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Abstract

Systemic risk can be defined as the risk to the whole financial system. Financial in-

stitutions may contribute more or less to this risk, and measuring the systemic risk

contributions of institutions is of central importance for regulators. This is important

since it makes it possible to determine to what extent different institutions contribute

to the overall systemic risk of the financial system and hence which ones are more or

less systemically important. Adrian & Brunnermeier (2011) proposes the systemic risk

measure CoVaR, which builds on the framework of Value-at-Risk (VaR). The definition

of CoVaR is the qth% VaR of institution j (or in the case of this essay, the European

financial system) given that another institution i is at its qth% VaR. ∆CoVaR measures

the change in the VaR for institution j given that institution i is in distress (compared

to its normal state), and estimates the marginal risk contribution for a given institution.

To obtain time variation in the estimates, the authors suggests using state variables that

condition the mean and volatility of the risk measure. This essay tries to answer the

question whether the systemic risk estimates obtained by using the CoVaR methodology,

and the systemic risk contribution rankings between banks, are sensitive to the selection

of these state variables. Using equity price data for 141 European banks, and data for 20

state variables during the time period from 31st of December 2002 to 30th of September

2022, this essay estimates VaR, CoVaR, ∆CoVaR and ∆$CoVaR using quantile regres-

sions, following the methodology of Adrian & Brunnermeier (2011). Using four different

state variable selection methods including the one suggested by Adrian & Brunnermeier,

the supervised and unsupervised machine learning methods of Lasso regression and PCA,

and a randomized method, systemic risk contributions over time are estimated and the

banks are ranked according to these estimates. The results of this essay suggests that the

CoVaR risk measure indeed is sensitive to the choice of state variables selection method,

where both the estimates as well as rankings differs between the methods.

Keywords: VaR, CoVaR, State Variables, Quantile Regression, Systemic Risk, Lasso,

PCA
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Lund University 1. INTRODUCTION

1. Introduction
The financial crisis of 2008 and similar economic events often result in detrimental effects

on the financial system, society, and its members. What has become clear from these

kinds of events and from previous research is that the risk financial institutions face in

isolation is of little importance when wanting to assess the risk that the entire financial

system faces (Montagna et al. 2020). Hence, the importance for regulators to measure

this latter mentioned risk has, and will, continue to grow. This risk is the systemic risk,

which can be defined in many ways, but what is central to the concept is that it reflects

the risk faced by the financial system as a whole, and that this risk stems from connected

components of the system being in distress. Because of the potential outcomes of a

major disruption of the financial system, it is of great importance that regulators have

proficient systemic risk measures at their disposal when quantifying and measuring the

systemic risk in the economy. A potential suggestion for such a systemic risk measure

is CoVaR which is extended to ∆CoVaR, first developed by Adrian & Brunnermeier

(2011). One aspect of the ∆CoVaR methodology and the measurement of systemic risk

in general is modeling and capturing its development over time, which aims toward giving

us an understanding of the time-variation of systemic risk that the selected risk measure

captures. Most of the previous research, including Adrian & Brunnermeier, has chosen

to model the time variation of systemic risk by using state variables within the quantile

regression framework. The selection of which state variables to use when obtaining time-

varying estimates of ∆CoVaR has however been given little, if any, attention in previous

research and in many cases the variables first suggested by Adrian & Brunnermeier have

served as a benchmark. As far as the authors of this essay are concerned, the implications

of different state variables selection methods on ∆CoVaR estimates have not been studied

before. Hence, it is within this selection process this essay wishes to make a contribution.

The main objective of this essay is to investigate ∆CoVaR’s expediency in capturing

time variation in systemic risk. This is done by estimating the systemic risk in the Eu-

ropean banking sector over time with different state variable selection methods following

the estimation procedure of Adrian & Brunnermeier (2016). By doing this, the essay

is able to investigate whether the systemic risk estimates show significant fluctuations
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Lund University 1. INTRODUCTION

or not, and hence assess the sensitivity of ∆CoVaR, more specifically, ∆$CoVaR, to the

choice of state variable selection method. The results of this essay will try to answer the

following stipulated research questions:

Do different state variable selection methods change the systemic risk con-

tribution estimates?

Do different state variable selection methods change the systemic risk con-

tribution rankings between banks?

The first research question aims to answer whether different selections of state variables

result in different values of the systemic risk estimates. More specifically, when answering

the first research question this essay puts an emphasis on ∆$CoVaR, which takes the size

of a bank into account. This is further motivated in section six. The second question

instead focuses less on the actual estimate levels, but more on if rankings of systemic risk

contributions between banks are consistent across different state variable selection meth-

ods. Investigating how sensitive ∆CoVaR is to the choice of state variables is important

since fluctuations depending on the choice of state variables introduce uncertainty in the

systemic risk estimates. This could question the risk measures expediency to capture

time variation in systemic risk, which is highly relevant for regulators wishing to estimate

the risk the financial system faces. To assess the sensitivity of ∆CoVaR, this essay looks

at the European banking sector and estimates VaR, CoVaR, ∆CoVaR and ∆$CoVaR for

a large sample of 141 European publicly traded banks in the period between December

2002 and October 2022. To determine the risk measures’ dependency on the state vari-

ables, this essay uses a larger sample of state variables (20) and implements four types

of selection procedures. First, systemic risk estimates are obtained by using Adrian &

Brunnermeier’s (2016) selected state variables with minor changes due to the differences

in geographical coverage. Secondly, state variables are selected by using a supervised

regularization method in form of Lasso regression, which is followed by an estimation

conducted with the selected variables. Thirdly, an unsupervised method of dimensional-

ity reduction is used, which is the Principal Components Analysis. Lastly, a randomized

selection procedure is implemented. The estimations of VaR, CoVaR, ∆CoVaR and

∆$CoVaR follow the methodology presented in Adrian and Brunnermeier (2016).

3



Lund University 1. INTRODUCTION

The remainder of the essay is structured as follows. The upcoming section introduces

the theoretical framework that lies as a foundation for the work of this essay. More

specifically, this contains sections on the concept of systemic risk, definitions of relevant

risk measures, and regulation. Section three presents previous research and related lit-

erature within the field of systemic risk. In section four, the methodology of estimating

CoVaR and ∆CoVaR and the state variables selection methods are explained. Section

five describes the data used and the data collection process, and section six presents the

empirical results. Section seven presents a discussion followed by section eight that sum-

marizes the main conclusions of the essay and suggests areas of future research. Section

nine contains the references.
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2. Theoretical framework

2.1 Systemic risk

The concept of systemic risk has been extensively covered in the literature, but a universal

definition of it has not yet been stipulated since different research emphasizes different

aspects of the concept (W. Silva et al. 2017). However, it could be argued that most

definitions share common characteristics.

According to the European Central Bank (ECB), a broad definition of systemic risk

refers to “the risk that financial instability becomes so widespread that it impairs the

functioning of a financial system to the point where economic growth and welfare suffer

materially” (ECB 2009). Another definition is proposed by Adrian & Brunnermeier

(2016), which focuses on distress (losses) spreading between institutions and how this

can give rise to the endangering of the entire financial system. More specifically, the

authors define systemic risk as the risk that the impairment of the functionality of the

financial system results in potentially unfavorable consequences for the real economy.

Kaufman & Scott (2003) argues for a similar definition and stipulate that systemic risk

refers to “the risk or probability of breakdowns in an entire system”, which is contrasted

to events in separate parts of the system. Specific to the banking sector, the authors

argue that systemic risk is showcased by a high correlation and concentration between

bank failures. Acharya & Richardson (2009) defines systemic risk in similar terms by

stating that systemic risk is the “joint failure of financial institutions and capital markets

that considerably shorten the supply of capital to the real market” (W. Silva et al. 2017).

Evidently, different definitions of systemic risk are brought up within the literature,

but a certain emphasis is on systemic risk as the risk to the whole financial system

stemming from simultaneous or linked distresses of financial institutions. According to

Smaga (2014), there are a number of aspects that are most often brought up within

definitions of systemic risk. Firstly, systemic risk is concerned with a larger part of

the financial system alternatively a notable number of financial institutions, and the

disruption of the performance and functions of this larger part. Secondly, a fundamental

component of systemic risk is the transference and spreading of disturbances (distress)
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between connected parts of the financial system, which in turn may have an adverse effect

on the economy.

2.2 Definition of risk measures

For the purpose of this essay, the relevant risk measure must be defined. The systemic

risk measure CoVaR, as indicated by its name, builds on the foundation of Value at Risk

(VaR), which is mathematically defined as:

V aRq = min{l : Pr(L > l) ≤ 1 − q} (2.1)

The definition of VaR, according to equation 2.1 above, at the q confidence level is the

smallest loss l, that satisfies the condition that the probability of suffering a loss L that

is larger than l is less than or equal to 1 − q. I.e., VaR is the loss level during a certain

period of time that will not be exceeded by a probability of 1−q% (Hull 2018). Equation

2.1 shows the definition of VaR when the loss function is discrete. However, in the case

of a continuous loss distribution, the definition is slightly altered:

V aRq = Pr(L > V aRq) = 1 − q (2.2)

Equation 2.2 essentially states that V aRq by definition is, at the q confidence level, the

qth quantile of the loss distribution, but the above-mentioned interpretation still applies.

(ibid.) (JP Morgan 1996)

However, VaR measures and puts an emphasis on the risk that an institution faces

in isolation which won’t necessarily showcase an institution’s contribution or connec-

tion to the systemic risk. This is empirically shown by Adrian & Brunnermeier (2016).

They show, which is further mentioned in section three, that the connection between

an institution’s VaR and its systemic risk contribution is very weak. Hence, Adrian &

Brunnermeier (2016) introduces the systemic risk measure CoVaR (Conditional Value at

Risk). CoVaR for institution j is defined as the VaR for that same institution conditional

on another institution i being in a certain state. Institution j is by the authors assumed

to be the financial system and the state is described as when institution i is having a loss

equal to or above the institutions’ VaR for a specific quantile. CoVaR of institution j (or
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the system) is hence defined in the following way:

Pr(Lj|C(Li) ≤ CoV aRj|C(Li)
q ) = q% (2.3)

Where C (Li) represents the conditioning on institution i being at a certain state. Similar

to the above-mentioned definition of VaR, but now in the conditional setting, CoV aRj|C(Li)
q

is defined by the q% quantile of the probability distribution.

To calculate and measure a specific institution’s systemic risk contribution, the authors

define ∆CoVaR. This is the difference between the VaR of the financial system when firm

i is having a loss equal to its VaR at a q% quantile and the VaR of the financial system

when firm i is having a loss equal to its median state, which is VaR at the 50% quantile.

∆CoVaR is hence defined as:

∆CoV aRj|i
q = CoV aR

j|Li=V aRi
q

q − CoV aR
j|Li=V aRi

0.5
0.5 (2.4)

What is clear from equation 2.4 is that this measure calculates the change in CoVaR

when the state that is conditioned on changes from an adverse loss scenario to a more

“normal” one. ∆CoVaR hence measures the tail-dependency between the financial sys-

tem and a specific institution whereas a higher ∆CoVaR implies a larger systemic risk

contribution and vice versa. ∆CoVaR however does not consider the size of institutions.

This consideration is important if the objective is to compare systemic risk contributions

across institutions that vary in size, which is the case for this essay. For this Adrian &

Brunnermeier proposes ∆$CoV aR, which measures the change in dollar amounts when

the conditioning state changes accordingly to the above-described shift. ∆$CoV aR is

defined and calculated by:

∆$CoV aRj|i
q = MCi ∗ ∆CoV aRj|i

q (2.5)

MCi corresponds to the market value of equity of institution i.

The method used by Adrian & Brunnermeier (and many others, see section three) to

obtain ∆CoVaR estimates over time, involves the use of state variables. This estimation

procedure is further described in section four. However, the theoretical interpretation

of the state variables is of importance for the reader since they are at the center of

the purpose of this essay, and hence some theoretical elaboration is needed. According
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to Adrian & Brunnermeier, the state variables used to estimate time-varying ∆CoVaR

should not be seen as risk factors to the system. I.e., they should not be interpreted as

factors driving the systemic risk in a certain direction. Instead, the state variables are

“variables that condition the mean and the volatility of the risk measure”. As indicated by

the name, the variables wishes to capture the state of the economy rather than describing

a causal relationship with systemic risk. Hence they should be interpreted as conditioning

variables rather than systemic risk factors.

What becomes clear from the included state variables in previous research and in

this essay is that they reflect changes in market conditions that affect all the institutions

participating in the market and hence control for economically meaningful events (Krygier

2014).

2.3 Regulation

In 2018, the Basel Committee on Banking Supervision (BCBS) provided an updated and

revised methodology for assessing the systemic importance of globally operating banks

(G-SIB: Global Systemically Important Banks). This update replaced the methodology

formulated in 2013. In general, the BCBS communicates that the systemic importance of

a bank should be measured by looking at how the global financial system and the economy

are affected by the failure of that bank. More specifically, the definition and detection of

such a bank relies on what is called an indicator-based approach, which uses indicators

that are meant to reflect the size, interconnectedness, available substitutes or financial

institution infrastructure, cross-jurisdictional activity, and complexity of the bank. In

turn, these categories aim to assess the systemic importance of a bank. Each of the five

categories is, in total, given equal weight but each category contains smaller sub-categories

that differ in terms of weighting. A bank is then given an overall score that reflects its

systemic importance. This score is calculated by taking the average of the banks’ scores

in the five categories and if the overall score is above a certain decided threshold, the

bank is classified as a G-SIB. The framework then uses a so-called bucketing approach,

where a higher overall score implies a higher bucket for the bank which gives the bank a

higher loss absorbency requirement. The loss absorbency refers to Common Equity Tier

1 as a percentage of risk-weighted assets where the Common Equity Tier 1 is defined in
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the Basel III framework. The first bucket imposes an additional loss absorbency of 1%

and the fifth, and highest bucket, imposes an additional loss absorbency of 3.5%. For a

more detailed explanation of the framework and methodology, the reader is referred to the

full documentation “Global systemically important banks: revised assessment methodology

and the higher loss absorbency requirement” (Basel Committee on Banking Supervision

2018). The list of G-SIBS and which respective buckets they are allocated are supplied

by the Financial Stability Board (FSB) (Financial Stability Board 2022) and the list as

of November 2022 can be found in Appendix G. In section six, when the essays’ empirical

findings are presented, lists for previous years are used. These are also supplied by FSB

on their website.
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3. Literature review
Previous research within the field of systemic risk is extensive. However, research that

puts emphasis on the modeling of time variation and the selection and usage of state

variables does not seem to have been conducted. This section will hence put focus on

previous research that has estimated systemic risk by using ∆CoVaR as its selected risk

measure.

Adrian & Brunnermeier (2016) introduce the systemic risk measure CoVaR (condi-

tional Value at Risk) and further ∆CoVaR. To estimate their proposed systemic risk

measure, the authors use quantile regressions. This is further elaborated on and ex-

plained in section four of this essay. In Adrian & Brunnermeier’s estimation of CoVaR

and ∆CoVaR, they use data on 1823 publicly traded financial institutions within banking,

security- brokerage, insurances, and real estate in the US. Their data covers the period

between 1971Q1-2013Q2.

The estimation is conducted both conditionally and unconditionally, where the uncon-

ditional estimation results in a ∆CoVaR estimate that is time constant. The conditional

estimation, which is of greater importance for this essay, is conducted with the ambition

to capture time variation in the systemic risk measure, and hence the development of

tail risk over time. This is performed by running quantile regressions including state

variables of a macroeconomic character. The state variables selected and used are: the

change in the three-month treasury bill rate, the change in the slope of the yield curve,

TED-spread, change in credit spread, market return from the S&P500, real estate sector

return in excess of the market financial sector return, and equity volatility. The selec-

tion of these variables are motivated by that they capture the variation over time in the

conditional moments of asset returns, are liquid and easily tradable, as well as tractable.

Additionally, Adrian and Brunnermeier propose a forward-looking systemic risk mea-

sure called forward-∆CoVaR. These estimates are obtained by regressing ∆CoVaR on

institution characteristics as well as state variables. The main institution characteristics

that the authors consider are leverage, maturity mismatch, size, and a boom indicator,

which indicates the number of quarters in a row an institution has been in the highest

decile of the market-to-book ratio compared to other firms. Examples of additional in-
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stitution characteristics are loan loss allowances, intangible assets, and interest-bearing

core deposits. Regarding the forward-looking ∆CoVaR, the authors find that an increase

in the mentioned main institutional characteristics significantly predicts ∆CoVaR and

hence contribute to an increased systemic risk. The authors additionally assert that the

forward-looking ∆CoVaR (2006Q4 value) “would have predicted more than one-third of

realized ∆CoVaR during the 2007-2009 financial crisis” (Adrian & Brunnermeier, 2016).

Another main conclusion from Adrian & Brunnermeier is that the connection between an

institutions VaR and its systemic risk contribution (∆CoVaR) seems to be weak in the

cross-sectional dimension. The connection is however strong in the time series dimension.

This is important since it implies that regulation cannot only focus on the VaR of insti-

tutions in isolation when trying to mitigate systemic risk. Hence, when aiming toward

mitigating systemic risk, regulation should consider the connection between institutions.

Otherwise, there is a risk of regulation overlooking the systemic dimension of the risk.

Following the publication of Adrian & Brunnermeier’s paper, a lot of research using

their systemic risk methodology has been conducted. Borri et al. (2012) looks at the

European banking sector aiming to identify main predictors of systemic risk contribution.

Their methodology follows the one presented by Adrian and Brunnermeier (2016) and

they perform conditional estimation of ∆CoVaR on a sample of 233 publicly listed banks

in the Eurozone area between 1999 and 2011. The included state variables are: change in

option implied DAX volatility, short-term liquidity spread, change in the slope of the yield

curve, DAX return, and the three-month treasury change. To identify which variables

can significantly predict systemic risk contributions, the authors performed a pooled

OLS-regression with their ∆CoVaR estimates as their dependent variable. Independent

variables were selected with the ambition to account for bank’s balance sheets, banking

system, market-related factors, and risk characteristics. The authors find that ∆CoVaR

is a good systemic risk measure because of its persistence. Additionally, they find that

banks’ balance sheets weakly predict systemic risk contributions while size and leverage

are found to be significant predictors. Furthermore, if a bank has its headquarters located

in a more concentrated banking system, it significantly contributes to an increase in the

systemic risk. These conclusions indicate that regulation which only focuses on the size

of banks will not capture the entire systemic risk contribution. Petrella et al. (2019)

also studies the systemic risk in Europe but instead of looking at risk contributions at
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the institutional level, they look at the country level to estimate each country’s systemic

risk contribution. The authors also conduct two testing techniques called the dominance

test and the significance test first proposed by Castro & Ferarri (2014). These tests are

conducted to be able to distinguish partly if a country’s risk contribution is statistically

significant, and hence can be considered systemically relevant. Also, the dominance

test wishes to distinguish if a certain country contributes to negative spillover effects

more than other countries. The authors use return data on the EuroStoxx50 index

between 2008 and 2017 and hence wish to attribute systemic risk contributions to the

nations represented in the index. These are France, Germany, Spain, Netherlands, Italy,

Belgium, Finland and Ireland. Following the methodology of Adrian and Brunnermeier,

∆CoVaR is conditionally estimated with a set of state variables to capture tail risk

development over time including e.g. the VSTOXX index (EuroStoxx50 volatility), MSCI

real estate index returns, three-month EURIBOR, exchange rates, and more. The authors

conclude that all eight countries can be seen as systemically relevant and hence that

impactful events tend to spread through the system beyond the respective country’s

domestic markets. Additionally, the authors find that France and Germany have the

largest systemic risk contributions and that these two countries also are most likely to

generate negative spillover effects and hence jeopardize the whole system.

Other examples of systemic risk research that implement Adrian and Brunnermeiers

CoVaR methodology are Lopez-Espinoza et al. (2012), Bernal et al. (2014) and Ashgar-

ian et al. (2022). In Short-term wholesale funding and systemic risk: A global CoVaR

approach, Lopez-Espinosa et al. (2012) uses the CoVaR methodology to distinguish the

main determinants of systemic risk contribution with a data set of 54 large international

banks between 2001-2009. A particular geographical focus is not taken and the study

wishes to contribute with an analysis of global systemic risk contributions. Time-varying

∆CoVaR is estimated by quantile regressions and estimates are obtained by using Adrian

& Brunnermeier’s US state variables. To test which institutional-specific factors drive

systemic risk contributions, variables such as size, leverage, short-term borrowings to to-

tal assets ratio, total assets, etc are regressed on the ∆CoVaR estimates by using panel

data regression methods. Conclusions are drawn by the study that offers nuance to the

earlier-mentioned European studies. Short-term wholesale funding is found to be the

most significant determinant of a bank’s global systemic risk contribution. Banks with

12
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higher short-term funding ratios are shown to be more connected to other banks, among

other features, which results in an increase in their systemic risk contribution. Addition-

ally, the authors find, in contrast to earlier studies, that neither size nor leverage are

main factors behind systemic risk in their data set. Another important conclusion drawn

by the study is the role of asymmetric responses within the financial system. To be able

to capture the role of asymmetries, the authors propose an extension called “Asymmetric

CoVaR”. For details regarding the econometric extensions, the reader is referred to the

paper in question. The authors find that individual institutions’ balance sheet contrac-

tion, which is defined as “(. . . ) the propagation of distress associated with a decline in

the market value of assets held by individual institutions” (Lopez-Espinoza, et al., 2012),

significantly contributes to negative spillovers on the global index VaR. Hence, taking

balance sheet contraction into account is important when trying to estimate and rank

institutions’ systemic risk contributions.

Bernal et al. (2014) studies systemic risk contribution on a sector level by looking

at how distress within the financial sectors of banking, insurance, and ”other” financial

services contributes to systemic risk. The authors wish to compare the three industries

between the Eurozone and the US and use data spanning between 2004-2012. The two

systems are defined by the Stoxx Europe 600 index excluding financial companies as

well as the S&P 500 index with the same exclusion, and the three sectors by EuroStoxx

50 and Dow Jones sector indexes. ∆CoVaR is conditionally estimated, and the state

variables used are in line with the ones in Adrian and Brunnermeier (2016). To be able

to determine whether one financial sector has a significant systemic risk contribution,

the authors also conduct a significance test (Kolmogorov-Smirnov (KS)), and to test if

a sector has a more impactful systemic risk contribution than another, they conduct a

stochastic dominance test which follows a bootstrapping strategy developed by Abadie

(2002). The authors find that the sector that contributes most to the systemic risk in

the Eurozone is the ”other” financial services sector and that the banking sector comes

in second place. This result differs for the US, where the insurance industry is found to

have the highest systemic risk contribution and the banking sector the lowest. However,

all the included financial sectors are shown to have significant systemic risk contributions

with ∆CoVaR estimates significantly different from zero. This is the case both for the

Eurozone and the US.
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In Systemic risk and centrality: The role of interactions, Vilhelmsson et al. (2022) use

CoVaR in combination with constructed centrality measures to study how much an insti-

tution’s systemic risk contribution depends on its centrality in financial networks. More

specifically, the paper investigates whether institutional characteristics have a stronger or

weaker impact on systemic risk contribution when an institution’s centrality in a financial

network is taken into account. The paper uses stock return data and state variables in

line with Adrian & Brunnermeier (2016) spanning between 1995-2016 to obtain time-

varying ∆CoVaR estimates. To calculate the centrality measures, syndicated loan data

is used. This enables the authors to measure the centrality of a bank in the syndicated

loan market, which in turn serves as a proxy for the connection between banks. The

constructed financial network includes 7740 banks and other financial firms. In total, the

authors construct six centrality measures using network theory as well as analysis and

adjacency matrix. For a more detailed explanation of the construction of the financial

network and the calculation of the author’s centrality measures, see the paper in ques-

tion. Additionally, the paper uses data on accounting variables that are determinants of

systemic risk contribution. Examples of these are size, leverage, probability of default,

stock market beta (systemic risk), VaR, and more. One key conclusion presented in the

paper is that banks’ centrality matter for systemic risk contributions. However, centrality

is found to be important by its effect on other risk measures rather than by its own direct

effect in being a determinant of systemic risk contribution. E.g., the authors find that

the systemic risk contribution of the probability of default increases with the centrality

of an institution. This highlights that current regulation, since it only considers cen-

trality as an isolated component, does not consider that the importance of institutional

characteristics is dependent on the centrality of the institution. The authors further find

that an institution’s beta and its VaR complement the previously established factors for

determining systemic risk contributions.

Other research that in some way implements the CoVaR methodology presented in

Adrian & Brunnermeier (2016) can be found in Girardi & Ergün (2013), Roengpitya &

Rungcharoenkitkul (2011) and Wen et al. (2020)

Previous research shows CoVaR’s usefulness for estimating systemic risk contributions

of different kinds of entities, the interconnectedness between financial institutions, and

negative spillovers. However, neither of them considers the implications of different state
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variables selection methods and how this might affect the estimates of systemic risk

contributions. Simply using the state variables proposed by Adrian & Brunnermeier

(2016) neglects the question of what implications different selections might have.

Although, there exists some research that further proposes a method for the selection

of variables included in the CoVaR methodology. In Interconnectedness and systemic risk

network of Chinese financial institutions: A LASSO-CoVaR approach, Xu et al. (2019)

wishes to study the interconnectedness between financial institutions in China between

2010-2017. To study the interconnectedness and the systemic risk contribution of different

institutions, the authors construct a network of 50 publicly listed financial institutions.

To be able to construct the network, the authors introduce a method incorporating the

least absolute shrinkage and selection operator (LASSO) into the CoVaR methodology.

More specifically, the LASSO-CoVaR approach proposed by the authors combines the

CoVaR estimation methodology with LASSO and models CoVaR as a function of in-

stitutional balance-sheet characteristics, state variables, and the VaRs of other financial

institutions selected by LASSO. Hence, by selecting the significant VaRs (the relevant

institutions) for the respective institutions’ CoVaR estimation, the LASSO enables the

authors to construct a network that showcases the interconnectedness between the in-

cluded institutions. Furthermore, the authors calculate connectivity measures and later

rank institutions by their systemic risk contributions in four different sub-periods. The

state variables used in the paper are in line with the ones used in Adrian & Brunnermeier

(2016), except that the real estate sector return is not in excess of the financial sector.

Institutional characteristics include e.g. leverage, size, and market-to-book value. A cen-

tral conclusion drawn by the authors is that the impact of other institutions is important

when estimating CoVaR and that the interconnectedness should be considered in CoVaR

estimation. Additionally, the authors find that interconnectedness in the system tends

to be the highest when the system is in distress. This is shown to be especially visible

during China’s stock market crash in 2015-2016.
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4. Methodology

4.1 Systemic risk estimation

4.1.1 Quantile regression

Regressions are used to quantify a relationship between a dependent variable with one or

more independent variables, with the most common type of regression being the Ordinary

Least Squares (OLS) regression. The OLS-regression models the conditional mean of the

dependent variable, where the goal is to minimize the distance between the observed val-

ues and the values that the regression line predicts. This essay uses quantile regressions,

which instead uses weights that are assigned to the distances between the actual values

and the predicted values from the regression line, and the method then tries to minimize

the weighted distance (Le Cook and Manning 2013). Hence, OLS tells us about the ef-

fect on the mean of the dependent variable, given a change in an independent variable

(while controlling for other independent variables), while the quantile regression tells us

the similar effects but at different points on the distribution (Porter 2015). Appendix B

provides a visual representation of the difference between OLS and quantile regression

estimate.

Quantile regressions dates back to the late 1970s and was first presented by Koenker

& Bassett (1978). Given a real-valued random variable X, with a distribution function

of F (x) = P (X ≤ x), the quantile τ is given by:

F −1(τ) = inf{x : F (x) ≥ τ} (4.1)

Where inf stands for infimum, i.e., the smallest value that x can take on which satisfies

the given inequality. Note that by definition, a quantile must lie within the range of 0 to

1 (although it is often mentioned in terms of 0 to 100). In some cases, finding a specific

quantile can be relatively straight forward. E.g., if a distribution exhibits a sample size of

N = 100 and we want to find the 25th quantile, the sample is first ordered from lowest to

smallest and then the 25th observation is our 25th quantile. However, Koenker & Bassett

(1978) showed that a specific sample qth quantile could be found using the following
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equation, where the quantile is the value of β that yields the minimum value for y groups

of observations (Porter 2015, p.340):

N∑
i:yi≥β

q|yi − β| +
N∑

i:yi<β

(1 − q)|yi − β| (4.2)

This optimization approach can be readily extended to find the quantile regression es-

timator, β̂, as given by below equation. The quantile regression estimator is again the

value of β that yields the minimum value for y groups of observations, where x′
i is a ma-

trix with independent variables being used in the quantile regression, and β is a vector

of regression coefficients (ibid., p.341).

N∑
i:yi≥x′

iβ

q|yi − x′
iβ| +

N∑
i:yi<x′

iβ

(1 − q)|yi − x′
iβ| (4.3)

The method of minimizing is called the least absolute deviations estimator (as compared

to least squares estimator in the OLS regression), and since the equation is not differen-

tiable, it needs to be estimated using linear programming methods (Cameron and Trivedi

2005).

Quantile regressions are often called non-parametric regression since there is no re-

quirement of a specific assumption of the distribution to be able to estimate the pa-

rameters. Hence, the usual assumption of normality can effectively be relaxed, making

quantile regressions more appealing when using stock market returns (due to the often

non-normal nature of equity returns). Furthermore, compared to e.g. OLS, quantile re-

gression is more robust to outliers (Brooks 2019). This makes intuitive sense, since large

outliers will affect the mean more than it will affect the median given a large sample

size. One of the most common assumptions of quantile regression is that the response

variable is independently distributed and homoscedastic, meaning that the variance is

constant. Although Brooks (ibid.) argues that this assumption could be relaxed at the

cost of additional model complexity.

4.1.2 Estimation of VaR, CoVaR, ∆CoVaR and ∆$CoVaR

CoVaR and ∆CoVaR can, as previously mentioned, be estimated both unconditionally

and conditionally. The unconditional estimation gives a CoVaR estimate for each in-

stitution that is constant over time while the conditional estimation yields time-varying
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CoVaR estimates. The conditional estimation outlined in Adrian & Brunnermeier (2016),

and the one that this essay follow, is conducted by conditioning on a set of state variables.

To be able to estimate the unconditional CoVaR and ∆CoVaR (no time-variation),

the first step is to estimate VaR for each financial institution. Using basic historical

simulation, V aRi
q for financial institution i and quantile q was obtained by running a

quantile regression on losses of firm i as the dependent variable and a constant as the

independent variable. The same was done for the system losses (section five describes

this essays procedure for defining the system). The equations are seen below where q is

the quantile, and L is the losses for institution i (or system):

Li
q = αi

q + ϵi
q (4.4)

V aRqi = α̂i
q (4.5)

Lsystem
q = αsystem

q + ϵsystem
q (4.6)

V aRqsystem = ˆαsystem
q (4.7)

Furthermore, estimations of CoVaR were carried out by running a quantile regression

with system losses on a constant and the losses of firm i. The estimated α̂ and β̂ from

equation 4.8 is used in the estimation of CoVaR (eq 4.9) together with the VaR obtained

in equation 4.5. It is important to bear in mind that the obtained β-coefficient can be

interpreted as the tail dependency between the financial institution i and the system, i.e.,

how much the two covary when the institution is in distress.

Lsystem
q = αi

q + βi
qL

i
q + ϵi

q (4.8)

CoV aRi
q = V aR

system|Li=V aRi
q

q = α̂i
q + β̂i

qV aRi
q (4.9)

To obtain the ∆CoVaR, all equations above were being run two times, using the desired

quantile, 0.99, and the median quantile, 0.50. This results in equation 2.4 turning into
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the following equation:

∆CoV aRi
q = β̂i

q(V aRi
q − V aRi

0.5) (4.10)

However, since different institutions vary in size, it is more appealing to observe the

∆$CoVaR, which was calculated by using equation 2.5 from section 2.2.

To allow for time-varying effects of the CoVaR, Adrian & Brunnermeier (2016) sug-

gests, as previously mentioned, using a vector of lagged state variables, St−1. I.e., VaR

and CoVaR become a function of specific state variables. Mendonça & Silva (2018) esti-

mates CoVaR using both lagged and non-lagged state variables and finds no significant

difference in the estimates obtained. Therefore, this essay uses state variables lagged

one time period, which corresponds to one month. The following equations use the same

notations as above but with an added subscript t, which indicates that the estimates vary

over time. In the first two regressions, losses of firm i is used as the dependent variable

and the vector of state variables together with an intercept acts as the independent vari-

ables, seen in equation 4.11. As for equation 4.12, the system losses act as dependent

variable and intercept, vector of state variables and losses of firm i acts as independent

variables.

Li
t = αi

q + γi
qSt−1 + ϵi

q,t (4.11)

L
system|i
t = αsystem|i

q + γsystem|i
q St−1 + βsystem|i

q Li
q + ϵ

system|i
q,t (4.12)

The estimated α̂, β̂ and γ̂ were obtained for each institution, i, and time, t. By including

these estimates in the following two equations, the time varying VaR and CoVaR was

obtained:

V aRi
q,t = α̂i

q + γ̂i
qSt−1 (4.13)

CoV aR
system|i
q,t = ˆ

α
system|i
q + ˆ

γ
system|i
q St−1 + ˆ

β
system|i
q V aRi

q,t (4.14)

As with the unconditional case, all quantile regressions were run two times using q = 0.99

and q = 0.50 in order to calculate the conditional ∆CoVaR from:
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∆CoV aR
system|i
q,t = ˆ

β
system|i
q (V aRi

q,t − V aRi
0.5,t) (4.15)

The ∆$CoVaR was obtained by once again using equation 2.5 for the specific firm at each

specific time. The above procedure was done in the same way for our different selection

methods (A&B, Lasso and random), however, for PCA, the created principal components

were instead used as the state variables. Note that for simplicity, this essay uses the term

variable selection (as in the research questions) for describing the selection of different

state variables and the usage of Principal Component Analysis. Hence, variable selection

refers to both the actual selection of different state variables, but also dimensionality

reduction, since PCA is not a variable selection method but rather a method for reducing

dimensionality.

4.2 Selection of state variables

4.2.1 Adrian & Brunnermeier

In the final version of the paper on CoVaR (Adrian and Markus K. Brunnermeier 2016),

the authors uses, as previously mentioned, seven state variables to capture the time-

variation in the systemic risk estimation. They gathered data from the US for change

in 3m treasury yield, change in slope of yield curve, short term TED-spread, change

in credit spread, S&P500 market return, real estate sector return and equity volatility.

For this essay, data on the European equivalents of these seven variables was collected

and used in the conditional CoVaR estimation (more in section 5.1). Since these state

variables are the ones used by Adrian & Brunnermeier and a lot of other systemic risk

research, this essay finds it highly reasonable to include these variables as a state variable

selection method.

4.2.2 Regularization: Lasso

The Least Absolute Shrinkage and Selection Operator, also called Lasso, is a statistical

method used for regularization and variable selection, which was first proposed by Tib-

shirani (1996). The Lasso is chosen as one of the methods in this paper due to it being

one of the most established machine learning selection methods and its characteristics
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of being a selection operator, unlike Ridge regression, which only shrinks the coefficients

(James et al. 2021, p. 237). Given a set of independent variables, the Lasso shrinks some

coefficients and sets others equal to zero. I.e., it tries to emphasize the variables that

explain the most variation in the response variable. This can be particularly helpful when

dealing with large dimensionality.

Given a vector of independent variables, xi = (xi,1, xi,2. . . xi,j)T for i = 1, 2, . . . , N ,

they are first standardized such that equation 4.16 and equation 4.17 holds.

N∑
i=1

xi,j

N
= 0 (4.16)

N∑
i=1

x2
i,j

N
= 1 (4.17)

Now if we let a vector of coefficients be β̂ = (β̂1, β̂2, ...β̂j)T , then the Lasso parameters

will be given by equation 4.18 (ibid.).

(α̂, β̂) = argmin{
N∑

i=1
(yi − α −

p∑
j=1

βjxi,j)2} + λ
p∑

j=1
|βj| = RSS + λ

p∑
j=1

|βj| (4.18)

RSS is the residual sum of squares, which measures the level of variance in the residuals

of the regression model. Furthermore, the second term is the penalty term where if the

tuning parameter, λ, is sufficiently large, some coefficient will be set to zero.

Hence, an important matter still remains, which is the selection of the optimal tuning

parameter. James, et al, (ibid.) argues that cross-validation provides a simple way to

tackle the problem. The first step is to randomly split all data into a training and a

validation set. The model is then fitted on the training data and the dependent variable

is predicted using the estimated parameters and compared to the true dependent variable

in the validation set. A loss function is used to calculate the error between the two. This

procedure is done for a range of different values of the tuning parameter, and the optimal

parameter is the one resulting in lowest value of the loss function.

Using Lasso as a variable selection method in this essay, all possible state variables were

included as independent variables and system losses as the dependent variable. In essence,

the underlying calculations are based on an OLS regression, and not a quantile regression.
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This is due to the fact that an econometric framework for incorporating the quantile

regression into the Lasso regression is not, to the author’s knowledge, fully developed.

The number of cross-validations was set to five, the loss function was mean squared error,

and the parameter was allowed to be in the range of 0.0001 and 2. A validation check of

the search interval was conducted to make sure that one of the endpoints was not chosen

as the best-fit parameter. Furthermore, the non-zero Lasso variables were then used in the

calculation of conditional CoVaR, as outlined in section 4.1.2. More specifically, the state

variables selected by the Lasso regression, are then used in equation 4.11 and onward.

4.2.3 Principal component Analysis

One of the more popular ways of deriving a low-dimensional set of variables from a large

set of variables is to use the Principal Component Analysis, PCA (James et al. 2021, p.

252-253). Due to these characteristics, it is a useful additional method for the research

questions. Since there are 24 state variables (20 after accounting for high correlation, more

in section 5.2), the PCA is able to extract the most useful information while keeping

dimensionality low. Hence, even though PCA is not a variable selection method it is

relevant for this essay because it produces another set of time-varying estimates of CoVaR

while also reducing the risk of overfitting.

Using a table of data, the unsupervised machine learning method aims to fulfill four

goals, which are: to extract the most important information from the data table, sup-

press the size of the data set by keeping only this important information, simplify the

description of the data set and analyze the structure of the observation and the variables

(Abdi and Williams 2010).

Assuming a set of k explanatory variables denoted by x1, x2. . . xk, the PCA uses these

to create k new uncorrelated variables, p1, p2, . . . pk:

p1 = a11x1 + a12x2 + ... + a1kxk

p2 = a21x1 + a22x2 + ... + a2kxk

...

pk = ak1x1 + ak2x2 + ... + akkxk

(4.19)

The requirement of the factor loadings, a, is that the sum of the squares equal to one,

22



Lund University 4. METHODOLOGY

i.e.:

k∑
j=1

a2
i,j = 1 ∀ 1, ..., k (4.20)

The components are ordered in descending importance; hence, a specific number of prin-

cipal components can be chosen that explain a large part of the variance.

Before doing the Principal Component Analysis, standardization was done on all the

state variables followed by a method of choosing the number of components. One common

method is selecting a specific threshold for how much variance the components should

explain. In this paper, a threshold of approximately 95% explained variance was chosen,

which corresponded to five explanatory variables, or principal components. Using the

same methodology as previously stated, the conditional CoVaR was calculated using

these five components. James, et al., (2021) emphasizes that while PCA reduces the

dimension of explanatory variables, it is not a method of variable selection, since all

principal components are a linear combination of all original variables.

4.2.4 Randomization

Lastly, a state variable selection method using randomization was implemented. Five,

seven, and nine random state variables was drawn and after each random draw, the

estimation of conditional CoVaR was done following the same methodology as the other

methods. To make the randomization more robust, the randomization was done five

times for each number of state variables and an average of the conditional CoVaR was

calculated.
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5. Data

5.1 Data collection

The first step in the data collection was to choose which banks to include in the data set.

Since this paper estimates systemic risk contributions in the European banking sector,

banks that at least offer both retail and corporate banking services from 31 European

countries were gathered. In total, equity prices of 141 banks were gathered on a monthly

basis ranging from 31st of December 2002 to 30th of September 2022. The start and end

date was set due to several state variables not having data before or after these dates.

A summary of each bank and its ticker, weight in system and market capitalization can

be found in Appendix A. Using equations 5.1 and 5.2, prices for firm i, at time t, were

converted to returns, which was further multiplied with -1 to obtain losses, L. Returns

were used due to their stationary nature and prices being nominated in several different

currencies.

ri,t = Pi,t

Pi,t−1
− 1 (5.1)

Lt
i = −1 ∗ ri,t (5.2)

Furthermore, monthly market capitalization data for all banks were gathered during the

same time period, all being nominated in euros. Equity and market capitalization data

were downloaded through Bloomberg. For some institutions and for specific dates, both

price data and market capitalization data were missing. If the missing data were between

two data points this was handled using linear interpolation following the methodology of

Xu, et al., (2019). The same was done for GDP, which is released on a quarterly basis,

while this paper uses a monthly data frequency. The equation for interpolation can be

seen below, where m is the number of months in a quarter and s is each time step:

Pt+ s
m

= (1 − s

m
)Pt + s

m
Pt+1 (5.3)

If the missing data were at the end of a data series, and linear interpolation could not
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be performed, returns were set to zero. This is because the principal component analysis

could not be performed without consistency in the number of data points per bank. It is

worth mentioning that these cases were few and for banks with relatively small system

weights. Hence, the conducted methods for handling the missing data are believed to

have a non-significant effect on the results of this essay.

By weighing all banks at each time period, t, with their respective markets capitaliza-

tions (equation 5.4), a system (representing the banking sector in Europe) was generated.

Furthermore, system losses were obtained by multiplying the weight of firm i at time t

with the loss of firm i at time t, from equation 5.5 (MC representing market capitaliza-

tion).

wi,t = MCi,t∑n
i=1 MCi,t

(5.4)

LSystem
t =

n∑
i=1

wi,t ∗ Li
t (5.5)

Following Adrian & Brunnermeier (2016), to obtain time-variation in the estimates of

VaR, CoVaR, ∆CoVaR and ∆$CoVaR, data was gathered for 24 state variables. Except

for the seven state variables used in Adrian & Brunnermeier (2016), the percentage

change in Eurozone inflation was also added following the works of (Hanif et al. 2020).

Furthermore, other macroeconomic variables such as GDP, CPI and industrial production

index was added as argued by Roengpitya & Rungcharoenkitkul (2011). Petrella, et

al. (2019), suggests using exchange rate as state variables, and due to this, the return

of EUR/USD was added. Furthermore, several other macro-economic variables that

account for market specific information as well as captures and controls for the conditional

moments of asset returns were gathered. A comprehensive list with a description as well

as a motivation of each of them can be found in Appendix C. Even though all variables

are believed to be important, the selection methods are still used to reduce the risk of

overfitting the data. The state variable data was obtained for Europe, and if no such

data existed, data for Germany was gathered as a proxy. The assumption that data for

Germany is representative for Europe is believed to be reasonable due to the spillover from

the German economy to the rest of Europe as well as the high correlation between German

and non-German state variables (Borri et al. 2012). For one of Adrian & Brunnermeiers
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state variables, change in credit spread, no data for an European investment grade index

were available, and hence, data for the US equivalent was gathered. Data for the state

variables were collected through a combination of Bloomberg, FRED (Federal Reserve

Economic Data) and ECB. Several banks that went out of business (or were merged with

another bank) during the time period were included in the data set, hence the data does

not suffer from survivorship bias.

As mentioned, Adrian & Brunnermeier (2016) uses weekly stock return data. This

paper however uses monthly data. This is due to Bloomberg only supplying ten-year

historical data for a weekly frequency. The implication of this is that some variation

occurring between two data points is left out, e.g., if there are two very volatile weeks in

between two monthly observations, these two weeks will not affect the result. However,

if a weekly frequency were to be used and ten years of historical data were obtained,

a lot of variation over time in the selected state variables would be lost. For example,

the financial crisis would not be part of the data set. Hence, there is a trade-off to

be considered. Ultimately, a time span of just under 20 years was chosen on a monthly

frequency due to this essays’ focus on the time series dimension of the CoVaR estimation.

5.2 Descriptive statistics

Table 5.1 shows descriptive statistics for the losses including all banks, the 40 largest

banks, the 40 smallest banks and the system. Since it is shown in losses, a negative

loss is equivalent to a gain, and vice versa. Also, important to notice is that the system

consists of losses for all banks, weighted after their market capitalization. Since large

banks tend to have lower losses (larger gains) than the smaller banks and also higher

weight, the system will exhibit lower losses than the aggregate of all banks (where they

are equally weighted). For all banks and for the 40 smallest banks, the maximum loss

is 100%, which means that the bank went out of the public market (bankruptcy, buyout

etc.). A distribution of the system losses is shown in figure 5.1 below.
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Descriptive statistics, Losses

Count Mean Median Std Dev Min Max

All banks 28693 -0.32% -0.14% 10.66% -182.53% 100.00%

40 largest 9058 -0.36% -0.41% 10.93% -169.43% 70.31%

40 smallest 7578 -0.25% 0.00% 10.17% -121.01% 100.00%

System 238 -0.42% -0.96% 6.99% -35.99% 26.51%

Table 5.1: The table shows the descriptive statistics for losses, calculated as the nega-
tive of percentage returns. The table shows the number of data points, mean, median,
standard deviation, minimum and maximum value of four different samples; all banks,
40 largest banks, 40 smallest banks (based on market capitalization per March 28th 2023)
and system.

Figure 5.1: The figure shows the distribution of system losses, calculated as the negative
of percentage returns. In total, there are 238 observations.

To ensure stationarity, all variables were expressed in percentage changes, and an

augmented Dickey-Fuller, as well as KPSS test for stationarity was conducted. Since a

large number of hypothesis were tested for stationarity, problems connected to multiple

hypothesis testing had to be considered. When conducting 24 tests using a significance

level of 5%, it is probabilistically possible that stationarity is falsely rejected in at least one
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of the cases. To account for this, a Bonferroni correction was used, which basically shrinks

the p-value for hypothesis testing (Bonferroni 1935). The results of the stationarity tests

showed that all variables was stationary.

Furthermore, a test for multicollinearity was conducted, called the VIF-test. A value

greater than ten usually implies that there is a problem with multicollinearity. There

was no indication of multicollinearity in the test results, since all variables had a VIF-

value well below ten (highest VIF-value in the sample was 3.15). Even though the VIF-

test shows no obvious problems, there can still be high correlation between variables,

which can be problematic in the estimation (especially in the randomization method).

Therefore, a correlation matrix was calculated and a threshold of 0.7 was set. Since four

variables had a correlation greater than 0.7, these were dropped from the data set. The

affected state variables were RBANK, VBANK, VOLB and VRE. A correlation matrix

with the remaining variables can be found in Appendix E. Hence, after the data had

been processed and cleaned, the data set had 141 banks and 20 state variables, which in

total amounts to 33 453 datapoints. Table 5.2 below shows descriptive statistics for the

remaining 20 state variables, and a density plot of each variable is found in Appendix D.

Although the majority of the state variables are denoted in percentage change, it is

worth noting that the state variables within the CoVaR methodology are primarily used

to obtain time varying systemic risk estimates. As previously mentioned, the variables

are conditioning variables rather than systemic risk factors. Hence, the unit measures

and the coefficients are not of central importance.
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Descriptive statistics, State variables

Count Mean Median Std Dev Min Max

TMGB 238 -0.0095 0.0035 0.1830 -1.8390 0.7300

CSYC 238 -0.0030 -0.0100 0.2385 -0.7140 1.6610

TED 238 0.3932 0.2935 0.5097 -0.3673 3.5301

CCS 238 0.0016 -0.0095 0.2489 -0.7710 1.7220

R600 238 0.0037 0.0095 0.0419 -0.1480 0.1373

REER 238 0.0040 0.0073 0.0565 -0.1976 0.1462

V600 238 16.3630 13.6600 9.2044 5.5800 69.4600

VOL 238 0.0168 -0.0151 0.2128 -0.4187 1.1127

GDP 238 0.0010 0.0016 0.0058 -0.0337 0.0300

CPI 238 0.0015 0.0011 0.0040 -0.0103 0.0198

ECBA 238 0.0103 0.0062 0.0332 -0.0878 0.2895

RECI 238 0.3151 0.0000 0.4655 0.0000 1.0000

EXCH 238 0.0003 -0.0009 0.0273 -0.0972 0.1010

UNEM 238 -0.0092 0.0000 0.1102 -0.3000 0.5000

OIL 238 0.0114 0.0198 0.1146 -0.5424 0.8838

CONF 238 -0.0002 0.0000 0.0021 -0.0100 0.0051

M2 238 0.0049 0.0043 0.0058 -0.0116 0.0318

INDU 238 0.0824 0.1000 2.2129 -19.3000 14.2000

GOLD 238 0.0083 0.0035 0.0487 -0.1689 0.1301

RRE 238 0.0523 -0.0005 0.3596 -0.7504 2.2645

Table 5.2: The table shows descriptive statistics for the state variables. The state vari-
ables are expressed in different units, e.g., basis points changes, percentage changes and
changes in percent. For more detailed description of each state variable, see Appendix C
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6. Empirical results

6.1 Comparison of estimates

This essay chooses to present the empirical results in terms of ∆$CoVaR (more specif-

ically ∆eCoVaR since the market capitalization of a bank is denoted in euro) and not

∆CoVaR because of one main reason. The indicator-based approach used by regulators

described in section 2.3 acknowledges size as an important factor for determining sys-

temically important banks, and by focusing on ∆$CoVaR, this essay also emphasizes the

size difference between banks. To present and rank the banks with the highest ∆CoVaR

would, according to the authors, be uninformative since a very small bank can have a

larger ∆CoVaR than a G-SIB but obviously, the G-SIB is more systemically important.

A&B Lasso PCA 5 random 7 random 9 random

HSBC 10,676 9,407 12,377 12,573 10,042 9,420

UBSG 4,945 8,041 3,617 5,757 5,721 5,420

BNP 7,504 7,685 4,989 8,213 7,378 6,679

SAN 7,134 10,193 4,975 8,222 7,065 7,691

ISP 4,959 4,338 2,286 4,829 3,892 4,385

INGA 5,933 6,390 2,903 6,120 5,992 5,941

BBVA 4,878 5,828 2,739 4,980 4,828 4,665

LLOY 3,863 6,174 2,148 5,709 4,569 4,761

NDA 1,946 3,252 1,588 2,887 2,276 2,467

UCG 3,182 4,405 1,240 3,797 3,151 2,965

ACA 3,089 3,507 1,728 2,991 2,921 2,811

NWG 3,902 5,649 975 4,908 3,114 3,883

CABK 1,591 1,940 977 1,747 1,537 1,574

KBC 1,509 1,611 661 1,611 1,203 1,414

DNB 1,633 1,892 1,309 1,558 1,574 1,806

BARC 3,928 4,368 2,155 4,548 3,641 3,684

SEB 1,790 1,826 1,132 1,883 1,442 1,606

STAN 2,761 2,705 1,528 3,639 2,969 2,637

DBK 1,902 2,018 1,390 2,929 2,515 2,815

SWEDA 1,668 1,828 863 1,581 1,247 1,376

Table 6.1: The table shows the calculated mean of the ∆$CoVaR estimates in millions
of euros for the 20 largest banks, as of March 28th 2023 for each of the methods. The
mean is calculated by taking the average of the monthly estimates of ∆$CoVaR during
the time period 2002-12-31 to 2022-09-30.
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Table 6.1 shows ∆$CoVaR estimates in MEUR generated by the different variable

selection methods. The banks presented are the twenty banks with the highest market

capitalization as of 28th of March 2023 and the estimates are a mean of the obtained

monthly ∆$CoVaR estimates during the essays’ selected time period. A bold bank in-

dicates that the bank is included in the G-SIB list as of November 2022. Appendix F

shows the selected state variables used in each of the estimations. 1

What can be seen in table 6.1 is that the estimates are dependent on the selected state

variable selection method and that the ∆$CoVaR estimates clearly differs between the

methods chosen to capture time variation. Looking at the table, it is not unusual that es-

timates differ by more than 100% between methods. This is the case when comparing the

PCA with other selection methods since using PCA generates noticeably lower ∆$CoVaR

estimates for all banks in the table except for HSBC. By calculating the difference be-

tween the highest and lowest estimates generated by the methods for a specific bank and

then expressing this number as an percentage of the average estimate for the same bank

showcases the estimate dispersion. The average of this calculation for all banks in table

6.1 including all methods is 131.5%. Estimates generated by the methods excluding PCA

are more in line with each other but visible differences still appear. The same calculation

described above yields an average of 67.9% when excluding PCA. Regarding estimate dif-

ferences between methods, it can also be observed in table 6.1 that the selection methods

A&B, five random, seven random and nine random seem to showcase the same general

trend in the estimates and the dispersion measure including only these four methods

yields an average of 24%. It should however be mentioned that the differences in the

estimates seem to be somewhat dependent on the bank, where some banks showcases

larger differences between methods (Santander, Lloyds and NatWest Group) while other

banks have estimates with smaller differences (SEB and DNB).

Except for PCA generating the lowest estimates, some additional patterns can be

observed in table 6.1. For more than half of the included banks, Lasso generates the

highest ∆$CoVaR. More specifically, this happens for 12 out of 20 banks.

1The estimation results for all 141 banks are available upon request.
E-mail: baltsar.lindgren@gmail.com, christian@hovstadius.com
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Figure 6.1: The figure plots HSBC’s systemic risk contribution measured as monthly
∆$CoVaR during the time period 2002-12-31 to 2022-09-30.

Figure 6.2: The figure plots BNP Paribas’ systemic risk contribution measured as monthly
∆$CoVaR during the time period 2002-12-31 to 2022-09-30.
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Figure 6.3: The figure plots Barclays’ systemic risk contribution measured as monthly
∆$CoVaR during the time period 2002-12-31 to 2022-09-30.

Figure 6.4: The figure plots Deutsche Bank’s’ systemic risk contribution measured as
monthly ∆$CoVaR during the time period 2002-12-31 to 2022-09-30.

Figures 6.1 - 6.4 plots the ∆$CoVaR estimates, once again in MEUR, generated by
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the different state variable selection methods over time. The plots show this for the four

European banks that are placed in any of the three highest buckets on the G-SIB list as

of November 2022. Much of what can be seen in the above table 6.1 is further showcased

by looking at the development of systemic risk contributions over time for the four banks.

The estimates obtained by the PCA once again seem to be at noticeably lower levels than

the other estimates, with HSBC being the exception. Looking at figure 6.1, one can also

observe that after 2008, the Adrian & Brunnermeier state variables produce a ∆$CoVaR

estimate below zero and hence a negative systemic risk contribution. This implies, in

theory, that during this time period the risk of the financial system decreased rather

than increased when HSBC was in distress.

What is also shown by figures 6.1 - 6.4 is that even though the different methods vary

in their level of estimates, in general, they seem to be responsive in the same ways and

follow the same trends. For all methods for the four banks, there are clear build-ups

in systemic risk contributions before 2008 (Financial crisis), 2015 (Chinese stock market

crash), and 2020 (Covid-19 outbreak), followed by drastic decreases in the ∆$CoVaR

estimates. However, the PCA once again is seen as a clear exception, and in periods

of substantial increases in systemic risk contributions, the PCA is not as responsive,

producing less drastic increases. For HSBC, the PCA however seems to be more in line

with the other methods. Although, it should be mentioned that all the methods follow

similar trends seems to be the case in only very broad general terms, at least when looking

at BNP Paribas, Barclays, and Deutsche Bank. It is not unusual to observe that methods

differ in the direction of systemic risk contribution changes, which implies that different

methods can estimate positive or negative changes for the same period. E.g., this is visible

around 2020 for both BNP Paribas and Barclays where all methods seem to estimate

increases while the PCA yields a decrease in its estimate. Other clear disagreements can

also be found after 2020 for HSCB, between the Adrian & Brunnermeier estimates and

some of the other methods. Also, for BNP Paribas, the Adrian & Brunnermeier estimates

before 2012 and after 2016 disagree with the other methods. These are just examples, but

the main result to be emphasized is that the state variable selection methods can yield

different signs of systemic risk contribution changes during the same estimation period

for the same bank.

What probably already has become apparent for the reader is the potential impact the
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change in market capitalization has on the ∆$CoVaR estimates. E.g., in the Deutsche

Bank graph, it’s clear that the bank’s systemic risk contribution has been steadily de-

creasing, which could be due to its market capitalization decreasing by approximately

31% during this essay’s chosen time period. However, this must not be the only expla-

nation. BNP Paribas’ market capitalization decreased more in percentage terms than

Deutsche Bank’s during the same time period, but the ∆$CoVaR estimates does not

show the same decreasing trend.

Figure 6.5: The figure shows the standard deviation in millions of euros generated by
the different state variables selection methods for the four banks HSBC, BNP Paribas,
Barclays and Deutsche Bank.

Figure 6.5 shows the standard deviation across the methods in MEUR for the four

selected banks. This gives an understanding of the volatility of the estimates generated

by the different state variable selection methods and wishes to quantify the volatility that

can be visually inspected in figure 6.1 - 6.4. Looking at the standard deviation across

measures for the same bank, the PCA yields the lowest standard deviation for all banks

except for HSBC, while the estimates obtained by the Adrian & Brunnermeier state vari-

ables show the highest standard deviation for all the selected banks except for Deutsche
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Bank. These numbers can be visually observed in figure 6.1 - 6.4 where the PCA clearly

showcases lower volatility while Adrian & Brunnermeier generates a more volatile time

series. This trend stays visible when looking at the method standard deviation for the

twenty largest banks, shown in Appendix H. Looking at these banks, the PCA has the

lowest volatility for all banks except for HSBC, while the Adrian & Brunnermeier esti-

mated volatility is the highest for nine out of twenty banks.

(a) HSCB (b) BNP Paribas

(c) Barclays (d) Deutsche Bank

Figure 6.6: The figures shows the Pearson correlation coefficients between the ∆$CoVaR
estimates generated by the different state variables selection methods. This is shown for
the four banks HSCB, BNP Paribas, Barclays and Deutsche Bank.

Figures 6.6a - 6.6d above shows the Pearson correlation coefficient for the time series of the
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∆$ CoVaR for each of the methods for each of the four G-SIB banks. The interpretation

is that a high correlation between two methods, e.g., lasso and PCA, means that the

estimated conditional ∆$ CoVaR tend to be similar over the whole time period. In general,

the three random selection methods are fairly highly correlated with a correlation often

between 0.7 and 0.9. For HSBC, it can be seen that lasso, PCA and 5 random exhibit

a high correlation between 0.92 and 0.95. For both BNP Paribas (BNP) and Barclays

(BARC), Lasso and Adrian & Brunnermeier’s method have the lowest correlation of

0.27 and 0.26 respectively. Apart from the random selection methods, there is no clear

visible trend over what methods tend to have a high or low correlation. Note that these

correlations offer some nuance to the presented mean estimates in table 6.1 above, which

suggested that the methods A&B, five, seven and, nine random generate estimates in the

same ball park. However, in some cases, the correlation of the whole time series does not

suggest similar results, at least when looking at the correlation between A&B and the

random methods. An example of this is the correlation between A&B and seven random

for Barclays, where the correlation coefficient is at 0.65 while the mean estimate has a

difference of approximately 10%. For BNP Paribas, the same observation can be made,

where A&B and seven random generates highly similar mean estimates, while at the

same time showcasing a correlation of 0.38. The same inconsistency between the mean

estimate and the time series correlation can be observed in the other direction as well.

Looking at Deutsche Bank, the correlation coefficient between A&B and five random is

0.81 while the five random estimate is 50% larger than the A&B estimate.

6.2 Comparison of rankings

For each of the selection methods, the banks were ranked after their estimated ∆$ CoVaR

(calculated as the mean of the time-series for each bank). By taking four different sub-

sets of the time period, four different sets of rankings were obtained. This section starts

by showing the rankings using the whole time period for calculation, followed by period

one using January 1st 2005 to December 31st 2006, period two using January 1st 2013

to December 31st 2014 and period three using January 1st 2020 to December 31st 2021.

The second table for each period shows the 20 largest banks (based on March 28st 2023

market capitalization) and how their ranking changes for each method. For all periods,
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the G-SIB list at the end of the respective period was used, and the banks included in

the list are shown in bold. However, the list was first published by the Financial Stability

Board in 2011 and hence, no G-SIB list for period 1 (2005-2006) was available. Therefore,

the G-SIB list as of 2011 was used for period one, G-SIB list as of 2014 for period two,

G-SIB list as of 2021 for period three and G-SIB list as of 2022 for the whole sample

period.

Rank A&B Lasso PCA 5 random 7 random 9 random

1 HSBC SAN HSBC HSBC HSBC HSBC

2 BNP HSBC BNP SAN BNP SAN

3 SAN UBSG SAN BNP SAN BNP

4 INGA BNP UBSG INGA INGA INGA

5 ISP INGA INGA UBSG UBSG UBSG

6 UBSG LLOY BBVA LLOY BBVA LLOY

7 BBVA BBVA ISP BBVA LLOY BBVA

8 GLE NWG BARC NWG CSGN CSGN

9 CSGN CSGN LLOY ISP ISP ISP

10 BARC UCG CSGN BARC BARC NWG

11 NWG BARC ACA CSGN GLE BARC

12 LLOY ISP GLE GLE UCG GLE

13 UCG ACA NDA UCG NWG UCG

14 ACA GLE STAN STAN STAN DBK

15 STAN NDA DBK ACA ACA ACA

16 NDA STAN DNB DBK DBK STAN

17 DBK DBK UCG NDA NDA NDA

18 SEB CABK SEB SEB DANSKE DNB

19 DANSKE DNB DANSKE CABK DNB SEB

20 SWEDA SWEDA ABN KBC CABK CABK

Table 6.2: The table shows the top 20 rankings based on estimated mean ∆$CoV aR for
each method. The time period 2002-12-31 to 2022-09-30 was used in the estimation. The
bold banks are the ones included in the G-SIB list as of 2022.
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Ticker A&B Lasso PCA 5 random 7 random 9 random

HSBC 1 2 1 1 1 1

UBSG 6 3 4 5 5 5

BNP 2 4 2 3 2 3

SAN 3 1 3 2 3 2

ISP 5 12 7 9 9 9

INGA 4 5 5 4 4 4

BBVA 7 7 6 7 6 7

LLOY 12 6 9 6 7 6

NDA 16 15 13 17 17 17

UCG 13 10 17 13 12 13

ACA 14 13 11 15 15 15

NWG 11 8 23 8 13 10

CABK 22 18 22 19 20 20

KBC 23 21 25 20 24 22

DNB 21 19 16 23 19 18

BARC 10 11 8 10 10 11

SEB 18 21 18 18 21 19

STAN 15 16 14 14 14 16

DBK 17 17 15 16 16 14

SWEDA 20 20 24 22 23 23

Table 6.3: The table shows the ranking overview for the 20 largest banks (as of 2023-03-
28) using time period 2002-12-31 to 2022-09-30 for calculation. The banks in bold are
included in the G-SIB list as of 2022.

Observing table 6.2, there are twelve banks included in the G-SIB list and they are all in

the top 20 ranking for each of the methods. For HSBC, SAN, BNP, INGA and UBSG,

they are all ranked within the top five for all methods, except for UBSG that falls to a

6th place ranking using Adrian & Brunnermeiers state variables. However, the mutual

ranking within these five changes for each method, except for 5 random and 9 random,

in which case they are the same. It is also noticeable that some banks fall in and out of

the top 20 rankings, for example SEB which is included in the top 20 using A&B, PCA,

5 random and 9 random but not using Lasso or 7 random. Table 6.3 further gives a quick

overview of how the ranking changes between methods for each of the top 20 banks. UCG,
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which is included in the G-SIB has the largest dispersion of ranking within the method,

whereas it is ranked 10 using lasso and 18 using PCA. The bank with the most stable

ranking is HSBC, which is ranked 1st for all methods except Lasso, where it is ranked 2nd.

Rank A&B Lasso PCA 5 random 7 random 9 random

1 HSBC UBSG HSBC HSBC HSBC HSBC

2 BNP HSBC UBSG SAN UBSG INGA

3 INGA SAN SAN BNP BNP SAN

4 SAN NWG BNP UBSG SAN UBSG

5 UBSG INGA INGA INGA INGA CSGN

6 GLE BNP BBVA NWG CSGN BNP

7 CSGN CSGN CSGN CSGN BBVA NWG

8 UCG BBVA BARC GLE UCG BBVA

9 NWG UCG GLE BBVA NWG BARC

10 BARC LLOY ACA BARC BARC UCG

11 BBVA BARC LLOY LLOY GLE GLE

12 ISP GLE DBK UCG LLOY LLOY

13 ACA ACA ISP DBK ACA DBK

14 LLOY ISP UCG ISP ISP ISP

15 DBK DBK NWG ACA DBK ACA

16 STAN NDA STAN STAN STAN STAN

17 DANSKE STAN NDA NDA NDA NDA

18 SWEDA KBC DANSKE KBC DANSKE KBC

19 MB MB DNB DANSKE ETE DANSKE

20 SEB ETE KBC SEB KBC ETE

Table 6.4: The table shows the top 20 rankings based on estimated mean ∆$CoV aR for
each method. In the estimation, time period 2005-01-01 to 2006-12-31 was used. The
bold banks are the ones included in the G-SIB list as of 2011.
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Ticker A&B Lasso PCA 5 random 7 random 9 random

HSBC 1 2 1 1 1 1

UBSG 5 1 2 4 2 4

BNP 2 6 4 3 3 6

SAN 4 3 3 2 4 3

ISP 12 14 13 14 14 14

INGA 3 5 5 5 5 2

BBVA 11 8 6 9 7 8

LLOY 14 10 11 11 12 12

NDA 23 16 17 17 17 17

UCG 8 9 14 12 8 10

ACA 13 13 10 15 13 15

NWG 9 4 15 6 9 7

CABK N/A N/A N/A N/A N/A N/A

KBC 22 18 20 18 20 18

DNB 21 27 19 27 25 25

BARC 10 11 8 10 10 9

SEB 20 24 21 20 26 22

STAN 16 17 16 16 16 16

DBK 15 15 12 13 15 13

SWEDA 18 26 23 25 30 29

Table 6.5: The table shows the ranking overview for the 20 largest banks (as of 2023-03-
28) using time period 2005-01-01 to 2006-12-31 for calculations. The banks in bold are
included in the G-SIB list as of 2011.

The above two tables show the ranking using the years 2005 and 2006 as time period for

calculation. As seen in table 6.4, the different methods yield widely different rankings,

although most of the same banks stay in the top 20. HSBC is again ranked number one

in all methods except for lasso where it is ranked second after USBG. Again, table 6.5

tell us that HSBC is the bank with the least dispersion between ranking for the differ-

ent methods, where it is ranked either 1st or 2nd in all methods. Swedbank (SWEDA)

further has the highest dispersion where it is ranked 18th using Adrian & Brunnermeier

state variables and 30th using seven random state variables. Caixa Bank (CABK) did
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not exist in 2005-2006, and hence, it did not have a ranking.

Rank A&B Lasso PCA 5 random 7 random 9 random

1 HSBC HSBC HSBC HSBC HSBC HSBC

2 BNP SAN SAN SAN BNP SAN

3 SAN LLOY BNP BNP SAN BNP

4 BBVA UBSG UBSG LLOY LLOY LLOY

5 INGA BNP BBVA BBVA UBSG BBVA

6 ISP BBVA LLOY UBSG BBVA INGA

7 UBSG NWG INGA STAN INGA CSGN

8 LLOY CSGN BARC BARC CSGN UBSG

9 CSGN INGA STAN INGA BARC NWG

10 GLE BARC CSGN NWG STAN BARC

11 BARC UCG NDA CSGN AIBG ISP

12 STAN AIBG ISP ISP ISP STAN

13 NWG ISP GLE AIBG NWG AIBG

14 UCG STAN DBK GLE UCG GLE

15 AIBG NDA DNB UCG GLE DBK

16 SWEDA GLE SEB NDA DBK UCG

17 NDA ACA ACA DBK NDA NDA

18 ACA DBK SHBB ACA ACA ACA

19 SEB SWEDA SWEDA SEB CABK DNB

20 DBK BKIA AIBG SWEDA DANSKE SEB

Table 6.6: The table shows the top 20 rankings based on estimated mean ∆$CoV aR for
each method. In the estimation, time period 2013-01-01 to 2014-12-31 was used. The
bold banks are the ones included in the G-SIB list as of 2014.
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Tickers A&B Lasso PCA 5 random 7 random 9 random

HSBC 1 1 1 1 1 1

UBSG 7 4 4 6 5 8

BNP 2 5 3 3 2 3

SAN 3 2 2 2 3 2

ISP 6 13 12 12 12 11

INGA 5 9 7 9 7 6

BBVA 4 6 5 5 6 5

LLOY 8 3 6 4 4 4

NDA 17 15 11 16 17 17

UCG 14 11 21 15 14 16

ACA 18 17 17 18 18 18

NWG 13 7 24 10 13 9

CABK 23 22 22 21 19 22

KBC 28 25 28 26 29 27

DNB 22 23 15 22 21 19

BARC 11 10 8 8 9 10

SEB 19 21 16 19 23 20

STAN 12 14 9 7 10 12

DBK 20 18 14 17 16 15

SWEDA 16 19 19 20 22 21

Table 6.7: The table shows the ranking overview for the 20 largest banks (as of 2023-03-
28) where time period 2013-01-01 to 2014-12-31 was used in calculations. The banks in
bold are included in the G-SIB list as of 2014.

Using the years 2013 and 2014 for calculations, tables 6.6 and 6.7 shows the top 20 rank-

ings for each method as well as ranking for the 20 largest banks. Again, most banks

included in the G-SIB list are ranked high in all methods. However, Lloyds Banking

Group (LLOY) is ranked fairly high (3rd on lasso and 4th on all random selection) in

this time period, which is not the case in any of the other time periods. There can be

several reasons for this, one being that the bank had a relatively high market capitaliza-

tion during this specific time period, or if risk in the institution increased more than its

peers. Furthermore, table 6.7 shows that HSBC was ranked number one for all methods.
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However, Banco Santander (SAN) also showed high consistency, only switching between

number two and number three in the rankings. On the contrary, Natwest Group (NAT)

showed high dispersion between methods where it was ranked seven using lasso and 24

using PCA.

Rank A&B Lasso PCA 5 random 7 random 9 random

1 BNP SAN HSBC HSBC HSBC HSBC

2 HSBC BNP BNP BNP BNP BNP

3 ISP HSBC SAN SAN INGA SAN

4 INGA UBSG UBSG INGA SAN INGA

5 SAN INGA INGA ISP UBSG UBSG

6 UBSG LLOY ISP UBSG ISP ISP

7 ACA ISP DNB LLOY LLOY LLOY

8 BBVA BBVA BBVA BBVA BBVA BBVA

9 LLOY CSGN ACA BARC CSGN CSGN

10 BARC ACA NDA ACA ACA BARC

11 CSGN NDA LLOY CSGN BARC ACA

12 SEB BARC SEB NDA NDA NDA

13 DNB UCG BARC SEB DNB DNB

14 GLE NWG CSGN GLE UCG SEB

15 UCG DNB SHBB UCG SEB GLE

16 NWG SEB SWEDA NWG STAN UCG

17 SWEDA KBC GLE DNB GLE NWG

18 NDA SWEDA STAN STAN DBK DBK

19 STAN GLE CABK KBC NWG KBC

20 KBC CABK DBK DBK KBC SWEDA

Table 6.8: The table shows the top 20 rankings based on estimated mean ∆$CoV aR for
each method. In the estimation, time period 2020-01-01 to 2021-12-31 was used. The
bold banks are the ones included in the G-SIB list as of 2021.
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Rank A&B Lasso PCA 5 random 7 random 9 random

HSBC 2 3 1 1 1 1

UBSG 6 4 4 6 5 5

BNP 1 2 2 2 2 2

SAN 5 1 3 3 4 3

ISP 3 7 6 5 6 6

INGA 4 5 5 4 3 4

BBVA 8 8 8 8 8 8

LLOY 9 6 11 7 7 7

NDA 18 11 10 12 12 12

UCG 15 13 23 15 14 16

ACA 7 10 9 10 10 11

NWG 16 14 28 16 19 17

CABK 22 20 19 22 22 22

KBC 20 17 21 19 20 19

DNB 13 15 7 17 13 13

BARC 10 12 13 9 11 10

SEB 12 16 12 13 15 14

STAN 19 21 18 18 16 21

DBK 24 24 20 20 18 18

SWEDA 17 18 16 21 21 20

Table 6.9: The table shows the ranking overview for the 20 largest banks (as of 2023-03-
28) where time period 2020-01-01 to 2021-12-31 was used for calculations. The banks in
bold are included in the G-SIB list as of 2021.

Above tables shows the third explicit period for calculation of the ∆$ CoVaR and the

rankings. HSBC is again in the top rankings, ranked 1st for PCA and all random selection

methods, however, it is ranked 3rd using lasso and 2nd using Adrian & Brunnermeier. BNP

exhibits the most consistent ranking, being ranked either 1st or 2nd, which is also seen

in table 6.9. Same as period two, Natwest Group (NWG) fluctuates the most between

the different methods, being ranked 28th using PCA and 14th using lasso. Furthermore,

Banco Santander (SAN), being one of the more systemically important banks, fluctuates

relatively much where it is ranked 1st using lasso and 5th using A&B.
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Looking at the rankings across all periods, there are some findings worth mentioning.

Firstly, the same banks tend to be ranked high across all periods and across all methods,

with HSBC, BNP Paribas (BNP) and Banco Santander (SAN) as examples. However,

some banks tend to be ranked high during a certain period but low for a different period.

An example of this is Intesa Sanpaolo (ISP), which is ranked between 12 and 14 for period

one, but for period three, it is ranked between three and seven. As previously mentioned,

this could be linked to a change in market capitalization, but it could also be linked to a

change in risk.

(a) All banks (b) 20 largest banks

Figure 6.7: The two figures shows the rank correlation between the six different methods,
measured using Spearman’s rank correlation. The leftmost figure shows the rank cor-
relation when using all banks in the dataset, while the rightmost figure shows the rank
correlation using the 20 largest banks (as of 2023-03-28).

The two figures, 6.7a and 6.7b, shows the Spearman’s rank correlation coefficient between

the rankings both using all banks, and using the 20 largest banks (as of latest market

capitalization). A common denominator between the two figures is that PCA exhibits

the lowest correlation with the other methods. This could be linked to PCA not being a

variable selection method but rather a method of shrinking the dimension, as mentioned

in section 4.2.3. When all banks are included, the lowest correlation is between PCA and

lasso with a correlation coefficient of 0.94. For the top 20 banks, the lowest correlation

coefficient is again between PCA and lasso and amounts to 0.81. The highest correlation

for all banks is between A&B and all random selection as well as the mutual correlation

between the random selection methods. They all show a correlation of 0.99. As for the top
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20 banks, the highest correlation is between 7 random and 9 random, with a coefficient

of 0.99. Overall, the correlation between the rankings for the different methods are lower

when only including the top 20 banks, than when all banks are included. Furthermore,

a significance test was conducted with the conclusion that all correlation coefficients

were significantly different from zero. However, in this setting, it is more appealing to

test whether the rank correlation is significantly different from one. For the top twenty

banks, it was not possible to reject the null hypothesis of a rank correlation equal to

one. Additional testing was conducted on the larger sample of the rank correlations of

all banks. The results implied that the null hypothesis was rejected for 8 out of the 36

rank correlations.
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7. Discussion
The estimates presented in section 6.1 clearly indicates that the choice of state variable

selection method matters. Different methods generate different estimates, and for some

banks and across methods, these differences are highly noticeable in euro terms, especially

when using the PCA to obtain ∆$CoVaR estimates. This is important since different esti-

mates introduce uncertainty regarding which estimates one should use when determining

a bank’s systemic risk contribution. The systemic risk contribution represents the bank’s

connection to the risk of the financial system as a whole, and from a regulator’s point

of view, a higher systemic risk contribution could imply regulatory consequences such

as being placed in a higher bucket. Hence, if the CoVaR methodology is to be used for

determining systemic risk contributions, the fact that different state variable selection

methods yield different estimates should be taken into consideration. Which state vari-

ables to use, which estimates one should choose and hence consider the most accurate

ones, or if one should even use state variables to capture time variation in systemic risk

estimates is beyond the scope of this essay. However, the results presented in this essay

should be seen as something that questions the expediency of using state variables within

Adrian & Brunnermeier’s CoVaR methodology to capture the time variation in systemic

risk. One should note that these results also have implications for academic research

within the area of systemic risk. Future research should put emphasis on the selection

of state variables and this essay proposes that if one wishes to use state variables, some

motivation may be needed.

Some similarities between the ∆$CoVaR estimates were brought up in the empirical

results section, at least in the mean estimates. The inconsistency between the mean esti-

mate and the time series correlation however points to additional estimation uncertainty,

which makes it difficult to draw conclusions. This is the case since similar mean estimates

and a low time series correlation suggests that the method showcases a low consistency

in the time series dimension while large differences in the mean estimates but a high time

series correlation could propose that the methods generate estimates that tend to follow

the same trend but differ in the relative estimate levels.

The estimation uncertainty is further highlighted if one considers the development of
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systemic risk contributions over time presented in section 6.1. During some time periods,

different methods estimate different signs of the changes in systemic risk contributions,

which implies that one method can mediate the picture that a bank had an increasing

systemic risk contribution from one period to another while a different method may say

the opposite. This is problematic since it makes it difficult to distinguish how different

events and certain periods connect to a bank’s risk contribution. As shown by the results

presented, it is even possible that the sign of the estimate values differ where one method

may produce a negative ∆$CoVaR estimate. This further showcases the fluctuations in

the estimates between methods.

As seen in section 6.2, the rankings between the banks tend to differ both over time,

but also across methods. Since the rankings are based on ∆$CoVaR, the size of the

institution will matter, which is why e.g., HSBC tends to have a fairly stable ranking,

while a smaller bank tends to fluctuate more. An example is Natwest Group in period two,

which was ranked seven using lasso and 24 using PCA, which is seen as a large dispersion.

Furthermore, HSBC is almost twice as large as the second-largest bank in terms of market

capitalization. Hence, one could argue that even though HSBC only fluctuates between

a ranking of first and third, this dispersion can still be considered significant because of

the size of the bank. If the different selection methods would produce similar results, one

could hence expect that the ranking of HSBC would not vary at all. As briefly mentioned

above, the capital requirement of HSBC could be different depending on if it is ranked

number one or number three looking from a regulator’s point of view. One could even

argue that the results of this essay may propose that the choice of state variable selection

method could influence if a bank is defined as a G-SIB or not because of the variation

in systemic risk contribution rankings and estimate values. Hence, the selection of state

variables seems to be important for the results. Furthermore, as mentioned in section

6.2, some banks also tend to have a high fluctuation of ranking over time, which could be

linked to either change in market capitalization or change in risk (measured as ∆CoVaR).

Therefore it is important to also take the time period into account when estimating the

systemic risk contributions of the financial institutions, at least in terms of rankings.

Looking at the correlation coefficients of the rankings, it is obvious that they tend

to have a high correlation when including all banks. However, the hypothesis test of a

rank correlation equal to one showed that 8 out of 36 rank correlations were significantly
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different from one. When looking at the top 20 banks, some correlations are just over

0.8 (e.g., PCA and lasso). In this setting, one could argue that this is a low coefficient

of correlation since if the variable selection method would not matter, then the rankings

would be very stable and the correlation should be close to one. This is the case for

some of the methods (e.g., 7 random and 9 random), but not for most of the selection

methods. Since it was not possible to reject a null hypothesis of correlation equal to one

for any of the rank correlations using the top 20 banks, this would imply that rankings

indeed is stable across methods. However, the results of the statistical test should be

read with some caution due to the very small sample size (20). Hence, the validity of

the result can be questioned because of the lower degrees of freedom resulting in fatter

tails. Observing the deviation of rankings across all banks, the largest difference between

highest and lowest ranking across methods for one bank is 52, and the average difference

in ranking across all methods and all banks is approximately 14. For the 20 largest

banks, the largest difference in ranking is 15 and average difference across all methods

is approximately 4. Hence, even though most rank correlations were not statistically

different from one, the changes in ranking can still be argued to be fairly large, which

has negative implications for regulators and academic research wishing to rank banks by

their systemic risk contributions.
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8. Conclusions and future research
The main objective of this essay has been to assess the sensitivity of ∆CoVaR, expressed

as ∆$CoVaR, to the choice of state variable selection method when obtaining time-varying

systemic risk estimates. More specifically, the essay has tried to answer the question if

different state variables selection methods yield different estimates and systemic risk

contribution rankings. The results presented suggests that the risk measure is indeed

sensitive to the choice of state variable selection method, and that the risk measure

generates different estimates of systemic risk contributions as well as variation in rankings

depending on what state variable selection method is used in the estimation. This has

obvious implications for regulators and academic research that wish to estimate systemic

risk contributions over time, since the estimation uncertainty questions which estimates

are the most accurate ones, which banks are most systemically important (ranking), and

which state variables should be used if one wants to use them to obtain time-varying

systemic risk estimates.

Since, as far as the authors are aware, this essay is the first one to study how the choice

of state variables selection method affects systemic risk estimates using CoVaR, the need

for future research is obvious. This essay does not contribute to the question regarding

which state variables to use when conditionally estimating CoVaR. Hence, future research

could investigate what state variables should be included in the estimation. This is

however conditioned on that one wants to use state variables at all to capture time

variation, which the results of this essay in some sense questions. Therefore, it would

make sense for future research to study the expediency of additional estimation methods

when estimating systemic risk contributions over time.
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Appendix A-I
A List of banks

The table shows all banks included in the data set with their respective ticker, weight (as

percent of system) and market capitalization, gathered March 28th 2023.

Bank Ticker Weight MC (€)

HSBC HSBC 11.1500% 122,255,818,752

UBS Group UBSG 5.8385% 64,017,055,744

BNP Paribas BNP 5.7604% 63,160,750,080

Banco Santander SAN 4.9716% 54,512,082,944

Intesa Sanpaolo SpA ISP 3.9572% 43,389,415,424

ING Groep INGA 3.5904% 39,367,217,152

Banco Bilbao Vizcaya Argentaria SA BBVA 3.4593% 37,929,431,040

Lloyds Banking Group PLC LLOY 3.1969% 35,053,301,760

Nordea Bank Abp NDA 3.0891% 33,871,216,640

UniCredit SpA UCG 2.9294% 32,119,873,536

Credit Agricole ACA 2.7567% 30,225,739,776

Natwest Group NWG 2.5816% 28,306,833,408

CaixaBank CABK 2.4071% 26,392,498,176

KBC Groep KBC 2.3171% 25,405,618,176

DNB Bank DNB 2.2717% 24,908,630,016

Barclays PLC BARC 2.2239% 24,384,319,488

Skandinaviska Enskilda Banken SEB 1.9248% 21,104,467,968

Standard Chartered PLC STAN 1.7480% 19,166,105,600

Deutsche Bank AG DBK 1.6507% 18,098,995,200

Swedbank SWEDA 1.5803% 17,327,513,600

Societe Generale GLE 1.4447% 15,840,896,000

Danske Bank DANSKE 1.4436% 15,828,756,480

Svenska Handelsbanken SHBB 1.3821% 15,153,892,352

Julius Baer Group BAER 1.1964% 13,118,524,416

ABN AMRO Bank ABN 1.1808% 12,946,753,536
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Erste Groupe Bank EBS 1.1132% 12,206,319,616

Commerzbank CBK 1.0554% 11,571,784,704

Bank of Ireland BIRG 0.9037% 9,909,084,160

AIB Group AIBG 0.8807% 9,656,423,424

FinecoBank FBK 0.7687% 8,428,805,632

Mediobanca MB 0.7068% 7,750,324,224

Banque Cantonale Vaudoise BCVN 0.6730% 7,378,747,392

OTP Bank Nyrt OTP 0.6646% 7,286,659,072

PKO Bank Polski PKO 0.6613% 7,250,469,888

Santander Bank Polska SPL 0.5679% 6,227,135,488

Banca Mediolanum BMED 0.5486% 6,015,197,184

Banco de Sabadell SAB 0.4998% 5,480,663,552

Banco BPM BAMI 0.4756% 5,215,256,576

Investec Group INVP 0.4292% 4,705,804,288

Bank Polska Kasa Opieki PEO 0.4154% 4,554,596,352

Bankinter SA BKT 0.4137% 4,535,678,464

Eurobank Ergasias Services and Holdings EUROB 0.4088% 4,482,498,048

ING Groep ING 0.4081% 4,474,834,944

Graubundner Kantonalbank GRKP 0.3956% 4,337,618,944

Raiffeisen Bank International RBI 0.3930% 4,309,109,248

Jyske Bank JYSK 0.3703% 4,059,709,184

National Bank of Greece ETE 0.3646% 3,997,305,088

Oberbank OBS 0.3478% 3,813,188,352

Zagrebacka Banka ZABA 0.3476% 3,810,879,232

Ringkjoebing Landbobank RILBA 0.3315% 3,634,752,512

Luzerner Kantonalbank LUKN 0.3153% 3,456,806,656

Avanza Bank AZA 0.3069% 3,365,056,768

BAWAG Group BG 0.3059% 3,354,449,920

BPER Banca BPER 0.2931% 3,213,980,672

Bper Banca BPE 0.2918% 3,199,822,080

Vontobel Holding VONN 0.2913% 3,194,292,992

Credit Suisse CSGN 0.2862% 3,138,318,336

Banco Comercial Portugues BCP 0.2711% 2,972,921,856

St Galler Kantonalbank SGKN 0.2687% 2,945,785,344
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Basler Kantonalbank BSKP 0.2584% 2,833,109,248

Banca Transilvania TLV 0.2570% 2,817,675,776

Unicaja Banco UNI 0.2353% 2,580,498,176

Alpha Services and Holdings ALPHA 0.2307% 2,529,774,592

Banca Monte dei Paschi di Siena BMPS 0.2217% 2,431,201,024

Thurgauer Kantonalbank TKBP 0.2177% 2,387,203,328

Piraeus Financial Holdings TPEIR 0.2154% 2,361,943,808

Sydbank SYDB 0.2138% 2,344,060,928

Bank Handlowy w Warszawie BHW 0.2085% 2,286,071,808

Zuger Kantonalbank ZUGER 0.2036% 2,232,319,488

Berner Kantonalbank BEKN 0.1952% 2,140,507,264

Virgin Money UK VMUK 0.1943% 2,129,988,480

Caisse Regionale de Credit Agricole Mutuel de

Paris et d’lle-de-France

CAF 0.1853% 2,031,612,672

Basellandschaftliche Kantonalbank BLKB 0.1794% 1,967,403,648

Liechtensteinische Landesbank LLBN 0.1691% 1,854,237,696

Moneta Money Bank MONET 0.1624% 1,780,529,280

Spar Nord Bank SPNO 0.1594% 1,747,320,576

BNP Paribas Bank Polska BNPPPL 0.1453% 1,593,497,472

Bank fuer Tirol und Vorarlberg BTUV 0.1393% 1,527,006,208

Close Brothers Group CBG 0.1349% 1,479,396,992

Banque Cantonale de Geneve BCGE 0.1294% 1,418,928,000

Nova Ljubljanska Banka NLBR 0.1284% 1,408,000,000

Arion Bank ARION 0.1240% 1,359,271,040

Sparebank 1 SMN MING 0.1234% 1,352,848,768

Permanent tsb IL0A 0.1189% 1,303,958,016

Grenke GLJ 0.1001% 1,097,295,488

Alior Bank ALR 0.0939% 1,029,293,632

Caisse Regionale de Credit Agricole Mutuel du

Languedoc

CRLA 0.0858% 940,226,560

Caisse Regionale de Credit Agricole Mutuel Nord

de France

CNDF 0.0832% 912,420,800

FlatexDEGIRO FTK 0.0730% 800,237,568

Aktia Bank Oyj AKTIA 0.0616% 675,374,464
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Collector Bank COLL 0.0606% 664,709,312

Oma Saastopankki Oyj OMASP 0.0575% 630,898,432

Alandsbanken Abp ALBBV 0.0572% 627,012,544

Attica Bank TATT 0.0538% 589,944,384

Caisse Regionale de Credit Agricole Atlantique

Vendee

CRAV 0.0513% 562,964,352

Vestjysk Bank VJBA 0.0492% 539,960,256

Bank of Valletta BOV 0.0479% 525,464,352

Caisse Regionale de Credit Agricole Mutuel Sud

Rhone Alpes

CRSU 0.0460% 503,934,624

Caisse Regionale de Credit Agricole Mutuel Alpes

Provence

CRAP 0.0452% 495,509,344

Komercijalna Banka AD Skopje KMB 0.0418% 458,836,096

Schweizerische Nationalbank SNBN 0.0410% 449,307,136

Banco di Desio e della Brianza BDB 0.0399% 438,023,552

Caisse Regionale de Credit Agricole Mutuel de

Normandie-Seine

CCN 0.0395% 432,990,848

Credit Agricole Loire Haute-Loire CRLO 0.0388% 425,001,216

Resurs Holding RESURS 0.0366% 401,219,968

Caisse Regionale de Credit Agricole Mutuel de la

Touraine et du Poitou

CRTO 0.0360% 395,045,216

ProCredit Holding PCZ 0.0339% 372,238,464

NLB Banka AD Skopje TNB 0.0329% 360,515,808

HSBC Bank Malta HSB 0.0322% 353,099,968

Glarner Kantonalbank GLKBN 0.0306% 335,776,832

Caisse Regionale de Credit Agricole Mutuel d’Ille-

et-Vilaine

CIV 0.0292% 319,708,352

Hypothekarbank Lenzburg HBLN 0.0282% 309,059,136

L̊an & Spar Bank LASP 0.0281% 307,688,576

Caisse Regionale de Credit Agricole du Morbihan CMA 0.0270% 295,627,488

Addiko Bank ADKO 0.0263% 288,600,000

Coop Pank CPA1T 0.0258% 282,902,016

TF Bank TFBANK 0.0230% 251,963,664

Hrvatska postanska banka HPB 0.0211% 230,807,248
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BankNordik BNORDIK 0.0204% 223,622,800

Metro Bank PLC MTRO 0.0179% 196,403,920

Bank Ochrony Srodowiska BOS 0.0161% 176,705,840

Skjern Bank SKJE 0.0145% 159,194,304

Secure Trust Bank STB 0.0130% 143,029,328

Fynske Bank FYNBK 0.0130% 143,010,240

Djurlands Bank DJUR 0.0123% 134,856,224

Banca Sistema BST 0.0098% 107,120,840

Kreditbanken KRE 0.0086% 93,945,784

Lollands Bank LOLB 0.0076% 83,236,264

Totalbanken TOTA 0.0062% 68,417,688

Mons Bank MNBA 0.0049% 54,241,668

Texim Bank TXIM 0.0048% 52,150,956

Istarska Kreditna Banka Umag IKBA 0.0045% 49,136,000

Wiener Privatbank WPB 0.0030% 32,530,192

Fellow Bank FELLOW 0.0027% 29,944,608

Hvidbjerg HVID 0.0020% 22,445,926

Slatinska Banka SNAB 0.0006% 6,111,164

Natixis SA KN 0.0000%

Banco Bilbao Vizcaya Argentaria BVA 0.0000%

Bankia BKIA 0.0000%

Liberbank LBK 0.0000%

NLB Skladi - Globalni uravnotezeni NLBKOMB 0.0000%
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B OLS vs Quantile Regression

Difference between estimated β using ordinary least squares (OLS) and quantile regres-

sion. The regression run is losses of Santander on the system losses.
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C All state variables

The table shows all state variables included in the data set with a description and a motivation to why it should be included.

Symbol State variable description Motivation

TMGB Change in three month german bond yield Captures future economic activity and inflation as well

as short term liquidity risk (Asgharian et al. 2022)

CSYC Change in slope of german yield curve (calculated as 10y

government bond - 3m treasury bill)

Captures time variation in return tails (ibid.)

TED Spread between three month EURIBOR (Euro Inter-

bank Offered Rate) and three month german govenment

bond yield

Captures short-term liquidity risk (Adrian and Markus

K. Brunnermeier 2016)

CCS Change in credit spread (calculated as Moody’s Baa-

rated bond index - 10y german bond index)

Captures time variation in return tails (Asgharian et al.

2022)

R600 Return of Stoxx600 index Controls for equity market return (ibid.)

REER Real estate sector excess return over financial sector Controls for equity market return (ibid.)

V600 Volatility of Stoxx600 (VIX-index of Stoxx600) Captures uncertainty and investor sentiment (ibid.)

VOL Percentage change in volume of Stoxx600 Captures investor sentiment (Liu 2015)

GDP Percentage change in German GDP Captures future economic activity (Roengpitya and

Rungcharoenkitkul 2011)
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CPI Percentage change in German CPI Captures future economic actvity and controls for infla-

tion (Roengpitya and Rungcharoenkitkul 2011)

ECBA Percentage change in ECB assets Captures future economic activity and return tails

(Boeckx et al. 2014)

RECI Recession indicator (dummy variable) Captures the state of the economy

EXCH Return of EUR/USD exchange rate Captures time variation in return tails (Petrella et al.

2019)

UNEM Change in European unemployment rate Captures future economic activity and time variation in

return tails (Boyd et al. 2005)

OIL Percentage change in oil price Captures future economic activity (Katircioglu et al.

2015)

CONF Percentage change in OECD Europe consumer confi-

dence index

Captures uncertainty, investor sentiment and future eco-

nomic activity (OECD 2023)

M2 Percentage change in ECB money supply, M2 Captures time variation in return tails (Thabet 2014)

INDU Change in Eurozone indutrial production Captures future economic activity (Roengpitya and

Rungcharoenkitkul 2011)

GOLD Percentage change in gold price Captures time variation in return tails (Al-Ameer et al.

2018)

RRE Return of Stoxx600 Real Estate index Controls for equity market return (same reasoning as for

R600, (Asgharian et al. 2022))
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RBANK Return of Stoxx600 Bank index Controls for equity market return (same reasoning as for

R600, (Asgharian et al. 2022))

VBANK Volatility of Stoxx600 Bank index (VIX-index) Captures uncertainty and investor sentiment (same rea-

soning as for V600, (ibid.))

VOLB Percentage change in volume of Stoxx600 Bank index Captures investor sentiment (same reasoning as for

VOL, (Liu 2015)

VRE Volatility of Stoxx600 Real Estate index (VIX-index) Captures uncertainty and investor sentiment (same rea-

soning as for V600, (Asgharian et al. 2022))
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D Distribution of state variables

The plots below show the density distribution of all state variables included in the data

set.
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E Correlation heatmap

The figure shows the correlation between each of the state variables in a heatmap (after

the four variables with a correlation above 0.70 were removed).
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F Selected state variables

The chosen state variables in each of the estimation methods are shown below.

Method Selected state variables
Adrian & Brunnermeier TMGB, CYSC, TED, CCS, R600, REER, V600

Lasso CSYC, EXCH, CONF

PCA N/A

Random 5 (draw 1) GOLD, CSYC, RRE , GDP, ECBA
Random 5 (draw 2) CCS, M2, V600, ECBA, TED
Random 5 (draw 3) EXCH, R600, GOLD, TMGB, CPI
Random 5 (draw 4) OIL, TED, CSYC, INDU, R600
Random 5 (draw 5) RRE, CCS, GOLD, V600, UNEM

Random 7 (draw 1) TED, REER, INDU, RRE, EXCH, CSYC, RECI
Random 7 (draw 2) INDU, VOL, REER, V600, GDP, TED, CONF
Random 7 (draw 3) CSYC, INDU, TED, REER, RECI, TMGB, GOLD
Random 7 (draw 4) VOL, RECI, V600, CONF, GOLD, R600, EXCH
Random 7 (draw 5) CCS, V600, VOL, REER, M2, CONF, TED

Random 9 (draw 1) VOL, ECBA, REER, V600, CCS, GOLD, UNEM, TED, OIL
Random 9 (draw 2) CCS, REER, ECBA, V600, OIL, RRE, CONF, CPI, GOLD
Random 9 (draw 3) RRE, UNEM, CPI, VOL, OIL, M2, ECBA, GDP, REER
Random 9 (draw 4) RECI, EXCH, TMGB, CSYC, GDP, REER, VOL, CONF, OIL
Random 9 (draw 5) RRE, REER, TED, CSYC, R600, OIL, CCS, M2, INDU
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G G-SIBs

The G-SIB list as of November 2022. The banks are sorted in alphabetical order in their

respective bucket. The percentage in parenthesis is the additional loss absorbing capital

imposed on the bank, as a percentage of risk-weighted assets.

Bank Area Bucket

JP Morgan Chase United States 4 (2.5%)

Bank of America United States 3 (2.0%)

Citigroup United States

HSBC Europe

Bank of China Asia 2 (1.5%)

Barclays Europe

BNP Paribas Europe

Deutsche Bank Europe

Goldman Sachs United States

Industrial and Commercial Bank of China Asia

Mitsubishi UFJ FG Asia

Agricultural Bank of China Asia 1 (1.0%)

China Construction Bank Asia

Credit Suisse Europe

Groupe BPCE Europe

Groupe Crédit Agricole Europe

ING Europe

Mizuho FG Asia

Morgan Stanley United States

Royal Bank of Canada North America

Santander Europe

Société Générale Europe

Standard Chartered Europe

State Street United States

Sumitomo Mitsui FG Asia
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Toronto Dominion North America

UBS Europe

UniCredit Europe

Wells Fargo United states
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Lund University APPENDIX H. STANDARD DEVIATION HEATMAP

H Standard deviation heatmap

A heatmap over the standard deviations for each bank across each method (for the 20

largest banks as of March 2023).
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