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Abstract

Sick absence affects companies both operationally and economically and the
matter has become increasingly prominent following the COVID-19 pandemic.
MedHelp Care is an e-health company working towards increasing workplace
wellness by offering insights into absence and rehabilitation matters. Forecast-
ing future absence levels could help with matters such as staffing and garner
more insight into which factors that impact absenteeism. Moreover, gauging
how external factors affect the absence could help deepen the knowledge further.
With absence data now being digital, it is able to be modeled using statistical
tools. The dataset was aggregated to a daily basis and preprocessed to better
represent the Swedish labour force. Then, by applying time series analysis and
machine learning methods, predictions of sick absence were formed. Datasets
of the Swedish stock market and the discourse around COVID-19 on Twitter,
respectively, were processed to time series and their relation to the sick absence
was explored using crosscorrelation. The sets were then individually incorpo-
rated into exogenous models using autoregression, and then their impact was
evaluated. Results show that the SARIMA model is better for predicting short
and medium length horizons while the machine learning methods used were
more apt for long horizons. Results from the exogenous models were mixed; the
OMX set improved short term prediction accuracy while other horizons were
largely unaffected, and the Twitter set worsened performance for all horizon
lengths. While the model results are promising, their current complexity hinder
large-scale deployment and further research is needed to further verify the effect
of exogenous datasets.
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1 Introduction

Work absence due to illness is a costly issue for work places and companies. The
absence, generally characterized by frequency and duration, is the percentage
of a work force on a given day that is made up by absent personnel. In recent
years, an increasing amount of attention has fallen upon health in relation to
the workplace. With matters such as the recent COVID-19 pandemic disrupting
the status quo and forcing workplaces to reshape how and where employees may
conduct their work, the subject of work absence has become more prominent.
It has also become apparent that there are other factors apart from health that
play a part in reported absence. Economical factors, such as the stock market,
have been shown to affect hospitalization levels [1], while sickness benefits affects
the size of the labour force [2]. What is more, the discourse in society, regarding
sick absence has been explored by Swedish authorities in recent years and proven
to influence absenteeism [3].

Many companies have started moving away from manual logging of absence
and instead digitized the workflow. MedHelp offers an administrative tool for
logging, managing and follow-up of work absence. They develop AI tools for
detecting potential individuals showing signs of becoming long-term absent from
work which has a negative economic impact on both individual and corporation.

There are numerous ways of understanding the work absence. One such method
is by modeling, i.e., analyzing historic data which also enables prediction of
future outcomes. In turn, approaching this data as a sequence of data over time,
a time series [4], can be done in several ways. One such way is by transforming
the series into stochastic processes that have properties that do not change
over time. One then proceeds to detect potential periodic patterns in the data
and adding parameters to the model. Another way of modeling a time series is
through machine learning and instead approach the problem as fitting a function
to historic data by minimizing errors. Using this procedure streamlines a lot of
the workflow, at the cost of complexity. Whatever the approach, the systematic
patterns included in models can then be used to form predictions of yet unknown
data.

MedHelp currently has a tool for predicting calendar monthly averages of ab-
sence. However, they have yet to explore other granularities of the data con-
cerning forecasting. To further garner insights into the matter with the purpose
of increasing awareness to how absence will impact the current month, exploring
time series forecasting with a daily resolution could also help facilitate staffing.

1.1 Purpose

The purpose of this project is to restructure existing absence data into a viable
time series with a daily resolution and, using modeling methodology, garner
further insights into the matter. This will be done by predicting future values,
evaluating prediction accuracy and comparing results with existing and naive
models. Additionally, exploring the data using a daily resolution, with the pur-
pose of increasing awareness to how absence will impact the current month,
could help facilitate staffing.
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Furthermore, the intention is also to evaluate the impact of extending models to
take exogenous input, factors which are believed to affect absence, into account
and how it affects predictability. Given the current state of available packages
in Python, the modeling possibilities are explored using both stochastic and
machine learning models, which enables further comparison.

1.2 Limitations

While the long-term sick absence is generally more costly and may have more
economic impact for companies, we have decided not to focus either on frequency
or duration, as the data supplied lacks information about such matters. Addi-
tionally, this would require data on a more individual basis, which is somewhat
contradictory to the statement of approaching the absence data on a population
level. Although non-scheduled, data stemming from absence such as childcare
is also dismissed, in order to render the work more focused on health related
to the individual. Furthermore, we here limit our scope and exclude vacation,
weekend, and compensatory leave, as these are not of particular interest when
examining what drives work absence from a macro perspective.

This master thesis does not intend to find or explain any causality between work
absence and macro factors, but rather how they might impact forecasting. In
addition, we do not aim to predict future pandemics or their effect on absence.
As a consequence, anomalies in the data, while not strictly speaking outliers in
the stochastic sense, are addressed to reduce their influence and generalize the
model in hope of better performance on ”normal” data.

1.3 Report framework

The first part of the report describes the background to the project and the
theory surrounding time series modeling. It is followed by a section describing
the methods and processes that were used. Corresponding results are then
illustrated before they are discussed in the last major section.
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2 Background

2.1 Work absence

While the level of absence varies over the year, historically, the greatest non-
scheduled reason for workplace absence is sickness [5]. It is defined by Hultin et
al., as “absence from work due to illness”, and also serves as a general method of
gauging well-being [6]. The absence due to illness is often at its highest during
the earlier months of the year and lowest during the summer [5].

While poor health and absence due to illness are strongly associated [7], the
intrinsic link between the two is not an isolated entity, as there are numerous
non-health related factors that tend to affect the workplace sick absence, often
socioeconomic in nature [5]. Historically in Sweden, women generally have had
a higher percentage of sick leave, ≈3.5 percentage points more in 2014. How-
ever, Statistics Sweden have identified this matter as declining over time [5].
Furthermore, studies have shown that gender plays a role for women regarding
the risk of long-term absence, especially in workplaces where one gender is over-
represented. Other factors could be events during the year, such as the olympic
games, which cause elevated odds (×1.46) of sickness absence [5].

In general, absence due to sickness have declined since 2000, with a 30% and
18% reduction amongst men and women, respectively [5]. Of the total sick
absence (2000-2014), women account for 60% [5]. However, with matters such
as COVID-19 occurring in the last couple of years, there is reason to believe a
trend change might have occurred.

2.1.1 The MedHelp platform and dataset

Rather than manually noting which employees are absent on a given day, the
process of reporting and recording employee absence has today been digitalized.
Using the MedHelp platform, employees of companies can report their absence
alongside additional information.

MedHelp Care is continuously developing and releasing AI tools for identifying
individuals showing signs of becoming long-term absent, using factors such as
gender, age, and previous absence history. Concurrently, they also offer com-
panies insights into their respective workplace absence, e.g., predicted average
calendar month absence as well as how they compare to other companies in the
same industry. As a mean of broadening the knowledge regarding the larger
population, currently over 200 000 users, the data can be approached in alter-
native ways. One such way is to explore data as a time series and analyze it
with the potential of generating insights regarding trends and recurring pat-
terns. Furthermore, the approach using the time series analysis with a changed
granularity opens up the possibility of predicting future absence with a daily res-
olution. Such predictions could be used for staffing, i.e., ensuring the quantity
of employees is sufficient enough for companies to operate adequately.

The dataset created for and to be used during this master thesis consists of
approximately 6 million data points from Swedish companies and spans the pe-
riod 2018-01-01 - 2023-02-14. Each point is labeled with calendar day, company
ID, absence type, gender, as well as the number of individuals sharing the same

8



attributes. Each data point can therefore be seen as a subgroup of a company
for each given calendar day and is illustrated in figure 1.

Figure 1: Illustration of a data point from the MedHelp dataset.

The structure of the dataset is a compromise between resolution and practical-
ity. The lack of identifiers to individuals in the database restricts any analysis
regarding frequency or duration, but the already grouped nature of the set ren-
ders it more convenient from an analytical perspective. As companies have
joined the platform on different dates, the separation of data points amongst
company IDs allows the data to instead be processed into absence quotients
rather than counts of absent employees. Modeling the sum of sick absentees on
a day would prove problematic, as the number would otherwise drift as more
companies connects to MedHelp’s platform.

MedHelp has an existing tool for forecasting absence which will be referred to
as MedHelp Baseline (MHB). However, it is concerned only with forecasting
the average absence percentage for a calendar month. At any given day of the
month, it predicts what the average percentage will be for the current month.
The model is a moving average, based on a combination of the of previous
calendar month and the same month last year, as well as percentages observed
during the month so far. A simplified version of how the algorithm weights data
is shown in figure 2.

9



Figure 2: Simplified schematic of the MedHelp Baseline model. It emphasizes
historic data early in calendar months and then shifts to recent data as the
month progresses.

The current discourse around AI and its already strong presence at MedHelp
Care informs the project that the previously mentioned time series analysis
could be approached, at least partially, using machine learning methods.

Furthermore, there is an interest to investigate if there are larger external
(macro) factors that affect modeling and that could potentially increase pre-
diction accuracy.

2.2 Macro factors

While many of the socioeconomic factors that affect the sick absence concern
workplace demographics and could be considered ”local” in nature, matters at
macro-scale are of more relevance when aiming to understand a larger popula-
tion. For this report, social factors are separated from economic factors.

2.2.1 Online discourse

As some studies have investigated, traumatic incidents may affect absenteeism
[8], i.e., the pattern in which employees are absent from the workplace [9]. On
the other hand, there have been studies into how debate affects the levels of ab-
sence [10]. Whether or not the debate around workplace absence actually affects
it has also been discussed by The Swedish Association of Local Authorities and
Regions authorities [3]. The report also raises points about social multipliers,
i.e., the effect one’s close personal network may have on oneself and in turn how
that might affect the network [3]. Investigating if the traumatic nature itself of
the COVID-19 pandemic in combination with the social discourse affected the
absence patterns is therefore of interest.
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Measuring contemporary social discourse can be done using entities such as
Twitter, which is one of the world’s largest social media platforms with millions
of users. The platform has been found to capture the real-time conversations
and spread of information [11]. Furthermore, it has been found that archives
from social media such as Twitter constitute reflections of societal discourse and
impact [12]. The amount of data generated by the millions of users on Twitter
each day, > 100 million per day [11], renders it impractical to scrape, especially
considering the rather large time frame. Instead, a preexisting dataset is used:
TweetsCOV19 [12]. The set is minimally fragmented (4 segments) compared to
other similar datasets and each tweet has a timestamp which is essential from a
time series perspective. The set was originally limited to the time period March
- April 2020 [12], but has since been updated to range from September 2019 -
August 2022.

The dataset contains more than 41 million tweets where each post is connected
to the pandemic through one of 268 keywords related to COVID-19, ranging
from terms such as ”coronavirus” and ”lockdown” to ”stayhomechallenge” and
”SocialDistancing” [13]. The tweets have user ID:s and also a timestamp, mak-
ing it possible to aggregate the number of tweets for a given calendar day.

2.2.2 Economy

A typical faucet of macroeconomics is to analyze and understand the market’s
relation to the household with respect to factors such as labour supply and
household economy. We are here especially interested in the supply of labour as
it is intrinsically linked to work absence. While wages play a significant role in
the labour supply [2], it is not exhaustive. Income from nonlabor (e.g., return
on savings) reduces both probability of entering the labor force and the number
of hours which employees are willing to work. Furthermore, welfare schemes
have a deterrent effect on labour [2].

The portion of GDP that can be accredited to absenteeism is estimated to exceed
2% within the European Union [14]. There has been a historical link between
the larger economic situation and the levels of sick absence, as dire economical
times seemingly caused higher discipline among workers [3]. While this relation
was later dismissed following the global financial crisis of 2007-2008 [3], other
economic matters surrounding sick absence has arisen. The same report also
found that individuals that are denied sick pay are more likely to remain in
work labour and work more hours [3]. In latter years, Swedish authorities
have altered policies regarding paid sick leave; rather than no payment being
made for the first day of sick absence (karensdag), 80% of the sick pay was
paid (karensavdrag), starting January 2019 [15]. However, due to the COVID-
19pandemic and to encourage employees to stay at home when ill, this reduction
of sick pay was temporarily suspended during the periods 2020-03-11 - 2021-09-
30 and 2021-12-08 - 2022-03-31 [15]. It follows that economy can be seen to affect
the fluctuations of sick absence and could therefore be used as an analytical lens.

The size of the workforce in the MedHelp data set (average of ≈177 000 em-
ployees) informs that the economic factor used for exogenous modeling should
be sufficiently large to be able to adequately represent the whole population.
Stock markets can be used as a (causal) indicator of economic development,
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both short-term [16] and long-term [17]. In 2021, around 2.3 million Swedish
inhabitants owned stocks in Swedish companies [18]. One approach of represent-
ing the (macro)economy is therefore the Swedish stock market, more specifically
OMX Stockholm 30 (OMXS30), which is the index for the top 30 companies
when weighting according to the total market value of the shares not owned by
their respective corporation.

2.3 Time series modeling

Before modeling, data should be checked for anomalies which are samples of
data that differ substantially from others of the collection. Finding and correctly
addressing these are key for striking a balance between model flexibility and the
sporadic nature of real life data. There are numerous ways of detecting outliers
which utilizes the variability of the data. One common method is calculating
the standard score (or Z-score). This score is defined as the number of standard
deviations (σ) past the mean value (µ) (above or below) that a given data point
exceeds or surpasses. The z-value can be written mathematically as:

z =
x− µ

σ

where x is a given data point. To evaluate whether the sample is an outlier or
not, a decision boundary is needed. A common value is ± 3, where values that
are above or below are labeled as outliers.

2.3.1 Stochastic processes

To estimate the mean and correlation of a stochastic process, one has to impose
some notable restrictions and assumptions on the process. Since the observation
is treated as a realization, it has to exhibit some form of regularity. Thus assum-
ing that the process is both stationary and ergodic, i.e., assures the statistics
of the process will not vary over time and the characteristics of the process are
measurable from only a single realization. These are rather strong assumptions
and therefore one may need to examine relatively short segments of a time series
to reasonably make the assumption that it is at least reasonably stationary. In
particular, the processes of interest are so-called wide-sense stationary (WSS),
implying that:

• The mean of the process is constant and finite.

• The autocovariance C{ys, y∗t } only depends on the difference (s − t) and
not on the actual values of s and t.

• The variance of the process is finite, i.e., E
{
|yt|2

}
< ∞.

This makes it possible to further measure dependencies within and between
WSS processes. When modeling time series, a popular approach is to describe
the process as a moving average (MA), autoregressive (AR) or autoregressive
moving average (ARMA) process. An MA process is defined as:

yt = et + c1et−1 + ...+ cqet−q ≡ C(z)et,

12



where C(z) is a monic polynomial, i.e., its first coefficient is equal to one, of
order q, cq ̸= 0 and et is a zero-mean white noise process with variance σ2

e .

Subsequently an AR process is defined as:

A(z)yt ≡ yt + a1yt−1 + ...+ apyt−p = et,

where A(z) is a monic polynomial of order p, ap ̸= 0 and et is a zero-mean white
noise process with variance σ2

e .

Combining the two, creates an ARMA process defined as:

A(z)yt = C(z)et

The process is stationary if the roots of A(z) = 0 and invertible if the roots of
C(z) = 0 lie within the unit circle, respectively [4].

2.3.2 Correlation functions

Identifying a model generally includes several steps in order to ensure that
it appropriately describes the measurements and is thus considered a rather
complex problem. The procedure is often iterative and follows the schematic in
figure 3.

Figure 3: Schematic of the model selection methodology. The process is iterative
and often require several attempts at selecting the model before results on the
validation is deemed adequate and a final model is established.

If the model is sufficiently good, one may proceed, otherwise one has to iterate
the procedure to come up with a model that is. Fortunately there are various
tools and approaches for guidance when traversing the steps of identifying a
model. Regarding the model structure, one may look at the autocorrelation
function, ACF, and the partial autocorrelation function, PACF. Utilizing the
ACF and PACF, allows for an easy way to determine the MA and AR lags,
respectively.

Some systems may be described by additional measurements and thus it may
also be of interest to look at the crosscorrelation between two WSS processes xt

and yt.

2.3.3 Trends and seasons

The previously mentioned ACF and PACF can also give an indication of trends
and seasons in the data, where a slowly decaying ACF implies a trend and a sig-
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nificant peak in both the ACF and PACF at the corresponding lag characterize
a seasonal trend [4].

Alternatively, one can perform an Augmented Dickey-Fuller (ADF) unit root
test to evaluate stationarity. Considering an observed times-series, {yt}, the
ADF regression (with a time trend) can be formed as:

∆yt = α+ δt+ βyt−1 +

p∑
j=1

ρj∆yt−j + ϵt, t = 1, ..., T,

where ∆yt = yt − yt−1. Here ADF supports the inclusion of higher lags in
contrast to DF. The hypotheses may then be formed as:

H0 : Unit root, i.e., non-stationary,

H1 : Stationary,

where rejecting the null hypothesis on a predetermined significance level implies
that the series is stationary [19].

Before modeling, the trend and season have to be handled, either by removing
it from the data and making it WSS or by integrating it in the model for
it to be effective and precise. For this, the trend has to be identified, e.g.,
deterministic/constant, stochastic, or seasonal.

Handling a deterministic trend can be done using Fourier terms; treating it as
a cyclic trend, similar to a seasonal trend. Fourier terms are a number of pairs
of sine and cosine functions that are used to model seasonalities in the data.
Fourier terms are useful for long seasonal periods, since they reduce the number
of predictors that would have been used given a solution using dummy variables,
which are more fit for short seasons [20]. Mathematically, a model using Fourier
terms could be written as:

yt = α0 +

d∑
l=1

βl cos(ωlt) + γl sin(ωlt) + xt

where ωl denotes the lth frequency [4].

To handle a stochastic trend, one might instead integrate the trend in the
ARMA model and extending it to an autoregressive integrated moving aver-
age (ARIMA) or even a seasonal ARIMA (SARIMA). An ARIMA process of
order (p, d, q) is defined as:

A(z)(1− z−1)dyt = C(z)et,

where d denotes the number of differentiations, in practice the data rarely re-
quires more than two, d ≤ 2.

Another way to integrate seasonal trends in comparison to the previous men-
tioned Fourier terms is to utilize a SARIMA model. A process may contain
several seasonalities, e.g., weekly and/or yearly, thus a seasonal differentiation
may also be reasonable. A multiplicative SARIMA process is defined as:
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A(z)A(zs)∇d∇D
s yt = C(z)C(zs)et

where ∇d implies that the process is differentiated recursively d times, s is the
seasonal period, e.g., weekly or yearly. The model orders for a SARIMA process
is specified as SARIMA(p, d, q)× (P,D,Q)s.

While differentiation might prove sufficient to render the mean stationary, a
transformation can be used to stabilize the variance of a process. One method
for evaluating what transform might be required is the Box-Cox transformation,
which regards maximizing log-likelihood for a parameter λ.

Commonly, it is sufficient to use a standard transformation given in table 1,
by selecting the transformation closest to the maximized λ. This should be
performed any other analysis such as differentiation [4].

Table 1: A selection of Box-Cox Standard Transformations. Given where the
Box-Cox function is maximized, the table can be used to select the appropriate
transformation for the data.

Values of λ −2.0 −1.0 −0.5 0.0 0.5 1.0 2.0

Transformation y−2
t y−1

t y
−1/2
t log(yt)

√
yt yt y2t

2.3.4 Predicting

The optimal linear k-step predictor for an ARMA process may be expressed as:

ŷt+k|t(Θ) = E
{
yt+k|Θ

}
where Θ ≡

[
θT YT

t

]T
, the parameter vector detailing the model of the process

yt and the measurements up to time t. Consequently the prediction error,
ϵt+k|t(Θ) may be formed as:

ϵt+k|t(Θ) = yt+k − ŷt+k|t(Θ)

Considering an ARMA(p, q) process:

A(z)yt = C(z)et

the process shifted k steps into the future may be expressed as:

yt+k =
C(z)

A(z)
et+k

By expanding the polynomial division one may further express it as:

yt+k =

{
F (z) + z−kG(z)

A(z)

}
et+k
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where G(z) and F (z) satisfies the Diophantine equation. Thus the optimal
linear predictor can be written as:

ŷt+k|t(Θ) =
G(z)

C(z)
yt

where ŷ denotes the estimation of y [4].

2.3.5 Statsmodels

The statsmodels module in Python is an open-source software that provides
classes and functions for the estimation of different statistical models, conduct-
ing statistical tests and statistical data exploration. The statsmodels TSA API
provides tools and models designed for time series analysis such as ACF, PACF,
CCF, ADF and SARIMAX for corresponding estimation. The SARIMAX class
may be instantiated such that it enforces stationarity and invertibility when
estimating the parameters of the model [21].

2.4 Machine learning

2.4.1 Neural networks

PyTorch is a library of functions for deep learning in Python [22]. It can be
used to create neural networks consisting of layers of nodes, which are relatively
structured to imitate the constellation of animal brains [23]. Neural networks are
trained with input and their corresponding results and often optimized using
algorithms such as stochastic gradient descent (SGD). SGD is an optimizer
algorithm that estimates the local minima of a loss function using iterative
computations of first-order derivatives (i.e., gradients) on a number of training
data points (a batch) [24]. After each iteration, model weights, w, are updated,
with a learning factor, γ, in accordance with the direction of the ”steepest
descent”, in order to converge to the minima of the loss function, Q [25]. The
equation can be formulated as:

wt+1 = wt −
γ

n

n∑
i=1

∇Qi(wt)

As proposed and designed by Triebe et al., neural networks can be used to
mimic traditional regression for estimating AR coefficients and increase predic-
tion performance, through a framework named AR-net [26]. Furthermore, by
using regularization to penalize parameters, AR-net can automatically reduce
the number of coefficients and consequently, approximating the correct AR order
before coefficient estimation is not required [26].

2.4.2 NeuralProphet

In 2017, Facebook released Prophet, a tool for time series forecasting intended
to be scalable for different applications [27]. Furthermore, the tool was made
available in Python and R. Prophet transfers the time series analysis from de-
pendence between temporal lags in data (i.e., AR and MA coefficients) and
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instead poses the problem as fitting a curve to historic data. The creators argue
that this approach increases interpretability and flexibility [27].

Four years later an independently developed tool named NeuralProphet was
made available, indented as a successor to Prophet. This new model combined
the Prophet approach to time series modeling with AR-Net [28], replacing the
STAN backend with PyTorch. In addition to introducing neural networks to the
task of time series forecasting, NeuralProphet also aimed to alter the close-ended
nature of Prophet, allowing users to extend the library as they please.

Furthermore, NeuralProphet was created to address the problem of an ever-
growing amount of data in combination with lacking overall resources and knowl-
edge regarding time series [28].

NeuralProphet, like its predecessor, implements a model whose forecast can
be split into additive components. Each module produces k (forecast horizon
length) outputs, which are then element-wise added. The components are (all
at time t):

• Trend: A combination of growth rate and offset. Using breakpoints, the
rate can be changed an arbitrary number of times, effectively rendering
this component a function made up of piecewise linear segments. Can be
selected to be continuous or not.

• Seasonal effect: Seasons are modeled using Fourier Terms. The number
of Fourier terms determines the robustness of the model: high orders may
lead to overfitting and vice versa.

• Event and holidays effects: Binary dummy variables assigned to desig-
nated lags. With daily data points, this could be used for taking, e.g.,
sporting events into account when modeling.

• Autoregression effects: Allows the model, using AR-Net, to explicitly
regress future values on earlier observed values with an order p, with
a coefficient estimated for each order of included lag. The estimation of
coefficients is done using a neural network with regularization, effectively
rendering it sparse.

• Regression effects for lagged observations of exogenous variables: Time
series which should in some way be related to the target series that is to
be used for correlation. By serving as input signals, they could improve
prediction accuracy.

• Regression effects for future-known exogenous variables: Other exogenous
signals which have future values that are already known and can serve as
prior information when forecasting.

The modular nature of the model originated from the desire to make the forecast
more interpretable and provide local context [28]. Each component is modeled
individually and then added to create the prediction, ŷ. Hence, in order to
predict k steps into the future at a given time, each activated module needs to
generate k values [28], by interpolating each individual components’ dynamics.

When fed with data, a NeuralProphet model uses PyTorch to perform an opti-
mizing function (e.g., AdamW, which extends SGD by including second order
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derivatives), hence the data is divided into batches (which size, by default, is
based on the size of the dataset). NeuralProphet supports a number of loss
functions for estimating optimal parameter coefficients: Huber (default), mean
squared error (MSE), and mean absolute error (MAE).

2.5 Evaluation and testing

The Akaike Information Criteria (AIC) is used for identifying and evaluating
model selection. It estimates the prediction error using maximum likelihood and
also penalizes the number of independent parameters k [29]. It can be written
as:

AIC = 2k − 2ln(L̂)

where a lower score signals a better model.

The Ljung-Box-Pierce test is a modified version of the Box-Pierce statistical
test more apt for small sample sizes by including a scaling factor [30]. The test
uses the ACF to test if there is structure left in model residuals (i.e., the quality
of fit).

Q = N(N + 2)

K∑
l=1

ρ̂2ê(l)

N − l

Another test was proposed by Anna Clara Monti [31]. This test also evaluates
if structure is present in model residuals, but by instead summing the squares
of the PACF.

Q = N(N + 2)

K∑
l=1

ϕ̂2
l,l

N − l

The test score Q for each respective test may be compared to the χ2-distribution
with a selected significance level α and with K degrees of freedom. This can be
formulated as

χ2
1−α(K)

K is usually selected according to 15 ≤ K ≤ 25 [4]. If Q < χ2
1−α(K), the null

hypothesis that structure is present in the residual can be rejected.

Reviews of earlier modeling work regarding sick absence have shown that there
is a scarcity of reports that evaluate model performance [32]. Some metrics that
could be used to benchmark model prediction accuracy and statistical dispersion
of residuals are

• Mean Squared Error (MSE) - in combination with variance, it offers insight
into the potential bias of a model.
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1

N

N∑
i=1

(Yi − Ŷi)
2

• Variance - A statistical measure of spread.

1

N

N∑
i=1

(Yi − Ȳ )2

• Mean Absolute Error (MAE) - The average magnitude of the errors.

1

N

N∑
i=1

|(Yi − Ŷi)|

• Mean Absolute Percentage Error (MAPE) - Scales error to facilitate com-
parison with other models.

1

N

N∑
i=1

∣∣∣∣∣ (Yi − Ŷi)

Yi

∣∣∣∣∣
2.6 Previous work

As is in line with the current goals of MedHelp’s work, identifying individuals
showing patterns that indicate future absence has been the focus of previous
research. Research using the information gathered by companies in order to
predict on an individual level has been conducted, where the frequency and
duration of sick absence spells was the central focus [33]. Finding factors that
aid when predicting was found to be necessary [33]. This was done using binary
dummy variables to represent characteristics ranging from sociodemographic
to job type as well as historic absence. While the study proved that historic
absence was the strongest predictor, the other variables (administrative) still
proved useful when creating models [33]. Historic short-term sick absence has
been found to increase both future short and long-term sick absence [6].

Other studies, such as the one conducted by Zahid B Asghar et al., also used
socioeconomic factors for constructing time series models [34]. The study found
that statistical models could aid in forecasting future absence and in doing
so facilitate with matters such as staffing and planning. Regarding COVID-
19 specifically, one paper analyzed American data and modeled it while also
incorporating Google Trends data and found promising results [35].

A large scale review of studies regarding modeling of sickness absence showed
that most of the models are univariate, i.e., they only use historic data to
predict future absence [32]. The review also found that the predictive accuracy
of models were only evaluated in approximately 4 % of all selected studies.

In relation to economic factors, studies of historical data in California have
shown a significant negative correlation between daily stock prices and hospi-
tal admissions [1]. The supposed relationship has a rapid effect, as plunging

19



stock prices incremented the number of hospitalizations the next 48 hours. The
most prominent among these are mental health related, which in turn highlights
a relationship between concerns about the future, more specifically consump-
tion, and health. The study was conducted by estimating regression between
hospitalizations and stock market return [1].
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3 Method

3.1 Software

The vast majority of handling, processing, modeling and illustration of data
is done in Python. To structure and define subtasks, Jupyter Notebook are
utilized. By using a notebook interface, the readability of code is improved, as
well as the efficiency, as certain segments of the code can be re-run rather than
having to start from the top.

A major part of the necessary functions described in Background for SARIMA
modeling are implemented from scratch or using combinations of functions from
SciPy [36], scikit-learn [37] and statsmodels [21]. However, the lack of proper
established intuitive tools for system identification, which would ideally facilitate
the workflow in combination with the need of only storing data in RAM, renders
modeling with exogenous input with statsmodels SARIMAX function rather
unfeasible. Hence, exogenous input models are created using NeuralProphet.

3.2 Datasets of macro factors

OMX: Historic OMX data is downloaded from Yahoo Finance [38]. The metric
selected is the closing value of each day when the stock market is open, as it is
deemed the most respresentative. This dataset, due to its business nature, only
contains data from weekdays. In order to render the time series compatible, the
series needs to be interpolated. Values are created for indices that correspond to
holidays and weekends using linear interpolation through pandas.resample and
pandas.interpolate.

Twitter: As the TweetsCOV19 set simply contains tweets with information
such as timestamps, each of the four sets are aggregated to number of tweets
per calendar day. This is done by counting the instances of tweets on a given
calendar day, based on their timestamp. They are then joined to constitute the
whole timeframe, 2019-09-30 - 2022-08-31. As the TweetsCOV19 set contains
tweets from each calendar day in range, interpolation is not required and no
further processing is done at this stage.

3.3 Data preprocessing

Data is fetched from a remote repository and loaded directly into a pandas
DataFrame. The data is divided into attributes such as company ID, gender,
work type absence type and the corresponding number of individuals that belong
to each such group. Any workers absent due to childcare is removed from the
set, as they are of less interest since they are dependent on another individual.
The data is then aggregated to correspond to a time series with daily resolution.

In order to ensure that the data is of high quality and more importantly rep-
resentative of the Swedish labour force, the distribution of average absence per
company is inspected in order to detect companies that need to be removed.
There are then two types of companies, labeled as atypical, that should be ex-
tracted from the rest of the dataset:

• Companies with an abnormally high absence percentage
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or

• Companies with an abnormally low absence percentage

By plotting each company that is present in the database against their respec-
tive mean absence during the period they were or have been present in the
system, an overview of the data is given. While the companies with a high
absence are removed using the outlier detection described earlier, those with
exceptionally low percentages require more finesse. When illustrating the com-
panies in the histogram, a substantial portion of the companies have an absence
of exactly 0.0%, i.e., they have never reported any of their employees as absent.
These companies will effectively dilute the total absence and are not seen as
representative of the labour force, hence they are removed manually.

By dividing the absentees by the number of employees for a given day, the
absence percentage per day is created, i.e.,

absentees

employed

The time series aggregation work flow is illustrated in figure 4.

Figure 4: Preprocessing flowchart of the MedHelp dataset. The preprocessing
reshapes the data into a time series that only constitutes sick absence from
companies that have an average absence level within 3 standard deviations.

3.4 Modeling

In order to test model performance on unseen data, the last 15% of the set
is chosen as a test set and consequently removed, while the remainder of the
data is further processed. This series is analyzed for outliers, which are set to
the appropriate threshold values (± 3 standard deviations). The reasoning for
this is that the time series have outliers that are very much in sequence and
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setting these to, e.g., the mean value would hurt rather than help the model in
the training phase. Once processed, a Box-Cox normality plot is used to check
for a fitting transformation, in order to stabilize the variance. An ADF test is
then performed to reject the null hypothesis, i.e., that a trend is present in the
data. Finally, the set is split into training, 70% and validation, 15%, and their
respective means are removed. The resulting data sets, as can be seen in figure 5,
is used for all models. The only exception for this is the exogenous Twitter
model. The same percentages are used for the sets, but as the TweetsCOV19 is
shorter, it limits the length of the absence set. Consequently, the actual number
of data points in subsets are different, which may affect the modeling procedure.
This set is visualized in figure 6.

Figure 5: The time series is divided into three sets; modeling, validation, and
test. The modeling set is used for estimating model parameters, the validation
set for confirming the parameters, and the test set for evaluating performance
on out-of-sample data.
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Figure 6: The time series intended for the exogenous Twitter model is divided
into three sets; modeling, validation, and test. The modeling set is used for
estimating model parameters, the validation set for confirming the parameters,
and the test set for evaluating performance on out-of-sample data.

3.4.1 SARIMA

Once the data has been adequately preprocessed, the identification and model-
ing phase begins. Eventual trend and seasonality may be examined by looking
at the ACF and PACF to provide an intuition of the data and what type of
model structure that is required. When the model structure has been selected,
the order of the model has to be determined. Analogously the ACF and PACF
provides information about model order with the aim to come up with a model
that renders a white noise residual. If the residual is considered white accord-
ing to the Monti and Ljung-Box-Pierce test, the next step is to estimate the
parameters of the model, i.e., the AR and MA polynomials. The parameters
are estimated using the software which also provides the standard deviations
of the estimations to conclude whether or not the parameters may be deemed
significant.

When the models have been identified, with significant parameters that yields a
white residual, a set of models may be evaluated with regard to the AIC score.
However, the AIC score does not always reflect how well a model generalizes, i.e.,
the ability to adapt properly to new data. Thus, the models are also evaluated
using the validation set where the best model will be used to form predictions
of the test set.

3.4.2 Univariate NeuralProphet

NeuralProphet models requires only a rather small amount of preprocessing in
order to be trained: indices, in this instance timestamps, needs to be renamed
to ”ds” and the target value, sick absence, to ”y”.

Initial guesses of parameters are formed using random number generation (RNG),
i.e., they are randomized based on an arbitrary number known as a seed. In
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practice, this means that training results will vary slightly despite hyperparam-
eters remaining unchanged. In order to ensure reproducability, the PyTorch
seed is fixed, ensuring the same RNG and yielding the results to be consistent
between instances. The validation data is used to evaluate performance of the
model and detect potential over-/underfitting.

While NeuralProphet has default values for hyperparameters which enables us-
able models, these are intended for beginners to forecasting [28] and allows for
plug-and-play. In pursuit of a more adequate model, which captures the charac-
teristics of the data, the parameters need to be adjusted. A grid search enables
testing of many combinations of discrete hyperparameter values by spanning a
multidimensional room. In doing so, it allows for a streamlined process.

However, as the number of hyperparameters available in NeuralProphet are
numerous, a selection is made before performing the grid search. Before com-
mitting to the very computationally demanding algorithm, the individual pa-
rameters are experimented with to evaluate their potential impact. Increasing
the number of epochs swiftly led to overfitting and/or reduced impact per added
epoch. Instead, a fixed amount of epochs, 50, was deemed a fitting number after
manual testing.

The hyperparameters that are intrinsically associated with SGD are the batch
size and the learning rate, hence they are included in the grid search. In addition,
increasing the depth of the model with a number of hidden layers and number of
respective units can assist in modeling complex dynamics are therefore included
[39]. Furthermore, as COVID-19 is present in the training set, the weight of
newer samples and the proportion of the data which is considered as ”new” are
tested, to evaluate how they might impact the training. Finally, three different
loss functions are included in the grid: Huber, MSE, and MAE.

Each model that is a part of the grid search is trained with the same training set
and the model residuals are then scored with a Monti test on both the training
set and the validation set. A low score on the training set would infer that the
model captures the dynamics of the model, while a low score on the validation
set infers that the model performs well on unseen data. While the Monti test,
especially for values of this magnitude (Q ≫ χ2

1−α(K)) is not a robust metric,
it does provide insight to which of the models that capture the dynamics of the
data. It is possible, however, for the models to ascertain a low Monti score on
the validation set despite later displaying suboptimal results on unseen data. In
order to avoid such issues for multivariate models, the MAE is also evaluated
during the grid search to ensure that predictions and ground truth indeed are
of similar proportions.

The number of combinations of hyperparameters results in a grid search consti-
tuting 648 unique models. Despite the fact that model residuals might not be
deemed white, they can nonetheless overfit to behaviour such as the pandemic
outbreak. Ideally, the model would perform similarly on the two sets, however,
the validation set is more telling regarding performance on future datapoints.

The next step is to train the model with a set that is the combination of training
and validation, with the same hyperparameters. Once the training is complete,
the model is ready to create predictions for the different horizon lengths.
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3.4.3 NeuralProphet with exogenous input

As previously stated, the lack of proper tools available for exogenous input
modeling using SARIMAXmodels informs the project to only explore exogenous
models using NeuralProphet.

The preprocessing of the exogenous sets for usage with NeuralProphet is handled
in a different, simpler manner than the MedHelp dataset. As preprocessing
the sets in a similar way to the sick absence diminishes their impact during
modeling, they are instead scaled to a similar size to the absence set. The
exogenous input in NeuralProphet is incorporated by extending the model with
an additional additive component to account for AR coefficients of the input.
A schematic of how exogenous input is integrated can be seen in figure 7.

Figure 7: A schematic of how input and output are related when creating exoge-
nous NP models. Trends and seasonality of the the target series (sick absence)
are combined with AR coefficients from an input set such as OMX or Twitter.
The components are then added to form predictions.

Searching for adequate multivariate models is othervise very analogue to the
univariate method: NeuralProphet is trained with data and a grid search is
conducted to find optimal model hyperparameters using Monti scores on mod-
eling and validation data.

The grid search, in principle, is rather similar to the one conducted for the
univariate case expect for a few changes. Some hyperparameters, such as the
learning rate and loss function has had its search space tweaked and/or reduced
as a result of preliminary testing of their effect on multivariate performance.
Some parameters are new: n lags, previous lags of data to take into account
(effectively AR-order) and growth type; continuous or discontinuous. For the
exogenous models using OMX and Twitter, grid searches of 864 and 1024 mod-
els, respectively, are conducted.

The supposed optimal hyperparameters are then tested manually to see how
they perform and what type of behaviour they exhibit (i.e., see that they ad-
here to the seasons of a normal year rather than fitting to anomalies). Once
these matters have been inspected, the model can be set. For NeuralProphet
prediction with exogenous input, the horizon length needs to be set before train-
ing.
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3.5 Prediction

3.5.1 Predictions of monthly averages

While predictions made by the constructed models will be k-step (as in each
step until k), it is possible to compare the models to the MedHelp Baseline
model by averaging the k predictions as can be seen in figure 8. Furthermore,
one can iterate and reduce the number of predictions as the number of observed
percentages (data points) for the current month increases.

Figure 8: Iterative predictions of sick absence: Respective prediction means are
calculated in each iteration, which is then used as the prediction on a given day
of the average calendar month absence.

The nature of how data is fed to the MHB model means the model predicts
with the same amount of data each month, i.e., its internal memory does not
grow during the calendar year. The new data that is being added for each it-
eration of the prediction horizon could in theory be used to update and tweak
model parameters. The re-estimation of these parameters are computationally
demanding, especially given the model complexity. Furthermore, it would tech-
nically no longer be the same model between predictions which poses a dilemma
regarding robust comparison with the naive and baseline models. In order to
address this predicament, the model parameters for the SARIMA model are
estimated using only the training set and then fixed. The new data that is fed
then simply serves a method for ”moving” the model forward. The hyperpa-
rameters for the NeuralProphet are given the same treatment; fixed according
to the training set. Notwithstanding, the data which the NeuralProphet model
is trained with grows over time which should, in theory, render it more accurate
for each iterations of predictions.

Given the nature of the MHB model, the forecast horizons are strictly defined
to calendar months. Consequently, the test set needs to be approached with this
in mind. The test set can therefore be compartmentalized into 12 distinct sets,
one for each calendar month of 2022. As the MHB model is slightly tweaked
between calendar years, it would prove unfair to evaluate the model with a set
that includes months from two different years. Hence, only the calendar months
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of 2022 within the test set are used for the comparisons. Furthermore, the
MHB model is dependent on the previous calendar month, and as the first full
calendar month in the test set for univariate and Exo OMX is June 2022, the
MHB comparison set for is defined as July - December 2022. By applying the
same methodology to the TweetCov19 set, the corresponding months are May
- August 2022.

3.5.2 Predictions of daily absence

Three different horizon lengths are considered and tested: 7 days (week), 30
days (month) and 90 days (quarter). In order to ensure a robust evaluation, the
horizon lengths are iterated upon throughout the test set, see figure 9, which
significantly increases the sample size and satisfies the approximation of nor-
mal distribution. Between each respective iteration, the NeuralProphet models
are retrained, while the SARIMA model remains static. Only predictions from
complete horizons are used which results in 40 week-long predictions (280), 9
month-long predictions (270) and 3 quarter-long predictions (270) for the uni-
variate models and the exogenous OMX model. For the exogenous Twitter
model, this instead infers 22-week long predictions (154), 5 month-long predic-
tions (150), and 1 quarter-long prediction (90).

Figure 9: Iterative prediction horizons throughout the test set: The predictions
within an horizon are formed and then the models predict the subsequent hori-
zon until the end of the test set is reached. Note that only complete horizons
are used.

In order to benchmark, the models are compared to a naive model, which forms
its predictions as last year’s sick absence, i.e., ŷt = yt−365.

3.5.3 Prediction evaluation

When evaluating the predictions, it is feasible to do so in the original domain.
Thus, all predictions have their respective mean re-added and are subsequently
inverse transformed before evaluation. To measure performance of model pre-
dictions, four evaluation metrics are used: MSE, variance, MAE, and MAPE.
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4 Results

4.1 Preprocessing

The preprocessing workflow and its numeric counterparts can be seen in fig-
ure 10.

Figure 10: Resulting workflow of the preprocessing of the sick absence, where
absence due to childcare and companies with unusual average absence levels
are removed. The percentage of total data that was removed are shown in the
respective steps.

The distribution of companies and their respective average sick absence after
removing deviating companies can be see in figure 11. In total, 28 datapoints
were detected as outliers.
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Figure 11: Histogram of companies’ average sick absence. Here, outlier compa-
nies have been removed to better represent the Swedish labour force.

The corresponding difference in sick absence levels after removing these com-
panies are shown in figure 12. The difference is most pronounced earlier in the
series.

Figure 12: Daily sick absence from 2018-01-01 to 2023-02-14. The orange plot
illustrates the absence data from all companies in the database (unprocessed)
and the blue plot is processed data, where companies with abnormally high or
low average absence levels have been removed.
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For the dataset used for the univariate and exogenous OMX models, a log-
transform is deemed appropriate by the Box-Cox transformation. For the ex-
ogenous Twitter model an inverted square root transform is instead suggested
and applied to the absence set.

4.2 Model parameters

For the SARIMA model, a SARIMA(2, 0, 7)× (0, 1, 0)7 or:

A(z)∇7yt = C(z)et

seems suitable with:

A(z) = 1− 0.2076(±0.028)z−2

C(z) = 1 + 1.183(±0.015)z−1 + 1.0514(±0.023)z−2 + 0.9964(±0.028)z−3+

0.9172(±0.027)z−4 + 0.8325(±0.022)z−5 + 0.8936(±0.021)z−6+

0.0663(±0.019)z−7

NeuralProphet model parameters are presented in table 2. The most significant
differences between the univariate and exogenous models are the weight of newer
samples and the AR order to apply on input datasets.

Table 2: NeuralProphet model hyperparameters for the different models. The
hyperparameters were found using grid search. * denotes the default value.

Hyperparameter Univariate X:OMX X:Twitter
Learning rate 0.05 0.01 0.01
Batch size 120 120 120
Number of epochs 50 50 50
Number of hidden layers 5 20 20
Number of units in layers 2 2 2
Weight of newer samples 1.0 2.5 2.5
Threshold for ”new” 0.0 0.75 0.25
Loss function MAE MAE MAE
Trend growth type Continuous* Continuous* Discontinuous
Number of trend change-
points

10* 10* 13

Fourier order for yearly
seasonality

Auto* Auto* 6

AR order 0* 6 6

4.3 Predictions of monthly averages

Results of predicting the average of calendar months can be seen in figures 13
through 16. It can be noted that all NP models perform worse than MHB during
the months of July and December (except the exogenous Twitter model, which
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cannot be tested this month), while performing on a similar level during August
through October, which closely resemble corresponding months previous years.

Figure 13: MHB vs. the univariate NeuralProphet model: Predictions of calen-
dar month averages. The prediction is an average of predictions of the remaining
days in the calendar month. A new prediction of the average is made each day
and converge to the true average as the amount of measured data grows while
the number of predictions is decreased.
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Figure 14: MHB vs. the SARIMA model: Predictions of calendar month aver-
ages. The prediction is an average of predictions of the remaining days in the
calendar month. A new prediction of the average is made each day and converge
on the true average as the amount of measured data grows while the number of
predictions is decreased.
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Figure 15: Baseline vs. the exogenous OMX NeuralProphet model: Predictions
of calendar month averages. The prediction is an average of predictions of the
remaining days in the calendar month. A new prediction of the average is made
each day and converge on the true average as the amount of measured data
grows while the number of predictions is decreased.
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Figure 16: Baseline vs the exogenous Twitter NeuralProphet model: Predictions
of calendar month averages. The prediction is an average of predictions of the
remaining days in the calendar month. A new prediction of the average is made
each day and converge on the true average as the amount of measured data
grows while the number of predictions is decreased.
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Figure 17: MHB vs. the univariate NeuralProphet model: Absolute errors of
predictions of calendar month averages. As the number of the measured data
points grows during the month, the prediction error approaches zero.

The corresponding error plots are shown in figures 17 through 20. It can be seen
that the exogenous NP Twitter model performs far worse than any other models
during July and August, the months where the test sets overlap. Furthermore,
one can note the scale on the y-axis in figure 18 is different, illustrating the
lower error. Additionally, it can be seen that there is no critical difference in
prediction behaviour between the univariate and exogenous OMX NP model.
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Figure 18: MHB vs. SARIMA model: Absolute errors of predictions of calendar
month averages. As the number of the measured data points grows during the
month, the prediction error approaches zero.
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Figure 19: Baseline vs. the exogenous OMX NeuralProphet model: Absolute
errors of predictions of calendar month averages. As the number of the measured
data points grows during the month, the prediction error approaches zero.
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Figure 20: Baseline vs. the exogenous Twitter NeuralProphet model: Absolute
errors of predictions of calendar month averages. As the number of the measured
data points grows during the month, the prediction error approaches zero.

The resulting metrics of the calendar month predictions are presented in tables 3
through 5. It can be seen that the SARIMA model performs better than MHB
concerning MAE and MAPE and while the MSE and variance are higher, the
difference between the two metrics are lower, suggesting a lower bias in the
SARIMA model.

Table 3: Metrics - Univariate models - Predictions of monthly averages, where
predictions of averages are made on a daily basis, combining measured and
predicted data.

Model MSE Variance MAE MAPE
NeuralProphet 7.9 · 10−6 6.4 · 10−6 1.7 · 10−3 3.6 · 10−2

SARIMA 1.8 · 10−6 1.7 · 10−6 8.8 · 10−4 1.9 · 10−2

MHB 1.4 · 10−6 1.3 · 10−6 9.4 · 10−4 2.1 · 10−2
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Table 4: Metrics - Exogenous OMX - Predictions of monthly averages, where
predictions of averages are made on a daily basis, combining measured and
predicted data. AR coefficients have been used to incorporate the Swedish
stock market into the predictions.

Model MSE Variance MAE MAPE
NeuralProphet 8.0 · 10−6 6.6 · 10−6 1.7 · 10−3 3.7 · 10−2

MHB 1.4 · 10−6 1.3 · 10−6 9.4 · 10−4 2.1 · 10−2

Table 5: Metrics - Exogenous Twitter - Predictions of monthly averages, where
predictions of averages are made on a daily basis, combining measured and
predicted data. AR coefficients have been used to incorporate the discourse
regarding COVID-19 into the predictions.

Model MSE Variance MAE MAPE
NeuralProphet 5.3 · 10−6 3.9 · 10−6 1.6 · 10−3 4.4 · 10−2

MHB 1.7 · 10−6 6.4 · 10−7 1.0 · 10−3 2.7 · 10−2

4.4 Predictions of daily absence

Predictions of h = 7 with univariate models can be seen in figures 21 and 22.
While the NP model tracks the slower season well, the SARIMA model also
tracks the fine dynamics and is able to predict well during the peak in December
2022.

Figure 21: Univariate predictions using NeuralProphet: Predictions of daily sick
absence with horizon length h = 7. This procedure is repeated until predictions
have been formed for the whole test set.
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Figure 22: Univariate predictions using SARIMA: Predictions of daily sick ab-
sence with horizon length h = 7. This procedure is repeated until predictions
have been formed for the whole test set.

Predictions of h = 30 with univariate models can be seen in figure 23 and 24.
The NP model performs quite similar, but over- and undershoots slightly more.
The SARIMA model displays a rather piece-wise behaviour per horizon, which
results in worse predictions in comparison to h = 7.
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Figure 23: Univariate predictions using NeuralProphet: Predictions of daily sick
absence with horizon length h = 30. This procedure is repeated until predictions
have been formed for the whole test set.

Figure 24: Univariate predictions using SARIMA: Predictions of daily sick ab-
sence with horizon length h = 30. This procedure is repeated until predictions
have been formed for the whole test set.
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Predictions of h = 90 with univariate models can be seen in figure 25 and 26.
The piece-wise behavior of the SARIMA model is even more pronounced, while
the NeuralProphet model predicts slightly lower values throughout most of the
test set.

Figure 25: Univariate predictions using NeuralProphet: Predictions of daily sick
absence with horizon length h = 90. This procedure is repeated until predictions
have been formed for the whole test set.
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Figure 26: Univariate predictions using SARIMA: Predictions of daily sick ab-
sence with horizon length h = 90. This procedure is repeated until predictions
have been formed for the whole test set

Corresponding metrics of all horizon lengths for the univariate models can be
seen in tables 6 through 8. One can note that the best model regarding all
metrics is the SARIMA model with h = 7 and that all models achieves at least
half of the naive’s metrics.

Table 6: Metrics - Univariate models - Predictions are of length h = 7, repeated
40 times in the test set and serve as the basis for the metrics. The naive model
predicts the sick absence as identical to the previous year.

Model MSE Variance MAE MAPE
NeuralProphet 2.2 · 10−5 1.8 · 10−5 3.4 · 10−3 7.3 · 10−2

SARIMA 6.3 · 10−6 6.3 · 10−6 1.6 · 10−3 3.5 · 10−2

Naive 1.1 · 10−4 8.0 · 10−5 9.2 · 10−3 2.0 · 10−1

Table 7: Metrics - Univariate models - Predictions are of length h = 30, repeated
9 times in the test set and serve as the basis for the metrics. The naive model
predicts the sick absence as identical to the previous year.

Model MSE Variance MAE MAPE
NeuralProphet 2.6 · 10−5 2.0 · 10−5 3.7 · 10−3 8.1 · 10−2

SARIMA 1.2 · 10−5 1.2 · 10−5 2.5 · 10−3 5.4 · 10−2

Naive 1.2 · 10−4 8.2 · 10−5 9.3 · 10−3 2.0 · 10−1
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Table 8: Metrics - Univariate models - Predictions are of length h = 90, repeated
3 times in the test set and serve as the basis for the metrics. The naive model
predicts the sick absence as identical to the previous year.

Model MSE Variance MAE MAPE
NeuralProphet 2.7 · 10−5 2.1 · 10−5 3.8 · 10−3 8.3 · 10−2

SARIMA 3.5 · 10−5 2.6 · 10−5 4.5 · 10−3 9.2 · 10−2

Naive 1.2 · 10−4 8.2 · 10−5 9.3 · 10−3 2.0 · 10−1

4.5 Exogenous

Crosscorrelation between input and output data are shown in figures 27 and 28.
Both exogenous sets show significant correlation in relation to the sick absence.

Figure 27: The crosscorrelation between the Swedish stock market (OMX30)
and the sick absence showing their relationship over time. The sets are then
fed to the NeuralProphet model for training. Note that the crosscorrelation is
calculated using the modeling sets.
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Figure 28: The crosscorrelation between the tweets regarding COVID-19 and the
sick absence showing their relationship over time. The sets are then fed to the
NeuralProphet model for training. Note that the crosscorrelation is calculated
using the modeling sets.

Predictions for h = 7, h = 30 and h = 90 with the exogenous OMX model can
be seen in figures 29, 30 and 31. For h = 7, the exogenous model undershoots
less than its univariate counterpart. For h = 30 and especially h = 90, the
baselines of the predictions are slightly lower the the univariate NP model.

46



Figure 29: Predictions with exogenous input, OMX, that is incorporated with
AR coefficients into NeuralProphet: Predictions are of daily sick absence with
horizon length h = 7. This procedure is repeated until predictions have been
formed for the whole test set.
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Figure 30: Predictions with exogenous input, OMX, that is incorporated with
AR coefficients into NeuralProphet: Predictions are of daily sick absence with
horizon length h = 30. This procedure is repeated until predictions have been
formed for the whole test set.
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Figure 31: Predictions with exogenous input, OMX, that is incorporated with
AR coefficients into NeuralProphet: Predictions are of daily sick absence with
horizon length h = 90. This procedure is repeated until predictions have been
formed for the whole test set.

The resulting metrics for the exogenous OMX model can be seen in table 9. For
h = 7, the exogenous model performs better, achieving lower metrics overall. For
the longer horizons, the metrics are very similar to the univariate counterpart.

Table 9: Metrics - Exogenous OMX model - Predictions are of length h = 7, 30
and 90 respectively. The naive model predicts the sick absence as identical to
the previous year.

Model MSE Variance MAE MAPE
40 x 7 1.9 · 10−5 1.6 · 10−5 3.1 · 10−3 6.9 · 10−2

Corresponding naive 1.1 · 10−4 8.0 · 10−5 9.2 · 10−3 2.0 · 10−1

9 x 30 2.6 · 10−5 1.9 · 10−5 3.7 · 10−3 8.1 · 10−2

Corresponding naive 1.2 · 10−4 8.2 · 10−5 9.3 · 10−3 2.0 · 10−1

3 x 90 2.6 · 10−5 1.7 · 10−5 3.8 · 10−3 8.4 · 10−2

Corresponding naive 1.2 · 10−4 8.2 · 10−5 9.3 · 10−3 2.0 · 10−1

Predictions for h = 7, h = 30 and h = 90 with the exogenous Twitter model can
be seen in figure 32 through 34. One can note that this model predict rather
similarly to the naive model, i.e., the previous year.
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Figure 32: Predictions with exogenous input, tweets regarding COVID-19, that
is incorporated with AR coefficients into NeuralProphet: Predictions are of
daily sick absence with horizon length h = 7. This procedure is repeated until
predictions have been formed for the whole test set.
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Figure 33: Predictions with exogenous input, tweets, that is incorporated with
AR coefficients into NeuralProphet: Predictions are of daily sick absence with
horizon length h = 30. This procedure is repeated until predictions have been
formed for the whole test set.
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Figure 34: Predictions with exogenous input, tweets regarding COVID-19, that
is incorporated with AR coefficients into NeuralProphet: Predictions are of
daily sick absence with horizon length h = 90. This procedure is repeated until
predictions have been formed for the whole test set.

The resulting metrics for the exogenous Twitter model can be seen in table 10.
While the test set is different from the other models, it can be noted that it
predicts less accurately (higher MAPE) than the other models for all horizon
lengths; to the extent of being matched by the naive model for h = 30.

Table 10: Metrics - Exogenous OMX model - Predictions are of length h = 7,
30 and 90 respectively. The naive model predicts the sick absence as identical
to the previous year.

Model MSE Variance MAE MAPE
22 x 7 1.9 · 10−5 1.6 · 10−5 3.5 · 10−3 9.4 · 10−2

Corresponding naive 5.5 · 10−5 2.5 · 10−5 6.4 · 10−3 1.7 · 10−1

5 x 30 6.2 · 10−5 3.3 · 10−5 6.4 · 10−3 1.7 · 10−1

Corresponding naive 5.4 · 10−5 2.5 · 10−5 6.4 · 10−3 1.7 · 10−1

1 x 90 2.2 · 10−5 1.7 · 10−5 3.8 · 10−3 9.9 · 10−2

Corresponding naive 3.3 · 10−5 2.3 · 10−5 4.7 · 10−3 1.2 · 10−1
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5 Discussion

5.1 Processing of data

The processing of data is an essential part of the project and the sick absence
quotient was quite affected by it, as can be see in figure 12. As most of these
entities were companies who only reported present employees but never any
absent individuals, they were effectively diluting the absence quotient, hence
their removal resulted in higher levels of absence, especially for dates in 2018
and 2019. A possible explanation for this is that companies have gotten more
proficient at using the platform with time and in doing so, increased the fidelity
of their sick absence. It is also worth noting that the topic of sick absence has
become increasingly more prominent in latter years, as the COVID-19 pandemic
changed many workplaces’ view on and approach to addressing sick absence.
Throughout the time period that is spanned by the set, many workplaces have
introduced or encouraged the possibility of working from home, which would
to a larger extent allow people to carry out their work from rather than report
in as ill [40]. Furthermore, the impact of the pandemic on the data is very
clear, see the two first peaks in figure 12). The way in which anomalies (for
this project, massive spikes in sick absence) were processed could have been
handled in alternate ways. Rather that replacing them with the threshold value
(+3 STD), the possibility of interpolating data points with a Kalman filter was
discussed. However, the added amount of work required for such an action
was deemed superfluous, as the total number of outliers, 28, was very limited.
That being said, absences in periods surrounding these outliers (the pandemic
outbreak, omicron) are still higher than corresponding periods of normal years.
As the purpose of the thesis was to predict absence in ”normal periods”, one
could argue that deleting COVID-19 from the set using data points from periods
from previous years could result in models that are more apt for predicting
normalcy, the presence of COVID-19 in the dataset was deemed too substantial.

Although the MedHelp dataset is very detailed and expresses more than 200.000
users, it is again worth noting that while it would be ideal to process, model and
predict actual sick absence, the dataset is but a reflection of the reported absence.
The results should therefore be treated as such. Moreover, there are other
peculiarities in the data, which proves to affect model performance, December
2022 being one such example. This peak is not likely to have been caused solely
by COVID-19, but rather by a mixture of tract respiratory infections [41].

5.2 Datasets

5.2.1 OMX

The OMX set used for modeling is negatively correlated with the sick absence,
which would corroborate earlier findings of stock market impact on sick absence.
OMX was chosen a measure of economy on a macro scale, but when considering
which economic factors that impact households and affect behaviour more di-
rectly, it would have been interesting to instead measure consumer price index,
CPI. Examining the sick absence through a lens of the development of living
costs might have garnered even more promising results, however, CPI is only
measured on a monthly basis, rendering its compatibility with a daily time series
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such as sick absence subpar. However, one could construct a model where the
CPI is used as a covariate with a constant value each calendar month and evalu-
ate the performance of such a model. Other similar measures of economy suffer
from similar problems. It should also be noted that despite the large proportion
of Swedish inhabitants investing in the Swedish market, their investments are
by no means limited to the domestic market and developments in direct devel-
opment in foreign markets are not taken into account in this project. In other
words, the OMX set is by no means exhaustive.

On the other hand, the length of the OMX set renders it otherwise compatible
with the sick absence. More advanced methods for interpolating missing values
could have an impact on training and consequent prediction accuracy, yet it
is hard to motivate any particular interpolation method and ergo, the simple
approach used for this project was deemed sufficient. Future work could explore
how advanced interpolation methods could more accurately represent a time
series such as stock markets.

5.2.2 Twitter

The Twitter set also exhibits a negative crosscorrelation with the MedHelp
dataset. This is due to the inverse square root transform of the sick absence,
which effectively mirrors the correlation with respect to the y-axis. While the
TweetsCOV19 set holds the potential of exploring the connection between so-
cial discourse and sick absence (primarily COVID-19), there are some inherent
problems that arise when using it. It only uses English tweets, which poses
an issue as the pandemic was hardly limited to the English speaking part of
the world. Although, Swedish people are generally prolific in the English lan-
guage, it is hard to argue that the Swedish population would be represented by
a dataset containing only information in English and that is not simultaneously
not in any way limited to the Swedish population.

Moreover, the data length of the Twitter set constitutes another drawback.
While it is only natural that discourse around the COVID-19 pandemic is not
measured much earlier than the pandemic outbreak, its limit in scope requires
removing more than 1.5 years of data (January 2018 - September 2019, arguably
the most ”normal” part) from the beginning of the set, and 5 months at the
end.

5.3 Univariate models

As was expected, predictions of shorter horizon lengths have lower MAPE, which
can be seen in table 6. The NP performance is worsened when increasing the
length of the horizons, however, the difference in performance is not vastly dif-
ferent between 7 and 30 and 30 and 90, despite the large difference in added
guesses (23 compared 60). There is no clear reason to why the performance is
not reduced to an even greater degree, but it could be argued that the season-
ality of the data contributes to the somewhat maintained accuracy. The yearly
seasonality, in particular, informs NeuralProphet predictions and given a ”nor-
mal” year, this will imply adequate performance. However, during abnormal
periods, the seasonality impair this model more than it aids. As an example,
one may study the month of December 2022: the absence during this month is
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higher than its earlier counterparts and as a consequence, this period hosts the
worst predictions of the NeuralProphet model.

The SARIMA model, however, takes the recent lags into consideration and
does not suffer to the same extent and is able to track the dynamics very well.
Its model predictions for h = 7 has the lowest metrics of all and exhibits no
noteworthy tendency for errors. These predictions are able to track both slow
and fast dynamics, while simultaneously maintaining the correct amplitude. The
MAE, being within a range of one tenth of a percent, could inform business and
decision makers on how sick absence will vary over the week with good resolution
and in doing so facilitate staffing. For h = 30, the results are worse but the
offset of the predictions are still similar enough to the true values to generate low
metrics. With the growing prediction horizon, the reduced visibility of yearly
seasonality within the predictions is becoming more apparent. For h = 90,
the predictions in the test set essentially form a piece-wise function with three
distinct sub-signals with a respective frequency and offset. For h = 30 and 90,
the horizons are simply not sufficiently stationary, and the resulting predictions
become very unanimous, which cause an increase in the metrics. The insistence
on seasonality in the NP model generate more accurate predictions for this
horizon and the advantages and drawbacks of the model types are exemplified
through their different emphasis on stationary data and observed seasonality.

The main reason for the discrepancy between the true data and naive predictions
is mostly due to an offset rather than a matter of faulty dynamics. The only
major difference in behaviour occurs in late January, when the naive model
echoes the effects of the Omicron variant of COVID-19, which caused a surge
in Swedish sick absence. One could use a naive which forms its prediction for a
given calendar day by averaging earlier instances of that calendar day, but that
poses two problems. Firstly, it eliminates the simple nature of a naive model
and secondly generates a worse performing naive as the sick absence during
earlier years was generally lower.

5.4 Exogenous models

As can be seen in the metrics from the exogenous models (see table 9 and
10), results from using external input vary. Both exogenous models have a
higher number of tweaked hyperparameters than the univariate model counter-
part, and model complexity can therefore not be necessarily accredited to being
paramount for performance. It is rather the nature of the exogenous dataset
and its inherent connection to the sick absence that appears to affect results.

When considering a short forecast horizon, using previous AR lags in combi-
nation with seasonal terms proved successful when incorporating the OMX set
into a NeuralProphet model, as a lower MAPE is achieved. This proves in line
with the previously mentioned research that found a connection between the
stock market and sick absence [1]. It is worth noting that there is no way of
comparing the severity of the sick absences in this project and that, but the
increased accuracy of the exogenous OMX model could lend credence to the
thesis that stock markets indeed influence sick absence. Further speculation
on the matter is more apt for a project focused on causality. Whatever the
nature of the relationship between the OMX set and the MedHelp dataset is,
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longer prediction horizons are mostly unaffected when considering the metrics.
The information in the six last OMX datapoints fail to provide any informa-
tion relevant enough to firmly improve long-term predictions. Most metrics
are very similar except the variance, which is lower for the exogenous model.
The fact that this metric differs could be attributed to the fact that the exoge-
nous OMX model has an reduced amplitude in the yearly seasonality during
the period of the test set. This in turn might be a result of the stock market
working as a stabilizing agent in relation to the sick absence as the usage of
OMX decreases seasonality over and undershooting. Moreover, the impact of
more recent observations should also be taken into account. Despite initial con-
cerns that increasing the weight of newer samples would cause the NP models
to incorrectly learn from COVID-19 and consequently form inferior predictions,
the exogenous OMX model dismisses this thesis. The emphasis on more recent
observations and inclusion of AR-components in combination with exogenous
OMX data works in tandem to create more accurate short-term predictions for
this test set. A reason as to why the long-term accuracy is largely unaffected
could be the way in which the exogenous input are handled in NeuralProphet. If
the input would be modeled in a similar manner as the absence, i.e, with trends
and seasons rather than just autoregression, it is possible that the long-term
predictions could be improved.

The results of when incorporating social discourse in the form om the TweetsCOV-
19 set are not as promising. Although it would have been interesting to poten-
tially discover that social media caused people to report absence, it is from the
predictions results apparent that such a finding is unlikely. The Twitter data
exhibits significant negative correlation with the sick absence, which could be
explained by the inverse square root transform used for the this sick absence
set. The weekly seasonality is very apparent; possibly a result of a lag when
reporting in COVID-19 cases. However, the inadequate data length in com-
bination result in metrics worse than the univariate NP model. A reason for
the worsened performance when incorporating the Twitter could also be that
the information supplied external input is not sufficient to compensate for the
increased complexity of the model. The difference in complexity can be seen in
the parameters in in table 2, e.g., through a more complex neural network. It is
also possible that the tweets and the sick absence are too synchronized for the
tweets to provide enough useful information and in doing so, increase prediction
accuracy.

It would be interesting to further evaluate the impact of using the Twitter set
without concerns regarding if there is enough sufficient historical data, however,
considering the current datasets this is not feasible. In order to generalize the
results and draw a well-founded verdict regarding the incorporation of exogenous
macro factors, further testing when more data is available is required.

Morever, exploring the macro factors impact with SARIMA(X) or Box-Jenkins
models and investigate if even better results could be achieved, would be of
interest and a natural next step in this field of research when adequate tools are
available.
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5.5 Predictions of calendar monthly averages

The univariate NP model surpasses MHB September through November in
terms of prediction accuracy (MAPE), while performing worse July, August
and December, see figure 17. A possible reason for this is that September
through November (while on a generally higher level, i.e., offset) behave very
similar to previous corresponding months of earlier years. As the NP models
are retrained on a daily basis, it is allowed to adjust the trend in the data up
until the last 20% of training data. The rising trend in the data that can be
seen in, e.g., figure 5 can therefore be captured, which could explain why the NP
model handle the elevated level of absence. On the other hand, for short-lasting
variations in the data, it performs worse. The regular dip in absence in July is
not as pronounced as in previous years, which could explain why it undershoots
during this month. For November and particularly December, patterns of ab-
sence differ greatly from corresponding periods during the years 2018-2020. The
surge in absence levels, however, is to a lesser extent present in 2021. As the
initial MHB guess of the month is very much dictated by the previous year and
moth, it does not undershoot nearly as much as the univariate NP model when
considering the month of December.

The SARIMA model outperforms MHB slightly, see figure 14 as well as table 3,
and exhibits a more turbulent behaviour that its NP counterpart. A reason for
this could be the increased consideration of recent lags affecting each new set of
predictions. While the MAPE is quite high during the first days of a calendar
month, it generally declines quite quickly. It should also be noted that figure
17 and 18 have different scales on their respective y-axes. With this taken into
account, the contrasting regarding performance becomes more evident.

The exogenous OMX NP model performs similarly to its univariate counterpart,
but also displays a more erratic nature. The added consideration of capturing
more fast-changing variations using AR-components could be attributed to this.
A similar behaviour can be seen in 16, but the resulting metrics are quite dif-
ferent. It should be restated that the Twitter has a different test set and can
not be directly compared to the others, but inspecting each models respective
metrics can be done to extract some insight into performance. While the other
metrics suggest better performance, see table 5, the MAPE makes it apparent
that is not the case. The average level of absence during these months are lower
(which can be seen by comparing the y-axes in figures 15 and 16). As the MAPE
reduces the impact of scale on the data, the Twitter NP model is shown to have
the largest percentage error out of all models.

5.6 Complexity

Implementing the prediction methodology for the different types of models
is a complicated problem. The implementation was considerably more time-
consuming than predicted but the algorithms could all the same be optimized
for performance. For this project, however, these matters of time complexity
was secondary to a solution that simply generated the intended result. Another
aspect of time complexity to consider is the usage of grid searches. One could
theoretically ensure utilize an infinite search space for the objective of finding
optimal hyperparameters for NP models, but in practice, there are issues that
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arise. Primarily, conducting grid searches is very computationally demanding
and by extension, time consuming. There is the possibility of outsourcing the
computations to a GPU, using on-premise equipment or web services, but re-
sources of this nature were not available for this project. Nevertheless, the
search space could have been expanded using randomized grid searches, poten-
tially improving model prediction accuracy.

While using NeuralProphet appears to generate more accurate predictions and
higher performing models for long horizons (h = 90), in practice, there are
other factors that would inform the selection of model type. For models on this
scale, the training and and prediction time for a machine learning model such as
NeuralProphet is tenfold for regular prediction horizons and almost thousand-
fold when forming the predictions for the calendar month test set. The number
of batch sizes and epochs could of course be tweaked to decrease training times,
but at the cost of accuracy. If models for predicting daily sick absences were to
be deployed for, e.g., each individual company using the MedHelp platform, it
is likely that the difference in computational demand between SARIMA and NP
would become very apparent. On the other hand, SARIMA models generally
require more manual tweaking of matters such as polynomial orders, which
also plays a role when considering matters of scalability and the feasibility of
developing individually tailored models. An ideal type of model would be both
highly automated regarding model parameter selection in addition to being very
quick when it comes to training and predicting.

Further exploring matters of complexity and interpretability, it could be argued
that the nature of MHB, albeit rudimentary, produces quite good results with
essentially zero preprocessing required. The advantages of a ”less is more”
argument are apparent, see, e.g., table 3 as it performs better than any NP
model, but it is worth noting also that the task of predicting calendar month
average absences is not the priority of neither NeuralProphet nor SARIMA.
While the average of calendar month very much is a result of daily predictions,
the secondary nature of such results should be taken into account: MHB is
designed specifically to do one task: predict the calendar month average, it is
anticipated to be on par with models such as NP and SARIMA that are designed
for another task (predictions with a daily resolution), despite its simple nature.
If calendar month average absences had been the main focus of this thesis,
the data could have been preprocessed in an alternate manner: Aggregating
the data to a monthly basis, rather than daily, and then proceeding with the
modeling in a similar way. However, in doing so, the number of datapoints
available for modeling would be greatly reduced (by a factor of approximately
30), which in turn is very likely to affect performance results in a negative
manner. It would also greatly reduce the number of predictions to 6, which
is not sufficient for drawing any conclusion using statistical measures. On the
other hand, given enough historic data, modeling calendar month absences is
very much a potential project to explore.

However, there are aspects of the NeuralProphet models that provide more
insight into the data than its counterparts. Its modular nature increases in-
terpretability of the structure and variation of the data, such as the frequency
components (e.g., yearly and weekly seasonalities) and general trends in the
data. Despite this, the lack of a possibility to explicitly display the numeric
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parameters of the model poses a minor black-box issue. The shortage of other
prominent machine learning packages for time series analysis with a comparable
performance and features available designates it the current best choice.
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6 Conclusions

From this project we conclude that it is possible, through time series modeling,
to predict daily sick absence with less than 9 % average error for weekly, monthly
and quarterly horizons. Using a SARIMA model is better for h = 7 and 30,
while NeuralProphet proves to be a superior choice for h 90. The difference
in performance could be explained by contrasting emphases on autoregression
and long-term seasonality. By processing the MedHelp data through removal of
atypical companies, the dilation of the set is reduced, which increases the levels
of sick absence.

Incorporating exogenous input requires more complex models and that the data
input is related to the sick absence in order to compensate for this. Using
OMX data increases prediction accuracy for weekly horizons, while Twitter
data decreases performance for all horizon lengths. The length of the data
sets used is also likely to affect performance and when more extensive data is
available, the impact should be evaluated. The results are promising and implies
possibilities to improve staffing measures, but would require further testing using
other models to verify.

The complexity of the models infers a considerable amount of manual labour,
especially concerning SARIMA. The computational power required for model
training and optimization further complicates the issue. These matters decreases
their feasibility to be deployed in real-world applications, where ideally, models
could be bespoke on a company basis.
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7 Ethical Aspects

7.1 Data

There are several aspects to consider concerning ethics within E-health. Among
these are integrity, confidentiality and privacy [42].

The data collection necessary for MedHelp’s platform strictly adheres to GDPR.
Policys are in place to protect each individual data and their respective right to
it. The data supplied to MedHelp through customers are based on consent and
the same consent is also valid for research and analysis, e.g projects like this
master thesis.

When considering the more practical elements, it is worth noting that the data
supplied for this project neither features direct identifiers to the individuals
(i.e. names or social security numbers) nor which companies actually constitute
the dataset. The models are created using data represented as a population,
meaning it is not possible to track specific individuals.

The nature of which the dataset is interacted with is one-way. In practice, this
means that whichever way the data is processed, it will never affect the original,
but merely a copy of it. Furthermore, the data was only allowed to be run in
RAM for security reasons.

7.2 Intentions

This project serves as a part of MedHelp’s goal of assisting companies manage
and decrease work absence. It would be beneficial for companies to better
prepare for and handle absence and also learn what might factors might drive
the data, rather than trying to target specific individuals who might be skipping
work.
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