
An Open-Source Autoencoder Compression Tool
for High Energy Physics

Axel Gallén

Supervised by Caterina Doglioni & Alexander Ekman

Co-supervised by Alma Oručević-Alagić

Thesis submitted for the degree Master of Science (60 hp)

Department of Physics

Division of Particle and Nuclear Physics

September 2022 - June 2023

Abstract

A common problem across scientific fields and industries is data storage. This thesis
presents an open-source lossy data compression tool with its foundation in Machine Learn-
ing - Baler. Baler has been used to compress High Energy Physics (HEP) data, and initial
compression tests on Computational Fluid Dynamics (CFD) toy data have been performed.
For HEP, a compression ratio of R = 1.6 has generated reconstructions that can be deemed
sufficiently accurate for physics analysis. In contrast, CFD data compression has success-
fully yielded sufficient results for a significantly lower compression ratio, R = 88. Baler’s
reconstruction accuracy at different compression ratios has been compared to a lossless
compression method, gzip, and a lossy compression method, Principal Component Anal-
ysis (PCA), with case-wise larger compression ratios over gzip; and accuracy at the same
compression ratio overall exceeding that of PCA.

I

Acknowledgments

First of all, a big thank you to Caterina for allowing me to do this Master’s project with
you and allowing me to travel and present the work at different stages of development! It
has exceeded my expectations by miles, and I am ever grateful for everything! A big thank
you to Alma as well for the great advice regarding the open sourcing of Baler. I strongly
believe that the process of making Baler the tool it is today would have been infinitely
harder without your expertise.

Secondly, I could not have done this project without you Alex! Always being available in
the corridor or on Zoom has been crucial to all of the work, and you have pushed me to be
at my best during the entire project. The traveling has also been a pure pleasure to have
done with you, and all meetings with you and Pratik, whom I also would like to thank
deeply for all input with regards to ML theory, ideas, and discussions, were always weekly
highlights that I will cherish for a long time. Thank you!

Furthermore, I would like to thank the Baler team for a great few months. In my very
early science career, this has been a highlight and something which I will bring with me
for many years to come, and this work could not have been done without you. I would
also like to say a big thanks to everyone in the particle physics corridor in Lund who have
made the experience of being there a very pleasant and fun experience.

Last but not least, I want to thank my friends and family sincerely. I can’t say thank you
enough times to make you understand how much you’ve meant to me during this project.
This work has been done for you.

II

Contents

1 Introduction 1

2 Theory and Experimental Background 2

2.1 The Standard Model . 2

2.2 Jets . 4

2.2.1 Jet Kinematics . 5

2.2.2 General Purpose Detectors & the LHC 7

2.3 Data Compression . 9

2.3.1 Lossless compression . 10

2.3.2 Lossy compression . 10

2.3.3 Principal Component Analysis . 11

3 Artificial Neural Networks & Deep Learning 12

3.1 Dense Neural Networks . 13

3.2 Training & Loss . 15

3.3 Machine Learning & Optimization Algorithms 16

3.4 Normalization . 19

3.5 Under- and overfitting . 20

3.6 Regularization . 21

3.7 Autoencoders . 23

3.7.1 Offline and Online compression . 24

3.8 Evaluation Metrics . 25

4 Methodology and Implementation 27

4.1 The Data . 27

4.2 Model & hyperparameter selection . 31

4.3 Baler workflow . 32

4.4 Open Source . 34

5 Results 35

III

5.1 Compression Ratios . 35

5.2 Determination of Loss Function & Training times 36

5.3 Balers performance at different compression ratios 37

5.4 Baler vs PCA . 40

5.4.1 Reconstruction of peaks . 41

5.5 Outliers . 42

5.6 Applications in other fields . 44

6 Discussion 45

7 Conclusions & Outlook 47

7.1 Conclusions . 47

7.2 Outlook . 47

References 49

A Data processing and Variables 54

A.1 Variable Descriptions . 54

A.2 Normalized distributions . 56

B Complimentary Results 58

B.1 Loss Plots . 58

B.2 Reconstructed Distributions . 59

B.3 Outliers . 62

IV

1 Introduction

In fields of science that require large datasets, sufficient storage is essential. With many
fields in science getting better detectors and better software to collect more data or make
better simulations, the datasets have become ever-growing. The projected amount of data
to be stored for future data collecting runs at big-data science experiments exceeds the
storage assets. For the LHC, by the end of the next decade, the ATLAS experiment [1] alone
will have recorded ≈ 5EB (5×1018 bytes) of data to disk, as seen in Figure 1. This amount
of data is about ten times more than what is currently collected. Furthermore, the Square
Kilometre Array (SKA) experiment [2] is expected to record 8.5EB of data over the planned
15-year run-time and scientific fields heavily based on simulations, such as Computational
Fluid Dynamics (CFD), rely on several terrabyte sized simulation samples, which needs to
be stored. Only some scientific fields have been mentioned here, but numerous industries [3]
suffer from the same problem; too much data but too little storage.

Year

2020 2022 2024 2026 2028 2030 2032 2034

D
is

k
S

to
ra

ge
 [E

B
]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 =55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - Disk

Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Figure 1: Figure showing a forecast of the ATLAS disk storage necessary in the near
future. From Ref.[4].

In particle physics, the need for a compression method to reduce dataset size is undoubtedly
a positive with regard to the storage issue, and with this, an added bonus of statistical
importance will come. For example, if one manages to reduce the size of a recorded dataset
by half, one could theoretically store double the amount of data. As a field, particle physics
relies on counting events, and especially rare events, where events essentially are physical
processes that are measurable in detectors. The Poisson distribution is a good model for
the probability of rare events, and for any Poisson distribution, its mean is equal to its

1

variance, and it can be shown that the relative Poisson error scales as 1/
√
N [5], where N

is the number of events, meaning that from a statistical point of view, minimizing the error
demands more events. A large statistical sample is, therefore, vital because some crucial
physical events are exceedingly rare and buried in the background, making substantial data
necessary to find and analyze such events. Storing and analyzing twice the amount of data
would therefore be highly impactful in these cases.

This thesis presents a compression method with a foundation in machine learning. We
utilize a specific type of artificial neural network called an autoencoder, capable of reducing
dimensionality by exploiting correlations in the data. Furthermore, the compression we are
performing is for ”offline compression”, meaning that a single compression model is used for
a particular dataset, and we do not generalize autoencoder models across datasets. Finally,
different datasets have been compressed and reconstructed to investigate reconstruction
performance during different circumstances, and a fully functional open-source compression
tool, Baler, is presented.

2 Theory and Experimental Background

The necessary theoretical physics knowledge and the experimental background will be
briefly introduced, conceptually covering the Standard Model with its different particles
and forces. Further, the objects used in our data sample, hadronic jets, will be summarized
together with their properties. Following that, two detectors at the Large Hadron Collider
(LHC) capable of observing jets will be described. Finally, the different types of data
compression are outlined.

2.1 The Standard Model

In the 1970s the Standard Model (SM) was developed, and its predictions have been
confirmed repeatedly, with the latest being the discovery of the Higgs Boson in 2012 [6, 7].
All contents of the Standard Model known to date are presented in Figure 3.

The particles in the Standard Model can be split into two groups. These two groups
separate the Standard Model particles based on their spin value. If a particle possesses a
half-integer spin values, 1

2
, 3
2
, 5
2
, . . . , it follows the so-called Fermi-Dirac statistics [8], and

is therefore called a fermion. On the other hand, if a particle has an integer spin value,
0, 1, 2, . . . , it follows Bose-Einstein statistics [8] and is called a boson.

The fermions include particles known as quarks and leptons, with the difference being the
force they interact with. Leptons interact via the electromagnetic (EM) and the weak force,
mediated by the photon (γ) and W±/Z0 bosons, respectively, while the quarks interact
via the EM, weak and strong force, mediated by the gluon (g). The mediator particles are
known as gauge bosons and mediate three of the four fundamental forces. The final boson

2

is the Higgs boson and is responsible for most particles being massive, with that being a
consequence of the Higgs mechanism [9].

R
/G
/B

2/3

1/2

2.3 MeV

up

u

R
/G
/B

−1/3

1/2

4.8 MeV

down

d
−1

1/2

511 keV

electron

e

1/2

< 2 eV

e neutrino

νe

R
/G
/B

2/3

1/2

1.28 GeV

charm

c

R
/G
/B

−1/3

1/2

95 MeV

strange

s

−1

1/2

105.7 MeV

muon

µ

1/2

< 190 keV

µ neutrino

νµ

R
/G
/B

2/3

1/2

173.2 GeV

top

t
R
/G
/B

−1/3

1/2

4.7 GeV

bottom

b
−1

1/2

1.777 GeV

tau

τ

1/2

< 18.2 MeV

τ neutrino

ντ
±1

1

80.4 GeV

W±
1

91.2 GeV

Z

1
photon

γ

color

1
gluon

g

0

125.1 GeV

Higgs

H
stron

g
n
u
clea

r
fo
rce

(co
lor)

electrom
a
gn

etic
fo
rce

(ch
a
rg
e)

w
eak

n
u
clear

fo
rce

(w
eak

isosp
in
)

charge

colors
mass

spin

6
q
u
ark

s
(+

6
an

ti-q
u
ark

s)
6
lep

ton
s

(+
6
an

ti-lep
ton

s)

12 fermions
(+12 anti-fermions)
increasing mass →

5 bosons
(+1 opposite charge W)

1st 2nd 3rd generation

Figure 3: The contents of the Standard Model which contain the elementary particles,
force carriers, and corresponding forces. Modified from Ref. [10].

(a)

(b)

Figure 2: An illustration of (a) a
proton, and (b) a pion.

The quarks interact via the strong force because
they carry color charge, fundamentally described by
Quantum Chromodynamics (QCD). If a fermion has
a color, it can interact with a gluon and interact
via the strong force. That is, in the simplest sense,
the difference between a quark and a lepton, but
there is one further difference, namely color con-
finement. Color confinement says that quarks can
only exist in groups with neutral or white combined
color charge. ”Whiteness” can be obtained via color-
doublets: color + anti-color; or via color-triplets:
blue + red + green (or anti-blue + anti-red + anti-
green). Depending on if the quark composition is a
doublet or triplet, the composite particles are named
mesons or baryons, respectively. A common name
for these composite particles is hadrons. Figure 2
shows two illustrations: one of a baryon, the proton,
and one of a meson, the pion.

3

Color confinement together with asymptotic freedom is critical in collider physics, as it
allows for the process of hadronization, and with that, the creation of hadronic jets, ex-
plained further in Section 2.2. Asymptotic freedom is connected to the concept of how
”hard” force mediators are connected to the particles. For QCD and gluons, this turns out
to differ depending on how far apart the quarks are. If the quarks are spatially close, the
force between them becomes negligible, and equivalently, the force becomes asymptotically
larger as they move apart. This discussion is continued in the following section.

2.2 Jets

Most proton-proton collisions at colliders like the LHC create an abundance of quarks
and gluons. As discussed previously, they carry color charge, meaning they can not exist
separately due to color confinement. Given enough energy, the quarks and gluons created
in proton-proton collisions will start to move apart, as seen in Figure 4, since V (r) ∝ r for
color-fields [11]. At some point, this energy will overcome the threshold needed to create
a quark-antiquark pair, creating two new hadrons instead of pulling the quarks further
apart. The process of creating new hadrons is the hadronization process and, at its core,
can be analogous to trying to pull apart a rubber band. If the quarks are the end of a
stretched rubber band, it will eventually snap, creating two bands.

Figure 4: Illustration of how jets are created. Ref [11].

Since the LHC collisions occur with extreme energy, hadronization can occur several times
in each collision and even in succession. With heavy particles decaying into lighter particles
quite quickly on average, hadronization plus decay gives rise to particle showers known as
a hadronic jets.

To be more precise, the jets observed at LHC collisions are final-state jets. These are the
final stage of the hadronization process, and they reach and interact with the detector. For

4

analysis purposes, the jet detected is considered a single object, and the jet is then used
as an intermediate step in analyzing the initial state of the collision.

2.2.1 Jet Kinematics

To analyze the jet as a single entity, all the different detector signals, or individual particles,
creating the jet must be reconstructed. A reconstruction algorithm called the anti-kt
algorithm [12] does this reconstruction and is the main jet reconstruction algorithm used
in ATLAS. This algorithm is a so-called inclusive jet finding algorithm that uses distances
to group objects into jets, with the distances being defined as:

dij = min(k2p
ti , k

2p
tj)

∆2
ij

R2
(2.1)

diB = k2p
ti . (2.2)

In these two equations, dij is the distance between two entities (either a particle or a
pseudojet, meaning that it is not a particle or a jet) i and j, while diB is the distance
between an entity i and the beam B. We also have kti which is the transverse momentum,
and ∆2

ij = (yi− yj)
2 +(ϕi−ϕj)

2 where yi is the rapidity and ϕi is the azimuthal angle. R2

is a common radius parameter defined as R2 = η2 + ϕ2, with η being the pseudorapidity
defined as

η = − ln

(
tan

θ

2

)
, (2.3)

where θ is the polar angle and is connected to the rapidity, as discussed below. Finally,
p is a parameter that ”governs the relative power of the energy versus geometrical (∆ij)
scales” - [12].

For any particle, four variables are needed to define the kinematics of the particle. These
four variables are known as the four-momentum, and this quantity is also perfectly capable
of describing the kinematics of a jet. This quantity incorporates the energy and momentum
of the jet in two possible ways. Using natural units, ℏ = c = 1, they can be written either
using energy and momentum components as

pµ = (E, px, py, pz) = (E,p), (2.4)

or equivalently,
pµ = (pT , η, ϕ,m), (2.5)

although now using the jet’s mass and the momentum in the transverse plane together
with the pseudorapidity and azimuthal angle. Pseudorapidity is a common convention due
to η →∞ as θ → 0, and η → 0 as θ → π/2. This means particles moving perpendicularly
to the beamline will have a pseudorapidity of zero, while particles moving parallel to the
beam axis will have a non-zero pseudorapidity.

5

Furthermore, in the ultra-relativistic limit, |p| ≫ m =⇒ pT ≫ m, an expression between
mass, transverse momentum, and polar angle is

E = mT cosh y, (2.6)

where mT =
√
p2T +m2 and y is the rapidity. In terms of pseudorapidity, one can write

the rapidity as [13]

y = ln

√

m2 + p2T cosh2 η + pT sinh η√
m2 + p2T

, (2.7)

and in order to convert Eq. 2.6 into an equation dependent on η instead of y, we do a
second-order Taylor expansion of Eq. 2.7 in m/pT around 0 to find

y ≈ η − cos θ

2

(
m

pT

)2

. (2.8)

Recalling that we are in the ultra-relativistic limit we get y ≈ η, which implies that Eq. 2.6
becomes

E = cosh η ·
√
(p2T +m2). (2.9)

Another important quantity is the invariant mass, defined for jets as

M2
JJ = (pJ1 + pJ2)

2 =
E>>m

2 pT,J1pT,J2(cosh∆η − cos∆ϕ), (2.10)

with J1 referring to the leading jet, meaning the highest pT jet, and J2 to the sub-leading
jet, i.e., the second highest pT jet. Equivalently, for particles, one can write the invariant
mass as

M2 = E2 − p2 = pµpµ. (2.11)

This quantity has an additional significant and valuable feature, which is that it is Lorentz
invariant. A Lorentz invariant quantity means that this quantity is constant under Lorentz
transformations and thereby equal in all reference frames.

When looking for unknown high-mass particles, resonance particles are often in the scope
of search. For example, to search for resonances decaying into quarks, looking for events
originating from quarks or gluons is an excellent place to start. At a hadron collider,
resonances are very short-lived particles, like heavy bosons, frequently searched for via
resonance searches or bump hunts. These searches use the invariant mass of the jet, see
Eq. 2.10, since it resembles the mass of the decaying jet origin. This origin could be a
particle produced via a resonance, hinting toward new physics.

Due to the smoothly falling invariant mass distribution of particle physics processes, most
noticeably for QCD which make up the vast majority of all background events, if an excess
is present, a bump would be visible in the invariant mass distribution. This lies at the very
core of resonance searches. For example, the Higgs boson was discovered via a bump hunt
in 2012, with the discovery plot shown in Figure 5.

6

When looking for resonances, it is worth noting that the width (resolution) of the bump will
heavily depend on the significance, which depend on the number of events. As an example,
again looking at Figure 5, this search looked for a Higgs decaying into a diphoton final
state, H → γγ with an intermediate W/top loop, and in practice, one counted the number
of diphoton processes in different mass ranges and produced a histogram. If any diphoton
resonance exists in these mass intervals, more diphotons would have been produced, and
one would see a bump. Again, this method relies heavily on significance, and thus event
numbers, so more events directly correlate to better resolutions.

Figure 5: The invariant mass distribution from photonic pairs in the Higgs to di-photon
analysis. The excess of events above the predicted background around 125GeV is consistent
with Standard Model predictions of the Higgs Boson [14].

2.2.2 General Purpose Detectors & the LHC

Enough energy to hadronize a quark or a gluon must be available to observe a jet. These
energies can be obtained in high-energy collisions; the most prominent place to date, which
is capable of high-energy collisions, is the LHC. Hosted by the European Organization for
Nuclear Physics (CERN) on the border between Switzerland and France, the LHC is a two-
ring circular collider with a total circumference of 27 km underground. It can accelerate
protons or heavy ions to speeds extremely close to the speed of light and then collides
them at four separate interaction points with a center-of-mass energy of 13TeV. At each
interaction point, a particle detector is located. These detectors are: A Large Ion Collider
Experiment- (ALICE) [15], A Toroidal LHC ApparatuS - (ATLAS) [1], Compact Muon

7

Solenoid - (CMS) [16] and Large Hadron Collider beauty (LHCb) [17] experiments. The
CMS and ATLAS experiments can be classified as general-purpose detectors and are the
two most focused on observing jets. These two will now be explained briefly.

CMS and ATLAS have a structural layout consisting of layers and can be described as
having an Onion Layout. Their components are configured cylindrically around the beam-
line, with the interaction point located in the detector’s geometrical center. The innermost
layer of both detectors is made of tracker systems, capable of identifying electrically charged
particles for measurements of momenta, identification of charged particles, and observing
the origin of jets, e.g., a jet coming from one specific kind of quark, and thereby tagging
it. One layer outwards, we find the calorimeters in which close to all particles deposit all
their energy and momentum, and on the outside, there are structures capable of detecting
muons. The muons need their own detector modules due to their large mass and momenta,
which cause them not to deposit significant energy in the calorimeters. Figure 6 figuratively
shows the two layouts and how different particles behave in the different layers.

(a) (b)

Figure 6: (a): Illustration of a slice of the CMS detector with all its layers and what
happens to different particles in the detector. (b) Similar illustration, but now for the
ATLAS detector. Figures obtained from [18] and [19] respectively.

At the LHC, collisions between bunches of protons occur at a rate of about 40MHz,
where each bunch contains numerous proton-proton interaction events, making it virtually
impossible to process and store all events. Instead, determining which events are important
enough to process and keep is taken care of by the ATLAS trigger system [20] and data
acquisition system [21]. The ATLAS trigger system consists of two parts: a hardware part,
the level-1 (L1) trigger [22], and a software part, the high-level trigger (HLT) [23].

The L1 trigger brings the initial event rate of 40MHz down to 75 kHz by checking if each
event fulfills a set of criteria. These criteria could for example be if the pT exceeds a certain
amount or if an event has enough electrons or photons to be considered compelling.

The HLT, on the other hand, uses the same methods as are to be used in the analysis
to make more complex decisions regarding which events are needed for specific types of

8

analyses. This process decreases the event rate to O(100)Hz.
After the HLT has determined what events are viable for analysis, these events are stored
long-term and are the main events used for analysis. With an event taking up approxi-
mately 1MB [21], this still results in an extraordinary amount of data being stored long-
term, making it very viable to investigate data compression methods.

When examining what or where to apply compression methods, the first place which comes
to mind as an application area is in offline storage. As reported in [24], during the latter
stages of Run 2, approximately 150PB of the 223PB offline storage at ATLAS was filled
with Analysis Object Data (AOD) or AOD derivations (DAOD). These are the primary
data objects stored in .ROOT files, a file type mainly developed for the ROOT Data Analysis
Framework [25].

Due to this, only one or two replicas can be stored because of the large sample size, but
introducing compression here could lead to more replicas being able to be stored. From an
economic point of view, being able to store more data in less space also reduces the cost
of needing to purchase more storage. It is understood that before introducing any type of
compression that changes the accuracy of the data, in-depth studies need to be undertaken
so that the data can still be used for precision measurements and searches for new physics.

2.3 Data Compression

Data compression is, in short, the process of encoding information to reduce its size by
using fewer bits than the original representation of the information. There are two distinct
types of compression, namely lossless and lossy compression, where both will be described
in detail below. First, however, how data is stored in the first place needs to be understood
to explain the difference.

In computer memory, the most fundamental unit is the bit. A bit is a binary number
with the value 0 or 1. Eight bits in sequence are called a byte, and in reality, this is what
scientific data is; a sequence of binary numbers. There are, however, more efficient ways
to store information in memory, with one of the most efficient ways to represent memory
called hexadecimal. In this form, each digit represents a value between 0 and 16, with the
conversion between decimal, hexadecimal and binary being shown in Table 1.

Table 1: Conversion between hexadecimal, decimal, and binary.

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110 1111
Decimal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 1 2 3 4 5 6 7 8 9 a b c d e f

Comparing hexadecimal and binary notation, one hexadecimal digit corresponds to 4 bits.
Therefore, each byte of memory only requires two hexadecimal digits, compared to eight
in binary.

9

Regarding scientific data, most data points stored are either floating points or integers. A
floating point, or float, is simply a non-integer value, commonly stored as m · 2e. Here,
m is the mantissa and denotes the number of significant digits of the float, while e is the
exponent1 [26]. Another bit is assigned, called the sign bit, which dictates the sign of the
number (±). Generally speaking, there are two types of floating points used; 32-bit floating
points (singles) and 64-bit floating points (doubles), which are stored in the following way

Sign Exponent (e) Mantissa (m)

Float-32 31st bit 30th-23rd bit 22nd - 0th bit
Float-64 63rd bit 62nd - 52nd bit 51st - 0th bit

The exponent’s job is to dictate the range of possible values. For doubles, eleven bits allows
for a range of integers in the range [-127,127], and doing the computation: 2−127 ≈ 6×10−39

and 2127 ≈ 2× 1038, meaning that the smallest possible value to store in a double is of the
order of 10−39 and the largest is of the order of 1038.

2.3.1 Lossless compression

In its essence, lossless compression is a fully reversible process. One can safely encode
something, and upon decoding, there is no loss in information or quality. Lossless com-
pression does this by, e.g., removing redundant data, such as duplicated numbers or bits.
One prevalent lossless compression method for images is PNG, which uses run-length en-
coding to re-write the image information so that every bit value representing the same
thing appears fewer times than in the original. For example, say one has a figure with a
white background and a hollow red circle in the middle. Then, all one needs are one white
”bit value” and one red ”bit value” together with where they should be located, and you
can successfully store the image at a reduced size. Another standard more general lossless
compression method is gzip2 [27], which also utilizes run-length encoding. This method
will serve as a comparison later on.

2.3.2 Lossy compression

On the other hand, lossy compression is a process that is not fully reversible. As a result,
one can only reconstruct an approximation of the original data, resulting in a quality loss.
The lossy counterpart to PNG is JPEG. JPEG is a lossy compression method that employs size
reduction by reducing brightness information for each pixel and averaging color information
between neighboring pixels.

1Not to be confused with Euler’s number.
2There is a difference between gzip and zip. The latter allows for the extraction of single compressed

files from a .zip archive, while gzip demands the entire archive to be decompressed for the extraction of
files.

10

Another feature worth mentioning when it comes to lossy compression is generation loss.
Generation loss occurs after the chaining of lossy compressions on a file, making the file
quality degrade with every generation, although the file size will shrink. Generation loss is
also a counterpart to the lossless format, where the quality will not decrease, but the file
size does not reduce further. It also points to a difference between lossy and lossless com-
pression. Lossless compression is not useful if the files one wants to compress already are
compressed, while lossy compression can still be used, although with reduced effectiveness.

2.3.3 Principal Component Analysis

Mathematically, there are ways to reduce the size of objects or datasets, with one of
these ways being dimensionality reduction. Dimensionality reduction is a concept where
one can, by mathematical means, find ways to represent a n−dimensional dataset as a
m−dimensional object, with dimm < dimn. One of the most prominent ways to do this
is via Principal Component Analysis (PCA). This mathematical analysis process identifies
patterns in data and expresses these patterns to highlight differences and similarities. As
described in Ref. [28], there are five steps needed to perform PCA for a given dataset:

1. For every data dimension, subtract the mean: x = x− µx

2. Compute the covariance matrix between all dimensions:

Cn×n = cov(dim i, dim j)

where

cov(X, Y) =

∑n
i=1

(
Xi −X

)(
Yi − Y

)
n− 1

.

Here, Cn×n is a square n× n matrix3 and dim k is the kth dimension.

3. Find the eigenvalues and unit eigenvectors of the covariance matrix, by first finding
the eigenvalues λ: det{C − λI} = 0, and then find the eigenvectors, χ, by solving
(C − λIx) = 0 ∀λ.

4. Choose components and form a feature vector, F , from the eigenvectors: F =
(χ1, χ2, . . . , χn). From this feature vector, shorten its length to p, where p will be the
dimensionality of your dimensionality reduced dataset4.

5. Create your new dataset, Z, by computing: Z = F Tx.

3If your matrix isn’t square, your matrix does not have eigenvalues. There are ways to move around
this [29]. For this thesis, the implementation can be seen in Section 4.

4The choice of eigenvector to stop at matters. The largest eigenvalue is called the principal component,
and this is important because it tells you the most significant relationship between data dimensions.

11

To revert this process, we compute x = F TZ + µx with a more detailed explanation in
Ref. [28].

Due to the dimensionality reduction involved in PCA, it is common to use PCA as a
compression method for data [30]. Fundamentally, PCA would, in that case, be classified
as a lossy compression method because approximations take place and you reduce the
dimensionality via data features. PCA will be used as a comparison later on.

3 Artificial Neural Networks & Deep Learning

In recent times, the concept of machine learning and artificial intelligence has become well-
known in most research fields, with physics being at the very forefront of those fields. Some
of the main tools used under the large umbrella of machine learning are Artificial Neural
Networks (ANNs). ANNs have become very popular in classification areas, such as image
classification and language processing. The origin of the ANN can loosely be connected to
the concept of a brain, where both consist of several neurons, called computational nodes
in the ANN, which exchange information via the output of one node, becoming the input
of another.

A commonly used family of ANNs is
the perceptron, which consists of one
computational node in the simplest
case. Initially, the perceptron referred
to the brain’s memory storage [31] and
a probability-based computational pro-
cess. However, it has become a com-
mon name for many objects connected
to probabilities and transformations.
Figure 7 shows that the perceptron input
is an n-dimensional vector. It then uses
weights wi, i = 1, . . . , n, to compute a
weighted sum, which is then fed as input
to a non-linear activation function, f(x).
The activation function is chosen to suit
specific tasks. This can be to output a
scalar quantity y, which is the percep-
tron’s final output in this case. Mathe-
matically, this can be written as

y = f

(
n∑
i

wixi

)
. (3.12)

x1

x2

x3

xn

...

Σn

...

fx

...

yx

...

computational node

input
layer

sum
activation
function

output

Figure 7: Example of a single compu-
tational node taking an n−dimensional
vector as input and outputs a scalar.
Modified from Ref [32].

12

3.1 Dense Neural Networks

However, a single-layer neural network cannot solve complex tasks like image classification.
A potential solution is to increase model complexity by adding more nodes. Nodes, when
stacked in parallel, then create so-called hidden layers, and if an ANN consists of more
than one hidden layer, and the output of each node is an input of each node in the next
hidden layer, it is deemed to be a dense neural network (DNN). Deep learning comes into
the picture when one uses a DNN to perform machine learning. From here, we will only
deal with DNNs, so ANNs and DNNs will be used interchangeably.

A more complicated ANN can look something like the one pictured in Fig 8, where the so-
called architecture is described as n−m− l− i− k, with n and k representing the number
of nodes in the input and output layers respectively, and m, l, i showing the number of
nodes in the each hidden layer. An example of what will be used later on is a ANN with
architecture

x− 200− 100− 50− z − 50− 100− 200− x,

with x < 200 and z < 50 (see Section 4.2).

x1

x2

x3

xn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
m

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
l

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
i

...

y1

y2

y3

yk

...

input
layer

hidden layers output
layer

Figure 8: A dense neural network with one input layer of length n, three hidden layers of
length m, l, i respectively, and an output layer of length k. a refers to the computational
nodes, x represents the input and y the output. Modified from Ref. [32].

Now that the structure of a more complicated ANN has been described, the need for a
non-linear activation function is easier to motivate. For a DNN, every node will perform
a linear transformation on its inputs using corresponding weights and biases. Since the

13

composite of two linear functions is a linear function, what will be done between every
layer is essentially a linear regression. For the network to learn more complex tasks than
linear regression, non-linearity needs to be introduced in between layers to add complexity
to the network.

Some of the most common activation functions to add non-linearity to an artificial neural
network are

ReLU: f(x) = max(0, x) (3.13)

Leaky ReLU: f(x) = max(ax, x), a < 0 (3.14)

Sigmoid: f(x) =
(
1 + e−x

)−1
(3.15)

tanh: f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.16)

where the use case of the activation functions differs depending on what the end goal of
the network is. For example, if the goal is to do binary classification, having an output in
the range [0, 1] is efficient, so the output can be interpreted as a probability. One of the
functions which does this well is the Sigmoid function (Eq. 3.15), which takes input in the
range (−∞,∞) and outputs in [0, 1].

However, a case where the Sigmoid activation function is not the best is where one has
a DNN. There are some reasons for this, with the most obvious one being that, from
a computational point of view, it is cumbersome to compute exponential functions and
inverses. Secondly, as described in [33], a phenomenon known as the vanishing gradient
problem can occur (also applicable to the hyperbolic tangent activation function, Eq. 3.16).
To briefly explain this phenomenon the concept of training a neural network is important,
and this will be discussed in more detail in Section 3.2. DNNs are trained by updating
gradients of some loss function with respect to weights and do this in one layer at a
time, starting from the back, thereby performing backpropagation. The vanishing gradient
problem is caused by exceedingly small gradients for inputs larger than about 10, and
during backpropagation, they will continue to decrease the further they move backward.
Consequently, the nodes at the beginning of the network will learn slower than those in the
latter parts, resulting in more significant training speeds and worse overall performance.

Two things stand out when talking about the two Rectified Linear Unit (ReLU) functions
compared to the sigmoid and hyperbolic tangent. First, there is no need to compute
exponential functions or inverses, making it less computationally heavy. Secondly, ∀x ≥ 0,
we have f(x) = x, so the possibility of a vanishing gradient is negligible.

Giving Eq. 3.13 & 3.14 and Fig. 9 a glance, Leaky ReLU, and ReLU are very similar.
The only difference between the two is an arbitrary factor greater than zero. Although
minimal, this factor solves a grave issue with the ReLU function, namely the dying ReLU
problem [34]. If the node’s input is purely negative, the output of the node will be zero
due to the hard limit. If all outputs are zero, one can see the node as ”dead” because there
is no information to pass from the dead node to the next ”alive” node. Instead, suppose

14

one does not have a hard limit at zero, like in the Leaky ReLU function. In that case, this
issue is avoided because a small negative value is now passed through via backpropagation
instead of a zero, and the possibility of dead nodes becomes inconsequential.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

f(x
)

ReLU
Leaky ReLU

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
)

Sigmoid
Tanh

Figure 9: (Right) A plot of the Sigmoid activation function and the Tanh activation
function. (Left) A plot of the ReLU and Leaky ReLU activation functions.

3.2 Training & Loss

With the conceptual understanding of an ANN out of the way, one can now start to talk
about how the networks are used and how their performance is measured. The process we
are talking about is called training and can be done by comparing Y , the values the model
updates during training, to Ŷ , being the models’ input values. A common performance
measure of this comparison is the mean squared error (MSE) [35], defined as

MSE =
1

n

1

m

m∑
j=1

n∑
i=1

(
Yi − Ŷi

)2
j
, (3.17)

where m is the batch size and n is the number of samples one tests against. The concept of
batch size will be defined in Section 3.3. These types of equations are commonly known as
loss functions, error functions, or cost functions, where they are continuously evaluated in
the network. Intuitively, obtaining a loss of zero means that Ŷi = Yi, and this is what the
network is trying to do, thus fundamentally making training the ANN and optimization
problem. By evaluating this quantity continuously, the weights are somewhat shifted to
minimize the loss quantity.

15

Although the most common, the MSE loss function is one of many. Another common one
is the earths movers distance (EMD), or Wasserstein distance [36], defined as

EMD = inf
π∈Γ(u,v)

∫
R×R
|x− y| dπ(x, y). (3.18)

Citing the author of [36], Cédric Villani, one can think of this quantity as:

Assume that you are in charge of the transport of goods between producers
and consumers, whose respective spatial distributions are modeled by proba-
bility measures. The farther producers and consumers are from each other, the
more difficult will be your job, and you would like to summarize the degree of
difficulty with just one quantity.

Although conceptually simple, Eq. 3.18 can be seen as quite complex. In practice, one
takes the cumulative sum of the difference between the distributions, yielding a set of
cumulative sum values, each in (−∞,∞). Since we are looking for a ”distance,” the way
to get this into an objective value is to take the sum of the absolute value of this set. For
this thesis, Eq. 3.18 has been implemented via the SciPy.stats [37] python package with
the function: scipy.stats.wasserstein distance.

Another definition to make is that of training length. Defining how long one should train
the model is most commonly defined as how many weight updates will be computed or
even how many times the network is allowed to see the data. The name for this is an epoch
and is defined as one forward and backward pass of the entire training set through the
model. How this definition of an epoch is utilized and evaluated is explained below.

3.3 Machine Learning & Optimization Algorithms

Regardless of the choice of loss function, updating weights in the networks is most com-
monly done via the same method, namely gradient descent [38]. This algorithm computes
the gradient of the loss function with respect to the model weights as following

∂L
∂wi

=
∑
n

∂L
∂yn

∂yn
∂an

∂an
∂wi

=
∑
n

∂L
∂yn

f ′(an)xni. (3.19)

This computation is performed because we have an optimization problem that we want to
solve: We want to find a set of weights to minimize the loss. The fact that the derivatives
are computed constantly also puts an essential mathematical constraint on our loss and
activation functions, which is that they are C1-smooth. This is important because it
ensures that the gradient can be computed anywhere and thereby update the weights no
matter what.

16

To optimize the weights such that the loss minimizes, a common strategy is to start with
all weights randomly initialized and then move in the negative gradient direction by taking
small steps,

∆w = −γ · ∇wL, (3.20)

and then updating the weights accordingly,

wi+1 = wi +∆w = wi − γ · ∇wL. (3.21)

Here, γ is a positive parameter called the learning rate. The learning rate is an example
of a hyperparameter, a parameter defined outside of training that is not learned during
training and is implemented according to Algorithm 1. The negative sign in Equation 3.20
is there because we want to move in the opposite direction of the directional derivative,
i.e., towards the minimum.

Algorithm 1 Gradient descent learning. Ref [39].

Require: wi: Initialize the weights with small random numbers
Require: γ: Learning rate
Require: L: Loss function
Require: xn: Input values
Require: f(): Activation function
1: while wi not converged do
2: i← i+ 1
3: yn ← y(xn) ▷ For each pattern n compute the output
4: δn ← −∂L/∂an = −(∂L/∂yn)f ′

0(an) ▷ Compute the derivative
5: wi ← wi−1 + γ

∑
n δnxni ▷ Update weights accordingly

6: end while
7: return w

An illustration of this process can be observed in Figure 10a. However, this figure is quite
deceiving because it is a highly trivial case. In reality, the ”loss space” is very complicated,
as there are as many weights as connections between nodes. Therefore, the gradient of
the cost function is non-linear due to the non-linear connections between the nodes and
the cost function itself. What can be an issue, though, is the randomization factor of
the initialization of the weights. For example, looking at Figure 10b, let us say that the
randomized weight initialization leads to the first gradient computation taking place at the
slope between the global maximum and the local minimum. There is a large possibility
that the gradient descent algorithm converges towards the local minimum and then is done
with the training.

In some cases, this is acceptable, and one can argue that this is optimal5, but if one lands
slightly left of the local maxima, then the gradient descent algorithm will converge towards

5Since dimensionality of the loss landscapes is directly proportional to the number of weights, the
dimensions can quickly enter the millions. Finding the global minimum is, therefore, nothing one expects,
so a local minimum is usually more than enough

17

the saddle point because the gradient in a minimum and at a saddle point are the same;
zero. In this way, there is still quite a lot left to be learned from the network, and one
has not reached a point where the loss is minimized, but a point where the network thinks
that the loss has been minimized and will not, therefore, update the weights anymore.

(a) (b)

Figure 10: (a): An illustration of the problem gradient descent is trying to solve. The
initial weight is randomized, and the steps towards the bottom are negative gradient steps,
together with the learning rate. The learning rate tells one how large steps to take in
the direction of the negative gradient. Reaching the ”global cost minimum” would mean
a successfully optimized cost with respect to the models’ weights, J(w). Ref. [40] (b) a
slightly more complicated landscape with several minima and saddle points [41].

This problem, among others, is solved by the most common optimization algorithm in deep
learning, namely the Adaptive moment estimation (Adam)[42]. This optimizer is described
in detail in Algorithm 2, but very shortly, the main difference between gradient descent
and Adam is that Adam keeps track of the decaying averages of the gradient as well as the
squared gradients,

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

where β1,2 are two decay factors separate for the two averages (see Algorithm 2 for the
variable definitions). More specifically, mt is an estimator of the mean (first moment) of
the gradient gt, and vt (second moment) is an estimator of the variance of gt.

The Adam optimizer is used throughout this thesis, and several reasons exist for why this
is the case. The main reason is that, as stated previously, it is one of the most used in
deep learning, and it has also proved to be very effective in previous studies [43, 44].

18

Algorithm 2 The Adam Optimizer [42] algorithm for stochastic optimization.

Require: γ: Learning Rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moments estimates. Suggested

defaults: 0.9 and 0.999 respectively.
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
1: m0 ← 0 ▷ Initialize 1st moment vector
2: v0 ← 0 ▷ Initialize 2st moment vector
3: t← 0 ▷ Initialize time step
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θft(θt−1) ▷ Compute gradients
7: mt ← β1mt−1 + (1− β1)gt ▷ Keep track of the mean
8: vt ← β2vt−1 + (1− β2)g

2
t ▷ Keep track of the variance

9: m̂t ← mt/(1− βt
1)

10: v̂t ← vt/(1− βt
2)

11: θt ← θt−1 − γm̂t /
(√

v̂t + ϵ
)

▷ Update parameters accordingly (ϵ = 10−8)
12: end while
13: return θt ▷ Resulting parameters

Referring back to Section 3.2, as stated, training the entire data set for one epoch would
correspond to the network seeing the entire data set once. In terms of the gradient descent
algorithm, after every epoch, a total loss for that epoch will be computed by averaging
every change in the gradient descent algorithm. An obvious problem with doing this is
that the amount of connections between the input layer and the first hidden layer increases
drastically with the network architecture and data set size so this process will be very
computationally heavy. An easy fix to this problem is to split the training dataset into
smaller training sets, accordingly,

training dataset = batch size× iteration,

where each iteration is defined as the number of batches, and the batch size is how many
sets one splits the training dataset in.

3.4 Normalization

Apart from the different optimizers, cost functions, and activation functions, there are
advantageous steps the user can take to make the ANN behave and train better. For
example, having input data of the same magnitude range is quite important. For the
scope of this thesis, one can immediately look at particle physics data. Referring back
to Equation 2.4, in the extremely essential four-vector, pT covers an approximate range of

19

(1, 1500)GeV, while the azimuthal angle ϕ only covers [−π, π] radians. By e.g., normalizing
your input data, one can solve this problem.

In the thesis, the so-called MinMax normalization or feature scaling is used. This normal-
ization performs a linear transformation on the input data such that scaled data becomes
in the [0, 1] range. This is done according to,

x̂ =
x− xmin

xmax − xmin

, (3.22)

and the transformation back is done by taking the inverse

x = x̂ · (xmax − xmin) + xmin. (3.23)

Here, x is the set of values normalized, xmax is the maximum value in the set, and xmin

is the minimum. For the scaling to be reversible and to return to physical quantities, one
needs to save xmax and xmin for every scaled set. This extra set of values saved will play
a role in Section 3.8.

The choice of activation function also plays a role in this, as it ultimately converts the node
input to an output. Again, using the hyperbolic tangent as an example (Eq. 3.16), the
larger the nodal input, the more said input will dominate the output, thereby suppressing
the smaller inputs completely.

3.5 Under- and overfitting

One central challenge in machine learning is that the training needs to be done on data that
the network has not seen previously. A common way to do this is by separating the entire
input data into two sets, a training set and a test set, and then sampling the training set
to choose parameters to reduce the error of the training set. This is followed by a test set
sample, where one expects the test error to be greater or equal to the expected training set
error. One can therefore classify two factors that determine how well the machine learning
algorithm will perform. These two factors are [35] (1): how well the network minimizes
the training error, and (2): how well it minimizes the gap between the training and test
errors. These two factors correspond to two central challenges in machine learning, namely
under- and overfitting. As seen in Figure 11, underfitting occurs when the loss values are
not sufficiently small, and overfitting is when the gap between the two is too large.

For a trained network, there are some clues whether the model has been over or underfitted.
An overfitted model is a model which is very capable of reconstructing the training data
but not capable of performing well on another equivalent dataset. In other words, it fails
to generalize well, as it learns patterns from potential noise in the data to a point where
it negatively impacts performance. On the other hand, an underfitted model can neither
fit the training data nor the test data.

20

Referring back to the MSE loss function, Equation 3.17, a common re-write of this equation
in statistics is the following [45]

MSE(θ̂) = Varθ(θ̂) + Biasθ(θ̂, θ)
2, (3.24)

where θ̂ is an estimator with respect to some unknown parameter θ. In terms of over and
underfitting, an underfitted model has a high bias but not necessarily a low variance. In
contrast, an overfitted model has a low bias but a high variance.

One might now think that under and overfitting are bad things, but Section 3.7.1 discusses
a significant difference and caveat to the overfitting problem.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0

2

4

6

8

10

Lo
ss

Overfitting ZoneUnderfitting Zone

Op
tim

al
 p

er
fo

rm
an

ce

Train
Validation

Figure 11: A typical ”loss plot” shows that training and validation loss behaves differently.
In the ”underfitting zone,” the two losses are high. As the number of epochs increases, and
thereby the number of weight updates, the training error decreases while the validation
error eventually increases. This is when the ”overfitting zone” is entered, and one has
passed the optimal performance.

3.6 Regularization

There are also ways to drastically improve model training by introducing either intermedi-
ate layers, which aim to improve training, or by introducing algorithms to detect overfitting.
These are called regularization methods, some of which will be summarized below.

One of the most common and straightforward regularization methods is early stopping.
Early stopping keeps track of the loss value after every epoch, and if the loss is much greater

21

than the lowest loss value, it starts a counter. If the loss has not decreased below the lowest
value for p epochs, the training ends. This is implemented according to Algorithm 3. This
is advantageous to include because there is no point in continuing to train a model that
has reached its potential. If the loss values are not decreasing, the network is not learning
anything more about the data.

Algorithm 3 Early stopping algorithm to cancel training when the overfitting region has
been entered. Modified from [35].

Require: Patience value, p ▷ Value chosen to 100
Require: Loss value, L
Require: Best loss, LB

Require: Improvement value δ ▷ Value chosen to 0
1: i← 0 ▷ Initialize counter
2: LB ← L ▷ Set the first loss value to the initial best loss
3: while i < p do
4: Train the network and update the loss, L, via e.g. GD (see Alg. 1 or Alg. 2)
5: if LB − L > δ then ▷ Check if the loss has improved
6: i← 0 ▷ Reset counter if the loss is still improving
7: LB ← L ▷ Update the best loss value
8: else ▷ If LB − L < δ
9: i← i+ 1 ▷ If the best loss hasn’t improved, add to the counter
10: end if
11: end while

Furthermore, there are also methods one can introduce to escape plateaus, as mentioned
in Section 3.3. One way to do this is to reduce the learning rate when the training has
hit a plateau. This can be done with the PyTorch [46] function ReduceLROnPlateau[47],
which checks whether specific optimizer parameters have decreased or not. For example,
suppose they have stagnated within some range after a patience value decided by the user.
In that case, the optimizer’s learning rate will reduce by a factor also decided upon by the
user.

A prime example of a case where we can benefit from the Learning Rate scheduler and
the early stopping is seen in Figure 12. Here, one can see that the model is not learning
anything without the scheduler due to it being stuck in some shallow local minimum or
similar. With the scheduler, one can reach lower losses, but even in this case, there is a large
possibility of no room for improvement. In this case, it would have been optimal to use
an early stopping algorithm to cancel the training after ∼ 300 epochs for the blue/orange
training and ∼ 1200 epochs for the red/green training. The reason why there are no further
Learning Rate decays after epoch ∼ 1100 is due to there being a lower bound available on
the scheduler. See [47] for a complete list of user options.

22

0 200 400 600 800 1000 1200 1400
Epochs

10 1

100

Lo
ss

Train Loss No LRSched
Val Loss No LRSched
Train Loss w. LRSched
Val Loss w. LRSched

Figure 12: Two different training runs difference between using regularization methods
(red/green) and not (orange/blue).

3.7 Autoencoders

Looking more specifically at an ANN capable of doing lossy compression, one usually talks
about an autoencoder [48]. An autoencoder is an artificial neural network capable of
mapping each input, x, to some latent space z, with dim z ≤ dimx, and then mapping the
latent space back to an output y with dim y = dimx. The mapping between the input and
the latent space is done via an encoder, and the mapping between the latent space and
the output is performed with a decoder. This is a regular, fully connected feed-forward
artificial neural network, figuratively described in Figure 13.

23

encoder decoder
latent spaceinput output

Figure 13: Illustration of an autoencoder consisting of an input and output layer. In
between the input and output, hidden layers and a latent space are present, where the
dimensionality of the latent space is, in this case, less than the input and output dimensions.
Modified from Ref. [32].

With the autoencoder being described generally, there are several types of autoencoders.
Some of these are Convolutional autoencoders (ConvAEs), Variational autoencoders (VAEs)
and Sparse autoencoders (SAEs). This thesis will use SAEs based on previous work [49].
An SAE is defined by adding a regularization term to the total cost function, and in our
case, we have chosen to use the L1 regularization term,

L1 = λ
∑
i

|wi|, (3.25)

with λ being a regularization parameter. The L1 term is seen as a term that introduces
a sparsity penalty to the training criterion. This sparsity penalty is proportional to the
absolute value of the magnitude of the weight coefficients, meaning that the effect of this
term leads to a shrinkage of the penalty coefficients towards zero. This is advantageous
when one aims to do, e.g., feature extraction because it forces weak features in the net-
work to have coefficients equal to zero. Introducing this term to the cost function has an
additional advantage, being that of making the autoencoder model smaller. This will be
important in Section 5.

3.7.1 Offline and Online compression

Autoencoder compression can be split into two fields, online and offline compression, with
the main difference between the two being generation. A generational algorithm in the
sense of compression methods would use a dataset, A, to train an autoencoder model, MA,
and then use MA to compress a different dataset, B. In this thesis, we designate this
use case, the name online compression, due to no standard nomenclature being available
for this use case. Offline compression would then be where one uses MA to exclusively
compress A and not any other dataset.

24

An example of a potential online compression case would be in the, e.g., ATLAS trigger
system. One could in theory train an autoencoder model on a large amount of very general
particle physics data and then compress new data directly at trigger level.

The use case for offline compression use case is very general. For any given dataset, one can
train a model capable of compressing it, and then only save the model and the compressed
state (plus additional auxiliary data, defined in Section 3.8) to decompress it when it fits.
Given time and resources, there is also a possibility to tailor the model and test what works
for the specific case. For this case, we want to overfit the model to the data it has been
trained on. Upon achieving this, it would mean that the model works exceptionally well
for the data it has been trained on but poorly for any other dataset. This is a significant
caveat to the general understanding of under/overfitting and is a core theoretical obstacle
to clear when trying to understand how one needs to optimize the training to achieve
optimal conditions for compression.

3.8 Evaluation Metrics

In order to evaluate the performance of the autoencoder for compression, two metrics are
most prominently used. These two are the residual and the response, defined as following

residual = x̂− x, (3.26)

response =
x̂− x

x
, (3.27)

with x being the original data and x̂ being the reconstructed data.

For data compression, another important metric is the compression ratio. The compression
ratio measures how much percent one has decreased/increased the original file size by.
Theoretically, the compression ratio is found as

R =
size(original)

size(compressed)
,

but for autoencoder compression, this is not the case. Since the compression is based on a
mapping via weights, the un-mapping is done in the same way. Therefore, to compress and
decompress, one needs the autoencoder’s weights which act like a key capable of telling
the encoder/decoder how to scramble/unscramble the data. One will then need a model
file that stores these weights. Additionally, we will also make a definition of auxiliary data.
Auxiliary data is all data necessary for the full decompressed output to be structurally the
same as the original. For example, if one has scaled the input data (with, e.g., MinMax),
you will also need the scaling features to perform the inverse transformation to your output
data. In total, one can summarize the actual compression ratio as

R∗ =
size(original)

size(output)
=

size(original)

size(compressed + model + auxiliary data)
.

25

One might see this as an extreme disadvantage, but for an SAE, the model size is more
or less constant compared to the input data size. For constant auxiliary data and model
sizes, Figure 14 represents well how this effect becomes negligible for large input dataset
sizes for different compression ratios.

250 500 750 1000 1250 1500 1750 2000
Input Dataset Size (MB)

2

3

4

5

6

7

8

9

10

Co
m

pr
es

sio
n

Ra
tio

Theoretical Ratio: 10x
Actual Ratio
Theoretical Ratio: 5x
Actual Ratio
Theoretical Ratio: 2x
Actual Ratio

Figure 14: Dashed lines show the theoretical compression ratios for three cases, while the
solid lines show the actual compression ratio including auxiliary data and model size.

Additionally, we will deal with many
variables, so an easy way to present dis-
tribution features is via box-and-whisker
plots, or box-plots. These are common
statistical plots used to present the fol-
lowing attributes of a distribution con-
cisely:

1. Median (second quartile)

2. 1st and 3rd quartiles

3. The Minimum and maximum the
distribution

4. Eventual outliers,

where the quartiles are separations in the
distribution with equal amounts of ob-
servations in them. The different box
shapes and how to correlate them to
the distribution shape are shown in Fig-
ure 15.

Figure 15: Figurative description of
how to correlate box-plot shapes to dis-
tributions. Q1,2,3 represents the distribu-
tion’s first, second, and third quartiles.
From Ref. [50].

One big advantage with using box-plots is that they show skewnewss very well. This is not
shown very well in other common visualization methods, such as the standard deviation.

26

4 Methodology and Implementation

During and as part of this thesis, an open-source tool named Baler [51] was developed with
the support of a Turing-Manchester Feasibility Project grant [52]. Baler’s main objective
is to create an easy-to-use, open-source platform for people to use, which provides the
fundamentals for using autoencoders as a compression tool for scientific data. Below, we
will discuss our methodological implementation of how Baler has been used for this thesis,
the motivation of data handling, different use cases, and the main model setup for the
results presented in Section 5. Attention is also directed towards Ref. [53], which presents
a short and concise description of Baler’s development stage and early preliminary results.

To compare our compression method to PCA, described in Section 2.3.3, we have used
the sklearn.decomposition.PCA function from the scikit-learn library [54], which al-
lows for a highly efficient implementation of the PCA method concerning both time and
computational resources.

4.1 The Data

For this thesis, the data used to develop this compression tool are open datasets from the
CMS collaboration released under the Creative Commons CC0 waiver [55]. The datasets
in question are presented briefly in Table 2, with them all having different features and
importance to the final result. Originally, the data is stored in .root files. These files
contain many datasets in so-called branches. One of these branches has been selected,
which contains data based on specific pre-selections, such that we only deal with jet data.

Before training, the data goes through a pre-processing step. This step is required to
ensure that the data is in the correct form, which PyTorch and Baler support. The first
step in the pre-processing is flattening the hierarchic data structure initially present to
comply with the requirements of PyTorch. Secondly, this step also allows for selection
cuts to be introduced. Selection cuts are introduced to remove potential noise from the
data or values so small that they play no role in analyses. In this thesis, cuts on mass and
transverse momentum are present, such that pT ∈ [1, 8000]GeV and m ∈ [10−3, 800]GeV.
Table 2 shows the amount of events pre and post-cuts. We also remove all variables only
containing zeroes. This is because they will not benefit the network, and reconstructing
them is trivially done without an autoencoder. Finally, the pre-processed file is saved as a
.npz file.

27

Table 2: Summary of the datasets used.

HEP1 [56] HEP2 [57]

Name JetHT primary dataset TTbarDMJets
Format AOD AODSIM

Simulated or Real Data Real Simulated
Total dataset size (.root) 3.26GB 1.95GB

Subset of dataset size (.npz) 137.6MB 31.6MB
Number of events pre-cuts 716446 494197
Number of events post-cuts 716104 493080

Structurally, the two datasets are similar, but there is one big difference. HEP1 contains
24 variables after pre-processing, while HEP2 only contains 8 variables. The variables
contained in the two datasets and a short description are present in Appendix A.1. One
thing to note regarding the data is that all data is not of the same data type. In HEP1, 9
of the 24 variables (every multiplicity variable) are integers, while the rest are floats. Due
to PyTorch needing to convert the data into tensors, it can only handle one datatype at
the time, so integers are treated as floats throughout. This is not optimal for the final
evaluation since it will introduce a big error factor. Upon reconstruction, if an integer
variable now is a float with a Gaussian profile, there will be a 50% chance of incorrectly
reconstructing this variable. Figure 16 shows the distribution of the HEP1 dataset, while
Figure 17 shows the HEP2 distributions.

Further, we scale all data using the MinMax scaling method described in Section 3.4. This
scaling is done column-wise, so for particle physics data, we get the following structure,
with n representing the event number and i the number of variables contained in the
dataset:

pT
∈[min pT ,max pT]

η
∈[min η,max η]

ϕ
∈[minϕ,maxϕ]

m
∈[minm,maxm]

· · · i
∈[min i,max i]

pT0 η0 ϕ0 m0 · · · i0
pT1 η1 ϕ1 m1 · · · i1
...

...
...

...
. . .

...
pTn ηn ϕn mn · · · in

→
MinMax

pT
∈[0,1]

η
∈[0,1]

ϕ
∈[0,1]

m
∈[0,1]

. . . i
∈[0,1]

pT 0 η0 ϕ0 m0 · · · i0
pT 1 η1 ϕ1 m1 · · · i1
...

...
...

...
. . .

...

pT n ηn ϕn mn · · · in

︸ ︷︷ ︸

Normalized data

+

min pT max pT
min η max η
minϕ maxϕ
minm maxm

...
...

min i max i

︸ ︷︷ ︸
For reverse transformation

28

Since this normalization is a scaling transformation that shifts the data to lie in another
range, the shape of the distribution before and after normalization will be identical. This
can be seen in Appendix A.2.

As stated, the four-momentum is the most crucial part of the datasets. In reality, this
quantity will likely be left alone to avoid poor reconstructions of these variables, but for
this thesis, the entire dataset will be compressed as an example.

Lastly, one thing to note in Figure 17 is that the jet mass distribution prominently shows
two peaks at ∼ 82GeV and ∼ 170GeV. These two are the W± and top quark mass peaks,
respectively. Since the data we are investigating are single jets and not di-jets, obtaining
the masses might not be trivially understood. Briefly, the data utilizes the four-momentum
invariant mass to obtain well-defined expectations for the decays. For this to be reliable,
one uses that the mass of a hadronic decay should correspond to the mass of the parent
particle, and one also assumes that the complete decay is contained in the jet [58].

To understand how well the compressed data reproduces irregular shapes, such as peaks,
an analysis of the W± and top-quark mass peaks will be performed.

29

0 250 500 750 10001250
100

102

104

Co
un

ts

pt_

4 2 0 2 4
100

102

104

Co
un

ts

eta_

2 0 2
100

102

104

Co
un

ts

phi_

0 50 100 150 200 250
100

102

104

Co
un

ts

mass_

0.00 0.25 0.50 0.75 1.00 1.25
100

102

104

Co
un

ts

mJetArea

0 500 1000 1500 2000
100

102

104
Co

un
ts

mChargedHadronEnergy

0 1000 2000 3000
100

102

104

Co
un

ts

mNeutralHadronEnergy

0 500 1000 1500 2000
100

102

104

Co
un

ts

mPhotonEnergy

0 200 400 600 8001000
100

102

104

106

Co
un

ts

mElectronEnergy

0 100 200 300
100

102

104

Co
un

ts

mMuonEnergy

0 2500 5000 750010000
100

102

104

Co
un

ts

mHFHadronEnergy

0 200 400 600
100

102

104

Co
un

ts

mHFEMEnergy

0 25 50 75 100 125
100

102

104

Co
un

ts

mChargedHadronMultiplicity

0.0 2.5 5.0 7.5 10.0 12.5
100

102

104

Co
un

ts

mNeutralHadronMultiplicity

0 20 40 60
100

102

104
Co

un
ts

mPhotonMultiplicity

0 1 2 3
100

102

104

Co
un

ts

mElectronMultiplicity

0 1 2 3 4
100

102

104

Co
un

ts

mMuonMultiplicity

0 5 10 15 20 25
100

102

104

Co
un

ts

mHFHadronMultiplicity

0 5 10 15
100

102

104

Co
un

ts

mHFEMMultiplicity

0 200 400 600 8001000
100

102

104

106

Co
un

ts

mChargedEmEnergy

0 100 200 300
100

102

104

Co
un

ts

mChargedMuEnergy

0 500 1000 1500 2000
100

102

104

Co
un

ts

mNeutralEmEnergy

0 25 50 75 100 125
100

102

104

Co
un

ts

mChargedMultiplicity

0 20 40 60
100

102

104
Co

un
ts

mNeutralMultiplicity

Figure 16: Distributions of all 24 variables in the HEP1 dataset.

30

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

Pt

6 4 2 0 2 4 6
100

101

102

103

104

Co
un

ts

Eta

3 2 1 0 1 2 3
100

101

102

103

Co
un

ts

Phi

0 50 100 150 200 250 300
100

101

102

103

104

105

Co
un

ts

M

0 500 1000 1500 2000 2500 3000 3500
100

101

102

103

104

105

Co
un

ts

m_EmEnergy

0 500 1000 1500 2000 2500 3000 3500 4000
100

101

102

103

104

105
Co

un
ts

m_HadEnergy

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

m_InvisibleEnergy

0 500 1000 1500 2000 2500
100

101

102

103

104

105

Co
un

ts

m_AuxiliaryEnergy

Figure 17: Distributions of all 8 variables in the HEP2 dataset.

4.2 Model & hyperparameter selection

Based on previous studies [43, 44, 49, 59–61], a model architecture that provides good
results for four-momentum compression, and selective compression for higher dimensions
have been established. Together with this, a set of base model parameters was also decided
upon, which are:

1. Batch Size: 512 2. Learning Rate (γ): 10−3 3. Reg. Parameter (λ): 10−3

4. Early Stopping Parameter: 100 5. LR Scheduler Parameter: 50

The model architecture used throughout is

x− 200− 100− 50− z − 50− 100− 200− x,

31

with x ∈ {8, 24} and z ∈ {2, 4, 5, 15} such that R ∈ {1.6, 4, 6}. These values are motivated
in Section 5.1. For every node, the LeakyReLU activation function (Equation 3.14) has
been chosen and will be used throughout the thesis.

We will also consider two different loss functions, namely:

L1 = MSE SUM+ L1, (4.28)

L2 = MSE SUM+ EMD+ L1, (4.29)

where MSE SUM is a modification of Eq. 3.17. This modification is motivated by an edge
case. Suppose one have Ŷ = {1, 0, 0, 0, 1} and Y = {0, 0, 0, 0, 0}, one then gets an MSE
value of 0.4. This is a relatively low loss despite two of five values being reconstructed
100% incorrectly. To solve this, we can remove the 1/m scaling to get an MSE of 0.8.
Removing this factor penalizes the training more, but the final model should show better
reconstructions, albeit with the loss converging to a higher number. Hence, we define
MSE SUM as

MSE SUM =
1

n

m∑
j=1

n∑
i=1

(
Yi − Ŷi

)2
j
.

As discussed previously, we have clarified that there are two types of autoencoder compres-
sion; online and offline. For the results, we will perform offline compression. Recalling this,
we will train a model MA to exclusively compress dataset A, and not any other dataset.
We will exclude the standard train-test split to no introduce any generation in this, as
mentioned in Section 3.5.

4.3 Baler workflow

Throughout this thesis, and thereby Baler, the PyTorch [46] library made for machine
learning and neural networks in Python was used in junction with NumPy [62] and SciPy [37].

Baler has been developed as a tool to support file formats that are commonly used, namely
NumPy arrays. There are several reasons for this, but the main reasons are that scientists
across many different fields know how to handle NumPy array structures, both in the sense
of how to convert data into that format, but also how to handle the format; in the case
of the dataset outliving the NumPy library, reverse engineering the format will be a simple
task; and finally, PyTorch requires the conversion to tensors, so a data conversion is needed
in some stage no matter what.

Furthermore, all necessary ML steps need to be outlined and easily accessed to create a
user-friendly tool for ML. For this to be the case, a Baler flowchart has been created, visible
in Figure 18, which clearly outlines the steps available for the product we have created.

32

Train DecompressCompress
Training

parameters Input data

Training
parameters

Baler: Training mode

Trained
model

Train
autoencoder

Baler: Compression mode

Input data

Check
response

Bad
response

Good
response

Compare
input/output

Save model
Change
training

parameters

Parameterise
autoencoder

Use autoencoder
to compress input

data

Save compressed
data and trained

model

Trained
model

Baler: Decompression mode

Compressed
data

Parameterise
autoencoder

Use autoencoder
to decompress

compressed data

Save
decompressed

data

Figure 18: A flowchart showcasing the different steps available in the Baler tool. The
three steps are necessary for every form of autoencoder compression.

To explain the flowchart further, the steps can briefly be summarized:

1. Training: During training, the network trains on the already pre-processed user-
inputted dataset, which is due to be compressed. This process is the most time-
consuming step, as it demands the encoder and decoder to be trained on either the
whole dataset or a set of if, depending on whether one aims to do online or offline
compression.

After training, one can quickly compare the input and output to see if the response is
within the frame of what is considered to be a tolerable reconstruction distortion. If
it is, one can move on; otherwise, a tweaking of the training parameters can improve
the result.

2. Compression: The compression step is when one has obtained the trained model and
wishes to compress the original data to a smaller size. When this is done, the model
file and potential auxiliary data are all needed to decompress the compressed data.

3. Decompression: When one wishes to use the compressed dataset, all needed to do is
to decompress the now compressed dataset. This utilizes the decoder part, resulting
in a file the same size as the original one and ready for analysis.

33

4.4 Open Source

For several reasons, one could make a project open source. First, a project being open
source means that the code necessary to reproduce a product from the ground up is entirely
available to the public. Open-sourcing projects can be a potent tool because it gives
people a much more accessible platform to adopt and contribute to a project, which can
significantly impact project improvement. Apart from this, an essential feature of an open-
source project is transparency. In the field of science, this is especially important because
being able to control fellow peers’ work by reproducing results and ensuring that the results
have not been modified to look good plays a major role in the scientific context of trust.

In reality, it is straightforward to open source a software project, but if one wants to create
an excellent open-source project, much work needs to be done. This has been further
investigated in a Master’s thesis done in parallel and part-wise in junction with this thesis
by Fritjof Bengtsson at Lunds Tekniska Högskola (LTH) (not yet published), which
goes into much greater detail concerning this subject, but here I will outline some essential
points beyond having the code fully public.

First of all, every open-source project needs to have a license. This license guarantees that
others know how to modify, copy, contribute, and use the project without any surprise
repercussions or potential legal issues. There are several popular licenses to choose from,
with different restrictions on details concerning contributions, copies, and modifications.
Some of the most popular licenses are Apache 2.0, MIT, GPL and CC-BY-4.0.

Secondly, open-sourced software needs clear information regarding how one proceeds to
use the software and how contributions will be formed. This can be done in the form of
a README file, which carefully explains and guides the user through the steps of how to
use the software, such as introducing the necessary commands needed to run the software
and even how to install the required prerequisites on different operative systems. Forming
a guideline for contributions does not have an apparent spot in the README, but a good
open-source project shall have a separate contributions guidelines document for this. This
document should have the necessary information to make suggesting a new feature or
reporting a bug pleasant and equal to everyone who wants to contribute with a suggestion.

Finally, a code of conduct has to be established. This sets ground rules for the behavior
of the participants and contributors and helps to build a pleasant community around the
project. In some regards, this is the most important part because if one has a large
community, the standards concerning how to behave and improve collaborations between
users will most likely correlate to how much the project develops.

Making software open source is easiest done on a platform like GitHub [63]. GitHub is
a platform that allows code to be developed and hosted on an online platform with easy
access to user input. However, although GitHub yields a simple way to fetch code to a local
machine, it does not generate a way for local machines to ensure that the specific packages
necessary for particular code to run are, e.g., the same versions. This can be crucial for

34

software to run correctly and can be solved by using, e.g., Docker [64] or Poetry [65].
Both software packaging programs are quickly introduced in a software project, allowing
package versions to be consistent no matter where or when one uses software locally.

5 Results

To begin with, compression ratios have been investigated, and it has been determined
how much Baler needs to compress the given dataset to outperform methods such as
gzip. Secondly, a study on what loss function performs the best is presented. Finally,
reconstructions and fits of two peaks were then performed from the HEP2 dataset to tell
us how well the autoencoder can reconstruct unique features.

We then discuss offline compression, followed by a brief discussion of online compression,
and finalize the section with a short preview of an application in a different field of physics,
Computational Fluid Dynamics (CFD), together with results regarding the open-sourcing
of the project.

All results presented below have been produced using Baler v.1.0.0 [51].

5.1 Compression Ratios

Since we need to convert our input data into NumPy arrays, thus becoming .npz files, a
fair compression method to compare to would be gzip since it is commonly available. By
zipping the files HEP1 and HEP2 files, go from

HEP1 : size(.npz) = 137.5MB→ size(.zip) = 29.2MB =⇒ R = 4.7,

HEP2 : size(.npz) = 31.6MB → size(.zip) = 14MB =⇒ R = 2.3.

To have an advantage over gzip, we aim to compress HEP1 with R = 6 and HEP2 with
R = 4. These are also the compression ratios that we will use for the PCA method.

Furthermore, as discussed in Section 3.8, the difference between R and R∗ is negligible
for HEP data. This can be motivated by looking at the size of the auxiliary data. For
HEP data, both HEP1 and HEP2, the model size does not go above 550KB. Counting all
auxiliary data, which includes, e.g., normalization features, headers, and even all values
for the loss plots, the auxiliary file size does not reach past 600KB. Previous studies show
that a compression ratio of R = 1.6 has given good performance for multi-variable HEP
datasets, so this compression ratio will also be looked at and used as a baseline compression
ratio. Here on forth, the theoretical compression ratios will be used in plots and tables.
Taking all of this into account, we get the following differences

RHEP2 = 4→ R∗ = 3.72, RHEP1 = 6→ R∗ = 5.85,

RHEP2 = 1.6→ R∗ = 1.55 RHEP1 = 1.6→ R∗ = 1.57

35

5.2 Determination of Loss Function & Training times

First of all, the two loss functions L1 and L2 has been investigated as defined in Equa-
tions 4.28 & 4.29. After initial training of 1000 epochs with the model parameters defined
in Section 4.2, Figure 19 presents the loss plots obtained with R = 1.6.

0 200 400 600 800 1000
Epochs

10 5

10 4

10 3

10 2

10 1

100

101

Lo
ss

MSE_SUM + L1 (HEP1)
MSE_SUM + EMD + L1 (HEP1)
MSE_SUM + L1 (HEP2)
MSE_SUM + EMD + L1 (HEP2)

Figure 19: Training loss for two different loss functions using a Learning Rate Scheduler.

In Appendix B.1, the loss plots for the HEP1 and HEP2 at R = 4 and R = 6 respectively
are presented, for both L1 and L2. For the respective cases, the final loss values reached
are shown in Table 3.

Table 3: Final loss values for three compression ratios using two different loss functions.

Loss Function L1 = MSE SUM + L1 L2 = MSE SUM + EMD + L1

Comp. Ratio 1.6 4 6 1.6 4 6
Min. Loss HEP1 1.24× 10−5 - 2.36× 10−2 2.99× 10−2 - 1.23
Min. Loss HEP2 6.34× 10−3 1.35× 10−1 - 5.62× 10−1 1.35× 10−1 -

The training was done on the AURORA cluster hosted by LUNARC [66] at Lund Univer-
sity. On the cluster, the nodes are running CentOS 7.2 x86 64 and consist of 2 Intel Xeon
E5-2650 v3 (2.3GHz, 10-core) with 64GB of memory (3.2GB/core). PyTorchs CUDA im-
plementation also allows for training on GPUs, and this has been utilized on the AURORA
cluster with NVIDIA TESLA K80 GPUs. Most of the training was done on the GPU clus-
ters due to the decreased training times, with Table 4 summarizing and comparing the
training lengths. In this table, we also include the training of a CFD dataset, which will
be discussed in Section 5.6.

36

Table 4: Summary of different training runs with different datasets and epochs on either
a CPU or GPU cluster. All training has been performed on the AURORA cluster hosted
by LUNARC at Lund University.

Dataset Epochs
Training Time

CPU GPU

HEP1 1000 10h 10min 10s 03h 01min 04s
HEP2 1000 06h 36min 40s 01h 35min 24s
CFD 2000 03h 35min 8min 54s

5.3 Balers performance at different compression ratios

Figure 20 presents the four-vector variable histograms plotted before compression and three
cases after compression. After PCA, AE using L1 and AE using L2, all for R = 1.6. In
Appendix B.2, all reconstructed variable distributions for different compression ratios are
present. PCA will be discussed more in Section 5.4.

Figure 21a compares the performance of Baler’s compression of the HEP1 dataset at R =
1.6 and R = 6. For HEP2, a comparison between R = 1.6 and R = 4 is shown in
Figure 21b. These plots are for the L1 loss function, and the corresponding plots for L2

are shown in Figure 22.

There are no outliers shown in the box-plots. They will be dealt with in Section 5.5.

For all plots below, the boxes extend between the first and third quartiles of the distribu-
tion, and the whiskers are located at Q1−1.5(Q3−Q1) and Q3+1.5(Q3−Q1) respectively.
The orange line displays the median, while the green line indicates the mean. The reason
for the energy variables mostly being shown as residuals is that they can have a much more
dynamic range than the rest.

0 200 400 600 800 1000 1200
100

102

104

106

Co
un

ts

pt_ [GeV]
Before
After (PCA)
After (Baler w. 1)
After (Baler w. 2)

4 2 0 2 4
100

101

102

103

104

Co
un

ts

eta_ [arb.]

3 2 1 0 1 2 3
100

101

102

103

104

Co
un

ts

phi_ [rad.]

0 50 100 150 200 250
100

102

104

Co
un

ts

mass_ [GeV]

4-vector distributions for PCA vs Baler at R = 1.6

Figure 20: The original (blue) four-vector variable distributions, after PCA (orange),
after AE compression using L1 (green) and after L2 (red) at R = 1.6.

37

0.02 0.01 0.00 0.01 0.02
Response

pt_
eta_
phi_

mass_

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Response

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Residual

mJetArea
mChargedHadronEnergy
mNeutralHadronEnergy

mPhotonEnergy
mElectronEnergy

mMuonEnergy
mHFHadronEnergy

mHFEMEnergy
mChargedHadronMultiplicity
mNeutralHadronMultiplicity

mPhotonMultiplicity
mElectronMultiplicity

mMuonMultiplicity
mHFHadronMultiplicity

mHFEMMultiplicity
mChargedEmEnergy
mChargedMuEnergy
mNeutralEmEnergy

mChargedMultiplicity
mNeutralMultiplicity

Compression Ratio = 1.6

10 5 0 5 10
Residual

Compression Ratio = 6

(a)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Response

fPt

fEta

fPhi

fM

3 2 1 0 1 2 3
Response

20 10 0 10 20
Residual

m_EmEnergy

m_HadEnergy

m_InvisibleEnergy

m_AuxiliaryEnergy

Compression Ratio = 1.6

100 50 0 50 100
Residual

Compression Ratio = 4

(b)

Figure 21: Response distribution for the four-momentum variables and residual distribu-
tions for the other variables presented as boxplots at two compression ratios for (a) HEP1,
and (b) HEP2 after training the autoencoder model with L1.

38

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Response

pt_
eta_
phi_

mass_

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Response

1.0 0.5 0.0 0.5 1.0
Residual

mJetArea
mChargedHadronEnergy
mNeutralHadronEnergy

mPhotonEnergy
mElectronEnergy

mMuonEnergy
mHFHadronEnergy

mHFEMEnergy
mChargedHadronMultiplicity
mNeutralHadronMultiplicity

mPhotonMultiplicity
mElectronMultiplicity

mMuonMultiplicity
mHFHadronMultiplicity

mHFEMMultiplicity
mChargedEmEnergy
mChargedMuEnergy
mNeutralEmEnergy

mChargedMultiplicity
mNeutralMultiplicity

Compression Ratio = 1.6

10 5 0 5 10
Residual

Compression Ratio = 6

(a)

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Response

fPt

fEta

fPhi

fM

3 2 1 0 1 2 3
Response

10 5 0 5 10
Residual

m_EmEnergy

m_HadEnergy

m_InvisibleEnergy

m_AuxiliaryEnergy

Compression Ratio = 1.6

100 50 0 50 100
Residual

Compression Ratio = 4

(b)

Figure 22: Response distribution for the four-momentum variables and residual distribu-
tions for the other variables presented as boxplots at two compression ratios for (a) HEP1,
and (b) HEP2 after training the autoencoder model with L2.

39

5.4 Baler vs PCA

We show the comparison between Baler and PCA in a similar fashion. Figure 23a shows
a comparison between HEP1 and PCA at R = 6, while Figure 23b compares HEP2 and
PCA at R = 4.

2 1 0 1 2
Response

pt_
eta_
phi_

mass_

2 1 0 1 2
Response

20 10 0 10 20
Residual

mJetArea
mChargedHadronEnergy
mNeutralHadronEnergy

mPhotonEnergy
mElectronEnergy

mMuonEnergy
mHFHadronEnergy

mHFEMEnergy
mChargedHadronMultiplicity
mNeutralHadronMultiplicity

mPhotonMultiplicity
mElectronMultiplicity

mMuonMultiplicity
mHFHadronMultiplicity

mHFEMMultiplicity
mChargedEmEnergy
mChargedMuEnergy
mNeutralEmEnergy

mChargedMultiplicity
mNeutralMultiplicity

Baler at R = 6

20 10 0 10 20
Residual

PCA at R = 6

(a)

4 3 2 1 0 1 2 3 4
Response

Pt

Eta

Phi

M

4 3 2 1 0 1 2 3 4
Response

150 100 50 0 50 100 150
Residual

m_EmEnergy

m_HadEnergy

m_InvisibleEnergy

m_AuxiliaryEnergy

Baler at R = 4

150 100 50 0 50 100 150
Residual

PCA at R = 4

(b)

Figure 23: Response distribution for the four-momentum variables and residual distribu-
tions for the other variables presented after Baler compression (left) and PCA (right) for
(a) HEP1 and (b) HEP2.

40

5.4.1 Reconstruction of peaks

Figure 24 shows a reconstruction of the two mass peaks seen in Figure 17 at R = 1.6, while
Figure 25 shows it at R = 4. This has been done by fitting a Gaussian to the corresponding
locations and extracting the local maximum to obtain a mass value. The full reconstructed
distributions can be seen in Appendix B.2. Obtained from [67], the actual mass values are
6

m(W±) = 80.377± 0.012GeV m(t) = 172.69± 0.30GeV.

Furthermore, the analysis of the peaks has been made with L1, motivated by the shapes
of the reconstructed peaks in Appendix B.2. The physical interpretations of the fits are
further discussed in Section 6.

100

101

102

Co
un

ts

Mass : 81.45 ± 0.16
Width : -2.29 ± 0.17

Before Fit

Mass : 173.11 ± 0.69
Width : 2.69 ± 0.7

Before Fit

100

101

102

Mass : 81.79 ± 0.23
Width : 3.09 ± 0.25

After Fit

Mass : 172.69 ± 0.84
Width : -2.39 ± 0.85

After Fit

65 70 75 80 85 90 95
100

101

102 Mass : No Peak Found
Width : No Width Found

PCA Fit

120 140 160 180 200 220
Mass [GeV]

Mass : No Peak Found
Width : No Width Found

PCA Fit

Original Distributions

Reconstructed Distributions (Baler) for R = 1.6

Reconstructed Distributions (PCA) for R = 1.6

Figure 24: Fitted Gaussians to the W± (left) and top-quark (right) mass peaks for Baler
versus PCA after compression with R = 1.6.

6The top mass is derived from direct measurements. Cross-section measurements yield a mass of
m(t) ≈ 162.5+2.1

−1.5GeV [67]

41

100

101

102

Co
un

ts

Mass : 81.45 ± 0.16
Width : -2.29 ± 0.17

Before Fit

Mass : 173.11 ± 0.69
Width : 2.69 ± 0.7

Before Fit

100

101

102

Mass : 79.41 ± 0.64
Width : 6.63 ± 0.85

After Fit

Mass : 162.89 ± 0.9
Width : 4.35 ± 0.93

After Fit

65 70 75 80 85 90 95
100

101

102

Mass : No Peak Found
Width : No Width Found

PCA Fit

120 140 160 180 200 220
Mass [GeV]

Mass : No Peak Found
Width : No Width Found

PCA Fit

Original Distributions

Reconstructed Distributions (Baler) for R = 4

Reconstructed Distributions (PCA) for R = 4

Figure 25: Fitted Gaussians to the W± (left) and top-quark (right) mass peaks for Baler
versus PCA after compression with R = 4.

5.5 Outliers

For both the residual and response distributions, a common theme presents itself. This
theme is that all distributions are extremely broad, leading to many outliers being present.
Dealing with outliers has not been a focus in this thesis, so we will present the number of
outliers per distribution variable and then discuss ways to deal with outliers in Section 6.

Outliers are defined as values that lie outside of the whiskers, i.e., outside of

[Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)].

We present the number of outliers for R = 1.6 using L1 in Tables 5 & 6. For all outliers
using L2 and R = 6 and R = 4, see Appendix B.3.

42

Table 5: The number of outliers in the residual and response distributions for all variables
in the HEP1 dataset after compression with R = 1.6 using L1. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 1.6)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 70040 9.781 64565 9.016
η 81531 11.385 10280 1.436
ϕ 92014 12.849 25024 3.494

mass 88691 12.385 57699 8.057
mJetArea 37273 5.205 24882 3.475

mChargedHadronEnergy 0 0 70727 9.877
mNeutralHadronEnergy 0 0 41250 5.76

mPhotonEnergy 269723 37.665 22750 3.177
mElectronEnergy 0 0 15244 2.129
mMuonEnergy 0 0 11642 1.626

mHFHadronEnergy 0 0 66372 9.268
mHFEMEnergy 0 0 19627 2.741

mChargedHadronMultiplicity 0 0 5 0.001
mNeutralHadronMultiplicity 0 0 0 0

mPhotonMultiplicity 0 0 0 0
mElectronMultiplicity 0 0 0 0
mMuonMultiplicity 0 0 0 0

mHFHadronMultiplicity 0 0 0 0
mHFEMMultiplicity 0 0 1 0.0
mChargedEmEnergy 0 0 15288 2.135
mChargedMuEnergy 0 0 11659 1.628
mNeutralEmEnergy 97913 13.673 45157 6.306
mChargedMultiplicity 0 0 5 0.001
mNeutralMultiplicity 0 0 0 0

Table 6: The number of outliers in the residual and response distributions for all variables
in the HEP2 dataset after compression with R = 1.6 using L1. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 1.6)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 34537 7.004 51541 10.453
η 77681 15.754 57474 11.656
ϕ 80037 16.232 52775 10.703

mass 78890 15.999 75618 15.336
m EmEnergy 74160 15.04 58028 11.768
m HadEnergy 64795 13.141 54272 11.007

m InvisibleEnergy 0 0 53806 10.912
m AuxiliaryEnergy 0 0 81402 16.509

43

5.6 Applications in other fields

As previously stated, Baler’s performance has also been tested in different scientific fields.
Computational Fluid Dynamics (CFD) is the other field used as a testing point. This field
relies heavily on simulations, and the file sizes can quickly get out of hand. With the help of
a Convolutional Autoencoder, a simple simulation of air flowing over a wall-mounted cube
has been compressed and decompressed. To make this case as general and straightforward
as possible, we have only considered a slice of a 3D simulation, making the simulation
compressed essentially a figure of 2 dimensions.

In Figure 26, the convolutional model has been trained to compress the original file with
R = 88 and has resulted in a maximum/minimum velocity difference between the original
and reconstruction of approximately ±4× 10−5mm/s, as seen in Figure 26c.

0.4 0.8 1.2 1.6 2.0
x [m]

0.4

0.8

1.2

1.6

2.0

y
[m

]

Before

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x-
ve

lo
cit

y
[m

m
/s

]

(a)

0.4 0.8 1.2 1.6 2.0
x [m]

0.4

0.8

1.2

1.6

2.0

y
[m

]

After

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x-
ve

lo
cit

y
[m

m
/s

]

(b)

0.4 0.8 1.2 1.6 2.0
x [m]

0.4

0.8

1.2

1.6

2.0

y
[m

]

Residual = Before - After

3

2

1

0

1

2

3

x-
ve

lo
cit

y
[m

m
/s

]

1e 5

(c)

Figure 26: A Computational Fluid Dynamics simulation showing x-component of air
velocity before compression (a), after decompression (b), and the difference between the
two (c).

This compression ratio and file size reduction are considered adequate for CFD, but this
method has one major drawback. Convolutional models are much larger than SAE models,
so although this file has been compressed with R = 88, R∗ ≪ R, meaning that the model
size is much greater than the input file size.

Despite this, compression of CFD files has brought enlightenment to a different feature,
namely that of comparison to gzip. From our previous results, gzip is currently beating
Baler’s compression if we want the evaluation metric to lie within what is considered
acceptable. However, this is not true for CFD data. Using gzip on the CFD dataset from
Figure 26, a compression ratio of R = 2.2 is achieved. This is significantly worse than what
Baler can compress, but again, concerning the auxiliary files (mainly the Convolutional
autoencoder model), we obtain R∗ < 1. The reason for this is discussed in Section 6.

44

6 Discussion

To begin with, it is worth discussing the training times and how computationally heavy
the process of training an autoencoder is. Referring back to Table 4, there is an immediate
difference between training on a CPU versus a GPU. Today, a modern GPU is not uncom-
mon, so training a neural network on a GPU is not unheard of. However, matching CUDA
with the correct hardware can be tricky. CUDA is software developed by NVIDIA, with
no availability to run on other GPU types, such as AMD or M1. This limits CUDA and
GPU training to be mostly viable on Windows machines, which commonly is not the most
compatible with UNIX-developed open software. This issue can however be solved with
an implementation via Docker and Apptainer/Singularity. Given the above points, a
cluster is the best place to train any neural network. A GPU or CPU cluster is a highly
viable solution, allowing for ”non-local” training.

Discussing the compression ratios and comparing to gzip, we notice that Balers perfor-
mance with R = 1.6 is significantly better than with R = 6 for HEP1, and the same goes
for HEP2 with R = 4. The reason for this is believed to be the number of repeated values
in HEP1 and HEP2, making gzip’s compression much more effective. We can see this
effect further from two perspectives. The first one is that applying gzip on an already
compressed file barely reduces the file size, and secondly, CFD Baler outperforms gzip. By
investigating the compressed files, one finds no duplicate values, which is an effect of the
autoencoder’s ability to maximize information stored in a selected space. Looking at the
CFD dataset, it, first of all, contains a lot fewer values than both HEP files and rarely any
duplicates. This drastically decreases gzip’s effectiveness, making an autoencoder much
more viable for compression. Despite this, we also highlight the downside of using Convo-
lutional Autoencoders: the model sizes are much larger. This is an effect highlighted when
compressing small datasets. However, a positive is that the model size should not increase
linearly with the input file size due to the fixed amount of weights, making this problem
relatively easily solved.

Moving on to Baler’s performance compared to PCA, we first see some similarities. For
HEP1 with R = 6 in Figure 23a, apart from the integer reconstruction and the two an-
gular distributions, none of the reconstructions are acceptable. This effect is much more
prominent in PCA, where both η and ϕ are entirely incorrectly reconstructed, but both
mass and pT are better rebuilt than compared to Baler. Looking at Figure 23b, we see that
PCA performs much better in every Baler variable, except for the two angular distribu-
tions. We also direct attention to Appendix B.2, where a full view of the reconstructions is
present. One of the main points worth noting is that for R = 1.6, all variables are overall
reconstructed well. However, what is especially notable for PCA in HEP2 is that R = 1.6
compresses eight columns down to five, and by looking at Figure 31, we see five variables
reconstructed well and three severely flawed reconstructed variables. What happens here
is that PCA correctly approximates the five variables in the latent space using the iden-
tity matrix, making the reconstruction near-perfect. This feature does not hold up for

45

compression to lower dimensions, as seen in the rest of the figures in Appendix B.2.

Continuing the Baler versus PCA discussion, the mass peak fits in Figure 24 and 25 tell the
same story. PCA has a hard time reconstructing irregular shapes in distributions, while
autoencoder compression can reconstruct irregularities for smaller compression ratios.

The many zero values available in the distributions are a common theme that presents
itself and is a critical factor to why the four-momentum is presented as responses. For
close to every variable, the number of jets with a variable equal to zero is often one or two
orders of magnitude larger than the rest of the values. This leads to very large response
values which shifts the variable means, and can be seen most prominently for the mass
variable in Figures 21, 22 and 23.

Another feature that PCA is considerably worse at is reconstructing irregularities. It is
clear from both the mass distributions in Section B.2 and the fits in Figures 24 25 that
autoencoder compression can reconstruct irregular shapes much better than PCA. It is also
worth noting that the masses obtained from the fits originally were inaccurate. However,
this should not affect the comparison since we aim to reconstruct the values of the original
distribution, incorrect or not. We can also not safely draw any conclusions regarding
the W± peak for Baler’s R = 4 reconstruction in Figure 25, as it visually looks to be
non-existent. Finally, the case might be that of R = 4 being too large of a compression
ratio for Baler to accurately reconstruct such minor irregularities as these peaks are (very
few events make up these peaks), but nonetheless, they need to be reconstructed well for
particle physics applications.

Furthermore, discussing the outliers, any statistical data analyses will be skewed due to
the large number of values in each distribution and overall asymmetrical distributions. In
practice, a very selective part of the distributions is looked at, and most of the distribution
is neglected. However, removing the majority of the data not generally analyzed is not an
option since different analyses use different parts of the distributions. Since we have only
considered the cases of compressing, to some extent, general HEP data, we have decided
not to look further into how outliers are treated but notice them as existent and illuminate
that the box-plot distributions miss some information. The plots in Appendix B.2 are
referred to for a more qualitative view of the reconstruction results.

Previously the difference between offline and online compression was outlined. However, we
have not discussed the online case further as we see it as an extension of offline compression,
and the differences in architecture setup and training goals differ substantially. With this
in mind, testing online compression is easy, as one only has to compress another dataset
with the exact input dimensions. This has been tested, and the results are far from what
is considered sufficiently good, but this is not unexpected and more studies are needed.

From a neural network point of view, optimal reconstruction conditions would theoretically
take place if no data batching took place. As discussed in the theory section, to decrease
training time, the data is batched, and the network is trained batch-wise. Training the
network on the full dataset every iteration would be optimal since the network would see

46

the entire dataset simultaneously, but this was considered too computationally heavy for
our computing nodes on the cluster.

7 Conclusions & Outlook

7.1 Conclusions

In conclusion, an open-source tool has been developed that is capable of training autoen-
coders to compress and decompress data from two fields; HEP data containing individual
jets and CFD toy data displaying the flow velocity of a fluid over a stationary cube. During
this thesis, the HEP case has been in focus. Two HEP datasets with different numbers
of variables and dissimilar features have been compressed and decompressed. One of the
datasets contained 24 variables and was compressed to a four or 15-dimensional latent
space. The other dataset consisted of eight variables and was compressed to five or two
latent dimensions. These values were motivated by how much gzip could compress the
datasets, and further, the compression performance was compared to PCA.

The reconstruction performance was evaluated by looking at the difference and relative
difference between the original and reconstructed distributions on an event level and a
distributional level. In addition, the loss values of the trained autoencoder models were
considered.

At a compression ratio of 1.6, after approximately three hours of training on a GPU, we
successfully trained an autoencoder model to achieve reconstructed distributions considered
sufficiently good for HEP data. Furthermore, the auxiliary data needed is determined to
be negligible. This compression ratio is, however, not enough to beat, e.g., gzip, but the
results for a compression ratio capable of competing with gzip are not distant. On the
other hand, for CFD compression ratios, we beat gzip substantially, but the auxiliary data
file size issue becomes a major issue.

7.2 Outlook

Several extension studies are possible based on this work’s conclusions and findings. First,
an exploration of metrics determining whether or not different HEP datasets are appropri-
ate for autoencoder compression would be interesting. From Ref. [68], the implementation
of so-called Coefficient of Variation has been looked into. Based on the same paper, the
compression ratios achieved for datasets in diverse scientific fields have been intriguing.
Finally, the same study has implemented error-bounded compression, which is necessary
for using this tool in HEP beyond the prototype stage and ought to be studied further.

Concerning auxiliary file sizes, the HEP models are sufficiently lightweight, but further im-
provements must be made to the convolutional models to make the applications to datasets

47

of ”higher dimension” viable. Based on Ref [68], sufficiently high actual compression ratios
have been developed to compress ”higher dimensional data,” such as images.

Online compression is also a subject of future work, with plenty of potentials available
within the area.

48

References

1The ATLAS Collaboration, 3, S08003 (2008).

2A. M. M. Scaife, “Big telescope, big data: towards exascale with the square kilometre
array”, Phil. Trans. R. Soc. A. 378 (2020).

3M. Khan, X. Wu, X. Xu, and W. Dou, “Big data challenges and opportunities in the hype
of industry 4.0”, in 2017 ieee international conference on communications (icc) (2017),
pp. 1–6.

4P. Calafiura, J. Catmore, D. Costanzo, and A. Di Girolamo, ATLAS HL-LHC Computing
Conceptual Design Report, tech. rep. (CERN, Geneva, 2020).

5M. Ghosh, T. Ghosh, and M. Y. Hirose, “Poisson counts, square root transformation and
small area estimation”, Sankhya B 84, 449–471 (2022).

6CMS collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC”, Physics Letters B 716, 30–61 (2012).

7ATLAS collaboration, “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”, Physics Letters B 716, 1–29
(2012).

8Y. Kim, “Spin and statistics of elementary particles”, in Mathematical foundations of
quantum theory , edited by A. Marlow (Academic Press, 1978), pp. 347–349.

9P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13,
508–509 (1964).

10C. Burgard, Example: standard model physics, (2016) https://texample.net/tikz/

examples/model-physics/ (visited on 03/22/2021).

11F. Halzen and A. D. Martin,QUARKS AND LEPTONS: AN INTRODUCTORY COURSE
IN MODERN PARTICLE PHYSICS (1984).

12M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, Journal
of High Energy Physics 2008, 063–063 (2008).

13C. Y. Wong, Introduction to high-energy heavy ion collisions (1995), pp. 17–25.

14G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. A. Khalek, A. Abdelalim, O. Abdinov,
and R. A. et al, “Observation of a new particle in the search for the standard model higgs
boson with the ATLAS detector at the LHC”, Physics Letters B 716, 1–29 (2012).

15The ALICE Collaboration, 3, S08002 (2008).

16The CMS Collaboration, 3, S08004 (2008).

17The LHCb Collaboration, 3, S08005 (2008).

18A. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Bron-
dolin, and M. Dragicevic, “Particle-flow reconstruction and global event description with
the CMS detector”, Journal of Instrumentation 12, P10003–P10003 (2017).

49

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1109/ICC.2017.7996801
https://doi.org/10.1007/s13571-021-00269-8
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/https://doi.org/10.1016/B978-0-12-473250-6.50021-2
https://doi.org/https://doi.org/10.1016/B978-0-12-473250-6.50021-2
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://texample.net/tikz/examples/model-physics/
https://texample.net/tikz/examples/model-physics/
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/12/10/p10003

19C. Kourkoumelis and S. Vourakis, “Hypatia—an online tool for atlas event visualization”,
Physics Education 49, 21 (2014).

20The ATLAS Collaboration, Trigger and data acquisition system, [Online; accessed 08-
April-2023].

21Z. Jinlong, Atlas data aqcusition, http://cdsweb.cern.ch/record/1239011/files/
ATL-DAQ-PROC-2010-005.pdf, [Accessed 24-Apr-2023], 2010.

22W. Buttinger, “The ATLAS Level-1 Trigger System”, Journal of Physics: Conference
Series 396, 012010 (2012).

23J. Stelzer and (. behalf ofthe ATLAS collaboration), “The atlas high level trigger config-
uration and steering: experience with the first 7 tev collision data”, Journal of Physics:
Conference Series 331, 022026 (2011).

24J. Elmsheuser, C. Anastopoulos, J. Boyd, J. Catmore, H. Gray, J. A. Mcfayden, C. Meyer,
A. Sfyrla, J. Strandberg, K. Suruliz, and T. Theveneaux-Pelzer (ATLAS), “Evolution of
the ATLAS analysis model for Run-3 and prospects for HL-LHC”, (2019).

25I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal, D.
Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. G. Maline, M. Goto,
J. Iwaszkiewicz, A. Kreshuk, D. M. Segura, R. Maunder, L. Moneta, A. Naumann, E.
Offermann, V. Onuchin, S. Panacek, F. Rademakers, P. Russo, and M. Tadel, “Root
— a c++ framework for petabyte data storage, statistical analysis and visualization”,
Computer Physics Communications 180, 40 YEARS OF CPC: A celebratory issue fo-
cused on quality software for high performance, grid and novel computing architectures,
2499–2512 (2009).

26“Ieee standard for floating-point arithmetic”, IEEE Std 754-2019 (Revision of IEEE 754-
2008), 1–84 (2019).

27J.-l. Gailly, gzip: The data compression program, Apr. 2022.
28Smith, Lindsay I, A tutorial on principal components analysis (computer science technical
report no. oucs-2002-12), [Retrieved from http://hdl.handle.net/10523/7534].

29B. Shapiro and M. Shapiro, “On eigenvalues of rectangular matrices”, Proceedings of the
Steklov Institute of Mathematics 267, 248–255 (2009).

30Chen, Yaxiong, Huang, Zhangcan, Sun, Hao, Chen, Mengying, and Tan, Hua, “Lossy
image compression using pca and contourlet transform”, MATEC Web of Conferences
54, 08002 (2016).

31F. Rosenblatt, “The perceptron: a probabilistic model for information storage and orga-
nization in the brain.”, Psychological review 65 6, 386–408 (1958).

32Izaak Neutelings, Neural networks, [Online; accessed 27-February-2023; Last edited 11
September 2022], 2021.

33F. Informatik, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies”, A Field Guide to Dynamical
Recurrent Neural Networks (2003).

50

https://doi.org/10.1088/0031-9120/49/1/21
 http://cdsweb.cern.ch/record/1239011/files/ATL-DAQ-PROC-2010-005.pdf
 http://cdsweb.cern.ch/record/1239011/files/ATL-DAQ-PROC-2010-005.pdf
https://doi.org/10.1088/1742-6596/396/1/012010
https://doi.org/10.1088/1742-6596/396/1/012010
https://doi.org/10.1088/1742-6596/331/2/022026
https://doi.org/10.1088/1742-6596/331/2/022026
https://cds.cern.ch/record/2696416
https://doi.org/https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
http://hdl.handle.net/10523/7534
https://doi.org/10.1134/S0081543809040208
https://doi.org/10.1134/S0081543809040208
https://doi.org/10.1051/matecconf/20165408002
https://doi.org/10.1051/matecconf/20165408002

34L. Lu, “Dying ReLU and Initialization: Theory and Numerical Examples”, Communica-
tions in Computational Physics 28, 1671–1706 (2020).

35I. Goodfellow, Y. Bengio, and A. Courville,Deep learning, http://www.deeplearningbook.
org (MIT Press, 2016), pp. 106–111.

36C. Villani, Optimal transport - old and new, https://doi.org/10.1007/978-3-540-
71050-9 (Springer Berlin, 2009), p. 105.

37P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python”, Nature Methods 17, 261–272 (2020).

38S. Ruder, An overview of gradient descent optimization algorithms, 2016.

39M. Ohlsson and P. Edén, Introduction to Artificial Neural Networks and Deep Learning,
Lecture Notes to the course FYTN14/EXTQ40/NTF005F (2021), p. 17.

40Kurtik Pykes, Gradient descent, [Online; accessed 11-March-2023; Last edited 13 August
2020], 2020.

41A. Patel and R. K. Rama, “An overview of boltzmann machine and its special class”, 3
(2020).

42D. P. Kingma and J. Ba, Adam: a method for stochastic optimization, 2014.

43Wulff, Eric, Deep Autoencoders for Compression in High Energy Physics, eng, Student
Paper, 2020.

44Åstrand, Sten, Autoencoder Compression in High Energy Physics, eng, Student Paper,
2022.

45Wikipedia contributors, Mean squared error, [Online; accessed 28-March-2023], 2022.

46A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: an imperative
style, high-performance deep learning library, 2019.

47ReduceLROnPlateau 2014; PyTorch 2.0 documentation — pytorch.org, https://pytorch.
org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.

html, [Accessed 09-Apr-2023].

48M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural
networks”, AIChE Journal 37, 233–243 (1991).

49D. George, Deep Autoencoders for ATLAS Data Compression - George Dialektakis -
Google Summer of Code 2021 Project, version 1, Sept. 2021.

51

https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.4208/cicp.oa-2020-0165
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.13140/RG.2.2.28630.88641
https://doi.org/10.13140/RG.2.2.28630.88641
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://doi.org/10.1002/aic.690370209

50J. E. V. Ferreira, M. T. S. Pinheiro, W. R. S. dos Santos, and R. da Silva Maia, “Graphical
representation of chemical periodicity of main elements through boxplot”, https://doi.
org/10.1016/j.eq.2016.04.007 (2016).

51A. Ekman, F. Bengtsson, O. Woolland, A. Gallén, M. C. Santasmasas, P. Jawahar, C.
Doglioni, and S. Xu, Baler-collaboration/baler: v1.0.0, version v1.0.0, Apr. 2023.

52Turing-UoM Sandpit: Data Science and AI for Translational Digital Health — events.manchester.ac.uk,
https://events.manchester.ac.uk/event/event:s2m-l70ax9u5-6bblsa/turinguom-

sandpit-data-science-and-ai-for-translational-digital-health, [Accessed 24-
Apr-2023], 2022.

53F. Bengtsson, C. Doglioni, P. A. Ekman, A. Gallén, P. Jawahar, A. Orucevic-Alagic,
M. C. Santasmasas, N. Skidmore, and O. Woolland, Baler – machine learning based
compression of scientific data, 2023.

54F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python”,
Journal of Machine Learning Research 12, 2825–2830 (2011).

55Creative Commons 2014; CC0 1.0 Universal — creativecommons.org, https://creativecommons.
org/publicdomain/zero/1.0/, [Accessed 10-Apr-2023].

56CMS collaboration (2017), “JetHT primary dataset in AOD format from Run of 2012
(/JetHT/Run2012B-22Jan2013-v1/AOD). CERNOpen Data Portal.”, [Dataset: 00992A80-
DF70-E211-9872-0026189437FE.root], 10.7483/OPENDATA.CMS.KL8H.HFVH.

57CMS Collaboration (2021), “Simulated dataset TTbarDMJets EFT M-50 TuneCUETP8M1 13TeV-
madgraphMLM-pythia8 in MINIAODSIM format for 2015 collision data. CERN Open
Data Portal.”, [Dataset: 00CE5A28-41B8-E511-9700-38EAA78E2C94.root], 10.7483/
OPENDATA.CMS.FOP7.PI6B.

58F. A. Dreyer and S. Schramm, “Introduction to Jet Substructure https://indi.to/

53NSG”, in (2018).
59Kildetoft, Love, Evaluation of float-truncation based compression techniques for the AT-
LAS jet trigger, eng, Student Paper, 2021.

60Wallin, Erik, Tests of Autoencoder Compression of Trigger Jets in the ATLAS Experi-
ment, eng, Student Paper, 2020.

61H. Gupta, C. Doglioni, B. Ravina, A. Boveia, L. Heinrich, E. Wallin, and E. Wulff, Deep-
compression for High Energy Physics data - Honey Gupta - Google Summer of Code 2020
Project, Sept. 2020.

62C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy”, Nature 585, 357–362 (2020).

52

https://doi.org/https://doi.org/10.1016/j.eq.2016.04.007
https://doi.org/https://doi.org/10.1016/j.eq.2016.04.007
https://doi.org/https://doi.org/10.1016/j.eq.2016.04.007
https://doi.org/https://doi.org/10.1016/j.eq.2016.04.007
https://events.manchester.ac.uk/event/event:s2m-l70ax9u5-6bblsa/turinguom-sandpit-data-science-and-ai-for-translational-digital-health
https://events.manchester.ac.uk/event/event:s2m-l70ax9u5-6bblsa/turinguom-sandpit-data-science-and-ai-for-translational-digital-health
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.7483/OPENDATA.CMS.KL8H.HFVH
https://doi.org/10.7483/OPENDATA.CMS.KL8H.HFVH
https://doi.org/10.7483/OPENDATA.CMS.KL8H.HFVH
https://doi.org/10.7483/OPENDATA.CMS.FOP7.PI6B
https://doi.org/10.7483/OPENDATA.CMS.FOP7.PI6B
https://doi.org/10.7483/OPENDATA.CMS.FOP7.PI6B
https://doi.org/10.7483/OPENDATA.CMS.FOP7.PI6B
https://indi.to/53NSG
https://indi.to/53NSG
https://doi.org/10.1038/s41586-020-2649-2

63github, Github, https://github.com/, 2008.

64D. Merkel, “Docker: lightweight linux containers for consistent development and deploy-
ment”, Linux journal 2014, 2 (2014).

65Poetry Collaboration, Poetry - python packaging and dependency management made easy,
https://python-poetry.org/, 2018.

66Aurora — LUNARC, [Accessed: 2023-04-11], 2019.

67R. L. Workman et al. (Particle Data Group), “Review of Particle Physics”, PTEP 2022,
083C01 (2022).

68T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, “High-ratio lossy compression:
exploring the autoencoder to compress scientific data”, IEEE Transactions on Big Data
9, 22–36 (2023).

53

https://github.com/
https://python-poetry.org/
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1109/TBDATA.2021.3066151
https://doi.org/10.1109/TBDATA.2021.3066151

A Data processing and Variables

A.1 Variable Descriptions

Short description of all the variables in the two datasets together with the unit of the
variable. All variables without a footnote are only available in the HEP1 dataset.

· pT [GeV] - Jet momentum in the transverse place7

· η [arb.] - Pseudorapidity4

· ϕ [rad] - Azimuthal angle4

· m [GeV] - Total mass of the Jet4

· mJetArea [length2] - The space occupied by the Jet

· mChargedHadronEnergy [GeV] - Total amount of energy from charged hadrons

· mNeutralHadronEnergy [GeV] - Total amount of energy from neutral hadrons

· mPhotonEnergy [GeV] - Total amount of energy from photons only

· mElectronEnergy [GeV] - Total amount of energy from electrons only

· mMuonEnergy [GeV] - Total amount of energy from muons only

· mHFHadronEnergy [GeV] - Total amount of energy from high frequency hadrons

· mHFEMEnergy [GeV] - Total amount of energy from high frequency electromag-
netic processes

· mChargedHadronMultiplicity [counts] - Average number of charged hadrons pro-
duced

· mNeutralHadronMultiplicity [counts] - Average number of neutral hadrons pro-
duced

· mPhotonMultiplicity [counts] - Average number of photons produced

· mElectronMultiplicity [counts] - Average number of electrons produced

· mMuonMultiplicity [counts] - Average number of muons produced

· mHFHadronMultiplicity [counts] - Average number of High Frequency hadrons pro-
duced

7Variable available in both HEP1 & HEP2

54

· mHFEMMultiplicity [counts] - Average number of High Frequency Electromagnetic
particles produced

· mChargedEmEnergy [GeV] - Total amount of energy from charged electromagnetic
processes

· mChargedMuEnergy [GeV] - Total amount of energy from charged muons

· mNeutralEmEnergy [GeV] - Total amount of energy from Neutral electromagnetic
processes

· mChargedMultiplicity [counts] - Average number of charged particles produced

· mNeutralMultiplicity [counts] - Average number of neutral particles produced

· mInvisibleEnergy [GeV] - Total amount of energy by particles not depositing all of
its energy in the detector8

· mAuxiliaryEnergy [GeV] - Total amount of energy by particles not depositing all of
its energy in the detector5

· EmEnergy [GeV] - Total amount of energy from electromagnetic processes5

· HadEnergy [GeV] - Total amount of energy from hadronic processes5

8Variable only available in HEP2

55

A.2 Normalized distributions

Figure 27 & 28 shows both the normalzied and un-normalized variable distributions before
compression.

0 250 500 750 1000 1250
100

102

104

Co
un

ts

pt_
0.0 0.2 0.4 0.6 0.8 1.0

4 2 0 2 4
100

102

104

Co
un

ts
eta_

0.0 0.2 0.4 0.6 0.8 1.0

3 2 1 0 1 2 3
100

102

104

Co
un

ts

phi_
0.0 0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250
100

102

104

Co
un

ts

mass_
0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.25 0.50 0.75 1.00 1.25
100

102

104

Co
un

ts

mJetArea
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000
100

102

104

Co
un

ts

mChargedHadronEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 1000 2000 3000
100

102

104

Co
un

ts

mNeutralHadronEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000
100

102

104

Co
un

ts

mPhotonEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 200 400 600 800 1000
100

102

104

106

Co
un

ts

mElectronEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 100 200 300
100

102

104

Co
un

ts

mMuonEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 2000 4000 6000 8000 10000
100

102

104

Co
un

ts
mHFHadronEnergy

0.0 0.2 0.4 0.6 0.8 1.0

0 200 400 600
100

102

104

Co
un

ts

mHFEMEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 25 50 75 100 125
100

102

104

Co
un

ts

mChargedHadronMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 2 4 6 8 10 12
100

102

104

Co
un

ts

mNeutralHadronMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 10 20 30 40 50 60
100

102

104

Co
un

ts

mPhotonMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
100

102

104

Co
un

ts

mElectronMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4
100

102

104

Co
un

ts

mMuonMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 5 10 15 20 25
100

102

104

Co
un

ts

mHFHadronMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 5 10 15
100

102

104

Co
un

ts

mHFEMMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 200 400 600 800 1000
100

102

104

106

Co
un

ts
mChargedEmEnergy

0.0 0.2 0.4 0.6 0.8 1.0

0 100 200 300
100

102

104

Co
un

ts

mChargedMuEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000
100

102

104

Co
un

ts

mNeutralEmEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 25 50 75 100 125
100

102

104

Co
un

ts

mChargedMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

0 10 20 30 40 50 60
100

102

104

Co
un

ts

mNeutralMultiplicity
0.0 0.2 0.4 0.6 0.8 1.0

Figure 27: Distributions of all 24 variables in the HEP1 dataset, both un-normalzied
(blue, bottom scale) and normalized (orange, top scale).

56

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

Pt
0.0 0.2 0.4 0.6 0.8 1.0

6 4 2 0 2 4 6
100

101

102

103

104

Co
un

ts

Eta
0.0 0.2 0.4 0.6 0.8 1.0

3 2 1 0 1 2 3
100

101

102

103

Co
un

ts

Phi
0.0 0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250 300
100

101

102

103

104

105

Co
un

ts

M
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000 2500 3000 3500
100

101

102

103

104

105

Co
un

ts

m_EmEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000 2500 3000 3500 4000
100

101

102

103

104

105
Co

un
ts

m_HadEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

m_InvisibleEnergy
0.0 0.2 0.4 0.6 0.8 1.0

0 500 1000 1500 2000 2500
100

101

102

103

104

105

Co
un

ts

m_AuxiliaryEnergy
0.0 0.2 0.4 0.6 0.8 1.0

Figure 28: Distributions of all 8 variables in the HEP2 dataset, both un-normalzied (blue,
bottom scale) and normalized (orange, top scale).

57

B Complimentary Results

B.1 Loss Plots

Here, further loss plots are presented at different compression ratios. Figure 29 shows the
loss plots for HEP1 and HEP2 at R = 6 and R = 4 respectively. For both HEP2 training
runs, early stopping canceled the training.

0 200 400 600 800 1000
Epochs

10 1

100

101

Lo
ss

MSE_SUM + L1 (HEP1)
MSE_SUM + EMD + L1 (HEP1)
MSE_SUM + L1 (HEP2)
MSE_SUM + EMD + L1 (HEP2)

Figure 29: Loss plots for two different loss functions and two different datasets after
training to compress HEP1 to R = 6 and HEP2 to R = 4.

58

B.2 Reconstructed Distributions

In Figure 30 and Figure 31, a comparison between all HEP1 reconstructions for R = 1.6
is compared to the original distribution. Figure 32 and Figure 33 similarly present all
reconstructions but for HEP1 and HEP2 at R = 6 and R = 4 respectively..

0 250 500 750 1000 1250
100

102

104

106

Co
un

ts

pt_ [GeV]

4 2 0 2 4
100

102

104

Co
un

ts

eta_ [arb.]

3 2 1 0 1 2 3
100

102

104

Co
un

ts

phi_ [rad.]

0 50 100 150 200 250
100

102

104

Co
un

ts

mass_ [GeV]

0 1 2 3 4
100

102

104

Co
un

ts

mJetArea [Area]

0 500 1000 1500 2000
100

102

104

106

Co
un

ts

mChargedHadronEnergy [GeV]

0 1000 2000 3000
100

102

104

106

Co
un

ts

mNeutralHadronEnergy [GeV]

0 500 1000 1500 2000
100

102

104

106

Co
un

ts

mPhotonEnergy [GeV]

0 200 400 600 800 1000
100

102

104

106

Co
un

ts

mElectronEnergy [GeV]

0 100 200 300
100

102

104

106

Co
un

ts

mMuonEnergy [GeV]

0 2000 4000 6000 8000 10000
100

102

104

106

Co
un

ts

mHFHadronEnergy [GeV]

0 200 400 600
100

102

104

Co
un

ts

mHFEMEnergy [GeV]

0 25 50 75 100 125
100

102

104

Co
un

ts

mChargedHadronMultiplicity [#]

0 20 40 60
100

102

104

Co
un

ts

mNeutralHadronMultiplicity [#]

0 20 40 60
100

102

104

Co
un

ts

mPhotonMultiplicity [#]

0 1 2 3 4 5
100

102

104

106

Co
un

ts

mElectronMultiplicity [#]

0 2 4 6
100

102

104

106

Co
un

ts

mMuonMultiplicity [#]

0 10 20
100

102

104

Co
un

ts

mHFHadronMultiplicity [#]

20 10 0 10 20
100

102

104

Co
un

ts

mHFEMMultiplicity [#]

0 200 400 600 800 1000
100

102

104

106

Co
un

ts

mChargedEmEnergy [GeV]

0 100 200 300
100

102

104

106

Co
un

ts

mChargedMuEnergy [GeV]

0 500 1000 1500 2000
100

102

104

Co
un

ts

mNeutralEmEnergy [GeV]

0 25 50 75 100 125
100

102

104

Co
un

ts

mChargedMultiplicity [#]

0 20 40 60
100

102

104

Co
un

ts

mNeutralMultiplicity [#]

Variable distributions for PCA vs Baler at R = 1.6 Before After (PCA) After (Baler w. 1) After (Baler w. 2)

Figure 30: Variable distributions for the HEP1 dataset. In the plot, the original dis-
tribution (blue) is present together with PCA reconstruction (orange), L1 reconstruction
(green), and L2 reconstruction (red); all after compressing to R = 1.6.

59

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

Pt [GeV]

6 4 2 0 2 4 6
100

101

102

103

104

Co
un

ts

Eta [arb.]

3 2 1 0 1 2 3
100

101

102

103

104

Co
un

ts

Phi [rad.]

50 0 50 100 150 200 250 300
100

101

102

103

104

105

Co
un

ts

M [GeV]

0 500 1000 1500 2000 2500 3000 3500
100

101

102

103

104

105

Co
un

ts

m_EmEnergy [Area]

0 1000 2000 3000 4000
100

101

102

103

104

105
Co

un
ts

m_HadEnergy [GeV]

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

m_InvisibleEnergy [GeV]

0 500 1000 1500 2000 2500
100

101

102

103

104

105

Co
un

ts

m_AuxiliaryEnergy [GeV]

Variable distributions for PCA vs Baler at R = 1.6 Before After (PCA) After (Baler w. 1) After (Baler w. 2)

Figure 31: Variable distributions for the HEP2 dataset. In the plot, the original dis-
tribution (blue) is present together with PCA reconstruction (orange), L1 reconstruction
(green), and L2 reconstruction (red); all after compressing to R = 1.6.

60

0 250 500 750 1000 1250
100

102

104

106

Co
un

ts

pt_ [GeV]

4 2 0 2 4
100

102

104

Co
un

ts

eta_ [arb.]

2 0 2
100

102

104

Co
un

ts

phi_ [rad.]

0 50 100 150 200 250
100

102

104

Co
un

ts

mass_ [GeV]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
100

102

104

Co
un

ts

mJetArea [Area]

0 500 1000 1500 2000
100

102

104

106
Co

un
ts

mChargedHadronEnergy [GeV]

0 1000 2000 3000
100

102

104

106

Co
un

ts

mNeutralHadronEnergy [GeV]

0 500 1000 1500 2000
100

102

104

106

Co
un

ts

mPhotonEnergy [GeV]

0 200 400 600 800 1000
100

102

104

106

Co
un

ts

mElectronEnergy [GeV]

0 100 200 300
100

102

104

106

Co
un

ts

mMuonEnergy [GeV]

0 2000 4000 6000 8000 1000012000
100

102

104

106

Co
un

ts

mHFHadronEnergy [GeV]

500 0 500
100

102

104

Co
un

ts

mHFEMEnergy [GeV]

100 50 0 50 100 150
100

102

104

Co
un

ts

mChargedHadronMultiplicity [#]

10 0 10 20 30 40
100

102

104

Co
un

ts

mNeutralHadronMultiplicity [#]

50 25 0 25 50 75
100

102

104

Co
un

ts
mPhotonMultiplicity [#]

0 1 2 3
100

102

104

106

Co
un

ts

mElectronMultiplicity [#]

0 1 2 3 4
100

102

104

106

Co
un

ts

mMuonMultiplicity [#]

0 100 200 300
100

102

104

Co
un

ts

mHFHadronMultiplicity [#]

75 50 25 0 25 50 75
100

102

104

Co
un

ts

mHFEMMultiplicity [#]

0 200 400 600 800 1000
100

102

104

106

Co
un

ts

mChargedEmEnergy [GeV]

0 100 200 300
100

102

104

106

Co
un

ts

mChargedMuEnergy [GeV]

0 500 1000 1500 2000
100

102

104

Co
un

ts

mNeutralEmEnergy [GeV]

100 50 0 50 100 150
100

102

104

Co
un

ts

mChargedMultiplicity [#]

0 50 100 150 200 250
100

102

104

Co
un

ts
mNeutralMultiplicity [#]

Variable distributions for PCA vs Baler at R = 6 Before After (PCA) After (Baler w. 1) After (Baler w. 2)

Figure 32: Variable distributions for the HEP1 dataset. In the plot, the original dis-
tribution (blue) is present together with PCA reconstruction (orange), L1 reconstruction
(green), and L2 reconstruction (red); all after compressing to R = 6.

61

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

Pt [GeV]

6 4 2 0 2 4 6
100

101

102

103

104

Co
un

ts

Eta [arb.]

3 2 1 0 1 2 3
100

101

102

103

104

Co
un

ts

Phi [rad.]

0 50 100 150 200 250 300
100

101

102

103

104

105

Co
un

ts

M [GeV]

0 500 1000 1500 2000 2500 3000 3500
100

101

102

103

104

105

Co
un

ts

m_EmEnergy [GeV]

0 1000 2000 3000 4000
100

101

102

103

104

105
Co

un
ts

m_HadEnergy [GeV]

0 500 1000 1500 2000
100

101

102

103

104

105

Co
un

ts

m_InvisibleEnergy [GeV]

0 500 1000 1500 2000 2500
100

101

102

103

104

105

Co
un

ts

m_AuxiliaryEnergy [GeV]

Variable distributions for PCA vs Baler at R = 4 Before After (PCA) After (Baler w. 1) After (Baler w. 2)

Figure 33: Variable distributions for the HEP2 dataset. In the plot, the original dis-
tribution (blue) is present together with PCA reconstruction (orange), L1 reconstruction
(green), and L2 reconstruction (red); all after compressing to R = 4.

B.3 Outliers

For the remaining L1 outliers, see Table 7 for HEP1 with R = 6 and Table 8 for HEP2
with R = 4.

Moving on to L2, Table 9 contains the HEP1 outliers for R = 1.6, while Table 10 presents
the outliers for HEP2 with R = 1.6. See Tables 11 and 12 for L2, R = 6 and L2,R = 4
respectively.

62

Table 7: The number of outliers in the residual and response distributions for all variables
in the HEP1 dataset after compression with R = 6 using L1. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 6)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 17567 2.453 61970 8.654
η 101610 14.189 33042 4.614
ϕ 106095 14.816 47575 6.644

mass 25869 3.612 57870 8.081
mJetArea 92547 12.924 90573 12.648

mChargedHadronEnergy 0 0 126996 17.734
mNeutralHadronEnergy 0 0 158812 22.177

mPhotonEnergy 248063 34.641 148036 20.672
mElectronEnergy 0 0 44619 6.231
mMuonEnergy 0 0 40738 5.689

mHFHadronEnergy 0 0 203269 28.385
mHFEMEnergy 0 0 289079 40.368

mChargedHadronMultiplicity 0 0 293699 41.013
mNeutralHadronMultiplicity 0 0 14056 1.963

mPhotonMultiplicity 0 0 92390 12.902
mElectronMultiplicity 0 0 21 0.003
mMuonMultiplicity 0 0 48 0.007

mHFHadronMultiplicity 0 0 5362 0.749
mHFEMMultiplicity 0 0 522 0.073
mChargedEmEnergy 0 0 44672 6.238
mChargedMuEnergy 0 0 40596 5.669
mNeutralEmEnergy 69705 9.734 115238 16.092
mChargedMultiplicity 0 0 293696 41.013
mNeutralMultiplicity 0 0 86373 12.062

Table 8: The number of outliers in the residual and response distributions for all variables
in the HEP2 dataset after compression with R = 4 using L1. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 4)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 34745 7.047 30114 6.107
η 76042 15.422 82546 16.741
ϕ 74013 15.01 83885 17.012

mass 32577 6.607 25476 5.167
m EmEnergy 71528 14.506 63931 12.966
m HadEnergy 51505 10.446 37945 7.696

m InvisibleEnergy 0 0 41812 8.48
m AuxiliaryEnergy 0 0 90542 18.363

63

Table 9: The number of outliers in the residual and response distributions for all variables
in the HEP1 dataset after compression with R = 1.6 using L2. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 1.6)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 100559 14.043 85543 11.946
η 97529 13.619 48269 6.741
ϕ 109236 15.254 41215 5.755

mass 131718 18.394 102011 14.245
mJetArea 70750 9.88 60442 8.44

mChargedHadronEnergy 324796 45.356 80979 11.308
mNeutralHadronEnergy 0 0 128292 17.915

mPhotonEnergy 265850 37.124 60135 8.398
mElectronEnergy 0 0 42584 5.947
mMuonEnergy 0 0 56905 7.946

mHFHadronEnergy 0 0 127988 17.873
mHFEMEnergy 0 0 111772 15.608

mChargedHadronMultiplicity 0 0 241 0.034
mNeutralHadronMultiplicity 0 0 0 0

mPhotonMultiplicity 0 0 2 0.0
mElectronMultiplicity 0 0 0 0
mMuonMultiplicity 0 0 0 0

mHFHadronMultiplicity 0 0 44 0.006
mHFEMMultiplicity 0 0 5 0.001
mChargedEmEnergy 0 0 43767 6.112
mChargedMuEnergy 0 0 55766 7.787
mNeutralEmEnergy 129144 18.034 102015 14.246
mChargedMultiplicity 0 0 238 0.033
mNeutralMultiplicity 0 0 44 0.006

Table 10: The number of outliers in the residual and response distributions for all variables
in the HEP2 dataset after compression with R = 1.6 using L2. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 1.6)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 44427 9.01 58801 11.925
η 81394 16.507 60166 12.202
ϕ 81275 16.483 40461 8.206

mass 92417 18.743 79237 16.07
m EmEnergy 75940 15.401 71171 14.434
m HadEnergy 70479 14.294 58956 11.957

m InvisibleEnergy 0 0 52462 10.64
m AuxiliaryEnergy 0 0 87588 17.763

64

Table 11: The number of outliers in the residual and response distributions for all variables
in the HEP1 dataset after compression with R = 6 using L2. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 6)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 19413 2.711 67344 9.404
η 113224 15.811 28952 4.043
ϕ 95970 13.402 35957 5.021

mass 27071 3.78 59805 8.351
mJetArea 76272 10.651 78555 10.97

mChargedHadronEnergy 0 0 119752 16.723
mNeutralHadronEnergy 0 0 166411 23.238

mPhotonEnergy 254114 35.486 130149 18.175
mElectronEnergy 0 0 31246 4.363
mMuonEnergy 0 0 40972 5.722

mHFHadronEnergy 0 0 205291 28.668
mHFEMEnergy 0 0 278521 38.894

mChargedHadronMultiplicity 0 0 213788 29.854
mNeutralHadronMultiplicity 0 0 555 0.078

mPhotonMultiplicity 0 0 85658 11.962
mElectronMultiplicity 0 0 121 0.017
mMuonMultiplicity 0 0 10 0.001

mHFHadronMultiplicity 0 0 24616 3.437
mHFEMMultiplicity 0 0 2007 0.28
mChargedEmEnergy 0 0 31119 4.346
mChargedMuEnergy 0 0 40767 5.693
mNeutralEmEnergy 71520 9.987 105247 14.697
mChargedMultiplicity 0 0 213478 29.811
mNeutralMultiplicity 0 0 78585 10.974

Table 12: The number of outliers in the residual and response distributions for all variables
in the HEP2 dataset after compression with R = 4 using L2. These are values that lie
outside of [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)]

Variable (R = 4)
Response Residual

Nr. of outliers Percentage [%] Nr. of outliers Percentage [%]

pT 32662 6.624 18802 3.813
η 97932 19.861 85748 17.39
ϕ 80587 16.344 52844 10.717

mass 31669 6.423 18534 3.759
m EmEnergy 71880 14.578 70199 14.237
m HadEnergy 49903 10.121 43170 8.755

m InvisibleEnergy 0 0 41039 8.323
m AuxiliaryEnergy 0 0 94404 19.146

65

	Introduction
	Theory and Experimental Background
	The Standard Model
	Jets
	Jet Kinematics
	General Purpose Detectors & the LHC

	Data Compression
	Lossless compression
	Lossy compression
	Principal Component Analysis

	Artificial Neural Networks & Deep Learning
	Dense Neural Networks
	Training & Loss
	Machine Learning & Optimization Algorithms
	Normalization
	Under- and overfitting
	Regularization
	Autoencoders
	Offline and Online compression

	Evaluation Metrics

	Methodology and Implementation
	The Data
	Model & hyperparameter selection
	Baler workflow
	Open Source

	Results
	Compression Ratios
	Determination of Loss Function & Training times
	Balers performance at different compression ratios
	Baler vs PCA
	Reconstruction of peaks

	Outliers
	Applications in other fields

	Discussion
	Conclusions & Outlook
	Conclusions
	Outlook

	References
	Data processing and Variables
	Variable Descriptions
	Normalized distributions

	Complimentary Results
	Loss Plots
	Reconstructed Distributions
	Outliers

