

Supervisor: Najmeh Abiri

Sentiment Analysis for Talent Attraction

Enhancing Sentiment Analysis Performance by Improving Accuracy

of Word Embeddings Using a Transformer-Based Approach

by

Jelena Zec

June 2023

 Master’s Programme in 2022

 1

Abstract

The reputation of a company on employer review platforms can have a significant impact on

its ability to attract talented workers. Companies use sentiment analysis to learn how their

employer brand is perceived online. Furthermore, sentiment analysis can detect strengths and

weaknesses in their employer brand, indicating which areas need improvement.

The proposed methods for improving word embeddings for sentiment analysis commonly

involve combining several pre-trained word embeddings, or concatenating vector

representations of non-textual elements (e.g., emojis and images) to word embeddings. These

methods involve training complex neural networks, which is usually computationally

expensive.

This thesis investigates if adding features prior to tokenization, instead of concatenating

embeddings, increases the accuracy of word embeddings, thereby improving the results of the

fine-tuned BERT model for classifying sentiment of employer reviews on the online platform

Glassdoor. It also investigates the impact of the BERT Next Sentence Prediction objective on

the models’ ability to learn more accurate word embeddings.

Testing three different models and comparing their performance indicates that the suggested

approach can improve the model’s accuracy. However, additional research is needed to

investigate the impact of the chosen features on the observed results. The study hasn’t found

enough evidence that addition of the Next Sentence Prediction objective results in higher

accuracy of the model, but it shows that it significantly improves model ability to understand

the sentiment of the reviews.

 2

Acknowledgements

I would like to thank my supervisor Najmeh Abiri for providing me with great guidance and

support throughout this process. Thank you for your feedback and ideas, which were crucial for

successfully completing this work.

Also, I would like to thank Joakim Westerlund, the MSc in Data Analytics and Business

Economics program director, whose advice and support were of great help for choosing and

defining the research topic.

 3

Table of Contents

1 Introduction .. 7

1.1 Background .. 7

1.2 Aim and Objectives .. 8

1.3 Research Purpose ... 8

1.4 Delimitations .. 10

2 Theoretical Background .. 11

2.1 Sentiment Analysis ... 11

2.2 Traditional Methods for Sentiment Analysis ... 12

2.2.1 Lexicon-Based Methods ... 12

2.2.2 Machine Learning Methods.. 12

2.3 Deep Learning Methods ... 13

2.3.1 Word Embeddings .. 13

2.3.2 Recurrent Neural Networks .. 15

2.3.3 Long Short-Term Memory (LSTM) ... 16

2.3.4 Bidirectional Recurrent Neural Networks .. 17

2.3.5 Convolutional Neural Networks ... 18

2.3.6 Attention ... 20

2.4 Transformer .. 22

2.4.1 Encoder ... 24

2.4.2 Decoder .. 28

2.5 BERT .. 30

2.5.1 Input/Output Representation .. 30

2.5.2 Pre-Training ... 31

2.5.3 Fine-Tuning and Feature-Based Approach .. 33

2.5.4 Model Output ... 34

3 Data .. 36

3.1 Dataset Exploration .. 37

4 Methodology ... 41

4.1 Research Design ... 41

4.2 Data Preparation ... 41

4.3 Model ... 44

4.3.1 Tokenization ... 44

4.3.2 Model Architecture... 47

 4

4.3.3 Regularization and Optimization.. 48

5 Evaluation ... 49

5.1 Training and Evaluation ... 49

5.2 Results .. 51

5.3 Discussion .. 55

5.4 Limitations ... 57

5.5 Future Work ... 57

6 Conclusions ... 58

References ... 59

Appendix A ... 66

Appendix B .. 67

Appendix C ... 69

 5

List of Tables

Table 1 Glassdoor Job Review dataset - variables overview ... 36

Table 2 Examples of reviews ... 38

Table 3 Rulesets for assigning the sentiment ... 42

Table 4 Evaluation results .. 51

Table 5 Model classification report .. 52

 6

List of Figures

Figure 1 ELMo pre-trained model.. 14

Figure 2 Recurrent neural network for sentiment analysis .. 15

Figure 3 Structure of the LSTM cell .. 17

Figure 4 Architecture of bidirectional RNN... 18

Figure 5 Example of convolution: input, output, and filter dimensions 3x4 19

Figure 6 Example of convolution: input, output. Number of filters is 3, with padding and

average pooling through time ... 20

Figure 7 Sequence-to-sequence with attention ... 22

Figure 8 Transformer model architecture ... 23

Figure 9 Self-attention (Scaled Dot-Product attention) .. 24

Figure 10 Multi-head attention ... 25

Figure 11 An example of multi-head attention mechanism ... 26

Figure 12 Surface of the loss function without and with “shortcut connections” 27

Figure 13 Masking in self-attention ... 29

Figure 14 BERT input representation .. 31

Figure 15 Architecture of the BERT pre-trained model... 32

Figure 16 Masking example ... 33

Figure 17 Example of training dataset used for NSP ... 33

Figure 18 Fine-tuning BERT .. 34

Figure 19 Dimensions of the BERT model last hidden state ... 35

Figure 20 Distribution of overall ratings .. 37

Figure 21 Ratings of twenty companies with largest number of reviews 37

Figure 22 Distribution of rating over twenty most common job titles 38

Figure 23 Length of text of “pros” and “cons” across overall rating values 40

Figure 24 Distribution of the sentiment class ... 43

Figure 25 BERT WordPiece tokenizer output ... 44

Figure 26 Length of reviews across sentiment values .. 45

Figure 27 The final model architecture .. 47

Figure 28 Model 1 - loss and weighted F1 score curve ... 50

Figure 29 Model 2 - loss and weighted F1 score curve ... 50

Figure 30 Model 3 - loss and weighted F1 score curve ... 51

Figure 31 Model 1 - Confusion matrix, precision-recall curve .. 53

Figure 32 Model 2 - Confusion matrix, precision-recall curve .. 53

Figure 33 Model 3 - Confusion matrix, precision-recall curve .. 54

Figure 34 Summary of the final model .. 66

 7

1 Introduction

This chapter briefly discusses the significance of attracting a talented workforce, and the

challenges that companies face in this process. It also provides a motivation for using sentiment

analysis as an auxiliary tool for a more successful outcome of this process. Furthermore, it

outlines the aim, objective, and purpose of the thesis. Additionally, the delimitations and the

outline of the thesis are given.

1.1 Background

In the past three decades, globalization, the emergence of new technologies, and continued

innovation have become crucial for companies to compete and stay relevant in the markets.

“[C]ompetitive advantage rests on making more productive use of inputs” (Porter, 1998, p.78),

as well as product and service innovation. This has led to the rise of the knowledge-based

economy where competencies, skills and knowledge of the employees have become crucial for

company success. As the demand for a talented workforce has grown, attracting highly

competent employees has been an ongoing challenge (Schuler, Jackson & Tarique, 2011;

McKinsley&Company, 2022). Consequently, companies have started to compete for the best

employees, starting a “war for talent” (Beechler & Woodward, 2009).

Many studies have shown that reputation significantly influences a company’s ability to attract

talent (Cable & Turban, 2003; Schaarschmidt, Walsh & Ivens, 2021). Furthermore, building an

image as a good employer can have long term positive effects. “[R]eputation is one of the few

resources that can give firms a sustainable competitive advantage, because it is viewed as a

non-tradable, non-substitutable, non-imitable, resource that can be managed” (Ferris, Perrewé,

Ranft, Zinko, Stoner, Brouer & Laird, 2007, p.119).

Today, many job seekers research employers prior to deciding whether to apply for a job. On

employment platforms such as Glassdoor and Indeed, they can find reviews of companies

provided by current and former employees.

[They] can rely on the user-generated reports to reduce the information asymmetry that

typically marks job applications, because they gain first-hand insights from others with

practical work experience with the organization (Schaarschmidt, Walsh & Ivens, 2021

p.2).

The increased usage of these platforms has made it crucial for companies to have a good

reputation on them (Schaarschmidt, Walsh & Ivens, 2021).

 8

As the impact of a company’s reputation on the online employer platforms has started to affect

its ability to attract talent, many have become interested “[in promoting] themselves as an

employer of choice and attractive workplace” (Kashive, Khanna & Bharthi, 2020, p.94). Today,

sentiment analysis is used to gain in-depth knowledge about the company’s reputation, identify

the area where it needs to improve as an employer, and compare with the competition.

Sentiment analysis is a Natural Language Processing (NLP) technique used for analyzing

“people’s opinions, sentiments, evaluations, attitudes, moods, and emotions” (Liu, 2017, p.2).

With the increase in usage of social media and online platforms, it has become an important

tool for businesses to make better decisions (Alessia, Ferri, Grifoni & Guzzo, 2015).

While sentiment analysis of opinions expressed on social media, forums, and customer reviews

is increasing in popularity, it faces the challenge of the “constant evolution of the language used

online in user-generated content” (Pozzi et.al., 2017, p.9). Other challenges relate to recognition

of figurative speech (e.g., sarcasm and irony), negotiation handling (e.g., words such as “nor”

or “neither”), and spam detection (e.g., fake reviews)—all of which have negative impacts on

the accuracy of analysis (Birjali, Kasri and Beni-Hssane, 2021).

1.2 Aim and Objectives

The aim of this thesis is to investigate whether incorporating information about the job title and

company name into word embeddings can enhance the performance of sentiment analysis of

employee reviews on the online platform Glassdoor.

To assess the impact that encoding this information in the word embeddings has on sentiment

analysis performance, three pre-trained BERT models are fine-tuned, and their performances

are compared. First, based on the overall rating, a sentiment—“positive”, “neutral” and

“negative”— is assigned to all reviews. The first model is fine-tuned only using the employee’s

review. The second model is fine-tuned using the employee’s review, job title, and company

name, which are concatenated into a single sequence. The third model is fine-tuned using the

sequence pairs, where the first sequence is the employee’s review, and the second sequence is

a concatenation of the job title and company name.

1.3 Research Purpose

The word embeddings capture words meanings by projecting them into the d-dimensional

semantic features space. Due to their vital impact on the performance of the different Natural

Language Processing (NLP) applications (e.g., sentiment analysis, text classification,

recommendation systems) this research field has gained a lot of attention in the past decade,

and several pre-trained language models have been developed. These models are trained on

large-scale corpora, and used to produce contextualized word embeddings which serve as an

 9

input to a downstream task. The resulting embeddings are commonly fine-tuned to capture

domain specific word features.

Research has shown that improving accuracy of, or adding features to, pre-trained word

embeddings can improve model performance in various NLP tasks (Rezaeinia, Rahmani,

Ghodsi & Veisi, 2019; Wang, Jiang, Bach, Wang, Huang, Huang & Tu, 2020). One popular

approach in many NLP tasks is to concatenate the word embeddings produced by several pre-

trained models (Rezaeinia et al., 2019; Wang et al., 2020). In text classification tasks,

categorical or numerical features from the dataset are added to provide additional context. This

is done by concatenating feature vector representations to word embeddings. In sentiment

analysis, knowledge (Sinoara, Camacho-Collados, Rossi, Navigli & Rezende, 2019) and

sentiment enhancement (Li, Li, Du, Fan & Chen, 2022) models have been proposed. Other

aspects of social media posts, such as emojis (Liu, Fang, Lin, Cai, Tan, Liu & Lu, 2021) and

images (Graesser, Gupta, Sharma & Bakhturina, 2017), have also been used as additional

features to the word embeddings (Liu, Fang, Lin, Cai, Tan, Liu & Lu, 2021). However, all these

approaches involve building complex models that are computationally expensive to train.

The purpose of this thesis is to explore the following:

• Does adding features (e.g., job title and company name) prior to tokenization produce

more accurate word embeddings, thereby improving the results of sentiment analysis of

employees’ reviews?

• Does the Next Sentence Prediction task help the BERT model to learn more accurate

word embeddings?

Two approaches are tested to try to answer these research questions. In the first approach,

reviews and features are concatenated into a single sequence prior to tokenization. In the second

approach, the reviews and the concatenated additional features make out sequence pairs, and

the BERT model uses the Next Sentence Prediction classification task to acquire additional

knowledge regarding the relationship between an employee’s review and the added features.

To my knowledge, no previous research has investigated the impact of this method on the

sentiment analysis of employees’ reviews.

When reviewing a company, employees most often write about the aspects of the workplace

connected to the company culture, job conditions (salary and benefits), etc. It is reasonable to

assume that people who work in similar positions within one company, or who work in similar

companies, will praise and criticize similar aspects of the workplace. For example, if salaries

in a company are low, the assumption is that most of the reviewers will mention that and give

the company a lower rating. Therefore, including information about the job title and the

company name prior to tokenization could help the model to better understand the context in

which e.g., the word “salary” has a positive, neutral, or negative sentiment, and consequently

improve the accuracy of the model.

 10

1.4 Delimitations

The analysis is conducted on the Glassdoor Job Reviews dataset (DG, 2021). Due to the limited

computational capability of the hardware used for training neural networks, and the limited time

to conduct the research, the focus of the thesis is not to attain the highest accuracy of the models

used. Rather, the aim is to explore if incorporating the additional information in the proposed

manner can enhance the accuracy of sentiment analysis.

 11

2 Theoretical Background

This chapter provides an overview of the techniques and the main concepts necessary to

understand used models and the outcome of the research. Sections 2.1 through 2.3 provide an

overview of the methods used for sentiment analysis, with the intention of providing the reader

with a better understanding of how the model used in this thesis compares to other ones in the

field. Section 2.4 gives an in-depth explanation of the Transformer model architecture, which

was used to develop the BERT language model. Section 2.5 describes the BERT model, which

was used in the research.

2.1 Sentiment Analysis

Sentiment analysis is a field of Natural Language Processing which involves the identification

and extraction of subjective information from textual data. Liu and Zang (2012) describe

sentiment analysis as a “computational study of people’s opinions, appraisals, attitudes, and

emotions toward entities, individuals, issues, events, topics and their attributes.” The field

gained significant attention in the mid-2000s due to the need to analyze vast amounts of

unstructured text data available on the internet, including social media platforms, online

reviews, and customer feedback. It has found applications in various fields, including finance,

national security, politics, healthcare, marketing, and customer service. Businesses use

sentiment analysis for example to understand customer opinions about their products, track

brand sentiment or predict the development of financial markets.

Sentiment analysis can be regarded as a classification task as it classifies text into categories

(e.g., positive, neutral, or negative) (Zhang, Lipton, Li & Smola, 2021). It can be conducted on

three levels: document, sentence, or aspect level.

Document-level sentiment analysis determines the sentiment of the document as a whole. The

disadvantage of this approach is that it “does not consider different sentences and aspects that

a document may contain.” (Habimana, Li, Li, Gu & Yu, 2020, p.3). For example, a review can

contain both positive and negative aspects: “Overall the hotel is ok. The location is good, and

the staff is friendly. However, they don’t offer vegan food and the Wi-Fi is bad.” Sentiment

analysis at the document-level might classify this review as overall positive, missing the

negative feelings toward the lack of vegan food and bad Wi-Fi.

Sentence-level sentiment analysis attempts to address this issue, by determining the sentiment

of each single sentence. However, this approach suffers from a similar limitation because “one

sentence may contain multiple entities with different aspects” (Habimana et al. 2020, p.3). For

example, “The staff is very friendly, but the Wi-Fi is bad.”

 12

Aspect-level sentiment analysis “aims to find sentiments with respect to the specific aspects of

entities” (Birjali, Kasri & Beni-Hssane 2021, p.2). In the above given example, it will capture

the positive sentiment of the aspect “staff” and the negative sentiment of the aspect “Wi-Fi”.

2.2 Traditional Methods for Sentiment Analysis

Traditional methods for analyzing sentiment are categorized into two groups: lexicon-based

methods and machine learning methods.

2.2.1 Lexicon-Based Methods

Lexicon-based methods assign sentiment scores to the words in a sentence using pre-trained

lexicons (e.g., SentiWordNet, SenticNet) (Habimana et al. 2020), which are then aggregated

into a single score (Taboada, Brooke, Tofiloski, Voll & Stede, 2011). A drawback of this

approach is that it assumes that the presence of more positive words in a sentence always

indicates a positive sentiment sentence, which may not always be true (Kannan, Karuppusamy,

Nedunchezhian, Venkateshan, Wang, Bojja & Kejariwal, 2016). Another limitation is that a

word will always be assigned the same sentiment regardless of the context it appears in. For

example, the adjective “small” in the sentence “My salary is small” and “The damage was very

small” will be assigned the same sentiment, despite it being negative in the first sentence, and

positive in the second. However, an advantage of these methods is that they don’t require a

training dataset and are computationally inexpensive to implement.

Lexicons are commonly created using a dictionary-based or corpus-based approach. In a

dictionary-based approach, all words in a dictionary (e.g., WordNet) with similar meanings will

be assigned the same sentiment, while the words with opposite meanings will be assigned the

opposite sentiment (Birjali, Kasri & Beni-Hssane, 2021). In a corpus-based approach, sentiment

is assigned based on the co-occurrence and syntactic patterns (Birjali, Kasri & Beni-Hssane,

2021).

2.2.2 Machine Learning Methods

Machine learning methods classify documents by identifying patterns and other features in the

data that indicate a particular sentiment (Kannan et al. 2016). Commonly the bag-of-words

model is used to break down the document into smaller groups of consecutive words (n-grams)

which are then used as input to machine learning algorithms (Kannan et al. 2016). Machine

learning methods can be classified in three subgroups: supervised, unsupervised, semi-

supervised.

Supervised methods are trained on the large, labeled dataset using linear (e.g., Support Vector

Machine), probabilistic (e.g., Naïve Bayes), or rule-based methods, or decision trees (Birjali,

Kasri and Beni-Hssane, 2021). Unsupervised methods are used when training data don’t have

 13

specified labels. In sentiment analysis, hierarchical clustering, and partition methods (K-Means)

are commonly used for grouping data based on their similarity (Birjali, Kasri and Beni-Hssane,

2021). Semi-supervised methods use both labeled and unlabeled data to train the model. The

advantage of these methods is that they omit the need to collect large amounts of labeled data,

but still benefit from the information gained by the supervision (Chapelle, Schölkopf & Zien,

2010). Semi-supervised approaches used in sentiment analysis are generative, co-training, self-

training, graph-based and multi-view learning (Birjali, Kasri & Beni-Hssane, 2021).

2.3 Deep Learning Methods

Deep learning methods have gained a lot of attention over the past two decades and are today

used extensively for solving different NLP tasks. An advantage of deep learning over traditional

methods is their ability to capture long-distance dependencies between words and their relative

sentiment (a sentiment which “changes depending on the context” (Joshi, Bhattacharyya &

Ahire, 2017, p.89)).

This section provides a brief summary of the neural network architectures used for sentiment

analysis.

2.3.1 Word Embeddings

Solving text classification problems, such as sentiment recognition, requires training complex

models on a large corpus, which is computationally very expensive. As the interest in text

classification has grown, transfer learning has been seen as a solution for more efficient

training. The idea behind transfer learning is that test and training data don’t have to come from

the same distribution, and therefore a model that is trained for one task can be used as an input

to a model trained for another task (Tan, Sun, Kong, Zhang, Yang & Liu, 2018). In the NLP

field, this idea has become very popular for generating word embeddings and several pre-

trained models have been developed.

Word embeddings are used to represent words as vectors in the d-dimensional feature space

(Zhang, Wang & Liu, 2018). The first pre-trained word embedding model was introduced by

Bengio, Ducharme and Vincent (2000). It is a probabilistic language model which generates

word embeddings by learning “distributed representation for each word and the likelihood

function for word sequences at the same time” (Zhang, Wang & Liu, 2018). After that,

Collobert and Weston (2008) have proposed a pre-trained model which has a convolutional

neural network architecture that can generate word embeddings using little prior knowledge.

In 2013, Mikolov, Chen, Corrado and Dean developed Word2Vec, which has become very

popular in sentiment analysis. The model has two architectures that can be used for pre-training:

continuous bag-of-words (COBW), which predicts the current word based on the neighboring

words, and the Skip-gram architecture, which predicts neighboring words given the current

word (Mikolov et al., 2013). Another widely used model is GloVe (Global Vectors for Word

 14

Representation), a log-bilinear model which computes word vectors based on their co-

occurrence in the text. The objective of the model is to learn word vectors such that their dot

product approximates a log ratio of the words’ co-occurrence probability (Pennington, Socher

& Manning, 2014).

The limitation of the aforementioned models is that the learned word representations capture

the meaning of the words only in a single context. In 2018, Peters et al. introduced ELMo

(Embeddings from Language Models), a pre-trained model which captures deep contextualized

word representations from the entire input sequence. The ELMo architecture contains two

bidirectional long short-term memory layers. Each layer has a forward and a backward layer

which is trained separately. Therefore, it is often referred to as a shallowly bidirectional model.

Intermediate embeddings obtained from the first layer are passed onto the second layer. The

final word embeddings are computed as a weighted sum of input word vectors, intermediate

embeddings obtained from the first layer, and intermediate embeddings obtained from the

second layer (Figure 7Figure 1). ELMo produces task-specific embeddings, meaning that a

separate model has to be used for each NLP task.

Besides ELMo, two more models have been developed to generate task-agnostic word

representations: GPT and BERT. GPT (Generative Pre-trained Transformer model) was

introduced in 2018 by OpenAI (Radford, Narasimhan, Salimans & Sutskever, 2018). The model

uses a Transformer decoder structure and has been trained to learn word representations from

“left-to-right”. BERT (Bidirectional Encoder Representations from Transformers), developed

by Google, is a bidirectional language model which uses the transformer encoder structure to

learn deep contextual word representations (Devlin, Chang, Lee & Toutanova, 2018).

Figure 1 ELMo pre-trained model (Tiwari, 2019)

 15

2.3.2 Recurrent Neural Networks

A recurrent neural network (RNN) is designed to solve tasks that require the handling of

sequential data. An RNN consists of a sequence of hidden states, where each hidden state at a

given step 𝑡 is computed using the output of the previous hidden state and the input at that step

(Figure 2). An important feature of the RNN design is parameter sharing, which has several

benefits. Firstly, it allows the network to learn patterns connected to the relative position of

words, rather than the absolute position. For example, if we have the sentences “John was at

the cinema yesterday” and “Yesterday John was at the cinema”, and we want to know when

John was at the cinema, we want the model to recognize that it was yesterday regardless of the

position of word yesterday in the sentence (Goodfellow, Bengio & Courville, 2016). Secondly,

it enables the RNN to take an input sequence of any length without changing the number of

parameters the network has to learn (Goodfellow, Bengio & Courville, 2016).

The hidden state at each step ℎ(𝑡) is computed based on the previous hidden state ℎ(𝑡−1)and the

input at that step 𝑥(𝑡)):

ℎ(𝑡) = 𝜎(𝑊(ℎℎ)ℎ(𝑡−1) + 𝑊(ℎ𝑥)𝑥(𝑡) + 𝑏(𝑡))

where 𝑊(ℎℎ) and 𝑊(ℎ𝑥) are weight matrices and 𝑏(𝑡) denote the bias. The output of a hidden

state at time 𝑡:

𝑦(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(ℎ𝑞)ℎ(𝑡) + 𝑏(𝑞))

where 𝑊(ℎ𝑞) and 𝑏(𝑞) denote weight matrix and bias, respectively.

RNNs can have many different design patterns, depending on the task they are designed to

solve. Karpathy (2015) describes one-to-one, one-to-many, many-to-one and many-to-many

Figure 2 Recurrent neural network for sentiment analysis (Manning, 2022)

 16

RNN architectures. In the NLP field, a one-to-many architecture is used for generating text

from images, many-to-one for sentiment classification, and many-to-many in Name Entity

Recognition and Machine Translation (Karpathy, 2015).

The introduction of RNNs marked a substantial improvement over n-gram language models

and word-based neural linguistic models that were used at the time. However, there are a few

drawbacks to using RNN. Mohammadi, Mundra, Socher, Wang and Kamath (2019) explain

that RNNs suffer from the problem of vanishing and exploding gradients which makes it hard

for networks to learn the long-term effects. Another problem he mentions is the long training

time, since due to its sequential nature, computation can’t be parallelized.

2.3.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a special type of recurrent neural network which was

designed to mitigate the vanishing gradient problem. This is done by adding a memory cell,

which is the same dimension as the hidden state, and is used to store long-term information

(Zhang, Lipton, Li & Smola, 2021). What will be written and erased from the memory cell is

controlled by three gates: input, output and forget. The gates are computed by passing the data

through three fully connected layers that use a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function, producing the

output that is in the range (0,1) (Zhang et al., 2021).

At time step 𝑡, a hidden state ℎ(𝑡) and memory cell 𝑐(𝑡) is computed using follow steps:

1. LSTM uses the forget gate layer 𝑓(𝑡) to determine which information from the previous

memory cell will be remembered and which will be forgotten (Olah, 2015). Using the

previous time step hidden state ℎ(𝑡−1), and input at the current time step 𝑥(𝑡):

𝑓(𝑡) = 𝜎(𝑊(𝑥𝑓)𝑥(𝑡) + 𝑊ℎ𝑓ℎ(𝑡−1) + 𝑏𝑓

2. The input gate layer 𝑖(𝑡) decides what new content will be remembered, and computes

candidate memory cell �̃�(𝑡) which can have values between -1 and 1 (Olah, 2015; Zhang

et.al, 2021):

𝑖(𝑡) = 𝜎(𝑊(𝑥𝑖)𝑥(𝑡) + 𝑊ℎ𝑖ℎ(𝑡−1) + 𝑏𝑖

�̃�(𝑡) = 𝑡𝑎𝑛ℎ(𝑊(𝑥𝑐)𝑥(𝑡) + 𝑊ℎ𝑐ℎ(𝑡−1) + 𝑏𝑐

3. The new memory cell 𝑐(𝑡) is computed as a sum of element-wise multiplication of the

old memory cell by the forget gate (to remove information that should be forgotten),

and element-wise multiplication of the candidate memory cell by the input gate (to add

information that should be remembered) (Olah, 2015):

𝑐(𝑡) = 𝑓(𝑡) ∘ 𝑥(𝑡) + 𝑖(𝑡) ∘ �̃�(𝑡)

4. The hidden state ℎ(𝑡) is computed as the element-wise product of the output gate 𝑜(𝑡) and

the new memory cell passed through a 𝑡𝑎𝑛ℎ function (Olah, 2015):

 17

𝑜(𝑡) = 𝜎(𝑊(𝑥𝑜)𝑥(𝑡) + 𝑊ℎ𝑜ℎ(𝑡−1) + 𝑏𝑜

ℎ(𝑡) = 𝑜(𝑡) ∘ tanh (𝑐(𝑡))

𝑊(𝑥𝑖),𝑊(𝑥𝑓),𝑊(𝑥𝑜), 𝑊(ℎ𝑖),𝑊(ℎ𝑓),𝑊(ℎ𝑜),𝑊(𝑥𝑐),𝑊(ℎ𝑐) are weight parameters, and

𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜, 𝑏𝑐 are bias parameters.

Since LSTM was introduced by Hochreiter and Schmidhuber in 1997, several modifications of

the original architecture have been proposed. Gers and Schmidhuber (2000) have modified the

original architecture by adding a “peephole connection” between the previous memory cell

𝑐(𝑡−1) and the gates, so that the gates depend not only on the previous hidden state but also on

the previous cell state (Olah, 2015).

It is important to note that even with LSTMs, the vanishing gradient problem can still occur

(Manning, 2021a). However, LSTM has proven to outperform standard RNNs and has become

the preferred approach for many NLP tasks (Manning, 2021a).

2.3.4 Bidirectional Recurrent Neural Networks

One limitation of the standard RNN structure is that “[hidden] state at the time 𝑡 captures only

information from the past 𝑥(1), … , 𝑥(𝑡−1), and the present input 𝑥(𝑡)” (Goodfellow, Bengio &

Courville, 2016, p.383), meaning that learned “contextual representations only contain

information about the left context” (Manning, 2021a, p.51). However, in tasks such as sentiment

analysis it is important to learn contextual representations based on the whole sequence. For

example, in the sentence “the movie was terribly exciting” the word terribly based on the left

context will have negative sentiment, which is incorrect (Manning, 2021a).

Figure 3 Structure of the LSTM cell (Varsamopoulos, Bertels & Almudever, 2018)

 18

Bidirectional RNN (Bi-RNN) was designed by Schuster and Paliwal (1997) to address this

issue. Bi-RNN contains two layers, a forward and a backward layer, which process the sequence

of data simultaneously (Schuster & Paliwal, 1997). The output is generated by concatenating

the output of these two layers (Figure 4). A network can have any recurrent architecture, such

as traditional RNN, LSTM etc.

At the time step 𝑡, the hidden state of the forward network ℎ⃗ (𝑡), and the hidden state of the

backward network ℎ⃐⃗(𝑡), and the concatenated hidden state ℎ(𝑡) are computed (Manning, 2021a):

ℎ⃗ (𝑡) = 𝑅𝑁𝑁𝐹𝑊(ℎ⃗ (𝑡−1), 𝑥(𝑡))

ℎ⃐⃗
 ⃗(𝑡) = 𝑅𝑁𝑁𝐹𝑊(ℎ⃐⃗

 ⃗(𝑡−1), 𝑥(𝑡))

ℎ(𝑡) = [ℎ⃗ (𝑡); ℎ⃐⃗
⃐⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

(𝑡)]

where ℎ(𝑡) is the output of the bidirectional network.

2.3.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) were originally used for solving tasks in the field of

computer vision. With the development of faster GPUs, researchers developed deeper CNN

models, which can extract more complex features. By contrast, the recurrent neural network

models could not benefit the same way from this additional computing power. Since in RNNs

each time step depends on the previous, computation cannot be parallelized, and networks take

a long time to train. Consequently, RNN models are usually very shallow (commonly two

Figure 4 Architecture of bidirectional RNN (Manning, 2021a)

 19

layers) compared to CNN models. The rationale for using deep CNN models for some NLP

tasks is that they can extract complex features from the text with the benefit of shorter training

time.

Kalchbrenner, Grefenstette and Blunsom (2014) argue that in sentence modeling tasks (e.g.,

sentiment analysis, machine translation, etc.) word representations should be learned with

respect to neighboring words, because identical sentences don’t often occur. They have shown

that convolutional networks can achieve high performance in sentiment classification tasks.

Conneau, Schwenk, Barrault and Lecun (2017) have proposed a deep convolutional network

that operates on a character level, which has also achieved good results on the text classification

tasks.

Convolution is a mathematical function which measures overlap between two functions, as one

function slides over the other (Zhang et al., 2021). In NLP, one-dimensional discrete

convolution is used:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑𝑥(𝑎)𝑤(𝑡 − 𝑎)

𝑎

where the function of 𝑥 is input, the function of 𝑤 is filter (kernel), and output is feature map

(Goodfellow, Bengio & Courville, 2016).

The dimension of the filter matrix is equal to the length of the n-gram multiplied by the length

of the word embedding vector. Columns in the matrix are called input channels. If we have the

sentence “tentative deal reached to keep government open”, the n-gram size 3, and the word

embedding dimension 4, the kernel will slide over the input, multiplying the weights and

summing the multiplied values into a single number, as shown in Figure 5.

Figure 5 Example of convolution: input (left), output (right), and filter

dimensions 3x4 (Manning, 2019)

 20

In Figure 6 we can see that the length of the input doesn’t match that of the output of

convolution. This can be fixed using padding. Padding is used to add a set of zeros to the

beginning and the end of the input sentence. To extract more features, it is common to apply

multiple filters.

The output matrix provides the features for individual words within a sentence. To obtain

features for the whole sentence, the output matrix is summarized using pooling. Furthermore,

to produce output that is shorter than the input, the filter’s step size, called stride, can be

increased.

2.3.6 Attention

In 2014, Cho, van Merri, Gulcehre, Bahdanau, Bougares, Schwenk and Bengio proposed an

architecture for solving Neural Machine Translation (NMT) tasks, which has two recurrent

neural networks in the encoder–decoder framework (Figure 7). The same year, Sutskever,

Vinyals and Le proposed a similar architecture that was based on the LSTM network. In the

proposed models, the encoder generates a fixed-length vector representation of the input

sequence, which is passed to the decoder (Cho et al., 2014; Sutskever, Vinyals & Le, 2014).

The decoder then predicts the output sequence conditioned on the encoder output (Cho et al.,

2014).

Although this approach represented a significant advancement in the Machine translation field,

it still has certain constraints. The issue is that the last hidden state of the encoder

“needs to be able to compress all the necessary information of a source sentence

into a fixed-length vector. This may make it difficult for the neural network to

cope with long sentences...” (Bahdanau, Cho & Bengio, 2014, p.1).

Figure 6 Example of convolution: input (left), output (right). Number of filters is 3, with padding and

average pooling through time (Manning, 2019)

 21

This problem is often referred to as an information bottleneck. Bahdanau, Cho and Bengio

(2014) have proposed the attention mechanism as a solution to this problem. Instead of

processing the entire sequence at once, the attention mechanism breaks down the input sequence

into smaller segments and uses learned weights to determine the importance of each segment

at each step of the model’s processing. In other words, instead of having a one context vector 𝑐

that stores information about the whole sequence, “here the probability is conditioned on a

distinct context vector 𝑐𝑖 for each target word 𝑦𝑖” (Bahdanau, Cho & Bengio, 2014, pp.3). The

target word probability conditioned on the input word is defined as:

𝑝(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝒙) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖)

where 𝑦𝑖−1 is the target word of the previous hidden state, 𝑠𝑖 and 𝑐𝑖 are RNN decoder hidden

state and context vector at the time 𝑖, respectively.

Let ℎ1, … , ℎ𝑛 ∈ ℝℎ denote encoder hidden states, and 𝑠𝑡 ∈ ℝℎ the decoder hidden state in the

time step t. The attention computes how important different parts of the input sequence are for

generating the target word 𝑦𝑡:

• First, the attention scores 𝑒𝑡 are calculated as a dot product of the encoder hidden states

and the decoder’s hidden state at the time step 𝑡:

𝑒𝑡 = [𝑠𝑡
𝑇ℎ1, … , 𝑠𝑡

𝑇ℎ𝑛] ∈ ℝ𝑁

• Then, the attention distribution at the time step 𝑡 is calculated using a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

function:

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡)

• The output of the attention called context vector is a weighted sum of the encoder hidden

states:

𝑎𝑡 = ∑𝛼𝑖
𝑡

𝑁

𝑖=1

ℎ𝑖 ∈ ℝℎ

• Last, the attention output 𝑎𝑡 and decoder hidden state 𝑠𝑡 are concatenated [𝑎𝑡; 𝑠𝑡] ∈ ℝℎ

and squashed through a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to obtain the probability distribution of

output words.

 22

Figure 7 Sequence-to-sequence with attention (Manning, 2021b)

2.4 Transformer

Transformer is a neural network architecture designed to solve sequence-to-sequence tasks. It

uses the attention mechanism to capture complex relationships between words and to learn

different meanings that words have based on their given context. The main idea behind the

Transformer is that significant computational efficiency can be achieved by replacing the RNN

layers in the architecture described in section 2.3.6 with attention layers. This omits the need

for sequential processing and significantly improves training time.

In 2017, Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin introduced

the Transformer in the article Attention Is All You Need. The model consists of an encoder and

a decoder. The encoder takes word embeddings together with positional encodings as the input

and generates updated word embeddings which have a better contextual understanding of the

input words. These updated word embeddings are then used by the decoder to generate an

output sequence.

 23

The encoder part is made from six stacked layers, where each layer has two sublayers: a multi-

head self-attention mechanism and a position-wise fully connected layer (Vaswani et al., 2017).

Let’s suppose that we are training a model that translates text from English to German. The

input to the encoder is word embeddings and positional encodings of all words in the English

sentence. The multi-head self-attention sublayer takes the input and computes the attention for

each word, which is then passed to the feed-forward sublayer. This sublayer computes new

word embeddings for English words, which capture complex contextual relationships between

words. In order to improve the training, residual connections are implemented around both

sublayers, and, subsequently, layer normalization is applied (Vaswani et al., 2017).

In the training phase, the input to the decoder is word embeddings and position encoding of all

words in the German sentence. The input first goes through the masked multi-head attention

sublayer which computes the attention for each German word. Then, in the second sublayer,

multi-head cross attention establishes a connection between English and German words. After

that, the output of the second sublayer is forwarded to the positional feed forward network. Like

in the encoder, residual connections are implemented around both sublayers, and, subsequently,

layer normalization is applied.

Finally, the output of the decoder is resized to the size of the German dictionary, and the

probability is computed for each word.

Figure 8 Transformer model architecture (Vaswani et al., 2017)

 24

2.4.1 Encoder

The role of the encoder is to produce contextual word embeddings for the input sequence. As

mentioned, the encoder consists of two sublayers: a multi-head self-attention mechanism and a

position-wise fully connected layer. This section explains all the elements of the encoder and

their roles.

Self-attention (Scaled Dot-Product attention)

The difference between the attention mechanism described in section 2.3.6 and self-attention is

that “instead of relating an input to an output sequence, self-attention focuses on a single

sequence” (van Dongen, 2023). Each word in a sequence is compared to every other word in

the sequence, and the attention distribution is determined based on these comparisons.

Vaswani et al. (2017) describe the attention function as “mapping a query and a set of key-

value pairs to an output where the query, keys and values, and output are vectors” (p.3).

Let 𝑥1, 𝑥2, … , 𝑥𝑡 denote embeddings for 𝑡 input tokens, where 𝑥𝑖 ∈ ℝ𝑑:

• value 𝑣𝑖 = 𝑊𝑣𝑥𝑖 , where 𝑊𝑣 ∈ ℝ𝑑𝑣 𝑥 𝑑 is the value matrix and 𝑣𝑖 ∈ ℝ𝑑𝑣,

• key 𝑘𝑖 = 𝑊𝑘𝑥𝑖, where 𝑊𝑘 ∈ ℝ𝑑𝑘 𝑥 𝑑 is the key matrix and 𝑘𝑖 ∈ ℝ𝑑𝑘,

• query 𝑞𝑖 = 𝑊𝑞𝑥𝑖, where 𝑊𝑞 ∈ ℝ𝑑𝑘 𝑥 𝑑 is the query matrix and 𝑞𝑖 ∈ ℝ𝑑𝑘.

𝑊𝑣 ,𝑊𝑘 and 𝑊𝑞 are the weight matrices which are learned during the training (Raschka, 2023).

Since attention is computed for a set of queries at the same time, values, keys, and queries can

be written as 𝑉 = 𝑋𝑊𝑣 , 𝐾 = 𝑋𝑊𝑘 , 𝑄 = 𝑋𝑊𝑞 (Goldie & Hewitt, 2022a).

To compute self-attention:

• First the attention scores matrix is calculated by performing matrix multiplication of the

key and query matrices. The attention scores are then scaled by √𝑑𝑘. Vaswani et al.

(2017) explain that the reason for scaling is the gradient stability, as “for large values of

Figure 9 Self-attention (Scaled Dot-Product attention) (Vaswani et al., 2017)

 25

𝑑𝑘, the dot products grow large in magnitude, pushing the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function into

regions where it has extremely small gradients” (p.4).

• Attention scores are normalized using a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function, and the weighted sum is

calculated using matrix multiplication:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉

Multi-Head Attention

Instead of single attention mechanism, the multi-head attention computes multiple attentions

called attention heads. Each attention head focuses on different aspects of the input data.

Instead of a single 𝑄, 𝑉, 𝐾 matrix, in the multi-head attention there is 𝑙 number of matrices

𝑄𝑙 , 𝑉𝑙, 𝐾𝑙 dimension ℝ𝑑𝑘 𝑥
𝑑

ℎ , where 𝑙 = 1, . . . , ℎ , and ℎ is the total number of attention heads

(Goldie & Hewitt, 2022a). Each attention head learns its own set of matrices 𝑄𝑙 , 𝑉𝑙 , 𝐾𝑙

independent from other heads. The output vectors of the heads are then concatenated into a

single ℝ𝑑 𝑥 𝑑 matrix, and the result of the multi-head attention is a linear transformation of this

matrix. Transformer architecture suggested by Vaswani et al. (2017) have 8 heads, however

this is a hyperparameter that is tuned during training (Alammar, 2018; Doshi, K., 2021).

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑜

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)

The good results achieved by the transformers can be primarily attributed to the multi-head

attention (Liu, Liu & Han, 2021). It allows the model to attend to different positions in the input

sequence, which is very beneficial when dealing with long and complex relationships between

Figure 10 Multi-head attention (Vaswani et al., 2017)

 26

words (Hewitt, 2021). Figure 11 shows an example of the multi-head attention mechanism

where heads are capturing the long-distance dependencies between the word making and the

words more and difficult.

Figure 11 An example of multi-head attention mechanism. Each attention head is represented by a

different color (Vaswani et al., 2017)

Residual Connections

The residual connection framework was proposed by He, Zhang, Ren and Sun (2016) as a better

way of training a deep network that suffers from the vanishing gradient problem and

degradation of accuracy. In the residual connection framework, shortcut connections are used

to add the output of one layer to the input of a later layer in the deep network. This improves

information flow through the network and enables the gradient to propagate more easily

(Hewitt, 2021).

Let 𝐻(𝑥) be the underlying mapping to be fit by a few stacked layers 𝐹(𝑥), and 𝑥 be the input

to the first of these layers. Then 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, and therefore 𝐻(𝑥) = 𝐹(𝑥) + 𝑥.

The hypothesis of He et al. (2016) is that it is easier to optimize the residual mapping than the

underlying mapping. In other words, instead of learning the 𝐻(𝑥) from scratch, the model will

only learn the difference between the previous and the current residual block.

 27

Layer Normalization

During the training, gradient values are highly impacted by the output of the previous layer (Ba,

Kiros & Hinton, 2016). Normalization reduces this impact by removing uninformative

variation, which as a result, smooths the loss function and speeds up the model training. If

𝑥1, … 𝑥𝑛 where 𝑥𝑖 ∈ ℝ𝑑, layer normalization for each input 𝑥𝑖 computes separate parameters µ̂𝑖

and �̂�𝑖 across all d-dimensions.

In the Transformer model, layer normalization 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) is applied after

each sublayer (Vaswani et al., 2017). Let ℎ1, … ℎ𝑛 where ℎ𝑖 ∈ ℝ𝑑 denote contextual

representations of the input computed by the attention mechanism. The normalization

parameters are calculated for each representation ℎ𝑖 separately:

�̂�𝑖 =
1

𝑑
∑ℎ𝑖𝑗

𝑑

𝑖=1

�̂�𝑖 = √
1

𝑑
∑(ℎ𝑖𝑗 − �̂�𝑖)2
𝑑

𝑖=1

where µ̂𝑖 and �̂�𝑖 are scalars. To compute the 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 µ̂𝑖 and �̂�𝑖 are replicated across all

dimensions of ℎ𝑖:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℎ𝑖) =
ℎ𝑖 − �̂�𝑖

�̂�𝑖

Figure 12 Surface of the loss function without (left) and with (right) “shortcut

connections” (Li, Xu, Taylor, Studer & Goldstein, 2018)

 28

Position-Wise Feed Forward Network

In both the encoder and decoder, attention layers are followed by a fully connected feed forward

network. Hewitt (2021) explains that since the attention is computing the weighted sums, non-

linearity is needed for the model to learn complex relationships:

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2

where 𝑊1,𝑊2 are weights and 𝑏1, 𝑏2 bias terms of the first and second layers, respectively. The

network consists of two linear transformations with a 𝑅𝑒𝐿𝑈 activation function in between. The

first linear transformation projects the input into the higher dimensional space (𝑑𝑓𝑓 = 2048),

and the second one projects it back into original dimension (𝑑 = 512).

Positional Encoding

Self-attention does not consider the position of the word in the sentence. The Transformer

model addresses this issue by adding positional encoding to the input embedding of the encoder

and decoder block.

Let pos denote the position embedding, which is the same dimension as the embedding vector

𝑑𝑚𝑜𝑑𝑒𝑙, and 𝑖 denotes indices of each position embedding dimension. Encoding of words in odd

positions in the sequence is done using a 𝑠𝑖𝑛𝑒 function, and in even positions using a 𝑐𝑜𝑠𝑖𝑛𝑒

function:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)

The given functions indicate that frequencies decrease as the vector dimensions increase,

forming a geometric progression from 2𝜋 to 10000 ∗ 2𝜋 on the sinusoid’s wavelengths.

2.4.2 Decoder

The decoder consists of three sublayers: masked multi-head self-attention, multi-head cross

attention and feed-forward network.

During the training phase, input to the decoder are word embeddings and position encodings of

all words in the target sequence. In the previous example of a model that translates text from

English to German, the input is the sequence in German.

The first sublayer performs masked multi-head self-attention. In the decoder, masking is used

to prevent a word from attending to words that come after it in the sequence. This stops the

model from “looking into the future” and enables it to learn to predict words based on the left-

hand side content (Vaswani et al., 2017). During the training, a masking layer assigns an

unnormalized attention score of −∞ to all words in the sequence following the word that the

attention is computed for (Figure 13). Once squashed through a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function, the

normalized attention scores for these words will be equal to zero.

 29

The second sublayer, multi-head cross attention, performs encoder–decoder attention. It takes

the output of the first layer of the decoder (query) and attends it to the output of the encoder

(keys, values), establishing a connection between the input and the output. In the example of

the English–German translation model, during this step, each German word is mapped to the

English words that have similar meanings. As a result, the new word embeddings of German

words will contain an English context. The third sublayer is the feed-forward network. Just as

in the encoder, it is used to add non-linearity to the model.

Using the linear transformation, the output of the decoder is transformed to the dimension which

is the same size as the dictionary (in the translation model example, this is the dictionary of

German words generated from the training dataset). Then, for each word in the sequence, a

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function computes the probability distribution over the dictionary and returns the

word with the highest probability score (the most probable German word).

During the inference phase, instead of the target sequence, input to the decoder at the time step

𝑡 is the output of the decoder at the previous time step 𝑡 − 1. Therefore, each word 𝑤𝑡 is

generated based on the input from the encoder and the previous 𝑤1, … , 𝑤𝑡−1 words.

Figure 13 Masking in self-attention. Words in each row have words in the right-hand

side masked out (e.g., “hugged” can only attend to “Martha” and “hugged”).

 30

2.5 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained masked

language model, introduced by Google in 2018. The pre-trained language models developed

before BERT were either using the unidirectional approach, where they learned deep contextual

representation from left-to-right (such as GPT), or they used the shallow concatenation of a left-

to-right and a right-to-left context (such as ELMo). The novelty of BERT is its ability to learn

word representations that are jointly conditioned on the left and the right context (Devlin et al.,

2018).

The model uses the transformer encoder structure. Furthermore, BERT uses masking to prevent

the attention mechanism from seeing all words during training, allowing model to overcome

the limitations of the unidirectionality (Devlin et al., 2018).

The BERT implementation has two phases: the pre-training phase, during which the model is

trained on unlabeled data, and the fine-tuning phase, during which model parameters are fine-

tuned using the labeled data from a downstream task (e.g., text classification, question

answering, etc.) (Devlin et al., 2018). Model pre-training is a language modeling task where,

by learning to predict the next word based on the previous words in the sequence, the model

derives general patterns from text, building a general understanding of the language. To train

the model for the downstream task, hidden layers (optionally) and the output layer are added to

the pre-trained model. During the fine-tuning phase, the model learns task-specific parameters,

and the parameters of the pre-trained model are slightly adjusted. Alternatively, instead of fine-

tuning, a feature-based approach can be applied, in which the pre-trained model parameters are

frozen and the model learns only task-specific parameters.

2.5.1 Input/Output Representation

BERT can take either a single sequence or a pair of sequences (e.g., question–answer) as input.

Words are transformed into tokens using a sub-word type of tokenizer WordPiece, developed

by Google (Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey &

Klingner, 2016). The details on how the tokenizer is implemented in BERT are not publicly

available. However, the company HuggingFace has published the implementation description

based on the publicly available literature that they have gathered. According to HuggingFace

(n.d)

• the tokenizer first breaks each word into elements at the letter/sign level and adds the

prefix ## before each character except the first one (e.g., the word “book” will be split

into [𝑏, ##𝑜, ##𝑜, ##𝑘])
• a score is calculated for each element pair and used to decide whether to concatenate

them using the formula

𝑠𝑐𝑜𝑟𝑒 = (𝑓𝑟𝑒𝑞_𝑜𝑓_𝑝𝑎𝑖𝑟)/(𝑓𝑟𝑒𝑞_𝑜𝑓_𝑓𝑖𝑟𝑠𝑡_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 × 𝑓𝑟𝑒𝑞_𝑜𝑓_𝑠𝑒𝑐𝑜𝑛𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡)

 31

• if individual elements of an element pair are less common in the vocabulary than

element pair itself, they will be concatenated.

HuggingFace (n.d.) explains that if the elements “un” and “##able” very often appear in other

words, their frequency will be higher than the frequency of the pair [“un”, “##able”], thus they

will not be concatenated.

The input sequence into the BERT model always starts with a class token [CLS], which is a

sequence representation, and ends with a separating [SEP] token. If the input consists of two

sequences (e.g., question–answer), they are separated by a [SEP] token. The input

representation is the sum of token embedding, segment embedding (indicating which segment

a token belongs to), and positional embedding (indicating the position of a token in the

sequence) (Figure 14).

2.5.2 Pre-Training

BERT was pre-trained on the BooksCorpus (Zhu, Kiros, Zemel, Salakhutdinov, Urtasun,

Torralba & Fidler, 2015) and English Wikipedia, which has 800 million and 2,500 million

words, respectively. The base BERT model consists of 12 layers (transformer encoder blocks),

768 hidden states, and 12 attention heads, resulting in 110 million parameters (Devlin et

al.,2018). The large BERT model has 24 layers (transformer encoder blocks), 1024 hidden

states, and 16 attention heads, resulting in 340 million parameters (Devlin et al., 2018). Pre-

training consists of two unsupervised tasks which are conducted simultaneously: Masked

Language Modeling and Next Sentence Prediction.

Figure 14 BERT input representation (Devlin et al., 2018)

 32

Masked Language Modeling (MLM)

Devlin et al. (2018) states that “standard conditional language models can only be trained left-

to-right or right-to-left, since bidirectional conditioning would allow each word to indirectly

see itself”. The same problem applies to the transformer encoder, since the attention mechanism

has access to the whole sentence (including the word it is trying to predict). To address this

issue Devlin et al. (2018) employ masking. The masking was inspired by the Chloze task

(Taylor, 1593) of filling in the missing words in a text. Rather than predicting the next word

given the previous words, the model predicts the missing words given the rest of the sequence.

BERT randomly samples 15% of the tokens to apply masking on. 80% of the sampled data is

replaced with the [MASK] token, 10% with a random word, and 10% is unchanged (Devlin et

al., 2018). The objective of the model is to predict sampled words. The reason behind this

masking scheme is to reduce the mismatch between pre-training and fine-tuning, since the

masking is used only during the pre-training phase (Devlin et al., 2018). If the whole sample

was replaced with [MASK] token, the model will learn to predict only masked words.

Furthermore, it introduces uncertainty to the model since the model doesn’t know if the sampled

token that is not replaced with a [MASK] token represents the actual word or a random word.

In Figure 16, an example is given of a sentence where three words are sampled for prediction:

the word went is replaced with pizza, to is the actual word, and store is masked. The sequence

has one [MASK] token, but it will have three loss terms.

Figure 15 Architecture of the BERT pre-trained model. 𝐸1 …𝐸𝑛 are the input to the model,

𝑇1 …𝑇𝑛 are output of the model, and 𝑇𝑟𝑚 are transformer blocks (Devlin et al., 2018)

 33

Next Sentence Prediction (NSP)

The goal of the Next Sentence Prediction is for the model to learn the relationships between

two different segments of text, as this is highly important for some NLP tasks such as question

answering (Devlin et al., 2018). The model is a binary classifier trained on sequence pairs,

where consecutive sequences are labeled IsNext, and non-consecutive sequences are labeled

NotNext (Figure 17) (Devlin et al., 2018).

Figure 17 Example of training dataset used for NSP (Devlin et al., 2018)

2.5.3 Fine-Tuning and Feature-Based Approach

As mentioned, there are two approaches for how BERT can be used for the downstream task:

fine-tuning and a feature-based approach. The choice of method depends on the type of task

and size of the training dataset.

Fine-tuning is the preferred way of applying BERT to the downstream task, as it allows the

model to learn domain-specific knowledge. If the dataset is sufficiently large, fine-tuning will,

in most cases, improve the model’s performance. During the fine-tuning, backpropagation goes

through all layers of the network, updating all weights (including pre-trained weights). In order

to avoid overfitting, the general knowledge of the pre-trained model needs to be preserved.

Therefore, the weights of the pre-trained model are only slightly changed. The illustration of

fine-tuning BERT for the classification task is given in Figure 18.

Figure 16 Masking example (Goldie & Hewitt, 2022b)

 34

The feature-based approach is suitable for situations where tasks cannot be modeled by the

Transformer encoder architecture, or when the training dataset is very small and fine-tuning

will lead to a decrease in the model performance. Another benefit is a lower computational cost

compared to fine-tuning. In the feature-based approach, the model updates only the task-

specific weights. This is done by freezing the layers of the pre-trained model, which allows

backpropagation to go through only the layers added for the downstream task.

Layer freezing is sometimes used in combination with fine-tuning. In this approach, only some

layers of the pre-trained model are frozen, while others get updated.

2.5.4 Model Output

HuggingFace’s implementation of the BERT model provides four different outputs that can be

used depending on the downstream task. In classification, either the pooler_output or the

last_hidden_state is used. The pooler_output returns the sequence classification token [CLS]

from the last layer hidden state, after it has passed through the linear layer and 𝑡𝑎𝑛ℎ activation

function (i.e., sequence embedding). The output dimension is [batch size, hidden size]. The

last_hidden_state returns the last hidden state’s output embeddings of all tokens. The output

dimensions are [batch size, sequence length, and hidden size] (Figure 19). To obtain the

sequence embeddings, max pooling or average pooling is commonly used. When it comes to

the effect on the performance of the classification model, none of the outputs is superior.

However, experience from practical implementation shows that in most cases the pooler_output

provides better results when the model is fine-tuned, and last_hidden_state when the model

weights are frozen.

Figure 18 Fine-tuning BERT for a Sequence Pair Classification Task (left), and Single Sentence

Classification Task (right) (Devlin et al., 2018)

 35

Figure 19 Dimensions of the BERT model last hidden state (Singh, 2017)

 36

3 Data

The dataset (DG, 2021) used in the analysis consists of 838 566 reviews left by the current and

former employees of companies from the United Kingdom in the period between January 2008

and June 2021 on the employer review platform Glassdoor. The full list of the dataset variables

is given in Table 1. The dataset was downloaded from the Kaggle platform, where it was

published under the name “Glassdoor Job Reviews” by the user DG in 2021.

Table 1 Glassdoor Job Review dataset - variables overview (Scale takes values from 1 to 5, where 1 =

very dissatisfied, 5 = very satisfied)

Name Type Description

firm categorical Name of reviewed company

date_review date Date of the review

job_title categorical Job position of reviewer

current categorical Reviewer status. Values: current employee and former

employee

location categorical Job location

overall_rating integer Overall rating is average value of variables

work_life_balance, culture_value, diversity_inclusion,

career_opp, comp_benefits, senior_mgm, recommend,

ceo_approv.Values: from 1 to 5

work_life_balance integer (scale) Work-life balance

culture_value integer (scale) Company culture

diversity_inclusion integer (scale) Diversity and inclusion at the workplace

career_opp integer (scale) Opportunity for career development

comp_benefits integer (scale) Work benefits

senior_mgm integer (scale) Satisfaction with senior management

recommend integer (scale) Would the reviewer recommend the company to a friend

ceo_approv integer (scale) Opinion of review about CEO

outlook integer (scale) Reviewer opinion regarding the future of the company

headline categorical Headline of the review

pros categorical Positive aspects of working for the company

cons categorical Negative aspects of working for the company

 37

3.1 Dataset Exploration

The dataset contains reviews by the employees of 428 companies. Most of the companies in the

dataset are rated positively, receiving a score of 4 or 5 (Figure 20). Only 14% of the companies

in the dataset have been rated with an overall rating under 3. Furthermore, Figure 21 shows the

ratings of twenty companies that have received the most reviews, showing significant variation

in the number of reviews among the companies.

Most reviewers chose to be anonymous or left the job title field blank (Figure 22). Additionally,

many of the reviews come from employees who work (or have worked) in middle or senior

positions in the companies.

Figure 21 Ratings of twenty companies with largest number of reviews (Color assigned by total count)

Figure 20 Distribution of overall ratings

 38

A sample review from each of the “overall rating” categories is provided in Table 2. In this

sample we can see that improper use of spacing and double spacing is a common typing

mistakes in the text. This information is useful when deciding which data cleaning measures

need to be taken.

Table 2 Examples of reviews

Company: BREWIN-DOLPHIN

Job Position: Analyst

Headline: If you're into a cut-throat environment, this place is

for you.

Pros: Some of the clients. Free biscuits and booze.

Cons: 'Management' are cold. The only word to describe them is

corrupt. Never expect anything to be said to your face, and never

expect them to be on your side - one in particular is the infamous

wimp of the office. Such a pity, as I had such loyalty to the

company, but I can't see myself lasting much longer in here unless

I move offices (and they're probably just as bad as this lot).

Awful.

Rating: 1.0

Company: IBM

Job Position: Analyst

Headline: NA

Pros: Company brand with long history

Cons: Low salary and following with low salary increment;

Hierarchy Culture is an issue; Heavy workload at junior level only

; Too many compliance/rules; Slow decision making ; Many

bottleneck in the company and less or no development opportunity ;

Insufficient Training

Rating: 2.0

Figure 22 Distribution of rating over twenty most common job titles (Color assigned by total count)

 39

Company: MORGAN-STANLEY

Job Position: Executive Director

Headline: Uncaring

Pros: MS consistently places the needs of the company above its

employees. I get it, companies do this. But MS does so more than

any other company I've known.

Cons: Management doesn't value its talent - their view is we'll

treat you as we like, if you don't like it leave. Stingy on

compensation and benefits.

Rating: 3.0

Company: DELOITTE

Job Position: Consultant

Headline: Deloitte Review

Pros: Good open culture & maintains work life balance

Cons: networking is a must even if u r weak in technilogy that is

fine.

Rating: 4.0

Company: GOLDMAN-SACHS

Job Position: Analyst

Headline: Tests , but rewards you

Pros: Challenging, the pay grade is great,

Being my first job, I have no comparisons, but i can vouch for the

place, it's great

Cons: Yes, the hours can get long. Work can at times become quite

monotonous, but there are always opportunities to expand and

diversify your portfolio

Rating: 5.0

Figure 23 shows the length of the text in the “pros” and “cons” across the “overall rating”

variable measured in number of words. The graph shows that most of the reviews have up to

twenty words. Furthermore. it indicates reviews with lower “overall rating” tend to be shorter

than those with higher ratings.

 40

Figure 23 Length of text (number of words) of “pros” (up) and “cons” (down) across overall rating

values. Text length is grouped in six ranges

 41

4 Methodology

This chapter describes the details of the research design, model architecture, and model

implementation.

4.1 Research Design

To evaluate how the performance of the sentiment classification model is affected by including

two additional features, and by the proposed method for doing so, three different models have

been trained. The first model classifies the sentiment based only on the review text. The second

model concatenates review and additional features prior to tokenization. The third model

implements the method proposed in this thesis. The input to the model is the sequence pairs,

where the first sequence represents a review, and the second represents the concatenated

features “job title” and “firm”.

The first model is used as a benchmark to measure the effect of adding features in the analysis

on the sentiment classification results. The second model is used as a benchmark to measure

whether the method proposed in this thesis improves the performance of the model.

To ensure the fairness of the comparison with regard to the limitations of the study described

in section 5.4, all three models use the same architecture. Furthermore, all models are trained

using the same optimizer and the same learning rate.

4.2 Data Preparation

The Glassdoor Job Reviews dataset does not contain sentiment labels. To overcome this, the

dataset was converted into a long format by merging the “pros” and “cons” columns into a

single column “review”. After the transformation, each observation from the original dataset is

represented in two rows, one for “pros” and one for “cons”, resulting in a dataset that is twice

the length of the original, containing 1 677 132 rows.

For the purpose of the analysis, the sentiment label needs to be added. This was done using the

rule-based approach. In the initial phase of the research, two rulesets were tested. Both rulesets

determine the sentiment of the text in the “review” column, using the “overall_rating”, and

whether the text originally belonged to the “pros” or the “cons” column. The first ruleset

classified the reviews into nine classes and the second one into three classes (Table 3).

 42

Table 3 Rulesets for assigning the sentiment

Ruleset 1 – nine classes

9 - Extremely Positive: text from pros with overall rating is 5

8 - Very Positive: text from pros with overall rating is 4

7 - Moderately Positive: text from pros with overall rating is 3

6 - Slightly Positive: text from pros with overall rating is 2

5 - Neutral: text from pros with overall rating is 1, and cons with overall rating 5

4 - Slightly Negative: text from cons with overall rating 4

3- Moderately Negative: text from cons with overall rating 3

2- Very Negative: text from cons with overall rating 2

1- Extremely Negative: text from cons with overall rating 1

Ruleset 2 – three classes

2 - Positive: text from pros with overall rating is 2, 3, 4, 5

1 - Neutral: text from pros with overall rating is 1, and cons with overall rating 5

0- Negative: text from cons with overall rating 1, 2, 3 or 4

The dataset labeled using ruleset one was tested on over 30 different models, resulting in

validation accuracy between 22% and 32%. Further inspection of the reviews indicated that the

categorization of the nine different sentiments is not appropriate for this dataset. The words and

sentences used in reviews don’t distinguish enough to justify using so many categories. If we

take the examples given in Table 2 (section 3.1), this ruleset assigns the sequences “Some of

the clients. Free biscuits and booze.” and “Company brand with long history” with different

sentiment labels. However, it is hard to argue that the sentiment of these two sequences differs

enough to justify assigning them two separate categories. Therefore, ruleset two was chosen for

labeling the dataset.

It should be mentioned that the classification of the dataset in two sentiments—where the

negative sentiment is assigned to text belonging to the “cons” variable, and positive sentiment

to text belonging to the “pros” variable—was considered but discarded as it doesn’t depict the

dataset well. Looking back at the example from Table 2 (section 3.1), the review with the

overall rating 1 states as a pro “Some of the clients. Free biscuits and booze.” If binary labeling

was used, this review would be assigned a positive sentiment. But if we look at the review as a

whole, including for example its headline “If you're into a cut-throat environment, this place is

for you”, it becomes clear that the reviewer doesn’t express a positive attitude toward the

company.

The assigned labels are saved in the variable “sentiment”, and variables that are not needed for

the analysis are removed. Variables left in the dataset are review, job title, firm, and sentiment.

Furthermore, all rows with missing values were deleted, leaving 1 337 875 rows in the dataset.

 43

The job title was missing in 9.4% and the headline in 0.01% of rows. Additionally, the variable

review had a missing value in two rows.

In the next step, the review text was preprocessed to remove the noise from the data. Double

spaces were converted to single spaces, letters were converted to lowercase, and weblinks and

special characters were removed. The commonly used text cleaning methods such as

lemmatization, stemming, and removal of “stop words” can often have a negative impact on

BERT model performance, as they remove contextual information that the model uses to learn.

To examine the effect of these methods on the model, two datasets were created: one where

these techniques were applied, and one where they were not. The negative impact on the

model’s performance was noticed, therefore, these techniques were not used.

The dataset was divided into a training and a test dataset. 80% (1 070 518) of observations were

assigned to the training dataset, and 20% (267 630) to the test dataset. Since the dataset is

unbalanced (Figure 24), it was split in such a way that the distribution of the classes remained

the same as in the original.

Lastly, the labels were converted to numbers so that 0, 1, and 2 denote a negative, neutral, and

positive sentiment respectively, and encoded using one-hot encoding.

Figure 24 Distribution of the sentiment class

 44

4.3 Model

For the sentiment analysis, BERT base uncased model from HuggingFace’s Transformers

library was used. This model’s maximum input length is 512 sub-word tokens, and it has 12

attention heads, resulting in 110 million parameters. On top of the BERT model, custom layers

are added. As previously described, three models for sentiment classification have been trained.

The models have the same architecture, but the input to the tokenizer changes.

4.3.1 Tokenization

The BERT model uses the WordPiece tokenizer described in section 2.5.1. This tokenizer

returns (Figure 25):

• input_ids [length 512] – numerical representation of sub-word tokens in the sequence

• attention_mask [length 512] – binary tensor that indicates which tokens should be

attended to and which should be ignored. It assigns zero to the padding tokens indicating

that they should not be attended to.

• token_type_id [length 512] - binary tensor that indicates which sequence a token

belongs to. When the input to the model is a single sequence, all values of the tensor are

equal to zero. The BERT model uses this token for the Next Sentence Prediction task.

The input sequence was limited to 90 tokens, and the sequences exceeding this length were

truncated. This was done because of the GPU limitations. Figure 26 shows that the number of

words in the majority of reviews is less than 90. However, since WordPiece is a sub-word

tokenizer, it is hard to estimate how many reviews were truncated.

Figure 25 BERT WordPiece tokenizer output

 45

Model 1 (single sequence review)

This model takes only the reviews as input. The tokenizer places the [CLS] token at the

beginning of the sequence, and the [SEP] token at the end, and adds padding. Since input is a

single sequence, all values of the tensor token_type_id are zero, this model doesn’t use the Next

Sentence Prediction objective.

Input sequence: “ i have yet to fine one”

[CLS] i have yet to fine one [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

Figure 26 Length of reviews (number of words) across sentiment values. Text

length is grouped in ten ranges

 46

Model 2 (single sequence review + job position + company name)

This model concatenates the review, job position, and company name prior to tokenization. The

tokenizer will place the [CLS] token at the beginning, and the [SEP] token at the end of the

sequence. Since the input is a single sequence, this model doesn’t use the Next Sentence

Prediction objective.

Input sequence: “i have yet to fine one senior consultant pwc”

[CLS] i have yet to fine one senior consultant pwc [SEP] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

Model 3 (sequence pair review–job title + company name)

This model takes the review, job position, and company name as two sequences. The first

sequence is the review, and the second sequence is the job title and company name. Given that

the sequence pairs are tokenized, the tokenizer will place the [CLS] token at the beginning of

the first sequence, one [SEP] token between sequences, and one [SEP] token at the end of the

second sequence. Truncation is applied only to the first sequence of sequence pairs that exceed

90 words. This is done to ensure job title and company name are not discarded in the

tokenization process. The model adds the Next Sentence Prediction objective since the input is

sequence pairs.

Input sequence 1: “i have yet to fine one”

Input sequence 2: “senior consultant pwc”

[CLS] i have yet to fine one [SEP] senior consultant pwc [SEP] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

 47

4.3.2 Model Architecture

In the process of finding the optimal model architecture and hyperparameters, hundreds of

model architectures were tested. However, due to the limited time to conduct the research, as

well as hardware constraints, it is possible that the best model was not found. For the purposes

of this research, finding the best model is not crucial, therefore this has not affected the outcome

and conclusions.

The model architecture and hyperparameter were optimized for Model 1. Then, they were used

to train Model 2 and Model 3 as well. Therefore, we can measure how the additional variables

and proposed methods for generating the embeddings influence the model’s performance.

Furthermore, due to the tendency of the BERT model to overfit data easily—even with a large

dataset as the one used in this thesis—the focus was to find the architecture that will reduce the

overfitting.

Figure 27 The final model architecture

 48

The model takes input_ids, attention_mask and token_types_ids as input. It has one embedding

layer, two fully connected layers, and an output layer. The embedding layer is BERT’s

pooler_output. This layer transforms the input into sequence embeddings. The output is passed

to the first fully connected (dense) hidden layer with 768 hidden units and a 𝑅𝑒𝐿𝑈 activation

function. The output is then fed into the second fully connected hidden layer with 384 hidden

unites and a 𝑅𝑒𝐿𝑈 activation function. The output layer is the linear layer with the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

activation function, which calculates the probability of three output classes (negative, neutral,

and positive). Furthermore, each fully connected layer is followed by layer normalization and

dropout (Error! Reference source not found.). The model has 110 331 587 parameters (Figure

28). The model architecture with the layers’ input and output shapes is available in Appendix

A.

4.3.3 Regularization and Optimization

Devlin et al. (2018) provide the range of values for learning rate, and regularization and

optimization hyperparameters for fine-tuning BERT which have produced good results on a

variety of tasks in their experiments. The given values were used as a starting point for finding

the optimal hyperparameters for Model 1. The best results were achieved by:

• L2 regularization with 𝜆 = 1𝑒 − 3 is being applied to the weights of both fully

connected layers.

• using the dropout rate 0.5 after the first fully connected layer, and 0.3 after the second.

• using batch size 32.

• using the AdamW (Loshchilov & Hutter, 2017) optimization algorithm with learning

rate 2e-5.

• using a linear learning rate scheduler with the end learning rate 1e-8.

Furthermore, the objective of the model was to minimize categorical cross-entropy loss.

Categorical cross-entropy loss measures the difference between the predicted and true

probability distribution of the target variable in the multiclass classification problem.

Additional information on hyperparameter tuning, as well as a summary of the observed effects

that the adjustments to hyperparameter values and model architecture have on the model

performance, can be found in Appendix B. This information is collected to serve as a guideline

for further work on the improvement of the model’s performance.

 49

5 Evaluation

This chapter provides information on how the models were trained and evaluated. Section 5.2

presents the models’ training and evaluation results. This section is followed by the discussion,

limitations of the study, and proposals for future work.

5.1 Training and Evaluation

During the training and evaluation, model performance was measured using the following

metrics:

• Precision is used to measure what portion of the observations that are predicted as

positive are actually positive, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

• Recall is used to measure what portion of the positive observations are predicted as

positives, 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

• Weighted F1 score is used to measure model accuracy. It is a weighted average of F1

scores of each class, where weights equals to the proportion of the observations that

belong to the corresponding class, and 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Devlin et al. (2018) recommend fine-tuning the BERT for 2 to 4 epochs. Fine-tuning the model

over more than four epochs leads to overfitting and increases the risk of the model forgetting

the knowledge from the lower layers (Howard & Ruder, 2018).

The optimal number of epochs for each of the three models was found using early stopping.

This was repeated five times to investigate the training stability. 80% of the dataset was used

for training, and 20% for validation. The models behaved consistently over all five trials. The

validation loss of all three models started to increase after the third epoch. Weighted F1 score

for Model 1 and Model 2 started to decrease after the second epoch, and for Model 3 after the

third epoch. This indicates that the optimal number of epochs for Model 1 and Model 2 is two,

and three for Model 3, since all three models slowly start to overfit after that. The best

parameters for each model were chosen using 5-fold cross-validation.

 50

Figure 28 Model 1 - loss (left) and weighted F1 score (right) curve

Figure 29 Model 2 - loss (left) and weighted F1 score (right) curve

 51

Figure 30 Model 3 - loss (left) and weighted F1 score (right) curve

5.2 Results

Table 4 Evaluation results

Model 1 weighted F1 loss recall precision

5-fold cross-

validation
0.824±0.003 0.448±0.002 0.832±0.001 0.850±0.001

training dataset 0.846 0.402 0.848 0.865

test dataset 0.828 0.447 0.832 0.851

Model 2 weighted F1 loss recall precision

5-fold cross-

validation
0.832±0.004 0.440±0.003 0.838±0.002 0.855±0.002

training dataset 0.852 0.402 0.852 0.869

test dataset 0.836 0.441 0.836 0.856

Model 3 weighted F1 loss recall precision

5-fold cross-

validation
0.838±0.001 0.408±0.000 0.839±0.001 0.850±0.002

training dataset 0.873 0.329 0.872 0.881

test dataset 0.838 0.411 0.837 0.848

 52

Table 5 Model classification report (arrows indicate direction of change compared to Model 1)

Model 1 precision recall F1 score support

Negative

sentiment
0.80 ↓ 0.89 ↓ 0.84 ↓ 96754

Neutral

sentiment
0.65 ↓ 0.38 ↓ 0.48 ↓ 46468

Positive

sentiment
0.92 ↓ 0.98 ↓ 0.95 ↓ 124394

accuracy 0.84 ↓ 267616

macro avg 0.79 ↓ 0.75 ↓ 0.76 ↓ 267616

weighted avg 0.83 ↓ 0.84 ↓ 0.83 ↓ 267616

Model 2 precision recall F1 score support

Negative

sentiment
0.82 ↑ 0.87 ↓ 0.84 ↓ 96754

Neutral

sentiment
0.64 ↓ 0.45 ↑ 0.53 ↑ 46468

Positive

sentiment
0.92 ↓ 0.98 ↓ 0.95 ↓ 124394

accuracy 0.85 ↑ 267616

macro avg 0.79 ↓ 0.76 ↑ 0.77 ↑ 267616

weighted avg 0.83 ↓ 0.85 ↑ 0.84 ↑ 267616

Model 3 precision recall F1 score support

Negative

sentiment
0.83 ↑ 0.85 ↓ 0.84 ↓ 96754

Neutral

sentiment
0.60 ↓ 0.51↑ 0.55 ↑ 46468

Positive

sentiment
0.93 ↑ 0.96 ↓ 0.95 ↓ 124394

accuracy 0.84 ↓ 267616

macro avg 0.79 ↓ 0.77 ↑ 0.78 ↑ 267616

weighted avg 0.84 ↑ 0.84 ↓ 0.84 ↑ 267616

 53

Figure 31 Model 1 - Confusion matrix (left), precision-recall curve (right)

Figure 32 Model 2 - Confusion matrix (left), precision-recall curve (right)

 54

The results show that Model 2 and Model 3 achieved a 0.8–1% higher weighted F1 score

compared to Model 1 on the test dataset (Table 4). The performances of Model 2 and Model 3

were very similar, with Model 3 achieving marginally higher accuracy. Furthermore, the results

of the 5-fold cross-validation indicate that all models were giving stable predictions.

In the classification report presented in Table 5, we can see that all three models were good at

predicting positive and negative sentiments. They all achieved a weighted F1 score of 95% for

a positive sentiment and 84% for a negative sentiment. However, all three models were very

bad at predicting neutral sentiment. Model 1 performed the worst, with a weighted F1 score of

48%, while Model 2 and Model 3 had a weighted F1 score of 53% and 55%, respectively. The

recall value indicates that the models had a very low ability to classify a neutral class correctly.

The models found it particularly hard to distinguish a neutral sentiment from a negative one

(Figure 31, Figure 32, Figure 33).

The reason for this could be attributed to the labeling rules applied to the dataset described in

section 4.2. The neutral class contained statements about both positive and negative aspects of

the company. Therefore, it was much harder for the models to learn to recognize it, compared

to the other two classes, which contained statements only about one of these aspects. Also, due

to the imbalanced distribution of ratings in the dataset, the majority of instances in the neutral

class were statements about negative aspects of a company. This could explain why the

observations from the neutral class were more often misclassified as negative than as positive.

However, it is interesting that the cause of the improved overall accuracy of Model 2 and Model

3, is their better ability to identify the neutral class. Learning the connections between words

used in reviews, job title, and company name helped to reduce the number of cases where a

neutral sentiment was falsely classified as negative. This suggests that adding additional

features to a review text prior to tokenization resulted in the models learning the embeddings

with additional context useful for interpreting the intended sentiment.

Figure 33 Model 3 - Confusion matrix (left), precision-recall curve (right)

 55

The marginal difference in the weighted F1 score between Model 2 and Model 3 suggests that

adding the Next Sentence Prediction task to Model 3 didn’t result in any significant

improvement of the overall accuracy. However, the model achieved a better balance between

the precision and recall for each class. Compared to Model 2, it has better capability to correctly

identify the neutral class and slightly lower bias toward positive class.

5.3 Discussion

During the study, all the models were trained and tested multiple times, always giving very

similar results. This suggests that the difference in the results between Model 1 and the other

two models is not a consequence of the random initialization during the models’ training. To

establish with more certainty what causes this increase in performance, additional research is

needed. However, analysis of the results and dataset indicates that the better performance is not

caused only by the increased length of the input text.

The median length of the job title is 2 words (mean length 1.94), and of the company name 1

word (mean length 1.56), meaning that in the majority of cases, the input text sequence to Model

2 and Model 3 was longer by only 2–3 words compared to Model 1. Furthermore, Model 2 and

Model 3 were more affected by truncation during tokenization. Therefore, Model 1 kept sub-

word tokens from the longer reviews—which the other two models discarded—and potentially

learned more about the relationship between the words in the review text. However, it was not

possible to measure the impact this had on the accuracy of the models.

The better ability of Model 2 and Model 3 to correctly predict the neutral class suggests that the

observed improvement could be caused by the choice of the features that enabled the

introduction of the informative patterns during the tokenization process. The premise of this

research was that there is a relationship between the content of the review, and a company or

job position. In section 1.3, the argument was given that if, for example, salaries in a company

are low, it is reasonable to assume that most of the reviewers will mention that and give the

company a lower rating. Since the same job titles and company names repeat across the dataset,

adding them to the review text before tokenization creates similar sub-word tokens that repeat

across the input sequences. Model 2 and Model 3 could use this sub-token repetition to learn

additional context information, which helps them to identify neutral class more accurately than

Model 1.

To see how these models could benefit from this, let’s look at the names of the most frequent

companies in the dataset. In Figure 21 (section 3.1), we can see that some of the most common

companies in the dataset have names which are either acronyms or surnames, such as IBM,

SAP, Morgan Stanley, American Express. Since WordTokenizer prioritizes merging the sub-

word tokens that appear less often in the vocabulary, pairs such as ['american', 'express’] or

['morgan', 'stanley'] will most likely be merged earlier during the tokenization process (section

2.5.1). This means that the model will produce the review embeddings, which will have a

company name (or a significant part of it) incorporated in them. Therefore, it will be able to

 56

learn, for example, for which companies the sequence containing the word “salary” has a

negative sentiment, and for which it has a neutral.

Furthermore, the observed effect of adding the Next Sentence Prediction objective on model

performance was somewhat unexpected, given the findings of the other research. During the

development of BERT, Devlin et al. (2018) found that adding the Next Sentence Prediction

objective significantly improved the model performance for a variety of downstream tasks.

However, several later studies have shown that it doesn’t always lead to improvement in

accuracy, and that in some cases, it can have an opposite effect and hurt the performance of the

model (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer & Stoyanov, 2019; Yang,

Dai, Yang, Carbonell, Salakhutdinov & Le, 2019). Therefore, many pre-trained language

models developed after BERT don’t use this objective. This study did not find that adding the

Next Sentence Prediction task improves the model’s overall accuracy. However, adding this

objective has increased the impact of the added features on determining the review sentiment.

As a result, the model has become better at classifying observations from the neutral class

correctly.

Analysis of the results published in the relevant research leads to the conclusion that—

considering the simplicity of implementation, and the low computational complexity it adds to

the model—this approach has resulted in decent improvement of the model’s performance.

However, the disadvantage of this approach is that the impact of the added features on

classification results depends only on the attention score given by the model. Furthermore,

concatenating feature vectors to word embeddings gives more flexibility to impact model

performance, since it can be done in different stages. Some methods perform it on the input to

the model (Liu et al., 2021; Pota, Ventura, Catelli & Esposito, 2020), while others concatenate

the output of several models and then pass it to the final output layer (Zhang, Xu, Pang & Han,

2020).

On the other hand, many of the proposed methods for improving embedding accuracy are used

only on single context embeddings such as WordToVec and GloVe (Rezaeinia, Rahmani,

Ghodsi & Veisi, 2019), and are shown to diminish the performance of the contextual embedding

models (Li et. al, 2022). In addition, results published in several studies conducted on social

media posts have demonstrated that enhancing word embeddings with semantical features from

other elements of the posts, such as emojis (Liu et al., 2021; Pota, Ventura, Catelli & Esposito,

2020) and images (Graesser et al., 2017), can result in much larger improvement of the

sentiment classification models. However, these elements are usually not present in the reviews

on the employer review platforms.

The findings reported in this thesis indicate that adding features prior to tokenization improves

the accuracy of the embeddings, resulting in enhanced performance of sentiment analysis.

However, further research is needed to verify whether the hypothesis about the cause of the

embeddings’ improvement discussed in this section holds true. The results also show that using

sequence pairs can improve the model’s ability to correctly classify the minority class, and

improve the balance between precision and recall.

 57

5.4 Limitations

The limited time to conduct the research, along with hardware constraints, has significantly

affected the number of trials it was possible to conduct. It has also put a constraint on the length

of the model’s input. This affected Model 2 and Model 3 more than Model 1, since their input

text is longer. However, based on the length of the reviews in the dataset (Figure 26), it can be

assumed that the number of input sequences that were truncated was relatively small and could

not significantly impact the observed results. To eliminate this uncertainty, the models would

need to be trained using full length input sequences.

The same architecture and hyperparameters were used for all three models. This choice was

made since there was not enough time to conduct a thorough parameter search for all three

models. Therefore, it was not possible to know whether the final models are optimal. In these

circumstances, using different parameters could lead to a risk that one model performs better

than the other just because better parameters are found, and it would not be possible to compare

the results.

5.5 Future Work

Further study could investigate whether the observed improvement in the model was caused by

introduction of informative patterns during the tokenization. Furthermore, optimal architectures

could be found for the models, and full-length input text used, to better estimate the potential

of the used approach. Section 5.4 and Appendix B can be used as a guideline for further work

on the optimization of the model architecture. Also, it would be interesting to explore the effects

of this approach on other types of pre-trained models, such as ELMo.

During the study, it was observed that labeling the dataset presents a significant challenge for

achieving higher model accuracy. This was observed in the other analysis of the employees’

review data (Cortinhas, n.d; Jansen, n.d). Further study with more focus on dataset labeling is

therefore suggested.

Lastly, the initial proposal for the thesis was to research whether sarcasm detection could

improve the sentiment analysis of the employees’ reviews. The initial few weeks of work on

the thesis were dedicated to the development of a model that would conduct the sarcasm aware

sentiment analysis. Unfortunately, this work needed to be interrupted, since it was not possible

to finish by the time this thesis needed to be submitted. More details regarding this work are

given in Appendix C. Future research could explore whether the described approaches could

lead to improved performance of the sentiment analysis.

 58

6 Conclusions

Companies with a good employer reputation have a much higher chance of attracting talented

and highly competent workers. Research conducted by Dice (2022) finds that over 78% of the

tech professionals find a company’s employer brand to be more important than a salary when

considering accepting a job offer. Sentiment analysis has become a popular tool for detecting

weaknesses in a company’s brand by analyzing posts and reviews on online platforms. It faces

a lot of challenges, and in the past few years, many new approaches for its improvement have

been proposed. However, many of the proposed methods involve building large models that are

computationally very expensive to train.

This thesis investigated whether incorporating other elements from the employees’ reviews,

such as job title and company name, into word embeddings can enhance the performance of

sentiment analysis of reviews on the online platform Glassdoor. More specifically, the thesis

has tried to answer to following questions:

• Does adding features (e.g., job title and company name) prior to tokenization produce

more accurate word embeddings, thereby improving the results of sentiment analysis of

employees’ reviews?

• Does the Next Sentence Prediction task help the BERT model to learn more accurate

word embeddings?

The study included training three different models and comparing their performance. The first

model analyzed only reviews, and the second reviews concatenated with job title and company

name. The third model analyzed sequence pairs, where the first sequence was the employee’s

review, and the second a concatenation of job title and company name.

Despite its limitations, this research indicates that the used approach can improve the model

performance without significant impact on the computational cost and increase in model

complexity. The results show that adding job title and company name prior to tokenization

resulted in higher accuracy of sentiment analysis of employees’ reviews. However, this study

could not provide a definite answer as to whether the observed improvement is a consequence

of adding features that enables generation of informative patterns during tokenization. To

investigate this hypothesis, further research is needed. In addition, insufficient evidence was

found that using sequence pairs improves the models’ accuracy. However, adding the Next

Sentence Prediction objective improves the models’ ability to understand the sentiment of the

reviews and correctly predict the minority class. In contrast to earlier research—which found

that this objective hurts a model performance—this shows that including this objective could

be beneficial in sentiment classification tasks.

 59

References

Alessia, D., Ferri, F., Grifoni, P., & Guzzo, T. (2015). Approaches, Tools and Applications

for Sentiment Analysis Implementation. International Journal of Computer

Applications, vol. 125, no. 3, pp.26-33

Alammar, J. (2018). The Illustrated Transformer, web blog post. Available at:

https://jalammar.github.io/illustrated-transformer/ [Accessed 24 April 2023]

Ba, J.L., Kiros, J.R., & Hinton, G.E. (2016). Layer Normalization, preprint, Available online:

https://arxiv.org/pdf/1607.06450.pdf [Accessed 24 April 2023]

Bahdanau D., Cho K., & Bengio Y. (2014). Neural Machine Translation by Jointly Learning

to Align and Translate, preprint, Available at: https://arxiv.org/abs/1409.0473, [Accessed

25 April 2023]

Beechler, S., & Woodward, I.C. (2009). The Global “War for Talent”. Journal of

international management, vol. 15, no. 3, pp.273-285

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A Neural Probabilistic Language Model, in

Leen T., Dietterich T., & Tresp V. (eds), Advances in neural information processing

systems, vol. 13. Available at:

https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a

8fa4c-Paper.pdf

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A Comprehensive Survey on Sentiment

Analysis: Approaches, Challenges and Trends. Knowledge-Based Systems, vol. 226,

pp.107134

Cable, D.M., & Turban, D.B. (2003). The Value of Organizational Reputation in the

Recruitment Context: A Brand‐equity Perspective. Journal of Applied Social Psychology,

vol. 33, no. 11, pp.2244-2266.

Chapelle O., Schölkopf B., & Zien A. (2010). Semi-Supervised Learning. Cambridge: The

MIT Press

Cho, K., van Merri, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning Phrase Representations Using RNN Encoder-Decoder for Statistical

Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp.1724-1734

Collobert, R., & Weston, J. (2008). A Unified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning. In Proceedings of the 25th international

conference on Machine learning, pp.160-167

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf

 60

Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2017). Very Deep Convolutional

Networks for Text Classification. Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics, vol. 1, pp.1107-1116

Cortinhas S. (n.d.) NLP10 – Transformers. Available at:

https://www.kaggle.com/code/samuelcortinhas/nlp10-transformers [Accessed: 12 May

2023]

Dice (2022) Tech Hiring Perspectives. Available at:

https://www.dice.com/recruiting/ebooks/dice-tech-sentiment-report/hiring-

perspectives.html#Hiring-Perspectives [Accessed 5 March 2023]

Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-Training of Deep

Bidirectional Transformers for Language Understanding, preprint. Available online:

https://arxiv.org/abs/1810.04805 [Accessed 25 April 2023]

DG (2021), Glassdoor Job Reviews, Available online:

https://www.kaggle.com/datasets/davidgauthier/glassdoor-job-reviews [Accessed: 9 Mars

2023]

Doshi, K. (2021), Transformers Explained Visually (Part 3): Multi-Head Attention, Deep Dive.

Toward Data Science. Available online: https://towardsdatascience.com/transformers-

explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853 [Accessed 24 April

2023]

Ferris, G.R., Perrewé, P.L., Ranft, A.L., Zinko, R., Stoner, J.S., Brouer, R.L., & Laird, M.D.

(2007). Human Resources Reputation and Effectiveness. Human Resource Management

Review, vol. 17, no. 2, pp.117-130

Gers, F.A., & Schmidhuber, J. (2000). Recurrent Nets That Time and Count. Proceedings of

the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.

Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 3, pp.

189-194

Goldie, A., & Hewitt, J. (2022a). Lecture 9: Transformers. CS224n, powerpoint presentation,

Stanford University, Winter 2022, Available online:

https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture09-transformers.pdf

[Accessed 23 April 2023]

Goldie, A., & Hewitt, J. (2022b). Lecture 10: Natural Language Processing with Deep

Learning. CS224n, powerpoint presentation, Stanford University, Winter 2022, Available

online: https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture10-pretraining.pdf

[Accessed 25 April 2023]

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT press.

https://www.kaggle.com/code/samuelcortinhas/nlp10-transformers
https://www.dice.com/recruiting/ebooks/dice-tech-sentiment-report/hiring-perspectives.html#Hiring-Perspectives
https://www.dice.com/recruiting/ebooks/dice-tech-sentiment-report/hiring-perspectives.html#Hiring-Perspectives
https://www.kaggle.com/datasets/davidgauthier/glassdoor-job-reviews
https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853
https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture09-transformers.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture10-pretraining.pdf

 61

Graesser, L., Gupta, A., Sharma, L., & Bakhturina, E. (2017). Sentiment Classification Using

Images and Label Embeddings. Available at: https://arxiv.org/abs/1712.00725 [Accessed 3

Maj 2023]

Habimana, O., Li, Y., Li, R., Gu, X., & Yu, G. (2020). Sentiment Analysis Using Deep Learning

Approaches: An Overview. Science China Information Sciences, vol. 63, pp.1-36.

He K., Zhang X., Ren S., & Sun J. (2016), Deep Residual Learning for Image Recognition.

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778

Hewitt, J. (2021). Stanford CS224N NLP with Deep Learning | Winter 2021 | Lecture 9 -

Self- Attention and Transformers, [video online], Available at:

https://www.youtube.com/watch?v=ptuGllU5SQQ&list=PLoROMvodv4rOSH4v6133s9L

FPRHjEmbmJ&index=9 [Accessed: 24 April 2023]

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,

vol. 9, no. 8, pp.1735-1780

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-Tuning for Text

Classification, preprint, Available at: https://arxiv.org/abs/1801.06146 [Accessed: 12 May

2023]

HuggingFace (n.d). WordPiece Tokenization. Available online:

https://huggingface.co/learn/nlp-

course/chapter6/6?fw=pt#:~:text=Tokenization%20differs%20in%20WordPiece%20and,v

ocabulary%2C%20then%20splits%20on%20it. [Accessed 25 April 2023]

Jansen M. (n.d.) NLP | Sentiment Analysis of Company Reviews. Available at:

https://www.kaggle.com/code/matthewjansen/nlp-sentiment-analysis-of-company-reviews

[Accessed: 12 May 2023]

Joshi, A., Bhattacharyya, P., & Ahire, S. (2017). In: Cambria, E., Das, D., Bandyopadhyay,

S., Feraco, A. (eds) A Practical Guide to Sentiment Analysis. Socio-Affective Computing,

vol 5. Springer, Cham, pp.85-106

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A Convolutional Neural Network

for Modelling Sentences. Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics, vol. 1, pp. 655-665

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks, web blog

post. Available online http://karpathy.github.io/2015/05/21/rnn-effectiveness/ . [Accessed:

21 April 2023]

Kannan, S., Karuppusamy, S., Nedunchezhian, A., Venkateshan, P., Wang, P., Bojja, N., &

Kejariwal, A. (2016). Big Data Analytics for Social Media, in Buyya R., Calheiros R.N., &

Dastjerdi A.V. (eds), Big Data, Cambridge: Morgan Kaufmann, pp. 63-94

https://arxiv.org/abs/1712.00725
https://www.youtube.com/watch?v=ptuGllU5SQQ&list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ&index=9
https://www.youtube.com/watch?v=ptuGllU5SQQ&list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ&index=9
https://arxiv.org/abs/1801.06146
https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt#:~:text=Tokenization%20differs%20in%20WordPiece%20and,vocabulary%2C%20then%20splits%20on%20it
https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt#:~:text=Tokenization%20differs%20in%20WordPiece%20and,vocabulary%2C%20then%20splits%20on%20it
https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt#:~:text=Tokenization%20differs%20in%20WordPiece%20and,vocabulary%2C%20then%20splits%20on%20it
https://www.kaggle.com/code/matthewjansen/nlp-sentiment-analysis-of-company-reviews
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 62

Kashive, N., Khanna, V.T., & Bharthi, M.N. (2020). Employer Branding Through

Crowdsourcing: Understanding the Sentiments of Employees. Journal of Indian Business

Research., vol. 1, pp. 93-111

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2018). Visualizing the Loss Landscape

of Neural Nets. Proceedings of the 32nd International Conference on Neural Information

Processing Systems, pp.6391–6401

Liu, B. (2017). Many Facets of Sentiment Analysis, in Cambria, E., Das, D., Bandyopadhyay,

S., & Feraco, A. (eds) (2017). A practical guide to sentiment analysis. Springer

Liu, B., & Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In Mining

text data, Boston: Springer, pp. 415-463

Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., & Lu, X. (2021). Improving Sentiment

Analysis Accuracy with Emoji Embedding. Journal of Safety Science and Resilience, vol. 2,

no. 4, pp.246-252.

Liu L., Liu, J., & Han, J. (2021). Multi-Head or Single-Head? An Empirical Comparison for

Transformer Training, preprint, Available online: https://arxiv.org/pdf/2106.09650.pdf

[Accessed 24 April 2023]

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,

& Stoyanov, V. (2019). RoBERTa: A Robustly Optimized Bert Pretraining Approach,

preprint, Available at: https://arxiv.org/abs/1907.11692 [Accessed: 25 April 2023]

Li, Q., Li, X., Du, Y., Fan, Y., & Chen, X. (2022). A New Sentiment-Enhanced Word

Embedding Method for Sentiment Analysis. Applied Sciences, vol. 12, no. 20, pp.10236.

Loshchilov, I., & Hutter, F. (2017). Decoupled Weight Decay Regularization, preprint,

Available online https://arxiv.org/abs/1711.05101 [Accessed 25 April 2023]

Manning, C. (2019). CS224N: NLP with Deep Learning, Winter 2019, Lecture 11 –

Convolutional Networks for NLP, Stanford, [video online], Available at:

https://www.youtube.com/watch?v=EAJoRA0KX7I&list=PLoROMvodv4rOhcuXMZkN

m7j3fVwBBY42z&index=12 [Accessed 23 April 2022]

Manning, C. (2021a), Lecture 6: Simple and LSTM Recurrent Neural Networks, CS224n,

powerpoint presentation, Stanford University, Winter 2021. Available online:

https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture06-fancy-rnn.pdf

[Accessed 22 April 2023]

Manning, C. (2021b). Lecture 7: Machine Translation, Sequence-to-Sequence and Attention,

CS224n, powerpoint presentation, Stanford University, Winter 2021. Available online:

https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf [Accessed 23

April 2023]

https://arxiv.org/pdf/2106.09650.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1711.05101
https://www.youtube.com/watch?v=EAJoRA0KX7I&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=12
https://www.youtube.com/watch?v=EAJoRA0KX7I&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=12
https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture06-fancy-rnn.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf

 63

Manning, C. (2022). Lecture 5: Language Models and Recurrent Neural Networks, CS224n,

powerpoint presentation, Stanford University, Winter 2022, Available online:

https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture05-rnnlm.pdf [Accessed

22 April 2023]

McKinsley&Company (2022). The Great Attrition is Making Hiring Harder. Are You

Searching the Right Talent Pools?, Available online:

https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-

insights/the-great-attrition-is-making-hiring-harder-are-you-searching-the-right-talent-

pools [Accessed 16 April 2023]

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space, preprint, Available online:

https://arxiv.org/abs/1301.3781 [Accessed 22 April 2023]

Mohammadi M., Mundra R., Socher R., Wang L., & Kamath A. (2019). Part V – Language

Models, RNN, GRU, and LSTM, CS224n, lecture notes, Stanford University, Winter 2019.

Available at: https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-

LM_RNN.pdf [Accessed: 22 April 2023]

Olah, C. (2015). Understanding LSTM Networks, web blog post. Available at:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [Accessed 21 April 2023]

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word

Representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing. pp.1532-1543

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.

(2018). Deep Contextualized Word Representations. Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, vol. 1, pp.2227-2237

Pexman, P. M. (2018). How Do We Understand Sarcasm? Available online:

https://kids.frontiersin.org/articles/10.3389/frym.2018.00056 [Accessed 27 April 2023]

Porter, M.E. (1998). Clusters and the New Economics of Competition. Harvard Business

Review, vol. 76, no. 6, pp. 77-90.

Pota, M., Ventura, M., Catelli, R., & Esposito, M., 2020. An Effective BERT-Based Pipeline

for Twitter Sentiment analysis: A Case Study in Italian. Sensors, vol. 21, no. 1, p.133.

Pozzi, F.A., Fersini, E., Messina, E., & Liu, B. (2017). Challenges of Sentiment Analysis in

Social Networks: An Overview. Sentiment analysis in social networks, Boston: Morgan

Kaufmann, pp.1-11.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language

Understanding by Generative Pre-Training. OpenAI. Available online:

https://openai.com/research/language-unsupervised [Accessed: 18 May 2023]

https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture05-rnnlm.pdf
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-great-attrition-is-making-hiring-harder-are-you-searching-the-right-talent-pools
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-great-attrition-is-making-hiring-harder-are-you-searching-the-right-talent-pools
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-great-attrition-is-making-hiring-harder-are-you-searching-the-right-talent-pools
https://arxiv.org/abs/1301.3781
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://kids.frontiersin.org/articles/10.3389/frym.2018.00056
https://openai.com/research/language-unsupervised

 64

Raschka, S. (2023). Understanding and Coding the Self-Attention Mechanism of Large

Language Models From Scratch, web blog post, Available online:

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html [Accessed 23

April 2023]

Rezaeinia, S.M., Rahmani, R., Ghodsi, A., & Veisi, H. (2019). Sentiment Analysis Based on

Improved Pre-Trained Word Embeddings. Expert Systems with Applications, vol. 117,

pp.139-147.

Schaarschmidt, M., Walsh, G., & Ivens, S. (2021). Digital War for Talent: How Profile

Reputations on Company Rating Platforms Drive Job Seekers' Application

Intentions. Journal of Vocational Behavior, vol. 131, pp.103644.

Schuler, R.S., Jackson, S.E., & Tarique, I. (2011). Global Talent Management and Global

Talent Challenges: Strategic Opportunities for IHRM. Journal of world business, vol. 46,

no. 4, pp.506-516.

Schuster, M., & Paliwal, K.K. (1997). Bidirectional Recurrent Neural Networks, IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp.2673-2681

Singh R. (2017). Utilizing Transformer Representations Efficiently. Available at:

https://www.kaggle.com/code/rhtsingh/utilizing-transformer-representations-efficiently

[Accessed 5 May 2023]

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Network. Proceedings of the 27th International Conference on Neural Information

Processing Systems, vol. 2, pp.3104-3112

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based

Methods for Sentiment Analysis. Computational linguistics, vol. 37, no. 2, pp.267-307

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep

Transfer Learning, [e-book] STACS 98, pp.270–279, Available Online:

https://dx.doi.org/10.1007/978-3-030-01424-7_27 [Accessed 25 April 2023]

Taylor, W.L. (1953). “Cloze procedure”: A New Tool for Measuring Readability. Journalism

quarterly, vol. 30, no. 4, pp.415-433

Tiwari, A. (2019). ELMo Embedding. Medium. Available online:

https://medium.com/@abhisht85/elmo-embedding-3c7bd0df20d2 [Accessed 25 April

2023]

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., & Le, Q.V. (2019). Xlnet:

Generalized Autoregressive Pretraining for Language Understanding, preprint, Available

online: https://arxiv.org/abs/1906.08237 [Accessed: 17 April 2023]

van Dongen, T. (2022). Demystifying Efficient Self-Attention. Toward Data Science.

Available online: https://towardsdatascience.com/demystifying-efficient-self-attention-

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://www.kaggle.com/code/rhtsingh/utilizing-transformer-representations-efficiently
https://dx.doi.org/10.1007/978-3-030-01424-7_27
https://medium.com/@abhisht85/elmo-embedding-3c7bd0df20d2
https://arxiv.org/abs/1906.08237
https://towardsdatascience.com/demystifying-efficient-self-attention-b3de61b9b0fb#:~:text=Self%2Dattention%20is%20a%20specific,sequence%20learn%20information%20about%20itself

 65

b3de61b9b0fb#:~:text=Self%2Dattention%20is%20a%20specific,sequence%20learn%20i

nformation%20about%20itself. [Accessed 23 April 2023]

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. (2017). Attention Is All You Need. Proceedings of the 31st International

Conference on Neural Information Processing Systems, pp.6000–6010

Varsamopoulos, S., Bertels, K., & Almudever, C.G. (2018). Designing Neural Network Based

Decoders for Surface Codes, Quantum Machine Intelligence, vol. 2, pp.1-12.

Sinoara, R.A., Camacho-Collados, J., Rossi, R.G., Navigli, R., & Rezende, S.O. (2019).

Knowledge-Enhanced Document Embeddings for Text Classification. Knowledge-Based

Systems, vol. 163, pp.955-971

Wang, X., Jiang, Y., Bach, N., Wang, T., Huang, Z., Huang, F., & Tu, K. (2020). Automated

Concatenation of Embeddings for Structured Prediction, preprint, Available online:

https://arxiv.org/abs/2010.05006 [Accessed: 5 May 2023]

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,

Gao, Q., Macherey, K., & Klingner, J. (2016). Google's Neural Machine Translation

System: Bridging the Gap Between Human and Machine Translation, preprint, Available

online: https://arxiv.org/abs/1609.08144 [Accessed 25 April 2023]

Zhang, A., Lipton, Z., Li, M., & Smola, A. (2021). Dive Into Deep Learning, preprint,

arXiv:2106.11342.

Zhang, L., Wang, S., & Liu, B. (2018). Deep Learning for Sentiment Analysis: A survey,

preprint, Available online: https://arxiv.org/abs/1801.07883 [Accessed 15 Maj 2023]

Zhang, S., Xu, X., Pang, Y. & Han, J. (2020). Multi-Layer Attention Based CNN for Target-

Dependent Sentiment Classification. Neural processing letters, vol. 51, pp.2089-2103.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015).

Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies

and Reading Books. In Proceedings of the IEEE international conference on computer

vision, pp. 19-27

https://towardsdatascience.com/demystifying-efficient-self-attention-b3de61b9b0fb#:~:text=Self%2Dattention%20is%20a%20specific,sequence%20learn%20information%20about%20itself
https://towardsdatascience.com/demystifying-efficient-self-attention-b3de61b9b0fb#:~:text=Self%2Dattention%20is%20a%20specific,sequence%20learn%20information%20about%20itself
https://arxiv.org/abs/2010.05006
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1801.07883

 66

Appendix A

Figure 34 Summary of the final model

 67

Appendix B

Hyperparameter Fine-Tuning – Additional Information

During the model training process, numerous combinations of hyperparameter values and

model architectures were tested. Below is a summary of the observed impact that adjustments

to the hyperparameter values and model architectures had on the model's performance.

1. Layers and hidden units

The models with 1, 2 and 3 fully connected hidden layers were tested. Models with 1 and 3

hidden layers resulted in a much lower training and validation F1 score, regardless of the

number of hidden units. The negative impact was more prominent in the 3-layer network.

Furthermore, reducing the number of hidden units of both fully connected layers below the

number of hidden units in the final model reduced the training and validation weighted F1 score

and increased the loss. Using fewer hidden units in the second layer reduced validation and

training weighted F1 score by approximately 0.03. The effect of lowering the number of hidden

units in the first layer had a much more severe effect, reducing the training weighted F1 score

by approximately 0.07.

In addition, the network with a single LSTM layer was tested, as well as the network with one

LSTM layer and one fully connected hidden layer on top of it. Both performed much worse,

resulting in a weighted F1 score under 0.74.

2. Regularization

The models with dropout applied only after the first, and the models with dropout applied after

both the first and the second fully connected hidden layers were tested. Adding the dropout

after the first hidden layer had a noticeable effect on reduction of overfitting. The dropout rate

between 0.1 and 0.4 gave relatively similar results, while the larger improvement was noticed

with the dropout 0.5. The dropout rate over 0.5 had a negative impact on the model.

Furthermore, adding the dropout after the second layer had a small but still positive impact on

the model performance. The rate 0.3 seems to be the optimal for this architecture.

Increasing the value of the L2 regularization parameter lambda 𝜆 over 1e-3 has reduced the

weighted F1 score of both training and validation data significantly, without reducing the

distance between them.

3. Learning Rate and Optimization

The learning rates in the range from 1e-6 to 1e-4 were tested. Devlin et al. (2018) state that

during the fine-tuning a small learning rate should be used. Depending on the other

hyperparameters and architecture, the model had the best performance with leaning rates 2e-5

and 3e-5. Furthermore, adding the learning rate scheduler has significantly improved the model

convergence.

 68

Following the recommendation from Devlin et al. (2018) the Adam optimizer with weight

decay is used. The AdamW optimizer was chosen because it corrects the errors which exist in

the implementation of the weight decay in the standard Adam algorithm (Loshchilov & Hutter,

2017).

4. Other

Both fine-tuning and feature-based approaches were tested on the models that use the

pooler_output and the models that use last_hidden_state as the BERT output. Fine-tuning has

significantly improved the model’s performance. This was expected, considering the dataset

has over a million records. Furthermore, fine-tuning the model which uses the last_hidden_state

as the output of the BERT resulted the weighted F1 scores 0.76 for the training dataset and 0.74

for the validation dataet. Besides that, this model was more prone to overfitting compared to

the model with the pooler_output layer.

Moreover, adding layer normalization after both fully connected layers have significantly

stabilized and improved the training.

Lastly, several models were trained using the RoBERTa (Liu et al., 2019) pre-trained model

instead of the BERT. In the conducted tests there was no significant difference in the model

performance compared to BERT.

 69

Appendix C

Sarcasm detection

Detection of sarcasm in text is a complex task even for humans. While in verbal

communication, we can relatively easily recognize someone is being sarcastic through body

language, intonation, or prior knowledge regarding a person’s attitude about a topic (Pexman,

2018), in written communication most of these hints are not present. Due to its complexity,

recognition of sarcasm is considered to be one of the hardest tasks in the NLP field. A challenge

of sentiment analysis is that words commonly used to express a positive sentiment, are used

sarcastically to express a negative sentiment.

The field has gained a lot of attention in the past few years, and many models have been

developed. However, due to the lack of large, labeled datasets, the majority of research is

narrowed to the detection of sarcasm in Twitter posts, Reddit posts and News Headlines.

The original idea for the thesis was to develop a model that would incorporate the knowledge

of sarcasm—learned on the combination of Twitter posts, Reddit posts and News Headlines

datasets—to the sentiment-aware embeddings—learned on the employees’ reviews. This would

produce the sarcasm-aware model for sentiment analysis of the employees’ reviews. The two

possible approaches were considered:

1. training two separate models—one for sarcasm classification, and another for sentiment

classification—and utilizing the attention mechanism to incorporate the knowledge

about the sarcasm from the sarcasm-aware embeddings into the sentiment-aware

embeddings.

2. fine-tuning the BERT model for the task of sarcasm detection as the intermediate task

to create sarcasm-aware sequence embeddings and fine-tuning the same BERT model

again (or training a Bi-LSTM model) for sentiment analysis as the final task.

During the work on the thesis, the sentiment classification model and the sarcasm classification

model have been developed. Unfortunately, it was realized that the amount of time needed for

coding, training, and testing the final model was longer than anticipated, and that the work

cannot be finished by the thesis submission deadline.

	1 Introduction
	1.1 Background
	1.2 Aim and Objectives
	1.3 Research Purpose
	1.4 Delimitations

	2 Theoretical Background
	2.1 Sentiment Analysis
	2.2 Traditional Methods for Sentiment Analysis
	2.2.1 Lexicon-Based Methods
	2.2.2 Machine Learning Methods

	2.3 Deep Learning Methods
	2.3.1 Word Embeddings
	2.3.2 Recurrent Neural Networks
	2.3.3 Long Short-Term Memory (LSTM)
	2.3.4 Bidirectional Recurrent Neural Networks
	2.3.5 Convolutional Neural Networks
	2.3.6 Attention

	2.4 Transformer
	2.4.1 Encoder
	Self-attention (Scaled Dot-Product attention)
	Multi-Head Attention
	Residual Connections
	Layer Normalization
	Position-Wise Feed Forward Network
	Positional Encoding

	2.4.2 Decoder

	2.5 BERT
	2.5.1 Input/Output Representation
	2.5.2 Pre-Training
	Masked Language Modeling (MLM)
	Next Sentence Prediction (NSP)

	2.5.3 Fine-Tuning and Feature-Based Approach
	2.5.4 Model Output

	3 Data
	3.1 Dataset Exploration

	4 Methodology
	4.1 Research Design
	4.2 Data Preparation
	4.3 Model
	4.3.1 Tokenization
	Model 1 (single sequence review)
	Model 2 (single sequence review + job position + company name)
	Model 3 (sequence pair review–job title + company name)

	4.3.2 Model Architecture
	4.3.3 Regularization and Optimization

	5 Evaluation
	5.1 Training and Evaluation
	5.2 Results
	5.3 Discussion
	5.4 Limitations
	5.5 Future Work

	6 Conclusions
	References
	Appendix A
	Appendix B
	Appendix C

