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Abstract 

The reputation of a company on employer review platforms can have a significant impact on 

its ability to attract talented workers. Companies use sentiment analysis to learn how their 

employer brand is perceived online. Furthermore, sentiment analysis can detect strengths and 

weaknesses in their employer brand, indicating which areas need improvement. 

The proposed methods for improving word embeddings for sentiment analysis commonly 

involve combining several pre-trained word embeddings, or concatenating vector 

representations of non-textual elements (e.g., emojis and images) to word embeddings. These 

methods involve training complex neural networks, which is usually computationally 

expensive. 

This thesis investigates if adding features prior to tokenization, instead of concatenating 

embeddings, increases the accuracy of word embeddings, thereby improving the results of the 

fine-tuned BERT model for classifying sentiment of employer reviews on the online platform 

Glassdoor. It also investigates the impact of the BERT Next Sentence Prediction objective on 

the models’ ability to learn more accurate word embeddings.  

Testing three different models and comparing their performance indicates that the suggested 

approach can improve the model’s accuracy. However, additional research is needed to 

investigate the impact of the chosen features on the observed results. The study hasn’t found 

enough evidence that addition of the Next Sentence Prediction objective results in higher 

accuracy of the model, but it shows that it significantly improves model ability to understand 

the sentiment of the reviews. 
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1 Introduction  

This chapter briefly discusses the significance of attracting a talented workforce, and the 

challenges that companies face in this process. It also provides a motivation for using sentiment 

analysis as an auxiliary tool for a more successful outcome of this process. Furthermore, it 

outlines the aim, objective, and purpose of the thesis. Additionally, the delimitations and the 

outline of the thesis are given. 

1.1 Background 

In the past three decades, globalization, the emergence of new technologies, and continued 

innovation have become crucial for companies to compete and stay relevant in the markets. 

“[C]ompetitive advantage rests on making more productive use of inputs” (Porter, 1998, p.78), 

as well as product and service innovation. This has led to the rise of the knowledge-based 

economy where competencies, skills and knowledge of the employees have become crucial for 

company success. As the demand for a talented workforce has grown, attracting highly 

competent employees has been an ongoing challenge (Schuler, Jackson & Tarique, 2011; 

McKinsley&Company, 2022). Consequently, companies have started to compete for the best 

employees, starting a “war for talent” (Beechler & Woodward, 2009). 

Many studies have shown that reputation significantly influences a company’s ability to attract 

talent (Cable & Turban, 2003; Schaarschmidt, Walsh & Ivens, 2021). Furthermore, building an 

image as a good employer can have long term positive effects. “[R]eputation is one of the few 

resources that can give firms a sustainable competitive advantage, because it is viewed as a 

non-tradable, non-substitutable, non-imitable, resource that can be managed” (Ferris, Perrewé, 

Ranft, Zinko, Stoner, Brouer & Laird, 2007, p.119).  

Today, many job seekers research employers prior to deciding whether to apply for a job. On 

employment platforms such as Glassdoor and Indeed, they can find reviews of companies 

provided by current and former employees.  

[They] can rely on the user-generated reports to reduce the information asymmetry that 

typically marks job applications, because they gain first-hand insights from others with 

practical work experience with the organization (Schaarschmidt, Walsh & Ivens, 2021 

p.2). 

The increased usage of these platforms has made it crucial for companies to have a good 

reputation on them (Schaarschmidt, Walsh & Ivens, 2021). 
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As the impact of a company’s reputation on the online employer platforms has started to affect 

its ability to attract talent, many have become interested “[in promoting] themselves as an 

employer of choice and attractive workplace” (Kashive, Khanna & Bharthi, 2020, p.94). Today, 

sentiment analysis is used to gain in-depth knowledge about the company’s reputation, identify 

the area where it needs to improve as an employer, and compare with the competition. 

Sentiment analysis is a Natural Language Processing (NLP) technique used for analyzing 

“people’s opinions, sentiments, evaluations, attitudes, moods, and emotions” (Liu, 2017, p.2). 

With the increase in usage of social media and online platforms, it has become an important 

tool for businesses to make better decisions (Alessia, Ferri, Grifoni & Guzzo, 2015).  

While sentiment analysis of opinions expressed on social media, forums, and customer reviews 

is increasing in popularity, it faces the challenge of the “constant evolution of the language used 

online in user-generated content” (Pozzi et.al., 2017, p.9). Other challenges relate to recognition 

of figurative speech (e.g., sarcasm and irony), negotiation handling (e.g., words such as “nor” 

or “neither”), and spam detection (e.g., fake reviews)—all of which have negative impacts on 

the accuracy of analysis (Birjali, Kasri and Beni-Hssane, 2021). 

1.2 Aim and Objectives 

The aim of this thesis is to investigate whether incorporating information about the job title and 

company name into word embeddings can enhance the performance of sentiment analysis of 

employee reviews on the online platform Glassdoor. 

To assess the impact that encoding this information in the word embeddings has on sentiment 

analysis performance, three pre-trained BERT models are fine-tuned, and their performances 

are compared. First, based on the overall rating, a sentiment—“positive”, “neutral” and 

“negative”— is assigned to all reviews. The first model is fine-tuned only using the employee’s 

review. The second model is fine-tuned using the employee’s review, job title, and company 

name, which are concatenated into a single sequence. The third model is fine-tuned using the 

sequence pairs, where the first sequence is the employee’s review, and the second sequence is 

a concatenation of the job title and company name. 

1.3 Research Purpose   

The word embeddings capture words meanings by projecting them into the d-dimensional 

semantic features space. Due to their vital impact on the performance of the different Natural 

Language Processing (NLP) applications (e.g., sentiment analysis, text classification, 

recommendation systems) this research field has gained a lot of attention in the past decade, 

and several pre-trained language models have been developed. These models are trained on 

large-scale corpora, and used to produce contextualized word embeddings which serve as an 
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input to a downstream task. The resulting embeddings are commonly fine-tuned to capture 

domain specific word features.  

Research has shown that improving accuracy of, or adding features to, pre-trained word 

embeddings can improve model performance in various NLP tasks (Rezaeinia, Rahmani, 

Ghodsi & Veisi, 2019; Wang, Jiang, Bach, Wang, Huang, Huang & Tu, 2020). One popular 

approach in many NLP tasks is to concatenate the word embeddings produced by several pre-

trained models (Rezaeinia et al., 2019; Wang et al., 2020). In text classification tasks, 

categorical or numerical features from the dataset are added to provide additional context. This 

is done by concatenating feature vector representations to word embeddings. In sentiment 

analysis, knowledge (Sinoara, Camacho-Collados, Rossi, Navigli & Rezende, 2019) and 

sentiment enhancement (Li, Li, Du, Fan & Chen, 2022) models have been proposed. Other 

aspects of social media posts, such as emojis (Liu, Fang, Lin, Cai, Tan, Liu & Lu, 2021) and 

images (Graesser, Gupta, Sharma & Bakhturina, 2017), have also been used as additional 

features to the word embeddings (Liu, Fang, Lin, Cai, Tan, Liu & Lu, 2021). However, all these 

approaches involve building complex models that are computationally expensive to train.  

The purpose of this thesis is to explore the following: 

• Does adding features (e.g., job title and company name) prior to tokenization produce 

more accurate word embeddings, thereby improving the results of sentiment analysis of 

employees’ reviews? 

• Does the Next Sentence Prediction task help the BERT model to learn more accurate 

word embeddings?  

Two approaches are tested to try to answer these research questions. In the first approach, 

reviews and features are concatenated into a single sequence prior to tokenization. In the second 

approach, the reviews and the concatenated additional features make out sequence pairs, and 

the BERT model uses the Next Sentence Prediction classification task to acquire additional 

knowledge regarding the relationship between an employee’s review and the added features. 

To my knowledge, no previous research has investigated the impact of this method on the 

sentiment analysis of employees’ reviews. 

When reviewing a company, employees most often write about the aspects of the workplace 

connected to the company culture, job conditions (salary and benefits), etc. It is reasonable to 

assume that people who work in similar positions within one company, or who work in similar 

companies, will praise and criticize similar aspects of the workplace. For example, if salaries 

in a company are low, the assumption is that most of the reviewers will mention that and give 

the company a lower rating. Therefore, including information about the job title and the 

company name prior to tokenization could help the model to better understand the context in 

which e.g., the word “salary” has a positive, neutral, or negative sentiment, and consequently 

improve the accuracy of the model.  
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1.4 Delimitations 

The analysis is conducted on the Glassdoor Job Reviews dataset (DG, 2021). Due to the limited 

computational capability of the hardware used for training neural networks, and the limited time 

to conduct the research, the focus of the thesis is not to attain the highest accuracy of the models 

used. Rather, the aim is to explore if incorporating the additional information in the proposed 

manner can enhance the accuracy of sentiment analysis. 
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2 Theoretical Background 

This chapter provides an overview of the techniques and the main concepts necessary to 

understand used models and the outcome of the research. Sections 2.1 through 2.3 provide an 

overview of the methods used for sentiment analysis, with the intention of providing the reader 

with a better understanding of how the model used in this thesis compares to other ones in the 

field. Section 2.4 gives an in-depth explanation of the Transformer model architecture, which 

was used to develop the BERT language model. Section 2.5 describes the BERT model, which 

was used in the research. 

2.1 Sentiment Analysis 

Sentiment analysis is a field of Natural Language Processing which involves the identification 

and extraction of subjective information from textual data. Liu and Zang (2012) describe 

sentiment analysis as a “computational study of people’s opinions, appraisals, attitudes, and 

emotions toward entities, individuals, issues, events, topics and their attributes.” The field 

gained significant attention in the mid-2000s due to the need to analyze vast amounts of 

unstructured text data available on the internet, including social media platforms, online 

reviews, and customer feedback. It has found applications in various fields, including finance, 

national security, politics, healthcare, marketing, and customer service. Businesses use 

sentiment analysis for example to understand customer opinions about their products, track 

brand sentiment or predict the development of financial markets. 

Sentiment analysis can be regarded as a classification task as it classifies text into categories 

(e.g., positive, neutral, or negative) (Zhang, Lipton, Li & Smola, 2021). It can be conducted on 

three levels: document, sentence, or aspect level.  

Document-level sentiment analysis determines the sentiment of the document as a whole. The 

disadvantage of this approach is that it “does not consider different sentences and aspects that 

a document may contain.” (Habimana, Li, Li, Gu & Yu, 2020, p.3). For example, a review can 

contain both positive and negative aspects: “Overall the hotel is ok. The location is good, and 

the staff is friendly. However, they don’t offer vegan food and the Wi-Fi is bad.” Sentiment 

analysis at the document-level might classify this review as overall positive, missing the 

negative feelings toward the lack of vegan food and bad Wi-Fi. 

Sentence-level sentiment analysis attempts to address this issue, by determining the sentiment 

of each single sentence. However, this approach suffers from a similar limitation because “one 

sentence may contain multiple entities with different aspects” (Habimana et al. 2020, p.3). For 

example, “The staff is very friendly, but the Wi-Fi is bad.” 
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Aspect-level sentiment analysis “aims to find sentiments with respect to the specific aspects of 

entities” (Birjali, Kasri & Beni-Hssane 2021, p.2). In the above given example, it will capture 

the positive sentiment of the aspect “staff” and the negative sentiment of the aspect “Wi-Fi”. 

2.2 Traditional Methods for Sentiment Analysis 

Traditional methods for analyzing sentiment are categorized into two groups: lexicon-based 

methods and machine learning methods.  

2.2.1 Lexicon-Based Methods 

Lexicon-based methods assign sentiment scores to the words in a sentence using pre-trained 

lexicons (e.g., SentiWordNet, SenticNet) (Habimana et al. 2020), which are then aggregated 

into a single score (Taboada, Brooke, Tofiloski, Voll & Stede, 2011). A drawback of this 

approach is that it assumes that the presence of more positive words in a sentence always 

indicates a positive sentiment sentence, which may not always be true (Kannan, Karuppusamy, 

Nedunchezhian, Venkateshan, Wang, Bojja & Kejariwal, 2016). Another limitation is that a 

word will always be assigned the same sentiment regardless of the context it appears in. For 

example, the adjective “small” in the sentence “My salary is small” and “The damage was very 

small” will be assigned the same sentiment, despite it being negative in the first sentence, and 

positive in the second. However, an advantage of these methods is that they don’t require a 

training dataset and are computationally inexpensive to implement.  

Lexicons are commonly created using a dictionary-based or corpus-based approach. In a 

dictionary-based approach, all words in a dictionary (e.g., WordNet) with similar meanings will 

be assigned the same sentiment, while the words with opposite meanings will be assigned the 

opposite sentiment (Birjali, Kasri & Beni-Hssane, 2021). In a corpus-based approach, sentiment 

is assigned based on the co-occurrence and syntactic patterns (Birjali, Kasri & Beni-Hssane, 

2021). 

2.2.2 Machine Learning Methods 

Machine learning methods classify documents by identifying patterns and other features in the 

data that indicate a particular sentiment (Kannan et al. 2016). Commonly the bag-of-words 

model is used to break down the document into smaller groups of consecutive words (n-grams) 

which are then used as input to machine learning algorithms (Kannan et al. 2016). Machine 

learning methods can be classified in three subgroups: supervised, unsupervised, semi-

supervised.  

Supervised methods are trained on the large, labeled dataset using linear (e.g., Support Vector 

Machine), probabilistic (e.g., Naïve Bayes), or rule-based methods, or decision trees (Birjali, 

Kasri and Beni-Hssane, 2021). Unsupervised methods are used when training data don’t have 
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specified labels. In sentiment analysis, hierarchical clustering, and partition methods (K-Means) 

are commonly used for grouping data based on their similarity (Birjali, Kasri and Beni-Hssane, 

2021). Semi-supervised methods use both labeled and unlabeled data to train the model. The 

advantage of these methods is that they omit the need to collect large amounts of labeled data, 

but still benefit from the information gained by the supervision (Chapelle, Schölkopf & Zien, 

2010). Semi-supervised approaches used in sentiment analysis are generative, co-training, self-

training, graph-based and multi-view learning (Birjali, Kasri & Beni-Hssane, 2021).  

2.3 Deep Learning Methods 

Deep learning methods have gained a lot of attention over the past two decades and are today 

used extensively for solving different NLP tasks. An advantage of deep learning over traditional 

methods is their ability to capture long-distance dependencies between words and their relative 

sentiment (a sentiment which “changes depending on the context” (Joshi, Bhattacharyya & 

Ahire, 2017, p.89)). 

This section provides a brief summary of the neural network architectures used for sentiment 

analysis. 

2.3.1 Word Embeddings 

Solving text classification problems, such as sentiment recognition, requires training complex 

models on a large corpus, which is computationally very expensive. As the interest in text 

classification has grown, transfer learning has been seen as a solution for more efficient 

training. The idea behind transfer learning is that test and training data don’t have to come from 

the same distribution, and therefore a model that is trained for one task can be used as an input 

to a model trained for another task (Tan, Sun, Kong, Zhang, Yang & Liu, 2018). In the NLP 

field, this idea has become very popular for generating word embeddings and several pre-

trained models have been developed. 

Word embeddings are used to represent words as vectors in the d-dimensional feature space 

(Zhang, Wang & Liu, 2018). The first pre-trained word embedding model was introduced by 

Bengio, Ducharme and Vincent (2000). It is a probabilistic language model which generates 

word embeddings by learning “distributed representation for each word and the likelihood 

function for word sequences at the same time” (Zhang, Wang & Liu, 2018). After that, 

Collobert and Weston (2008) have proposed a pre-trained model which has a convolutional 

neural network architecture that can generate word embeddings using little prior knowledge. 

In 2013, Mikolov, Chen, Corrado and Dean developed Word2Vec, which has become very 

popular in sentiment analysis. The model has two architectures that can be used for pre-training: 

continuous bag-of-words (COBW), which predicts the current word based on the neighboring 

words, and the Skip-gram architecture, which predicts neighboring words given the current 

word (Mikolov et al., 2013). Another widely used model is GloVe (Global Vectors for Word 
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Representation), a log-bilinear model which computes word vectors based on their co-

occurrence in the text. The objective of the model is to learn word vectors such that their dot 

product approximates a log ratio of the words’ co-occurrence probability (Pennington, Socher 

& Manning, 2014). 

The limitation of the aforementioned models is that the learned word representations capture 

the meaning of the words only in a single context. In 2018, Peters et al. introduced ELMo 

(Embeddings from Language Models), a pre-trained model which captures deep contextualized 

word representations from the entire input sequence. The ELMo architecture contains two 

bidirectional long short-term memory layers. Each layer has a forward and a backward layer 

which is trained separately. Therefore, it is often referred to as a shallowly bidirectional model. 

Intermediate embeddings obtained from the first layer are passed onto the second layer. The 

final word embeddings are computed as a weighted sum of input word vectors, intermediate 

embeddings obtained from the first layer, and intermediate embeddings obtained from the 

second layer (Figure 7Figure 1). ELMo produces task-specific embeddings, meaning that a 

separate model has to be used for each NLP task. 

 

Besides ELMo, two more models have been developed to generate task-agnostic word 

representations: GPT and BERT. GPT (Generative Pre-trained Transformer model) was 

introduced in 2018 by OpenAI (Radford, Narasimhan, Salimans & Sutskever, 2018). The model 

uses a Transformer decoder structure and has been trained to learn word representations from 

“left-to-right”. BERT (Bidirectional Encoder Representations from Transformers), developed 

by Google, is a bidirectional language model which uses the transformer encoder structure to 

learn deep contextual word representations (Devlin, Chang, Lee & Toutanova, 2018).  

Figure 1 ELMo pre-trained model (Tiwari, 2019) 



 

 15 

2.3.2 Recurrent Neural Networks 

A recurrent neural network (RNN) is designed to solve tasks that require the handling of 

sequential data. An RNN consists of a sequence of hidden states, where each hidden state at a 

given step 𝑡 is computed using the output of the previous hidden state and the input at that step 

(Figure 2). An important feature of the RNN design is parameter sharing, which has several 

benefits. Firstly, it allows the network to learn patterns connected to the relative position of 

words, rather than the absolute position. For example, if we have the sentences “John was at 

the cinema yesterday” and “Yesterday John was at the cinema”, and we want to know when 

John was at the cinema, we want the model to recognize that it was yesterday regardless of the 

position of word yesterday in the sentence (Goodfellow, Bengio & Courville, 2016). Secondly, 

it enables the RNN to take an input sequence of any length without changing the number of 

parameters the network has to learn (Goodfellow, Bengio & Courville, 2016). 

The hidden state at each step ℎ(𝑡) is computed based on the previous hidden state ℎ(𝑡−1)and the 

input at that step 𝑥(𝑡)): 

ℎ(𝑡) = 𝜎(𝑊(ℎℎ)ℎ(𝑡−1) + 𝑊(ℎ𝑥)𝑥(𝑡) + 𝑏(𝑡) ) 

where 𝑊(ℎℎ) and 𝑊(ℎ𝑥)  are weight matrices and 𝑏(𝑡) denote the bias. The output of a hidden 

state at time 𝑡: 

𝑦(𝑡) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(ℎ𝑞)ℎ(𝑡) + 𝑏(𝑞))  

where 𝑊(ℎ𝑞) and 𝑏(𝑞) denote weight matrix and bias, respectively.   

 

RNNs can have many different design patterns, depending on the task they are designed to 

solve. Karpathy (2015) describes one-to-one, one-to-many, many-to-one and many-to-many 

Figure 2 Recurrent neural network for sentiment analysis (Manning, 2022) 
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RNN architectures. In the NLP field, a one-to-many architecture is used for generating text 

from images, many-to-one for sentiment classification, and many-to-many in Name Entity 

Recognition and Machine Translation (Karpathy, 2015). 

The introduction of RNNs marked a substantial improvement over n-gram language models 

and word-based neural linguistic models that were used at the time. However, there are a few 

drawbacks to using RNN. Mohammadi, Mundra, Socher, Wang and Kamath (2019) explain 

that RNNs suffer from the problem of vanishing and exploding gradients which makes it hard 

for networks to learn the long-term effects. Another problem he mentions is the long training 

time, since due to its sequential nature, computation can’t be parallelized.  

2.3.3 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a special type of recurrent neural network which was 

designed to mitigate the vanishing gradient problem. This is done by adding a memory cell, 

which is the same dimension as the hidden state, and is used to store long-term information 

(Zhang, Lipton, Li & Smola, 2021). What will be written and erased from the memory cell is 

controlled by three gates: input, output and forget. The gates are computed by passing the data 

through three fully connected layers that use a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function, producing the 

output that is in the range (0,1) (Zhang et al., 2021).  

At time step 𝑡, a hidden state ℎ(𝑡) and memory cell 𝑐(𝑡) is computed using follow steps: 

1. LSTM uses the forget gate layer 𝑓(𝑡) to determine which information from the previous 

memory cell will be remembered and which will be forgotten (Olah, 2015). Using the 

previous time step hidden state ℎ(𝑡−1), and input at the current time step 𝑥(𝑡): 

𝑓(𝑡) =  𝜎(𝑊(𝑥𝑓)𝑥(𝑡) + 𝑊ℎ𝑓ℎ(𝑡−1) + 𝑏𝑓 

2. The input gate layer 𝑖(𝑡) decides what new content will be remembered, and computes 

candidate memory cell �̃�(𝑡) which can have values between -1 and 1 (Olah, 2015; Zhang 

et.al, 2021): 

𝑖(𝑡) =  𝜎(𝑊(𝑥𝑖)𝑥(𝑡) + 𝑊ℎ𝑖ℎ(𝑡−1) + 𝑏𝑖 

�̃�(𝑡) =  𝑡𝑎𝑛ℎ(𝑊(𝑥𝑐)𝑥(𝑡) + 𝑊ℎ𝑐ℎ(𝑡−1) + 𝑏𝑐 

3. The new memory cell 𝑐(𝑡) is computed as a sum of element-wise multiplication of the 

old memory cell by the forget gate (to remove information that should be forgotten), 

and element-wise multiplication of the candidate memory cell by the input gate (to add 

information that should be remembered) (Olah, 2015): 

𝑐(𝑡) = 𝑓(𝑡) ∘ 𝑥(𝑡) + 𝑖(𝑡) ∘ �̃�(𝑡) 

4. The hidden state ℎ(𝑡) is computed as the element-wise product of the output gate 𝑜(𝑡) and 

the new memory cell passed through a 𝑡𝑎𝑛ℎ function (Olah, 2015): 
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𝑜(𝑡) =  𝜎(𝑊(𝑥𝑜)𝑥(𝑡) + 𝑊ℎ𝑜ℎ(𝑡−1) + 𝑏𝑜 

ℎ(𝑡) = 𝑜(𝑡) ∘ tanh (𝑐(𝑡)) 

𝑊(𝑥𝑖),𝑊(𝑥𝑓),𝑊(𝑥𝑜), 𝑊(ℎ𝑖),𝑊(ℎ𝑓),𝑊(ℎ𝑜),𝑊(𝑥𝑐),𝑊(ℎ𝑐)  are weight parameters, and 

𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜, 𝑏𝑐  are bias parameters. 

 

 

 

 

 

 

 

 

 

Since LSTM was introduced by Hochreiter and Schmidhuber in 1997, several modifications of 

the original architecture have been proposed. Gers and Schmidhuber (2000) have modified the 

original architecture by adding a “peephole connection” between the previous memory cell 

𝑐(𝑡−1) and the gates, so that the gates depend not only on the previous hidden state but also on 

the previous cell state (Olah, 2015).  

It is important to note that even with LSTMs, the vanishing gradient problem can still occur 

(Manning, 2021a). However, LSTM has proven to outperform standard RNNs and has become 

the preferred approach for many NLP tasks (Manning, 2021a). 

2.3.4 Bidirectional Recurrent Neural Networks 

One limitation of the standard RNN structure is that “[hidden] state at the time 𝑡 captures only 

information from the past 𝑥(1), … , 𝑥(𝑡−1), and the present input 𝑥(𝑡)” (Goodfellow, Bengio & 

Courville, 2016, p.383), meaning that learned “contextual representations only contain 

information about the left context” (Manning, 2021a, p.51). However, in tasks such as sentiment 

analysis it is important to learn contextual representations based on the whole sequence. For 

example, in the sentence “the movie was terribly exciting” the word terribly based on the left 

context will have negative sentiment, which is incorrect (Manning, 2021a).  

Figure 3 Structure of the LSTM cell (Varsamopoulos, Bertels & Almudever, 2018) 
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Bidirectional RNN (Bi-RNN) was designed by Schuster and Paliwal (1997) to address this 

issue. Bi-RNN contains two layers, a forward and a backward layer, which process the sequence 

of data simultaneously (Schuster & Paliwal, 1997). The output is generated by concatenating 

the output of these two layers (Figure 4). A network can have any recurrent architecture, such 

as traditional RNN, LSTM etc.  

 

At the time step 𝑡, the hidden state of the forward network ℎ⃗ (𝑡), and the hidden state of the 

backward network  ℎ⃐⃗(𝑡), and the concatenated hidden state ℎ(𝑡) are computed (Manning, 2021a): 

ℎ⃗ (𝑡) = 𝑅𝑁𝑁𝐹𝑊( ℎ⃗ (𝑡−1), 𝑥(𝑡)) 

ℎ⃐⃗
 ⃗(𝑡) = 𝑅𝑁𝑁𝐹𝑊( ℎ⃐⃗

 ⃗(𝑡−1), 𝑥(𝑡)) 

ℎ(𝑡) = [ℎ⃗ (𝑡); ℎ⃐⃗
⃐⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝑡)] 

where  ℎ(𝑡) is the output of the bidirectional network. 

2.3.5 Convolutional Neural Networks   

Convolutional neural networks (CNNs) were originally used for solving tasks in the field of 

computer vision. With the development of faster GPUs, researchers developed deeper CNN 

models, which can extract more complex features. By contrast, the recurrent neural network 

models could not benefit the same way from this additional computing power. Since in RNNs 

each time step depends on the previous, computation cannot be parallelized, and networks take 

a long time to train. Consequently, RNN models are usually very shallow (commonly two 

Figure 4 Architecture of bidirectional RNN (Manning, 2021a) 
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layers) compared to CNN models. The rationale for using deep CNN models for some NLP 

tasks is that they can extract complex features from the text with the benefit of shorter training 

time. 

Kalchbrenner, Grefenstette and Blunsom (2014) argue that in sentence modeling tasks (e.g., 

sentiment analysis, machine translation, etc.) word representations should be learned with 

respect to neighboring words, because identical sentences don’t often occur. They have shown 

that convolutional networks can achieve high performance in sentiment classification tasks. 

Conneau, Schwenk, Barrault and Lecun (2017) have proposed a deep convolutional network 

that operates on a character level, which has also achieved good results on the text classification 

tasks.  

Convolution is a mathematical function which measures overlap between two functions, as one 

function slides over the other (Zhang et al., 2021). In NLP, one-dimensional discrete 

convolution is used: 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =  ∑𝑥(𝑎)𝑤(𝑡 − 𝑎)

𝑎

  

where the function of 𝑥 is input, the function of 𝑤 is filter (kernel), and output is feature map 

(Goodfellow, Bengio & Courville, 2016).  

The dimension of the filter matrix is equal to the length of the n-gram multiplied by the length 

of the word embedding vector. Columns in the matrix are called input channels. If we have the 

sentence “tentative deal reached to keep government open”, the n-gram size 3, and the word 

embedding dimension 4, the kernel will slide over the input, multiplying the weights and 

summing the multiplied values into a single number, as shown in Figure 5. 

 

 

Figure 5 Example of convolution: input (left), output (right), and filter 

dimensions 3x4 (Manning, 2019) 



 

 20 

In Figure 6 we can see that the length of the input doesn’t match that of the output of 

convolution. This can be fixed using padding. Padding is used to add a set of zeros to the 

beginning and the end of the input sentence. To extract more features, it is common to apply 

multiple filters.  

The output matrix provides the features for individual words within a sentence. To obtain 

features for the whole sentence, the output matrix is summarized using pooling. Furthermore, 

to produce output that is shorter than the input, the filter’s step size, called stride, can be 

increased. 

2.3.6 Attention 

In 2014, Cho, van Merri, Gulcehre, Bahdanau, Bougares, Schwenk and Bengio proposed an 

architecture for solving Neural Machine Translation (NMT) tasks, which has two recurrent 

neural networks in the encoder–decoder framework (Figure 7). The same year, Sutskever, 

Vinyals and Le proposed a similar architecture that was based on the LSTM network. In the 

proposed models, the encoder generates a fixed-length vector representation of the input 

sequence, which is passed to the decoder (Cho et al., 2014; Sutskever, Vinyals & Le, 2014). 

The decoder then predicts the output sequence conditioned on the encoder output (Cho et al., 

2014).  

Although this approach represented a significant advancement in the Machine translation field, 

it still has certain constraints. The issue is that the last hidden state of the encoder 

“needs to be able to compress all the necessary information of a source sentence 

into a fixed-length vector. This may make it difficult for the neural network to 

cope with long sentences...” (Bahdanau, Cho & Bengio, 2014, p.1). 

Figure 6 Example of convolution: input (left), output (right). Number of filters is 3, with padding and 

average pooling through time (Manning, 2019) 
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This problem is often referred to as an information bottleneck. Bahdanau, Cho and Bengio 

(2014) have proposed the attention mechanism as a solution to this problem. Instead of 

processing the entire sequence at once, the attention mechanism breaks down the input sequence 

into smaller segments and uses learned weights to determine the importance of each segment 

at each step of the model’s processing. In other words, instead of having a one context vector 𝑐 

that stores information about the whole sequence, “here the probability is conditioned on a 

distinct context vector 𝑐𝑖 for each target word 𝑦𝑖” (Bahdanau, Cho & Bengio, 2014, pp.3). The 

target word probability conditioned on the input word is defined as: 

𝑝(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝒙) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖) 

where  𝑦𝑖−1 is the target word of the previous hidden state, 𝑠𝑖  and 𝑐𝑖 are RNN decoder hidden 

state and context vector at the time 𝑖, respectively.  

Let ℎ1, … , ℎ𝑛 ∈ ℝℎ denote encoder hidden states, and 𝑠𝑡 ∈ ℝℎ the decoder hidden state in the 

time step t. The attention computes how important different parts of the input sequence are for 

generating the target word 𝑦𝑡: 

• First, the attention scores 𝑒𝑡 are calculated as a dot product of the encoder hidden states 

and the decoder’s hidden state at the time step 𝑡: 

𝑒𝑡 = [𝑠𝑡
𝑇ℎ1, … , 𝑠𝑡

𝑇ℎ𝑛] ∈ ℝ𝑁 

• Then, the attention distribution at the time step 𝑡 is calculated using a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

function: 

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡) 

• The output of the attention called context vector is a weighted sum of the encoder hidden 

states: 

𝑎𝑡 = ∑𝛼𝑖
𝑡

𝑁

𝑖=1

ℎ𝑖 ∈ ℝℎ 

• Last, the attention output 𝑎𝑡 and decoder hidden state 𝑠𝑡 are concatenated [𝑎𝑡; 𝑠𝑡] ∈ ℝℎ 

and squashed through a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to obtain the probability distribution of 

output words.  
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Figure 7 Sequence-to-sequence with attention (Manning, 2021b) 

2.4 Transformer 

Transformer is a neural network architecture designed to solve sequence-to-sequence tasks. It 

uses the attention mechanism to capture complex relationships between words and to learn 

different meanings that words have based on their given context. The main idea behind the 

Transformer is that significant computational efficiency can be achieved by replacing the RNN 

layers in the architecture described in section 2.3.6 with attention layers. This omits the need 

for sequential processing and significantly improves training time. 

In 2017, Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin introduced 

the Transformer in the article Attention Is All You Need. The model consists of an encoder and 

a decoder. The encoder takes word embeddings together with positional encodings as the input 

and generates updated word embeddings which have a better contextual understanding of the 

input words. These updated word embeddings are then used by the decoder to generate an 

output sequence.  
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The encoder part is made from six stacked layers, where each layer has two sublayers: a multi-

head self-attention mechanism and a position-wise fully connected layer (Vaswani et al., 2017). 

Let’s suppose that we are training a model that translates text from English to German. The 

input to the encoder is word embeddings and positional encodings of all words in the English 

sentence. The multi-head self-attention sublayer takes the input and computes the attention for 

each word, which is then passed to the feed-forward sublayer. This sublayer computes new 

word embeddings for English words, which capture complex contextual relationships between 

words. In order to improve the training, residual connections are implemented around both 

sublayers, and, subsequently, layer normalization is applied (Vaswani et al., 2017).   

In the training phase, the input to the decoder is word embeddings and position encoding of all 

words in the German sentence. The input first goes through the masked multi-head attention 

sublayer which computes the attention for each German word. Then, in the second sublayer, 

multi-head cross attention establishes a connection between English and German words. After 

that, the output of the second sublayer is forwarded to the positional feed forward network. Like 

in the encoder, residual connections are implemented around both sublayers, and, subsequently, 

layer normalization is applied.  

Finally, the output of the decoder is resized to the size of the German dictionary, and the 

probability is computed for each word. 

Figure 8 Transformer model architecture (Vaswani et al., 2017) 
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2.4.1 Encoder 

The role of the encoder is to produce contextual word embeddings for the input sequence. As 

mentioned, the encoder consists of two sublayers: a multi-head self-attention mechanism and a 

position-wise fully connected layer. This section explains all the elements of the encoder and 

their roles. 

Self-attention (Scaled Dot-Product attention) 

The difference between the attention mechanism described in section 2.3.6 and self-attention is 

that “instead of relating an input to an output sequence, self-attention focuses on a single 

sequence” (van Dongen, 2023). Each word in a sequence is compared to every other word in 

the sequence, and the attention distribution is determined based on these comparisons.  

Vaswani et al. (2017) describe the attention function as “mapping a query and a set of key-

value pairs to an output where the query, keys and values, and output are vectors” (p.3).   

 

Let 𝑥1, 𝑥2, … , 𝑥𝑡 denote embeddings for 𝑡 input tokens, where 𝑥𝑖 ∈ ℝ𝑑: 

• value 𝑣𝑖 = 𝑊𝑣𝑥𝑖 , where 𝑊𝑣 ∈ ℝ𝑑𝑣 𝑥 𝑑 is the value matrix and 𝑣𝑖 ∈ ℝ𝑑𝑣, 

• key 𝑘𝑖 = 𝑊𝑘𝑥𝑖, where 𝑊𝑘 ∈ ℝ𝑑𝑘 𝑥 𝑑 is the key matrix and 𝑘𝑖 ∈ ℝ𝑑𝑘, 

• query 𝑞𝑖 = 𝑊𝑞𝑥𝑖, where 𝑊𝑞 ∈ ℝ𝑑𝑘 𝑥 𝑑 is the query matrix and 𝑞𝑖 ∈ ℝ𝑑𝑘. 

𝑊𝑣 ,𝑊𝑘 and 𝑊𝑞 are the weight matrices which are learned during the training (Raschka, 2023). 

Since attention is computed for a set of queries at the same time, values, keys, and queries can 

be written as 𝑉 = 𝑋𝑊𝑣 , 𝐾 = 𝑋𝑊𝑘 , 𝑄 = 𝑋𝑊𝑞  (Goldie & Hewitt, 2022a). 

To compute self-attention: 

• First the attention scores matrix is calculated by performing matrix multiplication of the 

key and query matrices. The attention scores are then scaled by √𝑑𝑘. Vaswani et al. 

(2017) explain that the reason for scaling is the gradient stability, as “for large values of 

Figure 9 Self-attention (Scaled Dot-Product attention) (Vaswani et al., 2017) 
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𝑑𝑘, the dot products grow large in magnitude, pushing the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function into 

regions where it has extremely small gradients” (p.4). 

• Attention scores are normalized using a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function, and the weighted sum is 

calculated using matrix multiplication: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

 

Multi-Head Attention 

Instead of single attention mechanism, the multi-head attention computes multiple attentions 

called attention heads. Each attention head focuses on different aspects of the input data.  

 

Instead of a single 𝑄, 𝑉, 𝐾 matrix, in the multi-head attention there is 𝑙 number of matrices 

𝑄𝑙 , 𝑉𝑙, 𝐾𝑙 dimension ℝ𝑑𝑘 𝑥 
𝑑

ℎ , where 𝑙 = 1, . . . , ℎ , and ℎ is the total number of attention heads 

(Goldie & Hewitt, 2022a). Each attention head learns its own set of matrices 𝑄𝑙 , 𝑉𝑙 , 𝐾𝑙 

independent from other heads. The output vectors of the heads are then concatenated into a 

single ℝ𝑑 𝑥 𝑑 matrix, and the result of the multi-head attention is a linear transformation of this 

matrix. Transformer architecture suggested by Vaswani et al. (2017) have 8 heads, however 

this is a hyperparameter that is tuned during training (Alammar, 2018; Doshi, K., 2021). 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑜 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

The good results achieved by the transformers can be primarily attributed to the multi-head 

attention (Liu, Liu & Han, 2021). It allows the model to attend to different positions in the input 

sequence, which is very beneficial when dealing with long and complex relationships between 

Figure 10 Multi-head attention (Vaswani et al., 2017) 
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words (Hewitt, 2021). Figure 11 shows an example of the multi-head attention mechanism 

where heads are capturing the long-distance dependencies between the word making and the 

words more and difficult. 

 

Figure 11 An example of multi-head attention mechanism. Each attention head is represented by a 

different color (Vaswani et al., 2017) 

 

Residual Connections 

The residual connection framework was proposed by He, Zhang, Ren and Sun (2016) as a better 

way of training a deep network that suffers from the vanishing gradient problem and 

degradation of accuracy. In the residual connection framework, shortcut connections are used 

to add the output of one layer to the input of a later layer in the deep network. This improves 

information flow through the network and enables the gradient to propagate more easily 

(Hewitt, 2021). 

Let 𝐻(𝑥) be the underlying mapping to be fit by a few stacked layers 𝐹(𝑥), and 𝑥 be the input 

to the first of these layers. Then 𝐹(𝑥)  =  𝐻(𝑥) − 𝑥, and therefore 𝐻(𝑥)  =  𝐹(𝑥) + 𝑥.  

The hypothesis of He et al. (2016) is that it is easier to optimize the residual mapping than the 

underlying mapping. In other words, instead of learning the 𝐻(𝑥) from scratch, the model will 

only learn the difference between the previous and the current residual block. 
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Layer Normalization 

During the training, gradient values are highly impacted by the output of the previous layer (Ba, 

Kiros & Hinton, 2016). Normalization reduces this impact by removing uninformative 

variation, which as a result, smooths the loss function and speeds up the model training. If 

𝑥1, … 𝑥𝑛 where 𝑥𝑖 ∈ ℝ𝑑, layer normalization for each input 𝑥𝑖 computes separate parameters µ̂𝑖 

and �̂�𝑖 across all d-dimensions. 

In the Transformer model, layer normalization 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) is applied after 

each sublayer (Vaswani et al., 2017). Let ℎ1, … ℎ𝑛 where ℎ𝑖 ∈ ℝ𝑑  denote contextual 

representations of the input computed by the attention mechanism. The normalization 

parameters are calculated for each representation ℎ𝑖 separately: 

�̂�𝑖 =
1

𝑑
∑ℎ𝑖𝑗

𝑑

𝑖=1

 

�̂�𝑖 = √
1

𝑑
∑(ℎ𝑖𝑗 − �̂�𝑖)2
𝑑

𝑖=1

 

where µ̂𝑖 and �̂�𝑖 are scalars. To compute the 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 µ̂𝑖 and �̂�𝑖 are replicated across all 

dimensions of ℎ𝑖: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℎ𝑖) =  
ℎ𝑖 − �̂�𝑖 

�̂�𝑖
 

 

Figure 12 Surface of the loss function without (left) and with (right) “shortcut 

connections” (Li, Xu, Taylor, Studer & Goldstein, 2018) 
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Position-Wise Feed Forward Network 

In both the encoder and decoder, attention layers are followed by a fully connected feed forward 

network. Hewitt (2021) explains that since the attention is computing the weighted sums, non-

linearity is needed for the model to learn complex relationships: 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

where 𝑊1,𝑊2 are weights and 𝑏1, 𝑏2 bias terms of the first and second layers, respectively. The 

network consists of two linear transformations with a 𝑅𝑒𝐿𝑈 activation function in between. The 

first linear transformation projects the input into the higher dimensional space (𝑑𝑓𝑓 = 2048), 

and the second one projects it back into original dimension (𝑑 =  512).  

Positional Encoding  

Self-attention does not consider the position of the word in the sentence. The Transformer 

model addresses this issue by adding positional encoding to the input embedding of the encoder 

and decoder block.  

Let pos denote the position embedding, which is the same dimension as the embedding vector 

𝑑𝑚𝑜𝑑𝑒𝑙, and 𝑖 denotes indices of each position embedding dimension. Encoding of words in odd 

positions in the sequence is done using a 𝑠𝑖𝑛𝑒 function, and in even positions using a 𝑐𝑜𝑠𝑖𝑛𝑒 

function: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) 

The given functions indicate that frequencies decrease as the vector dimensions increase, 

forming a geometric progression from 2𝜋 to 10000 ∗ 2𝜋 on the sinusoid’s wavelengths. 

2.4.2 Decoder 

The decoder consists of three sublayers: masked multi-head self-attention, multi-head cross 

attention and feed-forward network. 

During the training phase, input to the decoder are word embeddings and position encodings of 

all words in the target sequence. In the previous example of a model that translates text from 

English to German, the input is the sequence in German. 

The first sublayer performs masked multi-head self-attention. In the decoder, masking is used 

to prevent a word from attending to words that come after it in the sequence. This stops the 

model from “looking into the future” and enables it to learn to predict words based on the left-

hand side content (Vaswani et al., 2017). During the training, a masking layer assigns an 

unnormalized attention score of −∞ to all words in the sequence following the word that the 

attention is computed for (Figure 13). Once squashed through a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function, the 

normalized attention scores for these words will be equal to zero. 
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The second sublayer, multi-head cross attention, performs encoder–decoder attention. It takes 

the output of the first layer of the decoder (query) and attends it to the output of the encoder 

(keys, values), establishing a connection between the input and the output. In the example of 

the English–German translation model, during this step, each German word is mapped to the 

English words that have similar meanings. As a result, the new word embeddings of German 

words will contain an English context. The third sublayer is the feed-forward network. Just as 

in the encoder, it is used to add non-linearity to the model. 

Using the linear transformation, the output of the decoder is transformed to the dimension which 

is the same size as the dictionary (in the translation model example, this is the dictionary of 

German words generated from the training dataset). Then, for each word in the sequence, a 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function computes the probability distribution over the dictionary and returns the 

word with the highest probability score (the most probable German word). 

During the inference phase, instead of the target sequence, input to the decoder at the time step 

𝑡 is the output of the decoder at the previous time step 𝑡 − 1. Therefore, each word 𝑤𝑡 is 

generated based on the input from the encoder and the previous 𝑤1, … , 𝑤𝑡−1 words. 

 

 

 

Figure 13 Masking in self-attention. Words in each row have words in the right-hand 

side masked out (e.g., “hugged” can only attend to “Martha” and “hugged”). 
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2.5 BERT 

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained masked 

language model, introduced by Google in 2018. The pre-trained language models developed 

before BERT were either using the unidirectional approach, where they learned deep contextual 

representation from left-to-right (such as GPT), or they used the shallow concatenation of a left-

to-right and a right-to-left context (such as ELMo). The novelty of BERT is its ability to learn 

word representations that are jointly conditioned on the left and the right context (Devlin et al., 

2018).  

The model uses the transformer encoder structure. Furthermore, BERT uses masking to prevent 

the attention mechanism from seeing all words during training, allowing model to overcome 

the limitations of the unidirectionality (Devlin et al., 2018). 

The BERT implementation has two phases: the pre-training phase, during which the model is 

trained on unlabeled data, and the fine-tuning phase, during which model parameters are fine-

tuned using the labeled data from a downstream task (e.g., text classification, question 

answering, etc.) (Devlin et al., 2018). Model pre-training is a language modeling task where, 

by learning to predict the next word based on the previous words in the sequence, the model 

derives general patterns from text, building a general understanding of the language. To train 

the model for the downstream task, hidden layers (optionally) and the output layer are added to 

the pre-trained model. During the fine-tuning phase, the model learns task-specific parameters, 

and the parameters of the pre-trained model are slightly adjusted. Alternatively, instead of fine-

tuning, a feature-based approach can be applied, in which the pre-trained model parameters are 

frozen and the model learns only task-specific parameters. 

2.5.1 Input/Output Representation 

BERT can take either a single sequence or a pair of sequences (e.g., question–answer) as input. 

Words are transformed into tokens using a sub-word type of tokenizer WordPiece, developed 

by Google (Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey  & 

Klingner, 2016). The details on how the tokenizer is implemented in BERT are not publicly 

available. However, the company HuggingFace has published the implementation description 

based on the publicly available literature that they have gathered. According to HuggingFace 

(n.d) 

• the tokenizer first breaks each word into elements at the letter/sign level and adds the 

prefix ## before each character except the first one (e.g., the word “book” will be split 

into [𝑏, ##𝑜, ##𝑜, ##𝑘]) 
• a score is calculated for each element pair and used to decide whether to concatenate 

them using the formula 

 

𝑠𝑐𝑜𝑟𝑒 = (𝑓𝑟𝑒𝑞_𝑜𝑓_𝑝𝑎𝑖𝑟)/(𝑓𝑟𝑒𝑞_𝑜𝑓_𝑓𝑖𝑟𝑠𝑡_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 × 𝑓𝑟𝑒𝑞_𝑜𝑓_𝑠𝑒𝑐𝑜𝑛𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡) 
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• if individual elements of an element pair are less common in the vocabulary than 

element pair itself, they will be concatenated. 

HuggingFace (n.d.) explains that if the elements “un” and “##able” very often appear in other 

words, their frequency will be higher than the frequency of the pair [“un”, “##able”], thus they 

will not be concatenated. 

The input sequence into the BERT model always starts with a class token [CLS], which is a 

sequence representation, and ends with a separating [SEP] token. If the input consists of two 

sequences (e.g., question–answer), they are separated by a [SEP] token. The input 

representation is the sum of token embedding, segment embedding (indicating which segment 

a token belongs to), and positional embedding (indicating the position of a token in the 

sequence) (Figure 14). 

2.5.2 Pre-Training 

BERT was pre-trained on the BooksCorpus (Zhu, Kiros, Zemel, Salakhutdinov, Urtasun, 

Torralba & Fidler, 2015) and English Wikipedia, which has 800 million and 2,500 million 

words, respectively. The base BERT model consists of 12 layers (transformer encoder blocks), 

768 hidden states, and 12 attention heads, resulting in 110 million parameters (Devlin et 

al.,2018). The large BERT model has 24 layers (transformer encoder blocks), 1024 hidden 

states, and 16 attention heads, resulting in 340 million parameters (Devlin et al., 2018). Pre-

training consists of two unsupervised tasks which are conducted simultaneously: Masked 

Language Modeling and Next Sentence Prediction. 

 

Figure 14 BERT input representation (Devlin et al., 2018) 
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Masked Language Modeling (MLM) 

Devlin et al. (2018) states that “standard conditional language models can only be trained left-

to-right or right-to-left, since bidirectional conditioning would allow each word to indirectly 

see itself”. The same problem applies to the transformer encoder, since the attention mechanism 

has access to the whole sentence (including the word it is trying to predict). To address this 

issue Devlin et al. (2018) employ masking. The masking was inspired by the Chloze task 

(Taylor, 1593) of filling in the missing words in a text. Rather than predicting the next word 

given the previous words, the model predicts the missing words given the rest of the sequence.  

BERT randomly samples 15% of the tokens to apply masking on. 80% of the sampled data is 

replaced with the [MASK] token, 10% with a random word, and 10% is unchanged (Devlin et 

al., 2018). The objective of the model is to predict sampled words. The reason behind this 

masking scheme is to reduce the mismatch between pre-training and fine-tuning, since the 

masking is used only during the pre-training phase (Devlin et al., 2018). If the whole sample 

was replaced with [MASK] token, the model will learn to predict only masked words. 

Furthermore, it introduces uncertainty to the model since the model doesn’t know if the sampled 

token that is not replaced with a [MASK] token represents the actual word or a random word.  

In Figure 16, an example is given of a sentence where three words are sampled for prediction: 

the word went is replaced with pizza, to is the actual word, and store is masked. The sequence 

has one [MASK] token, but it will have three loss terms. 

Figure 15 Architecture of the BERT pre-trained model. 𝐸1 …𝐸𝑛 are the input to the model, 

𝑇1 …𝑇𝑛 are output of the model, and 𝑇𝑟𝑚 are transformer blocks (Devlin et al., 2018) 
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Next Sentence Prediction (NSP) 

The goal of the Next Sentence Prediction is for the model to learn the relationships between 

two different segments of text, as this is highly important for some NLP tasks such as question 

answering (Devlin et al., 2018). The model is a binary classifier trained on sequence pairs, 

where consecutive sequences are labeled IsNext, and non-consecutive sequences are labeled 

NotNext (Figure 17) (Devlin et al., 2018). 

 

 

Figure 17 Example of training dataset used for NSP (Devlin et al., 2018) 

 

2.5.3 Fine-Tuning and Feature-Based Approach 

As mentioned, there are two approaches for how BERT can be used for the downstream task: 

fine-tuning and a feature-based approach. The choice of method depends on the type of task 

and size of the training dataset.  

Fine-tuning is the preferred way of applying BERT to the downstream task, as it allows the 

model to learn domain-specific knowledge. If the dataset is sufficiently large, fine-tuning will, 

in most cases, improve the model’s performance. During the fine-tuning, backpropagation goes 

through all layers of the network, updating all weights (including pre-trained weights). In order 

to avoid overfitting, the general knowledge of the pre-trained model needs to be preserved. 

Therefore, the weights of the pre-trained model are only slightly changed.  The illustration of 

fine-tuning BERT for the classification task is given in Figure 18. 

Figure 16 Masking example (Goldie & Hewitt, 2022b) 
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The feature-based approach is suitable for situations where tasks cannot be modeled by the 

Transformer encoder architecture, or when the training dataset is very small and fine-tuning 

will lead to a decrease in the model performance. Another benefit is a lower computational cost 

compared to fine-tuning. In the feature-based approach, the model updates only the task-

specific weights. This is done by freezing the layers of the pre-trained model, which allows 

backpropagation to go through only the layers added for the downstream task.  

Layer freezing is sometimes used in combination with fine-tuning. In this approach, only some 

layers of the pre-trained model are frozen, while others get updated.  

 

2.5.4 Model Output 

HuggingFace’s implementation of the BERT model provides four different outputs that can be 

used depending on the downstream task. In classification, either the pooler_output or the 

last_hidden_state is used. The pooler_output returns the sequence classification token [CLS] 

from the last layer hidden state, after it has passed through the linear layer and 𝑡𝑎𝑛ℎ activation 

function (i.e., sequence embedding). The output dimension is [batch size, hidden size].  The 

last_hidden_state returns the last hidden state’s output embeddings of all tokens. The output 

dimensions are [batch size, sequence length, and hidden size] (Figure 19). To obtain the 

sequence embeddings, max pooling or average pooling is commonly used. When it comes to 

the effect on the performance of the classification model, none of the outputs is superior. 

However, experience from practical implementation shows that in most cases the pooler_output 

provides better results when the model is fine-tuned, and last_hidden_state when the model 

weights are frozen.  

Figure 18 Fine-tuning BERT for a Sequence Pair Classification Task (left), and Single Sentence 

Classification Task (right) (Devlin et al., 2018) 
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Figure 19 Dimensions of the BERT model last hidden state (Singh, 2017) 
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3 Data 

The dataset (DG, 2021) used in the analysis consists of 838 566 reviews left by the current and 

former employees of companies from the United Kingdom in the period between January 2008 

and June 2021 on the employer review platform Glassdoor. The full list of the dataset variables 

is given in Table 1. The dataset was downloaded from the Kaggle platform, where it was 

published under the name “Glassdoor Job Reviews” by the user DG in 2021.  

Table 1 Glassdoor Job Review dataset - variables overview (Scale takes values from 1 to 5, where 1 = 

very dissatisfied, 5 = very satisfied) 

Name Type Description 

firm categorical  Name of reviewed company 

date_review date Date of the review 

job_title categorical Job position of reviewer 

current categorical Reviewer status. Values: current employee and former 

employee 

location categorical Job location 

overall_rating integer  Overall rating is average value of variables 

work_life_balance, culture_value, diversity_inclusion, 

career_opp, comp_benefits, senior_mgm, recommend, 

ceo_approv.Values: from 1 to 5 

work_life_balance integer (scale) Work-life balance 

culture_value integer (scale) Company culture 

diversity_inclusion integer (scale) Diversity and inclusion at the workplace 

career_opp integer (scale) Opportunity for career development 

comp_benefits integer (scale) Work benefits 

senior_mgm integer (scale) Satisfaction with senior management 

recommend integer (scale) Would the reviewer recommend the company to a friend 

ceo_approv integer (scale) Opinion of review about CEO 

outlook integer (scale) Reviewer opinion regarding the future of the company   

headline categorical Headline of the review 

pros categorical Positive aspects of working for the company  

cons categorical Negative aspects of working for the company 
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3.1 Dataset Exploration  

 

The dataset contains reviews by the employees of 428 companies. Most of the companies in the 

dataset are rated positively, receiving a score of 4 or 5 (Figure 20). Only 14% of the companies 

in the dataset have been rated with an overall rating under 3. Furthermore, Figure 21 shows the 

ratings of twenty companies that have received the most reviews, showing significant variation 

in the number of reviews among the companies.  

 

Most reviewers chose to be anonymous or left the job title field blank (Figure 22). Additionally, 

many of the reviews come from employees who work (or have worked) in middle or senior 

positions in the companies. 

 

 

 

Figure 21 Ratings of twenty companies with largest number of reviews (Color assigned by total count) 

Figure 20 Distribution of overall ratings 
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A sample review from each of the “overall rating” categories is provided in Table 2. In this 

sample we can see that improper use of spacing and double spacing is a common typing 

mistakes in the text. This information is useful when deciding which data cleaning measures 

need to be taken. 

Table 2 Examples of reviews 

Company: BREWIN-DOLPHIN  

Job Position:   Analyst  

Headline:  If you're into a cut-throat environment, this place is 

for you.  

Pros: Some of the clients. Free biscuits and booze.  

Cons: 'Management' are cold. The only word to describe them is 

corrupt. Never expect anything to be said to your face, and never 

expect them to be on your side - one in particular is the infamous 

wimp of the office. Such a pity, as I had such loyalty to the 

company, but I can't see myself lasting much longer in here unless 

I move offices (and they're probably just as bad as this lot). 

Awful.  

Rating: 1.0 

Company: IBM  

Job Position:   Analyst  

Headline:  NA  

Pros: Company brand with long history  

Cons: Low salary and following with low salary increment; 

Hierarchy Culture is an issue; Heavy workload at junior level only 

; Too many compliance/rules; Slow decision making ; Many 

bottleneck in the company and less or no development opportunity ; 

Insufficient Training  

Rating: 2.0  

Figure 22 Distribution of rating over twenty most common job titles (Color assigned by total count) 
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Company: MORGAN-STANLEY  

Job Position:   Executive Director  

Headline:  Uncaring  

Pros: MS consistently places the needs of the company above its 

employees. I get it, companies do this. But MS does so more than 

any other company I've known.  

Cons: Management doesn't value its talent - their view is we'll 

treat you as we like, if you don't like it leave. Stingy on 

compensation and benefits.  

Rating: 3.0  

Company: DELOITTE  

Job Position:   Consultant  

Headline:  Deloitte Review  

Pros: Good open culture & maintains work life balance  

Cons: networking is a must even if u r weak in technilogy that is 

fine.  

Rating: 4.0  

Company: GOLDMAN-SACHS  

Job Position:   Analyst  

Headline:  Tests , but rewards you  

Pros: Challenging, the pay grade is great,  

Being my first job, I have no comparisons, but i can vouch for the 

place, it's great  

Cons: Yes, the hours can get long. Work can at times become quite 

monotonous, but there are always opportunities to expand and 

diversify your portfolio  

Rating: 5.0 

 

 

Figure 23 shows the length of the text in the “pros” and “cons” across the “overall rating” 

variable measured in number of words. The graph shows that most of the reviews have up to 

twenty words. Furthermore. it indicates reviews with lower “overall rating” tend to be shorter 

than those with higher ratings. 
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Figure 23 Length of text (number of words) of “pros” (up) and “cons” (down) across overall rating 

values. Text length is grouped in six ranges 
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4 Methodology 

This chapter describes the details of the research design, model architecture, and model 

implementation.  

4.1 Research Design 

To evaluate how the performance of the sentiment classification model is affected by including 

two additional features, and by the proposed method for doing so, three different models have 

been trained. The first model classifies the sentiment based only on the review text. The second 

model concatenates review and additional features prior to tokenization. The third model 

implements the method proposed in this thesis. The input to the model is the sequence pairs, 

where the first sequence represents a review, and the second represents the concatenated 

features “job title” and “firm”.  

The first model is used as a benchmark to measure the effect of adding features in the analysis 

on the sentiment classification results. The second model is used as a benchmark to measure 

whether the method proposed in this thesis improves the performance of the model. 

To ensure the fairness of the comparison with regard to the limitations of the study described 

in section 5.4, all three models use the same architecture. Furthermore, all models are trained 

using the same optimizer and the same learning rate.  

4.2 Data Preparation 

The Glassdoor Job Reviews dataset does not contain sentiment labels. To overcome this, the 

dataset was converted into a long format by merging the “pros” and “cons” columns into a 

single column “review”. After the transformation, each observation from the original dataset is 

represented in two rows, one for “pros” and one for “cons”, resulting in a dataset that is twice 

the length of the original, containing 1 677 132 rows. 

For the purpose of the analysis, the sentiment label needs to be added. This was done using the 

rule-based approach. In the initial phase of the research, two rulesets were tested. Both rulesets 

determine the sentiment of the text in the “review” column, using the “overall_rating”, and 

whether the text originally belonged to the “pros” or the “cons” column. The first ruleset 

classified the reviews into nine classes and the second one into three classes (Table 3).  
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Table 3 Rulesets for assigning the sentiment 

Ruleset 1 – nine classes 

9 - Extremely Positive: text from pros with overall rating is 5 

8 - Very Positive: text from pros with overall rating is 4 

7 - Moderately Positive:  text from pros with overall rating is 3 

6 - Slightly Positive:  text from pros with overall rating is 2 

5 - Neutral: text from pros with overall rating is 1, and cons with overall rating 5 

4 - Slightly Negative: text from cons with overall rating 4 

3- Moderately Negative: text from cons with overall rating 3 

2- Very Negative: text from cons with overall rating 2 

1- Extremely Negative: text from cons with overall rating 1 

Ruleset 2 – three classes 

2 - Positive:  text from pros with overall rating is 2, 3, 4, 5 

1 - Neutral: text from pros with overall rating is 1, and cons with overall rating 5 

0- Negative: text from cons with overall rating 1, 2, 3 or 4 

 

The dataset labeled using ruleset one was tested on over 30 different models, resulting in 

validation accuracy between 22% and 32%. Further inspection of the reviews indicated that the 

categorization of the nine different sentiments is not appropriate for this dataset. The words and 

sentences used in reviews don’t distinguish enough to justify using so many categories. If we 

take the examples given in Table 2 (section 3.1), this ruleset assigns the sequences “Some of 

the clients. Free biscuits and booze.” and “Company brand with long history” with different 

sentiment labels. However, it is hard to argue that the sentiment of these two sequences differs 

enough to justify assigning them two separate categories. Therefore, ruleset two was chosen for 

labeling the dataset.  

It should be mentioned that the classification of the dataset in two sentiments—where the 

negative sentiment is assigned to text belonging to the “cons” variable, and positive sentiment 

to text belonging to the “pros” variable—was considered but discarded as it doesn’t depict the 

dataset well. Looking back at the example from Table 2 (section 3.1), the review with the 

overall rating 1 states as a pro “Some of the clients. Free biscuits and booze.” If binary labeling 

was used, this review would be assigned a positive sentiment. But if we look at the review as a 

whole, including for example its headline “If you're into a cut-throat environment, this place is 

for you”, it becomes clear that the reviewer doesn’t express a positive attitude toward the 

company. 

The assigned labels are saved in the variable “sentiment”, and variables that are not needed for 

the analysis are removed. Variables left in the dataset are review, job title, firm, and sentiment. 

Furthermore, all rows with missing values were deleted, leaving 1 337 875 rows in the dataset. 
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The job title was missing in 9.4% and the headline in 0.01% of rows. Additionally, the variable 

review had a missing value in two rows.  

In the next step, the review text was preprocessed to remove the noise from the data. Double 

spaces were converted to single spaces, letters were converted to lowercase, and weblinks and 

special characters were removed. The commonly used text cleaning methods such as 

lemmatization, stemming, and removal of “stop words” can often have a negative impact on 

BERT model performance, as they remove contextual information that the model uses to learn. 

To examine the effect of these methods on the model, two datasets were created: one where 

these techniques were applied, and one where they were not. The negative impact on the 

model’s performance was noticed, therefore, these techniques were not used. 

The dataset was divided into a training and a test dataset. 80% (1 070 518) of observations were 

assigned to the training dataset, and 20% (267 630) to the test dataset. Since the dataset is 

unbalanced (Figure 24), it was split in such a way that the distribution of the classes remained 

the same as in the original. 

 

 

Lastly, the labels were converted to numbers so that 0, 1, and 2 denote a negative, neutral, and 

positive sentiment respectively, and encoded using one-hot encoding. 

 

 

 

Figure 24 Distribution of the sentiment class 
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4.3 Model 

For the sentiment analysis, BERT base uncased model from HuggingFace’s Transformers 

library was used. This model’s maximum input length is 512 sub-word tokens, and it has 12 

attention heads, resulting in 110 million parameters. On top of the BERT model, custom layers 

are added. As previously described, three models for sentiment classification have been trained. 

The models have the same architecture, but the input to the tokenizer changes.   

4.3.1 Tokenization 

The BERT model uses the WordPiece tokenizer described in section 2.5.1. This tokenizer 

returns (Figure 25):  

• input_ids [length 512] – numerical representation of sub-word tokens in the sequence  

• attention_mask [length 512] – binary tensor that indicates which tokens should be 

attended to and which should be ignored. It assigns zero to the padding tokens indicating 

that they should not be attended to.  

• token_type_id [length 512] - binary tensor that indicates which sequence a token 

belongs to. When the input to the model is a single sequence, all values of the tensor are 

equal to zero. The BERT model uses this token for the Next Sentence Prediction task. 

 

The input sequence was limited to 90 tokens, and the sequences exceeding this length were 

truncated. This was done because of the GPU limitations. Figure 26 shows that the number of 

words in the majority of reviews is less than 90. However, since WordPiece is a sub-word 

tokenizer, it is hard to estimate how many reviews were truncated. 

Figure 25 BERT WordPiece tokenizer output 
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Model 1 (single sequence review) 

This model takes only the reviews as input. The tokenizer places the [CLS] token at the 

beginning of the sequence, and the [SEP] token at the end, and adds padding. Since input is a 

single sequence, all values of the tensor token_type_id are zero, this model doesn’t use the Next 

Sentence Prediction objective. 

Input sequence: “ i have yet to fine one” 

[CLS] i have yet to fine one [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

 

 

 

Figure 26 Length of reviews (number of words) across sentiment values. Text 

length is grouped in ten ranges 
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Model 2 (single sequence review + job position + company name) 

This model concatenates the review, job position, and company name prior to tokenization. The 

tokenizer will place the [CLS] token at the beginning, and the [SEP] token at the end of the 

sequence. Since the input is a single sequence, this model doesn’t use the Next Sentence 

Prediction objective. 

Input sequence: “i have yet to fine one senior consultant pwc” 

[CLS] i have yet to fine one senior consultant pwc [SEP] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

Model 3 (sequence pair review–job title + company name) 

This model takes the review, job position, and company name as two sequences. The first 

sequence is the review, and the second sequence is the job title and company name. Given that 

the sequence pairs are tokenized, the tokenizer will place the [CLS] token at the beginning of 

the first sequence, one [SEP] token between sequences, and one [SEP] token at the end of the 

second sequence. Truncation is applied only to the first sequence of sequence pairs that exceed 

90 words. This is done to ensure job title and company name are not discarded in the 

tokenization process. The model adds the Next Sentence Prediction objective since the input is 

sequence pairs. 

Input sequence 1: “i have yet to fine one” 

Input sequence 2: “senior consultant pwc” 

[CLS] i have yet to fine one [SEP] senior consultant pwc [SEP] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] 
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4.3.2 Model Architecture  

In the process of finding the optimal model architecture and hyperparameters, hundreds of 

model architectures were tested. However, due to the limited time to conduct the research, as 

well as hardware constraints, it is possible that the best model was not found. For the purposes 

of this research, finding the best model is not crucial, therefore this has not affected the outcome 

and conclusions.  

The model architecture and hyperparameter were optimized for Model 1. Then, they were used 

to train Model 2 and Model 3 as well. Therefore, we can measure how the additional variables 

and proposed methods for generating the embeddings influence the model’s performance. 

Furthermore, due to the tendency of the BERT model to overfit data easily—even with a large 

dataset as the one used in this thesis—the focus was to find the architecture that will reduce the 

overfitting. 

 

Figure 27 The final model architecture 
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The model takes input_ids, attention_mask and token_types_ids as input. It has one embedding 

layer, two fully connected layers, and an output layer. The embedding layer is BERT’s 

pooler_output. This layer transforms the input into sequence embeddings. The output is passed 

to the first fully connected (dense) hidden layer with 768 hidden units and a 𝑅𝑒𝐿𝑈 activation 

function. The output is then fed into the second fully connected hidden layer with 384 hidden 

unites and a 𝑅𝑒𝐿𝑈 activation function. The output layer is the linear layer with the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

activation function, which calculates the probability of three output classes (negative, neutral, 

and positive). Furthermore, each fully connected layer is followed by layer normalization and 

dropout (Error! Reference source not found.). The model has 110 331 587 parameters (Figure 

28). The model architecture with the layers’ input and output shapes is available in Appendix 

A.  

4.3.3 Regularization and Optimization 

Devlin et al. (2018) provide the range of values for learning rate, and regularization and 

optimization hyperparameters for fine-tuning BERT which have produced good results on a 

variety of tasks in their experiments. The given values were used as a starting point for finding 

the optimal hyperparameters for Model 1. The best results were achieved by: 

• L2 regularization with 𝜆 = 1𝑒 − 3 is being applied to the weights of both fully 

connected layers.  

• using the dropout rate 0.5 after the first fully connected layer, and 0.3 after the second. 

• using batch size 32. 

• using the AdamW (Loshchilov & Hutter, 2017) optimization algorithm with learning 

rate 2e-5.  

• using a linear learning rate scheduler with the end learning rate 1e-8. 

Furthermore, the objective of the model was to minimize categorical cross-entropy loss. 

Categorical cross-entropy loss measures the difference between the predicted and true 

probability distribution of the target variable in the multiclass classification problem.  

Additional information on hyperparameter tuning, as well as a summary of the observed effects 

that the adjustments to hyperparameter values and model architecture have on the model 

performance, can be found in Appendix B. This information is collected to serve as a guideline 

for further work on the improvement of the model’s performance. 



 

 49 

5 Evaluation 

This chapter provides information on how the models were trained and evaluated. Section 5.2 

presents the models’ training and evaluation results. This section is followed by the discussion, 

limitations of the study, and proposals for future work.  

5.1 Training and Evaluation  

During the training and evaluation, model performance was measured using the following 

metrics:  

• Precision is used to measure what portion of the observations that are predicted as 

positive are actually positive, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

• Recall is used to measure what portion of the positive observations are predicted as 

positives,  𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

• Weighted F1 score is used to measure model accuracy. It is a weighted average of F1 

scores of each class, where weights equals to the proportion of the observations that 

belong to the corresponding class, and  𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Devlin et al. (2018) recommend fine-tuning the BERT for 2 to 4 epochs. Fine-tuning the model 

over more than four epochs leads to overfitting and increases the risk of the model forgetting 

the knowledge from the lower layers (Howard & Ruder, 2018).    

The optimal number of epochs for each of the three models was found using early stopping. 

This was repeated five times to investigate the training stability. 80% of the dataset was used 

for training, and 20% for validation. The models behaved consistently over all five trials. The 

validation loss of all three models started to increase after the third epoch. Weighted F1 score 

for Model 1 and Model 2 started to decrease after the second epoch, and for Model 3 after the 

third epoch. This indicates that the optimal number of epochs for Model 1 and Model 2 is two, 

and three for Model 3, since all three models slowly start to overfit after that. The best 

parameters for each model were chosen using 5-fold cross-validation. 
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Figure 28 Model 1 - loss (left) and weighted F1 score (right) curve 

Figure 29 Model 2 - loss (left) and weighted F1 score (right) curve 
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Figure 30 Model 3 - loss (left) and weighted F1 score (right) curve 

 

5.2 Results 

Table 4 Evaluation results 

Model 1 weighted F1 loss recall precision 

5-fold cross-

validation 
0.824±0.003 0.448±0.002 0.832±0.001 0.850±0.001 

training dataset 0.846 0.402 0.848 0.865 

test dataset 0.828 0.447 0.832 0.851 

     

Model 2 weighted F1 loss recall precision 

5-fold cross-

validation 
0.832±0.004 0.440±0.003 0.838±0.002 0.855±0.002 

training dataset 0.852 0.402 0.852 0.869 

test dataset 0.836 0.441 0.836 0.856 

     

Model 3 weighted F1 loss recall precision 

5-fold cross-

validation 
0.838±0.001 0.408±0.000 0.839±0.001 0.850±0.002 

training dataset 0.873 0.329 0.872 0.881 

test dataset 0.838 0.411 0.837 0.848 
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Table 5 Model classification report (arrows indicate direction of change compared to Model 1) 

Model 1 precision recall F1 score support 

Negative 

sentiment 
0.80 ↓ 0.89 ↓ 0.84 ↓ 96754 

Neutral 

sentiment 
0.65 ↓ 0.38 ↓ 0.48 ↓ 46468 

Positive 

sentiment 
0.92 ↓ 0.98 ↓ 0.95 ↓ 124394 

     

accuracy   0.84 ↓ 267616 

macro avg 0.79 ↓ 0.75 ↓ 0.76 ↓ 267616 

weighted avg 0.83 ↓ 0.84 ↓ 0.83 ↓ 267616 

     

Model 2 precision recall F1 score support 

Negative 

sentiment 
0.82 ↑ 0.87 ↓ 0.84 ↓  96754 

Neutral 

sentiment 
0.64 ↓ 0.45 ↑ 0.53 ↑ 46468 

Positive 

sentiment 
0.92 ↓     0.98 ↓ 0.95 ↓ 124394 

     

accuracy   0.85 ↑ 267616 

macro avg 0.79 ↓ 0.76 ↑ 0.77 ↑ 267616 

weighted avg 0.83 ↓ 0.85 ↑ 0.84 ↑ 267616 

     

Model 3 precision recall F1 score support 

Negative 

sentiment 
0.83 ↑ 0.85 ↓ 0.84 ↓ 96754 

Neutral 

sentiment 
0.60 ↓ 0.51↑ 0.55 ↑ 46468 

Positive 

sentiment 
0.93 ↑ 0.96 ↓ 0.95 ↓ 124394 

     

accuracy   0.84 ↓ 267616 

macro avg 0.79 ↓ 0.77 ↑ 0.78 ↑ 267616 

weighted avg 0.84 ↑ 0.84 ↓ 0.84 ↑ 267616 
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Figure 31 Model 1 - Confusion matrix (left), precision-recall curve (right) 

Figure 32 Model 2 - Confusion matrix (left), precision-recall curve (right) 
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The results show that Model 2 and Model 3 achieved a 0.8–1% higher weighted F1 score 

compared to Model 1 on the test dataset (Table 4). The performances of Model 2 and Model 3 

were very similar, with Model 3 achieving marginally higher accuracy. Furthermore, the results 

of the 5-fold cross-validation indicate that all models were giving stable predictions. 

In the classification report presented in Table 5, we can see that all three models were good at 

predicting positive and negative sentiments. They all achieved a weighted F1 score of 95% for 

a positive sentiment and 84% for a negative sentiment. However, all three models were very 

bad at predicting neutral sentiment. Model 1 performed the worst, with a weighted F1 score of 

48%, while Model 2 and Model 3 had a weighted F1 score of 53% and 55%, respectively. The 

recall value indicates that the models had a very low ability to classify a neutral class correctly. 

The models found it particularly hard to distinguish a neutral sentiment from a negative one 

(Figure 31, Figure 32, Figure 33).  

The reason for this could be attributed to the labeling rules applied to the dataset described in 

section 4.2. The neutral class contained statements about both positive and negative aspects of 

the company. Therefore, it was much harder for the models to learn to recognize it, compared 

to the other two classes, which contained statements only about one of these aspects. Also, due 

to the imbalanced distribution of ratings in the dataset, the majority of instances in the neutral 

class were statements about negative aspects of a company. This could explain why the 

observations from the neutral class were more often misclassified as negative than as positive. 

However, it is interesting that the cause of the improved overall accuracy of Model 2 and Model 

3, is their better ability to identify the neutral class. Learning the connections between words 

used in reviews, job title, and company name helped to reduce the number of cases where a 

neutral sentiment was falsely classified as negative. This suggests that adding additional 

features to a review text prior to tokenization resulted in the models learning the embeddings 

with additional context useful for interpreting the intended sentiment.   

Figure 33 Model 3 - Confusion matrix (left), precision-recall curve (right) 
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The marginal difference in the weighted F1 score between Model 2 and Model 3 suggests that 

adding the Next Sentence Prediction task to Model 3 didn’t result in any significant 

improvement of the overall accuracy. However, the model achieved a better balance between 

the precision and recall for each class. Compared to Model 2, it has better capability to correctly 

identify the neutral class and slightly lower bias toward positive class.  

5.3 Discussion  

During the study, all the models were trained and tested multiple times, always giving very 

similar results. This suggests that the difference in the results between Model 1 and the other 

two models is not a consequence of the random initialization during the models’ training. To 

establish with more certainty what causes this increase in performance, additional research is 

needed. However, analysis of the results and dataset indicates that the better performance is not 

caused only by the increased length of the input text. 

The median length of the job title is 2 words (mean length 1.94), and of the company name 1 

word (mean length 1.56), meaning that in the majority of cases, the input text sequence to Model 

2 and Model 3 was longer by only 2–3 words compared to Model 1. Furthermore, Model 2 and 

Model 3 were more affected by truncation during tokenization. Therefore, Model 1 kept sub-

word tokens from the longer reviews—which the other two models discarded—and potentially 

learned more about the relationship between the words in the review text. However, it was not 

possible to measure the impact this had on the accuracy of the models. 

The better ability of Model 2 and Model 3 to correctly predict the neutral class suggests that the 

observed improvement could be caused by the choice of the features that enabled the 

introduction of the informative patterns during the tokenization process. The premise of this 

research was that there is a relationship between the content of the review, and a company or 

job position. In section 1.3, the argument was given that if, for example, salaries in a company 

are low, it is reasonable to assume that most of the reviewers will mention that and give the 

company a lower rating. Since the same job titles and company names repeat across the dataset, 

adding them to the review text before tokenization creates similar sub-word tokens that repeat 

across the input sequences. Model 2 and Model 3 could use this sub-token repetition to learn 

additional context information, which helps them to identify neutral class more accurately than 

Model 1.  

To see how these models could benefit from this, let’s look at the names of the most frequent 

companies in the dataset. In Figure 21 (section 3.1), we can see that some of the most common 

companies in the dataset have names which are either acronyms or surnames, such as IBM, 

SAP, Morgan Stanley, American Express. Since WordTokenizer prioritizes merging the sub-

word tokens that appear less often in the vocabulary, pairs such as ['american', 'express’] or 

['morgan', 'stanley'] will most likely be merged earlier during the tokenization process (section 

2.5.1). This means that the model will produce the review embeddings, which will have a 

company name (or a significant part of it) incorporated in them. Therefore, it will be able to 
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learn, for example, for which companies the sequence containing the word “salary” has a 

negative sentiment, and for which it has a neutral. 

Furthermore, the observed effect of adding the Next Sentence Prediction objective on model 

performance was somewhat unexpected, given the findings of the other research. During the 

development of BERT, Devlin et al. (2018) found that adding the Next Sentence Prediction 

objective significantly improved the model performance for a variety of downstream tasks. 

However, several later studies have shown that it doesn’t always lead to improvement in 

accuracy, and that in some cases, it can have an opposite effect and hurt the performance of the 

model (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer & Stoyanov, 2019; Yang, 

Dai, Yang, Carbonell, Salakhutdinov & Le, 2019). Therefore, many pre-trained language 

models developed after BERT don’t use this objective. This study did not find that adding the 

Next Sentence Prediction task improves the model’s overall accuracy. However, adding this 

objective has increased the impact of the added features on determining the review sentiment. 

As a result, the model has become better at classifying observations from the neutral class 

correctly. 

Analysis of the results published in the relevant research leads to the conclusion that—

considering the simplicity of implementation, and the low computational complexity it adds to 

the model—this approach has resulted in decent improvement of the model’s performance. 

However, the disadvantage of this approach is that the impact of the added features on 

classification results depends only on the attention score given by the model. Furthermore, 

concatenating feature vectors to word embeddings gives more flexibility to impact model 

performance, since it can be done in different stages. Some methods perform it on the input to 

the model (Liu et al., 2021; Pota, Ventura, Catelli & Esposito, 2020), while others concatenate 

the output of several models and then pass it to the final output layer (Zhang, Xu, Pang & Han, 

2020).   

On the other hand, many of the proposed methods for improving embedding accuracy are used 

only on single context embeddings such as WordToVec and GloVe (Rezaeinia, Rahmani, 

Ghodsi & Veisi, 2019), and are shown to diminish the performance of the contextual embedding 

models (Li et. al, 2022). In addition, results published in several studies conducted on social 

media posts have demonstrated that enhancing word embeddings with semantical features from 

other elements of the posts, such as emojis (Liu et al., 2021; Pota, Ventura, Catelli & Esposito, 

2020) and images (Graesser et al., 2017), can result in much larger improvement of the 

sentiment classification models. However, these elements are usually not present in the reviews 

on the employer review platforms.  

The findings reported in this thesis indicate that adding features prior to tokenization improves 

the accuracy of the embeddings, resulting in enhanced performance of sentiment analysis. 

However, further research is needed to verify whether the hypothesis about the cause of the 

embeddings’ improvement discussed in this section holds true. The results also show that using 

sequence pairs can improve the model’s ability to correctly classify the minority class, and 

improve the balance between precision and recall. 
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5.4 Limitations 

The limited time to conduct the research, along with hardware constraints, has significantly 

affected the number of trials it was possible to conduct. It has also put a constraint on the length 

of the model’s input. This affected Model 2 and Model 3 more than Model 1, since their input 

text is longer. However, based on the length of the reviews in the dataset (Figure 26), it can be 

assumed that the number of input sequences that were truncated was relatively small and could 

not significantly impact the observed results. To eliminate this uncertainty, the models would 

need to be trained using full length input sequences. 

The same architecture and hyperparameters were used for all three models. This choice was 

made since there was not enough time to conduct a thorough parameter search for all three 

models. Therefore, it was not possible to know whether the final models are optimal. In these 

circumstances, using different parameters could lead to a risk that one model performs better 

than the other just because better parameters are found, and it would not be possible to compare 

the results.  

5.5 Future Work 

Further study could investigate whether the observed improvement in the model was caused by 

introduction of informative patterns during the tokenization. Furthermore, optimal architectures 

could be found for the models, and full-length input text used, to better estimate the potential 

of the used approach. Section 5.4 and Appendix B can be used as a guideline for further work 

on the optimization of the model architecture. Also, it would be interesting to explore the effects 

of this approach on other types of pre-trained models, such as ELMo. 

During the study, it was observed that labeling the dataset presents a significant challenge for 

achieving higher model accuracy. This was observed in the other analysis of the employees’ 

review data (Cortinhas, n.d; Jansen, n.d). Further study with more focus on dataset labeling is 

therefore suggested. 

Lastly, the initial proposal for the thesis was to research whether sarcasm detection could 

improve the sentiment analysis of the employees’ reviews. The initial few weeks of work on 

the thesis were dedicated to the development of a model that would conduct the sarcasm aware 

sentiment analysis. Unfortunately, this work needed to be interrupted, since it was not possible 

to finish by the time this thesis needed to be submitted. More details regarding this work are 

given in Appendix C. Future research could explore whether the described approaches could 

lead to improved performance of the sentiment analysis. 
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6 Conclusions 

Companies with a good employer reputation have a much higher chance of attracting talented 

and highly competent workers. Research conducted by Dice (2022) finds that over 78% of the 

tech professionals find a company’s employer brand to be more important than a salary when 

considering accepting a job offer. Sentiment analysis has become a popular tool for detecting 

weaknesses in a company’s brand by analyzing posts and reviews on online platforms. It faces 

a lot of challenges, and in the past few years, many new approaches for its improvement have 

been proposed. However, many of the proposed methods involve building large models that are 

computationally very expensive to train. 

This thesis investigated whether incorporating other elements from the employees’ reviews, 

such as job title and company name, into word embeddings can enhance the performance of 

sentiment analysis of reviews on the online platform Glassdoor. More specifically, the thesis 

has tried to answer to following questions: 

• Does adding features (e.g., job title and company name) prior to tokenization produce 

more accurate word embeddings, thereby improving the results of sentiment analysis of 

employees’ reviews? 

• Does the Next Sentence Prediction task help the BERT model to learn more accurate 

word embeddings?  

The study included training three different models and comparing their performance. The first 

model analyzed only reviews, and the second reviews concatenated with job title and company 

name. The third model analyzed sequence pairs, where the first sequence was the employee’s 

review, and the second a concatenation of job title and company name. 

Despite its limitations, this research indicates that the used approach can improve the model 

performance without significant impact on the computational cost and increase in model 

complexity. The results show that adding job title and company name prior to tokenization 

resulted in higher accuracy of sentiment analysis of employees’ reviews. However, this study 

could not provide a definite answer as to whether the observed improvement is a consequence 

of adding features that enables generation of informative patterns during tokenization. To 

investigate this hypothesis, further research is needed. In addition, insufficient evidence was 

found that using sequence pairs improves the models’ accuracy. However, adding the Next 

Sentence Prediction objective improves the models’ ability to understand the sentiment of the 

reviews and correctly predict the minority class. In contrast to earlier research—which found 

that this objective hurts a model performance—this shows that including this objective could 

be beneficial in sentiment classification tasks. 
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Appendix A 

 

Figure 34 Summary of the final model 
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Appendix B 

Hyperparameter Fine-Tuning – Additional Information 

During the model training process, numerous combinations of hyperparameter values and 

model architectures were tested. Below is a summary of the observed impact that adjustments 

to the hyperparameter values and model architectures had on the model's performance. 

1. Layers and hidden units 

The models with 1, 2 and 3 fully connected hidden layers were tested. Models with 1 and 3 

hidden layers resulted in a much lower training and validation F1 score, regardless of the 

number of hidden units. The negative impact was more prominent in the 3-layer network. 

Furthermore, reducing the number of hidden units of both fully connected layers below the 

number of hidden units in the final model reduced the training and validation weighted F1 score 

and increased the loss. Using fewer hidden units in the second layer reduced validation and 

training weighted F1 score by approximately 0.03. The effect of lowering the number of hidden 

units in the first layer had a much more severe effect, reducing the training weighted F1 score 

by approximately 0.07. 

In addition, the network with a single LSTM layer was tested, as well as the network with one 

LSTM layer and one fully connected hidden layer on top of it. Both performed much worse, 

resulting in a weighted F1 score under 0.74.  

2. Regularization 

The models with dropout applied only after the first, and the models with dropout applied after 

both the first and the second fully connected hidden layers were tested. Adding the dropout 

after the first hidden layer had a noticeable effect on reduction of overfitting. The dropout rate 

between 0.1 and 0.4 gave relatively similar results, while the larger improvement was noticed 

with the dropout 0.5. The dropout rate over 0.5 had a negative impact on the model. 

Furthermore, adding the dropout after the second layer had a small but still positive impact on 

the model performance. The rate 0.3 seems to be the optimal for this architecture. 

Increasing the value of the L2 regularization parameter lambda 𝜆 over 1e-3 has reduced the 

weighted F1 score of both training and validation data significantly, without reducing the 

distance between them. 

3. Learning Rate and Optimization 

The learning rates in the range from 1e-6 to 1e-4 were tested. Devlin et al. (2018) state that 

during the fine-tuning a small learning rate should be used. Depending on the other 

hyperparameters and architecture, the model had the best performance with leaning rates 2e-5 

and 3e-5. Furthermore, adding the learning rate scheduler has significantly improved the model 

convergence.  
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Following the recommendation from Devlin et al. (2018) the Adam optimizer with weight 

decay is used. The AdamW optimizer was chosen because it corrects the errors which exist in 

the implementation of the weight decay in the standard Adam algorithm (Loshchilov & Hutter, 

2017). 

 

4. Other  

Both fine-tuning and feature-based approaches were tested on the models that use the 

pooler_output and the models that use last_hidden_state as the BERT output. Fine-tuning has 

significantly improved the model’s performance. This was expected, considering the dataset 

has over a million records. Furthermore, fine-tuning the model which uses the last_hidden_state 

as the output of the BERT resulted the weighted F1 scores 0.76 for the training dataset and 0.74 

for the validation dataet. Besides that, this model was more prone to overfitting compared to 

the model with the pooler_output layer. 

Moreover, adding layer normalization after both fully connected layers have significantly 

stabilized and improved the training. 

Lastly, several models were trained using the RoBERTa (Liu et al., 2019) pre-trained model 

instead of the BERT. In the conducted tests there was no significant difference in the model 

performance compared to BERT. 
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Appendix C 

Sarcasm detection 

Detection of sarcasm in text is a complex task even for humans. While in verbal 

communication, we can relatively easily recognize someone is being sarcastic through body 

language, intonation, or prior knowledge regarding a person’s attitude about a topic (Pexman, 

2018), in written communication most of these hints are not present. Due to its complexity, 

recognition of sarcasm is considered to be one of the hardest tasks in the NLP field. A challenge 

of sentiment analysis is that words commonly used to express a positive sentiment, are used 

sarcastically to express a negative sentiment. 

The field has gained a lot of attention in the past few years, and many models have been 

developed. However, due to the lack of large, labeled datasets, the majority of research is 

narrowed to the detection of sarcasm in Twitter posts, Reddit posts and News Headlines.    

The original idea for the thesis was to develop a model that would incorporate the knowledge 

of sarcasm—learned on the combination of Twitter posts, Reddit posts and News Headlines 

datasets—to the sentiment-aware embeddings—learned on the employees’ reviews. This would 

produce the sarcasm-aware model for sentiment analysis of the employees’ reviews. The two 

possible approaches were considered:  

1. training two separate models—one for sarcasm classification, and another for sentiment 

classification—and utilizing the attention mechanism to incorporate the knowledge 

about the sarcasm from the sarcasm-aware embeddings into the sentiment-aware 

embeddings.  

2. fine-tuning the BERT model for the task of sarcasm detection as the intermediate task 

to create sarcasm-aware sequence embeddings and fine-tuning the same BERT model 

again (or training a Bi-LSTM model) for sentiment analysis as the final task. 

During the work on the thesis, the sentiment classification model and the sarcasm classification 

model have been developed. Unfortunately, it was realized that the amount of time needed for 

coding, training, and testing the final model was longer than anticipated, and that the work 

cannot be finished by the thesis submission deadline. 
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