shows range (2), lower
right corner shows range shows range (3) and lower left corner shows range (4).

Figure 19: Opposite baryon opposite charm with applied ranges.

Figure 20: Same baryon opposite charm with applied ranges.
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Figure 21: Opposite baryon same charm with applied ranges.
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Figure 22: Same baryon same charm with applied ranges.
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7.1.3 Ranges After Division

Below, the projections on ∆ϕΛ,D(D) are shown for the fraction of the correlation function
with set range over the correlation function without set range. The order is the same as
in 7.1.2.

Figure 23: Fraction of range and no set range, opposite baryon opposite charm.

Figure 24: Fraction of range and no set range, same baryon opposite charm.
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Figure 25: Fraction of the range and no set range, opposite baryon same charm.
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Figure 26: Fraction of the range and no set range, same baryon same charm.
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7.2 Minimum Bias

7.2.1 Correlation Functions

Below, the correlation functions for all four combinations of quantum numbers are shown
projected over all four axes.

Figure 27: Projections of the correlation function for opposite baryon opposite charm,
minimum bias.

Figure 28: Projections of the correlation function for same baryon opposite charm,
minimum bias.
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Figure 29: Projections of the correlation function for opposite baryon same charm,
minimum bias.

Figure 30: Projections of the correlation function for same baryon same charm, minimum
bias.
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7.2.2 Ranges Before Division

Below, the projections of correlation functions on ∆ϕΛ,D(D), ∆ηΛ,D(D) for all four combi-
nations are shown when ∆ϕΛ,p(p) and ∆ηΛ,p(p) are fixed in the ranges (1)-(4). The order
is as follows: upper right corner shows range (1), upper left corner shows range (2), lower
right corner shows range shows range (3) and lower left corner shows range (4).
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Figure 31: Opposite baryon opposite charm with applied ranges.
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Figure 32: Same baryon opposite charm with applied ranges.
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Figure 33: Opposite baryon same charm with applied ranges.
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Figure 34: Same baryon same charm with applied ranges.
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7.2.3 Ranges After Division

Below, the projections on ∆ϕΛ,D(D) are shown for the fraction of the correlation function
with set range over the correlation function without set range. The order is the same as
in 7.1.2.
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Figure 35: Fraction of range and no set range, opposite baryon opposite charm.
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Figure 36: Fraction of range and no set range, same baryon opposite charm.
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Figure 37: Fraction of the range and no set range, opposite baryon same charm.
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Figure 38: Fraction of the range and no set range, same baryon same charm.
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