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Abstract

Practitioners primarily utilise nonparametric methods when estimating Value-at-
Risk (VaR) and Expected Shortfall (ES) for computing capital requirements. How-
ever, various researchers assert that there are issues with those estimates, par-
ticularly amidst periods of market turmoil. Academia produces novel parametric
methods to estimate extreme risk measures to address these deficiencies. Never-
theless, empirical findings of the discrepancies in the performance between non-
and parametric estimation methods are inconclusive. Various authors discover that
the nonparametric methodologies display superior backtesting results, while others
demonstrate contrary results. Therefore, this thesis contrasts the backtesting per-
formance of non- and parametric estimation methods for VaR and ES in the context
of crude oil amidst a significant geopolitical event which had major implications for
West Texas Intermediate (WTI) and Europe Brent: the COVID-19 pandemic. We
contrast the performance of the nonparametric BHS, AWHS, and VWHS methods
with the parametric Gaussian, Student’s t, and conditional EVT methods. Our
backtesting results demonstrate that the conditional EVT is the superior method
for estimating VaR, whilst the Student’s t-distribution displays the most rigorous
performance in estimating ES. These results are robust across WTI and Brent crude
oil and for the duration of the backtesting period. Hence, we recommend that prac-
titioners utilise parametric methods for estimating measures of extreme risks for
crude oil.

Keywords: Value-at-Risk (VaR); Expected Shortfall (ES); Nonparametric estima-
tion methods; Parametric estimation methods; Crude oil.
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1 Introduction

Financial institutions and other practitioners ought to adopt effective estimation
methods for calculating the capital requirements for market risk. Previous research
on the methodology that financial institutions utilise to compute Value-at-Risk
(VaR) and Expected Shortfall (ES) demonstrate that they rely on nonparamet-
ric methods such as historical simulation (Pérignon and Smith, 2010). Conversely,
academia produces novel empirical findings on superior methods for estimating VaR
and ES for various asset classes and predominantly accentuates the parametric es-
timation methods such as conditional Extreme Value Theory (EVT) (e.g., Mari-
moutou, Raggad and Trabelsi, 2009; Youssef, Belkacem and Mokni, 2015). Nu-
merous studies corroborate that financial institutions are prone to produce biased
estimates of VaR and ES (e.g., Pérignon, Deng and Wang, 2008; Campbell and
Smith, 2022). Campbell and Smith (2022) study Australian banks and observe
that practitioners are inclined to overstate estimates in calm periods and under-
estimate them during market turbulence, inducing potential self-inflicted solvency
issues. Berkowitz and O’Brien (2002) further demonstrate that commercial banks’
VaR methods perform less effectively than simple time-series models. Given these
findings, it appears counterintuitive that practitioners do not embrace the vanguard
of academic literature and rely on parametric estimation methods. In particular,
practitioners should exert prudence when managing risk for financial assets suscep-
tible to sudden and substantial fluctuations in volatility.
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Figure 1.1: Spot price series of WTI and Brent crude oil from 2003 to 2022.

Crude oil is a commodity renowned for its high level of volatility when compared
to stock indices such as S&P500 or FTSE100. The recent COVID-19 pandemic
precipitates a further increase in the volatility of crude oil, posing a challenge to
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implementing estimates of VaR and ES. Figure (1.1) illustrates the spot prices of
two eminent commodities, West Texas Intermediate (WTI) crude oil and Europe
Brent crude oil, from 2003 to 2022. As evident from Figure (1.1a), WTI crude oil
experienced a brief period with negative prices in 2020 at the onset of the pandemic,
an unprecedented event. Given the importance of crude oil as a commodity for banks
and financial institutions and commodities’ significant role as a risk factor for the
calculation of capital requirements in the Fundamental Review of the Trading Book
(FRTB) (Hull, 2018), it is more critical than ever to generate accurate estimates of
VaR and ES concerning crude oil.

Considering the discordance between the estimation approaches of scholars and
practitioners, where the former stresses parametric techniques and the latter favours
nonparametric methods, the primary aim of this thesis is to investigate whether
parametric methods for calculating VaR and ES outperform nonparametric methods
for the volatile commodity of crude oil. An application of suboptimal estimation
techniques potentially impels practitioners, such as banks, to adopt inefficient capital
requirements for market risk and, thus, endure significant and tangible repercussions.
That is, a feeble implementation methodology escalates the risk of insolvency and
begets adverse externalities for the real economy. We utilise three nonparametric
and three parametric methods to scrutinise the discrepancies in performance between
their application to the formidable commodity of crude oil. The backtesting period,
from 2016 to 2022, encompasses a significant event for crude oil - the COVID-19
pandemic.

Previous studies yield inconclusive results when evaluating nonparametric and
parametric estimation methods regarding their relative performance. Brooks and
Persand (2002) and Sadorsky (2006) ascertain that nonparametric methods excel
over parametric methods in various backtests. Furthermore, they conclude that
simple estimation methods are superior to complex methodologies, bolstering the
case for implementing historical simulation by financial institutions. On the other
hand, Marimoutou, Raggad and Trabelsi (2009) utilise conditional Extreme Value
Theory (EVT), a more recent application in risk management, and discover a sub-
stantial augmentation in the accuracy of VaR and ES estimates for commodities
such as WTI and Brent crude oil. Our findings demonstrate that parametric meth-
ods transcend nonparametric methods for VaR and ES. More specifically, we find
that conditional EVT is optimal for estimating VaR at the 95% and 99% confidence
levels, whilst the Student’s t-distribution is the more efficient method for estimating
ES at both confidence levels. However, the volatility-weighted historical simulation
(VWHS) exhibits a sturdy performance in estimating VaR and ES at both confi-
dence levels, which is robust across commodities. The efficacy of basic historical
simulation (BHS) and age-weighted historical simulation (AWHS) deteriorates after
a marked and sudden change in the risk level of the underlying commodity, cor-
roborated in each of the backtests. Overall, the most efficient estimates of VaR
and ES emanate from parametric methodologies. Therefore, we urge practitioners
to espouse these techniques, especially regarding commodities exhibiting equivalent
features to crude oil.

The thesis is structured as follows: Section 2 provides a comprehensive review of
the essential background, encompassing the risk measures of VaR and ES, includ-
ing their respective advantages and disadvantages, and previous findings. Section
3 describes the commodities of interest and presents summary statistics. Section
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4 delineates the models and backtests we utilise in this thesis and evaluates the
limitations. Moreover, we discuss our approach to account for and attenuate these
constraints. Section 5 presents the results of the backtests and compares these to
previous literature. Finally, Section 6 concludes the thesis and provides recommen-
dations to practitioners and academics.
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2 Literature Review & Background

2.1 Market Risk and Basel Capital Requirements

Market risk is a primary concern for practitioners because it pertains to the im-
plications they endure due to altering market conditions (Hull, 2018). There is a
possibility, albeit dubious, that financial institutions are rendered insolvent because
of adverse shocks caused by, inter alia, market turmoil. Bankruptcies concerning
financial institutions are disruptive and have economy-wide repercussions as it in-
hibits them from, amongst other things, acting as financial intermediaries for the real
economy. Therefore, the Basel Committee on Banking Supervision (BCBS) enforce
restrictive policies to curtail the probability of bankruptcies among financial insti-
tutions and preserve the serenity and durability of the macroeconomy. Adherence
to these regulations requires financial institutions to develop and pursue adequate
risk management. A constituent part of the risk management of banks and financial
institutions is their compliance with capital requirements, which enables them to
absorb adverse shocks and remain solvent. Under the Internal Models Approach
(IMA), contrary to the Standardised Approach, financial institutions retain discre-
tion over the model for calculating the aggregate capital carried on their balance
sheets if they satisfy various stringent restrictions (Basel Committee on Banking
Supervision, 2023a). More specifically, the ultimate capital requirement imposed on
financial institutions emanates partially from the estimation of Value-at-Risk (VaR)
and Expected Shortfall (ES) on their Trading Book (cf. Section 2.3.1-2.3.2 for an
overview of these risk measures). As a regulating body, the BCBS prefers banks to
utilise a model that begets few violations (i.e., exceedances over VaR) to ensure the
continued solvency of banks.

The IMA outlines various requirements to regulate and control market risk
amongst financial institutions. The BCBS requires banks to compute risk estima-
tion daily using an in-sample period of at least one year at the 99% confidence level
in the IMA (Hull, 2018, p. 357). The banks are also subject to the local supervising
authority’s version of the IMA in line with the country’s exposure. Although they
possess discretionary power over the model for estimating VaR and ES under the
IMA, supervising authorities demand the implementation of backtests and stress-
tests to ensure that banks retain sufficient capital to withstand extended periods
of market turmoil (Basel Committee on Banking Supervision, 2023a, 2023c). The
capital requirements bestowed on banks’ aggregate capital restrict the availability
of funds for investment activities. However, it facilitates rigorous risk management
and, consequently, abates the likelihood of bankruptcy in a recession.

The regulatory framework currently being implemented is the Basel IV Accord.
This iteration of the Basel regulations recognises that VaR is not an adequate mea-
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sure of the extreme risk. Therefore, the computation of capital requirements con-
cerning market risk will pivot towards ES (cf. Section 2.3.1-2.3.2) (Basel Committee
on Banking Supervision, 2023b). Also, the Basel Committee on Banking Supervision
(2023b), under the FRTB, delineates several market risk factors that banks must
appraise. The risk factors constitute aspects including foreign exchange, commod-
ity, interest rate, credit spread and equity (Hull, 2018). Hence, a solid forecasting
scheme for extreme risk measures heavily concerns the crude oil markets. Stress-tests
and liquidity are equivalently vital constituents of risk management for financial in-
stitutions. However, in the interest of time, these are beyond the scope of the thesis
and not further considered.

2.2 Coherency

What distinctive attributes of a risk measure compel it to excel over candidate
risk measures? This conundrum has been the topic of vigorous debate and puz-
zled academia. A widely acknowledged explanation emanates from the concept of
coherency (Szegö, 2002; Tasche, 2002; Hull, 2018), initially developed by Artzner
et al. (1999). According to the authors, a coherent risk measure should fulfil four
requirements for all loss distributions: monotonicity, sub-additivity, positive ho-
mogeneity, and translation invariance. Hence, this section briefly elucidates the
properties of a ’desirable’ risk measure, as proposed by Artzner et al. (1999).

Firstly, a monotonic risk measure states that for all portfolios A and B, if the
losses of portfolio A are weakly less than the losses of portfolio B for every state
of nature, then R(LA) ≤ R(LB) where R(·) denotes a risk measure and Li denotes
the stochastic loss of the ith portfolio (Szegö, 2002). This requirement is a desirable
property of a risk measure since if an asset consistently delivers inferior outcomes
than another asset in absolute terms, it should intuitively be deemed riskier. Mono-
tonicity is analogous to first-order stochastic dominance (FSD), a prevalent concept
when ranking miscellaneous assets, such as stocks, bonds, and commodities. An
asset FSD another asset if and only if it produces weakly better outcomes than
the other assets in all states of nature. Consequently, its cumulative distribution
function (CDF) is always located to the right and below the other asset’s CDF.

Furthermore, Markowitz (1952) is the pioneer to formally accentuate that an in-
vestor cannot be made worse off through diversification (Elton et al., 2014). An ad-
equate risk measure ought to recognise the benefits of diversification, which Artzner
et al. (1999) denote as sub-additivity. Mathematically, for all portfolios A and B,
a sub-additive risk measure states that R(LA + LB) ≤ R(LA) + R(LB). That is,
the risk of the aggregated portfolio cannot exceed the sum of the risk of the two
sub-portfolios for sub-additivity to be satisfied.

The third property of a coherent risk measure is labelled positive homogeneity.
A positive homogeneous risk measure states that the risk of a portfolio scales in
concordance with its size, R(kLA) = kR(LA) for k > 0 (Artzner et al., 1999).
Intuitively, scaling up the quantity of an investment made in a position should scale
the measure by an equivalent factor, given that there are no diversification benefits
stemming from investing more in the same asset. However, positive homogeneity
is the most controversial requirement as it neglects liquidity risks associated with
the size of a specific position (Acerbi and Scandolo, 2008). The likelihood of a fire
sale, or the necessity of selling an asset at a discount, increases proportionally with
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the size of the position. Therefore, the risk inherent in holdings does not increase
linearly with the investment size but instead exhibits a convex relationship with
the underlying risk. As aforementioned in Section (2.1), measuring liquidity risks is
beyond the scope of this thesis and will not be further contemplated.

Lastly, translation invariance is commonly conceptualised as the normalisation
of a risk measure. That is, a risk measure that abides by the translation invariance
requirement implies that for all portfolios A, R(LA −m) = R(LA)−m (Artzner et
al., 1999). The constant, m, is typically inferred as money, or other forms of liquid
funds, added to a portfolio. Translation invariance dictates that adding an amount
of money decreases the overall risk but does not affect the inherent riskiness of the
risk-bearing components of the portfolio. Hence, the risk measure is ”invariant”
to the ”translation” (i.e., translation referring to a movement of the underlying
probability distribution). This requirement normalises the risk measure because it
must be denoted in monetary terms to consider m as money or, more generally,
liquid funds.

After outlining a theoretical foundation of what determines the desirability of a
risk measure, we continue this thesis with a holistic overview of two extreme risk
measures - Value-at-Risk and Expected Shortfall.

2.3 Measures of Extreme Risk

2.3.1 Value-at-Risk (VaR)

For a stochastic loss, L, Value-at-Risk (VaR) at the α per cent confidence level
is defined as the minimum loss (i.e., quantile of the underlying loss distribution)
satisfying (Pflug, 2000):

V aRα : min{ℓ : Pr(L > ℓ) ≤ 1− α} (2.1)

where ℓ denotes a realised loss or a quantile of the pertinent loss distribution.
Regarding a continuous distribution, the mathematical definition of VaR becomes
(Hull, 2018):

V aRα : inf{ℓ : Pr(L > ℓ) ≤ 1− α}

=⇒ Pr(L > V aRα) = 1− α (2.2)

The difference between Equation (2.1) and (2.2) is that for a discrete loss distribu-
tion, it may not be feasible to locate a quantile on the loss distribution that begets a
probability mass to be precisely (1−α) to the right of VaR (Hull, 2018), whilst that
is continually the case for a continuous loss distribution. Nevertheless, Equation
(2.1) nests the definition of VaR for both a continuous and discrete loss distribution
for this specific reason.

There are numerous reasons for the endorsement of VaR from the perspective of
academics and practitioners. The risk measure conveniently encompasses the risk
of an economic agent’s total exposure to a specific position in one monetary unit
(Beder, 1995; Manganelli and Engle, 2001). Therefore, the susceptibility to risk
factors is communicated efficiently and effortlessly through VaR to various internal
and external stakeholders. The risk measure summarises all positions for every
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asset class because VaR emanates from the underlying probability distribution as a
quantile (Acerbi, Nordio and Sirtori, 2001; Dowd, 2002). Additionally, the focus on
the downside risk of VaR is intuitively appealing as it is congruent with practitioners’
and academics’ conceptualisation of risk. Due to these reasons, inter alia, VaR has
established itself as a widely accepted and extensively used risk measure.

However, various academics and regulatory institutions deem VaR an inadequate
measure of extreme risk. A frequently levied critique towards the risk measure is
that it is agnostic about losses exceeding VaR (Acerbi and Tasche, 2002; Yamai and
Yoshiba, 2005). VaR does not fully describe tail risk, or downside risk, which is the
purpose of measuring extreme risk and may induce adverse incentives for banks and
traders working under VaR restrictions (see e.g., Hull, 2018, p. 273). Basak and
Shapiro (2001) implement a conceptual analysis of VaR in a utility optimisation
framework, concluding that risk managers operating under VaR restrictions opti-
mally insure themselves in intermediate states of nature rather than extreme losses.
Therefore, regulatory policies applied to VaR might inadvertently induce periods
of market turmoil (Dowd, 2002, p. 12). Another limitation of VaR is that it is
not a coherent risk measure (Artzner et al., 1999; Acerbi and Tasche, 2002; Szegö,
2002). Specifically, VaR does not satisfy the sub-additivity requirement for all loss
distributions (cf. Section 2.2), implying that the risk measure occasionally discour-
ages diversification with adverse concentration risk as a consequence. Beder (1995)
accentuates the practical limitations of VaR because of, amongst other things, its de-
pendency on stringent assumptions of the underlying loss distribution and a myriad
of implementation methodologies. Therefore, the risk measure entails a nontrivial
model risk (Marshall and Siegel, 1997), which requires consideration when employ-
ing VaR. Numerous researchers delineate specific frameworks to manage this model
risk in practice (see e.g., Kerkhof, Melenberg and Schumacher, 2010), but further
deliberation of these frameworks for model risk is beyond the scope of this thesis.
Due to many of these issues, academics and regulators have partially diverted their
attention towards risk measures with more favourable theoretical properties.

2.3.2 Expected Shortfall (ES)

Expected Shortfall (ES)1 is defined as the average VaR for all confidence levels x in
the interval α ≤ x ≤ 1 (Hull, 2018). Mathematically, we denote ES as:

ESα =
1

1− α

∫ 1

α

V aRxdx (2.3)

where α denotes the confidence level. Equation (2.3) dictates that an average is
taken over an infinite number of VaR which is computationally tedious and, in
practice, Riemann’s integrals are often used for simplification. McNeil, Frey and
Embrechts’ (2015) dual-representation of ES, originally derived by Rockafeller and
Uryasev (1999), provides further insight into this risk measure. For a continuous
loss distribution, this representation of ES is:

1Some authors in the literature refer to Expected Shortfall as Conditional Value-at-Risk
(CVaR). Due to consistency, this thesis utilises the former term throughout the paper.
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ESα =
E[L · I]
1− α

= E [L | L > V aRα]

I =

{
1 for L > V aRα

0 for L ≤ V aRα

(2.4)

where I is a dummy variable and E[·] is the expectation operator. Equation (2.4)
states that ES is, by definition, the expected loss conditional on it exceeding VaR
(Hull, 2018, p. 274).

The advantages of the risk measure become palpable following the definition
of ES. In contrast to VaR, ES describes the entire tail risk of a loss distribution.
Consequently, ES does not discourage diversification or, in other words, it satisfies
the sub-additivity condition (cf. Acerbi and Tasche (2002, pp. 1501-1502) for formal
proof). ES is a coherent risk measure as it reconciles all of the requirements for
coherency. These appealing properties have prompted the Basel Committee on
Banking Supervision (2023b) to revise the Fundamental Review of the Trading Book
(FRTB) concerning the computation of the capital requirements for market risk in
Basel IV by substituting VaR for ES.

ES rectifies many of the critiques levied at VaR, albeit there are issues to con-
sider for this risk measure. Yamai and Yoshiba (2005) ascertain that ES endures
considerable estimation error. In contrast to VaR, ES demands a greater sample
size to achieve accurate estimates. The implication is that ES is more onerous to
implement in practice. Furthermore, academics have contested the backtestability of
ES as it lacks elicitability (see e.g., Lambert, Pennock and Shoham, 2008; Gneiting,
2011). Nevertheless, authors such as Acerbi and Szekely (2014) refute the impor-
tance of elicitability for backtesting, who develop numerous backtests for ES (cf.
Section 4.5.3). We put ourselves ’on the shoulders of giants’ in this thesis and utilise
the backtests as described by Acerbi and Szekely (2014), neglecting the intellectual
debate on the significance of elicitability.

2.3.3 Estimation Methods and Backtests

There are commonly two distinct techniques to implement the estimation of VaR and
ES in practice: non- and parametric estimation methods.2 Nonparametric methods
unequivocally rely on the empirical loss distribution when estimating, for instance,
one-day-ahead forecasts and do not specify a distributional form a priori. Due to
the flexibility of the assumptions and relative ease of computation, inter alia, the
nonparametric methods are widely implemented in practical contexts (Pérignon and
Smith, 2010). Contrarily, the parametric estimation methods of VaR and ES differ
because they explicitly assume that the loss distribution follows a known and well-
defined theoretical continuous probability distribution (Hull, 2018). These methods
permit academia more flexibility to delineate intricate methodologies to develop
robust and accurate estimates of VaR and ES. However, neither implementation
procedure can adequately capture latent risks, such as the two classes of climate risk:
transition and disaster risk. The nonparametric and parametric methods derive
their estimates from empirical data, which does not fully acknowledge those risk

2Some estimation methods are referred to as semi-parametric if it is nonparametric but imple-
mented with, amongst other things, GARCH-type models.
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factors. Therefore, there is a nontrivial possibility of underestimation concerning
climate risk. We do not consider climate risk further as it is beyond the scope of the
thesis. Thus, the various procedures differ primarily on the statistical sophistication
required to attain the estimates for the measures of extreme risk. Nevertheless, a
formal backtest of the estimations for the point and interval forecasts of VaR and
ES, respectively, determines the desirability of a particular methodology.

According to Jorion (2007, p. 139), the rationale for backtests concerning the
implementation of VaR and ES is to determine if an estimation method adheres to
the expected losses given the size of a backtesting sample and confidence level. A
desirable estimation method ought to yield the correct number of violations in the
backtest, where a violation is defined as a loss exceeding VaR (Hull, 2018). Backtests
for VaR generally aim to assess whether a method produces accurate point forecasts
by comparing the actual and projected violations. Therefore, tests of binary clas-
sification are sufficient. The most common of these models is the Kupiec (1995)
test for unconditional coverage (Halilbegovic and Vehabovic, 2016), which basically
provides the foundation for the Basel Traffic Light, i.e., the backtest required in the
Basel regulations for capital requirements regarding market risk (Hull, 2018). These
backtesting methodologies permit academics and practitioners to determine if the
VaR level is appropriately estimated. However, only implementing such tests fails
to detect bunching of exceedances, videlicet, violations of VaR appearing in clusters
(Hull, 2018, pp. 287-288). Bunching begets the probability of a violation to elevate
considerably during market turmoil, rendering financial institutions susceptible to
solvency issues. Complementary tests to uncover estimation methods of VaR and
ES that beget bunching are required. Prominent backtests that consider these issues
are the Christoffersen (1998) and the Engle and Manganelli (2004) tests. The former
essentially investigates the number of non- and violations occurring in succession,
whilst the latter backtest utilises a linear regression model to test for dependencies
in the time series of binary variables. Consideration of dependencies of violations
over time is neglected in the backtests of the Basel regulation (Hull, 2018). Never-
theless, an estimation method that captures the dynamics of the model ensures that
an adequate VaR level is maintained even during market turmoil.

Backtesting ES poses a conundrum because of its definition as an average VaR for
all confidence levels in α ≤ x ≤ 1 (Hull, 2018). The implication is that any backtest
is, in principle, a test of the entire right tail of the loss distribution. Backtests
concerning ES are a more recent phenomenon and their structure varies widely.
For instance, Acerbi and Szekely (2014) introduce a set of backtest derived from
Equation (2.4). On the other hand, Costanzino and Curran (2018) develop another
model for backtesting ES utilising a dummy variable that measures the severity of
a VaR violation. Academia performs numerous attempts to create robust backtests
concerning ES, albeit Basel IV implements its backtest on VaR (Basel Committee
on Banking Supervision, 2023c). Therefore, there is no transparent standard for
backtesting estimates regarding ES. The nonparametric and parametric estimation
methods and the backtests we implement in this thesis are delineated in Section 4.

2.4 Stylised Facts of Financial Time Series

Empirical research of returns concerning various asset classes discovers consistent
characteristics of the time series. These findings are denoted collectively as the
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stylised facts of financial time series. For instance, empirical results exhibit robust
evidence of distinct attributes such as sharp peaks and heavy tails (i.e., leptokurtosis)
regarding the distributional form of asset returns (Pagan, 1996; Cont, 2001). Acute
peakedness pertains to the propensity of asset returns to congregate around the
mean in frequency, whilst fat tails indicate a higher likelihood of extreme outcomes
compared to a Gaussian distribution. Additionally, Pagan (1996) and Cont (2001)
assert that skewness accompanies leptokurtosis, which further deviates asset returns
from a Gaussian distribution. It is discernible by the observations that considerable
losses are more frequent than equal gains, i.e., gain-loss asymmetry. Time-varying
volatility is another prevailing stylised fact innate to financial time series (Cont,
2001). Returns of financial assets exhibit periods of high and low volatility clusters
which tend to persist. Volatility clustering indicates that returns in subsequent
periods are not independent. Despite the general consensus that asset returns are
a random walk process, time-varying volatility reveals the presence of nonlinear
dependence in the time series. Additionally, time-varying volatility in financial time
series frequently exhibits leverage effects. Black (1976), credited with the initial
development of the concept, asserts that stock price returns and future volatility
display a negative causal relationship. That is, negative shocks impact the future
volatility of share price returns relatively more than positive shocks, i.e., negative
returns at time t increase volatility for time t+ 1, and vice versa.

Evidence of these stylised facts is also present in crude oil commodities. Ebrahimi
and Pirrong (2018) observe that portfolios with high exposure to kurtosis in the oil
market tend to assume negative returns. However, when controlled for the kurtosis,
the variance in returns becomes insignificant. They further find that skewness only
displays a nontrivial impact on portfolios with exposure to the crude oil market
in the sub-period but not in the full-time series, whereas kurtosis is significant in
all periods. Additionally, the tendency for volatility clustering to persist for long
periods, especially in crude oil, indicates a long-memory process in returns (Choi and
Hammoudeh, 2009). Wang and Liu (2010) find that large fluctuations in the crude
oil markets tend to be highly unstable, whereas small fluctuations often persist and
can be forecasted. Moreover, Kristoufek (2014) demonstrate that leverage effects
in volatility clustering are highly prevalent for the crude oil commodities of WTI
and Brent. Chen and Mu (2021) further provide evidence of a distinct disparity
between futures and spot prices. Returns derived from the former exhibit ”standard”
leverage effects, whilst returns computed from the latter display ”inverse” leverage
effects. The phenomenon refers to a positive correlation between the returns and
future volatility, i.e., when the spot price of a commodity increases, the conditional
volatility also increases. Inverse leverage effects can be explained by the theory of
storage, first conceptualised by Working (1949), where a low inventory increases the
risk of a supply shortage and consequently increases the price and volatility of a
commodity, and vice versa. Hence, equivalent to the time series of various financial
assets, crude oil commodities exhibit nuanced evidence of the stylised facts.

This section has presented numerous prevailing statistical commonalities in the
time series of financial assets and, specifically, crude oil commodities. The sub-
sequent section develops further on the empirical findings on nonparametric and
parametric estimation methods for VaR and ES.
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2.5 Previous Research and Empirical Findings

The primitive endeavours in the risk management literature at documenting the em-
pirical findings on nonparametric and parametric estimation methods for VaR find
trivial discrepancies in their respective performance (e.g., Beder, 1995; Hendricks,
1996; Pritsker, 1997). Hendricks (1996) compares the efficacy of historical simula-
tion methodologies and Monte Carlo simulation with models of volatility based on
foreign exchange portfolios. The author discovers that all models attain their objec-
tives satisfactorily. More recently, authors such as Angelidis, Benos and Degiannakis
(2007) and Abad and Benito (2013) present evidence demonstrating that nonpara-
metric methodologies render nontrivial imprecisions in their estimates. Abad and
Benito (2013) study various stock indices and uncover that methods for estimating
VaR emanating from historical simulation display an inferior performance amidst
market turmoil, whilst parametric methods implemented with nonlinear GARCH-
type models excel. Contrarily, Sadorsky (2006) utilises a bundle of nonparametric
and parametric methods to estimate VaR for future contracts regarding commodities
associated with unleaded gasoline, natural gas, heating oil, and crude oil. The find-
ings illustrate that the general backtesting performance of nonparametric estimation
methods transcends those of the parametric methods (Sadorsky, 2006). Brooks and
Persand (2002) observe that nonparametric methods outperform their parametric
rivals, including Extreme Value Theory (EVT), for six broad indices in the U.K.
and the U.S., concluding that simple estimation methods are superior to the more
complex methodologies. It is apparent that the empirical literature yields inconclu-
sive answers as to whether the parametric estimation methods are more desirable
than nonparametric methods. Regardless, the parametric methods demonstrate a
conspicuous predominance in the academic literature and warrant a closer review of
the empirical findings concerning crude oil.

Accurate volatility forecasting is accentuated in the literature as crucial for the
computation of VaR and ES due to extreme risk levels and clustering of volatility in
crude oil (Aloui and Mabrouk, 2010; Youssef, Belkacem and Mokni, 2015). Numer-
ous previous researchers find that the FIAPARCH model is the optimal model for
volatility forecasting to exploit when estimating VaR and ES for crude oil commodi-
ties due to its ability to capture long-memory processes and leverage effects (see
e.g., Aloui and Mabrouk, 2010; Chkili, Hammoudeh and Nguyen, 2014; Youssef,
Belkacem and Mokni, 2015). Specifically, Aloui and Mabrouk (2010) contrast three
separate long-memory GARCH-type models (i.e., FIGARCH, FIAPARCH, and HY-
GARCH) on, inter alia, WTI and Brent and conclude that the FIAPARCH displays
the most robust performance when estimating VaR and ES. However, the underlying
distributional assumption is susceptible to leptokurtosis and skewness. Therefore,
the authors suggest that a skewed Student’s t-distribution is required to yield accu-
rate risk forecasts. On the other hand, Wei, Wang and Huang (2010) find that no
specific GARCH-type specification is superior for the forecasting ability of crude oil
commodities as long as a nonlinear specification is provided to capture the leverage
effects, especially for shorter-term horizon forecasts (Liu et al., 2022).

A significant development in the parametric estimation of extreme risk is Ex-
treme Value Theory (EVT). Accordingly, numerous endeavours have been made in
the literature to apply it to commodities relating to crude oil. Authors such as
Marimoutou, Raggad and Trabelsi (2009) and Youssef, Belkacem and Mokni (2015)
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uncover that conditional EVT, a method introduced by McNeil and Frey (2000), is
the optimal parametric method when estimating VaR and ES for WTI and Brent
crude oil. Marimoutou, Raggad and Trabelsi (2009) implement a simple AR(1)-
GARCH(1,1) model for the two crude oil commodities from 1987 to 2007 and apply
EVT on the standardised GARCH residuals. The findings demonstrate a signifi-
cant improvement from more simple estimation methods. Contrarily, Chiu, Chuang
and Lai (2010) find that the conditional EVT is inferior to the more elementary
volatility-weighted historical simulation for the same commodities in the sub-period
2000-2007. Hence, the question naturally arises of whether there is an outperfor-
mance of the more complex methods which depend on advanced statistical theory.
Nevertheless, conditional EVT has been an eminent development in the estimation
of extreme risk also for volatile commodities, and even the simple GARCH-type
specifications display an adequate performance when utilised in conjunction with
EVT.
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3 Data

The data used for this thesis entails the daily spot prices of WTI and Brent crude
oil. WTI, or the West Texas Intermediate, is available to the spot market through
pipelines and delivered to Cushing, Oklahoma in the U.S., whereas Brent crude oil
is extracted in the North Sea. WTI and Brent are focal reference points worldwide
for crude oil prices (Lang and Auer, 2020), in addition to being the most widely
researched and traded crude oil commodities. Therefore, these two commodities are
the subjects of analysis in this thesis. The time period encompasses the daily spot
price commencing January 2003 to December 2022, i.e., a 20-year horizon. The
backtesting period starts in January 2016 and ends in December 2022. We gather
the data for the spot price from the FRED database (see U.S. Energy Information
Administration, 2023a, 2023b). The crude oil commodities exhibit extended periods
of extreme volatility, which poses a challenge for all implementation methodologies
for VaR and ES, regardless of their classification. Crucially, at the commencement
of the COVID-19 pandemic (i.e., 20 April 2020), WTI traded at a negative price, an
extraordinary event for commodities. According to Kearney (2020), the pandemic
restricted travelling, causing an overcrowding of crude oil at storage facilities. This
compelled suppliers to compensate buyers for alleviating the oversupply, i.e., causing
negative prices. This phenomenon raises issues for the computation of returns be-
cause logarithms cannot be applied to negative numbers. Therefore, we opt to index
the price series of WTI and employ the logarithms on the index series to calculate
the continuously compounded returns (see Appendix A.1 for further explanation).
We compute the time series of returns as:

ri,t = ln

(
Pi,t

Pi,t−1

)
= lnPi,t − lnPi,t−1 (3.1)

where Pi,t and ri,t denote the spot price and the continuously compounded daily
return for the ith commodity at time t, respectively.

Table (3.1) presents summary statistics, Ljung-Box test for autocorrelation and
the test statistic for the Jarque and Bera (1980) test for a Gaussian distribution.

Mean STD Min Max Skew Kurt LB-Q(20) JB Statistic

WTI 0.000045800 0.0241154 -0.151909 0.164137 -0.0755907 4.7198114 65.36239*** 3035.51612***
Brent 0.000057212 0.0213847 -0.1683201 0.1812974 0.0196234 5.1149835 44.02818*** 3592.18106***

Table 3.1: Summary statistics of the sample data from estimation period. *, **, and ***
denote statistical significance at the 0.1, 0.05, and 0.01 level, respectively. LB and JB
denote the Ljung-Box test and Jarque-Bera test, respectively.

We notice that the mean of both return series is approximately zero for WTI and
Brent crude oil commodities. The return series exhibits evidence of both asymmetry
and leptokurtosis, as displayed by the skewness and kurtosis estimate. Specifically,
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the Jarque and Bera (1980) test rejects the null hypothesis of a Gaussian distribu-
tion because of a p-value that is essentially zero for both commodities. Congruent
with the stylised facts of financial time series (cf. Section 2.4) and previous re-
search on similar assets, our sample data exhibits robust evidence of heavy tails.
Moreover, the Ljung-Box test demonstrates proof of autocorrelation up to the lag
of order 20. This provides issues for implementing methods such as Extreme Value
Theory (EVT) as it assumes an i.i.d. series (Marimoutou, Raggad and Trabelsi,
2009). However, Appendix (B.1) presents, amongst other things, the Ljung-Box
test of the standardised residual series of a GARCH-type model, which concludes
no autocorrelation. Therefore, we can apply EVT on the standardised GARCH
residuals.

Figure (3.1) visualises the daily return series for the two commodities throughout
the estimation period.

20
03

20
05

20
08

20
11

20
13

20
16

−0.1

0

0.1

Date

R
et
u
rn

(a) Daily Return of WTI

20
03

20
05

20
08

20
11

20
13

20
16

−0.2

−0.1

0

0.1

0.2

Date

R
et
u
rn

(b) Daily Return of Brent

Figure 3.1: Visualisation of the daily return series of WTI and Brent crude oil for the
estimation period.

Figure (3.1) demonstrates that the return series of the commodities centres
around the mean through the estimation period. The stylised fact of volatility
clustering for financial time series (cf. Section 2.4) is evident in our data from Fig-
ure (3.1). There are extended periods where the volatility is relatively high and long
periods where the volatility is relatively low, which is valid for both commodities.
The Great Recession of 2007/2008 is also nuanced for WTI and Brent crude oil dur-
ing the estimation period with extreme returns. A visual inspection of Figure (3.1)
indicates the presence of GARCH-type effects in line with previous research and
signals the need for a volatility model. Nevertheless, we implement a formal test for
ARCH effects in the return series, which generates a LaGrange multiplier statistic
of 639.4746 (p < 0.01) and 445.6150 (p < 0.01) for WTI and Brent, respectively.
Hence, we soundly conclude that the return series exhibits volatility clustering.

The estimates of parameters in time-series models depend on the absence of a unit
root in the underlying data. Therefore, we implement two tests for stationarity: the
augmented Dickey and Fuller (1979) (ADF) test and the Kwiatkowski et al. (1992)
(KPSS) test. The intuition for implementing two tests is because of the low power
of the ADF test, which has the non-stationarity under the null hypothesis (Brooks,
2019, pp. 451-452). Hence, we complement the ADF test with another test that
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positions the stationarity condition under the null hypothesis, i.e., the KPSS test.
The results from these tests are presented in Table (3.2).

ADF KPSS

WTI -15.2155810*** 0.3593333*
Brent -13.4613351*** 0.4369624*

Table 3.2: Test for stationarity for the return series of WTI and Brent in the estimation
period. *, **, and *** denote statistical significance at the 0.1, 0.05, and 0.01 level,
respectively.

The results from the stationarity tests present some contradictory conclusions.
Specifically, we reject the null hypothesis of non-stationarity at the 0.01 level of
significance for both commodities. However, the KPSS test rejects the null of sta-
tionarity at the 0.1 significance level for WTI and Brent. Nevertheless, since the
time series in Figure (3.1) is centred around the mean and the extremely low p-value
of the ADF test, we conclude that the return series for both crude oil commodities
are stationary enough for our purposes in this thesis.

We extrapolate the proper theoretical distribution that best describes the sample
data by plotting a Quantile-Quantile (Q-Q) plot of the commodities. A Q-Q plot
compares the quantiles of an empirical distribution with the quantiles of a known and
well-defined theoretical distribution (Marden, 2004, p. 606). Intuitively, a perfect
fit between the observed and theoretical distribution would result in the scatters
being located precisely on the 45-degree line. Figure (3.2) plots the quantiles of the
return series of the commodities jointly with the theoretical quantiles of the Gaussian
distribution (cf. Section 4.3.1 for an overview of the Gaussian distribution).

Figure 3.2: Q-Q plot of the empirical return distribution together with the theoretical
Gaussian distribution.

As can be inferred from Figure (3.2), the nonlinearity of the Q-Q plot suggests
that there is a poor fit between the empirical return series for the estimation period
and the theoretical Gaussian distribution, providing support for the conclusion from
the Jarque and Bera (1980) test. More specifically, the leptokurtosis of the return
series for the two commodities, as formally shown in Table (3.1), is nuanced in Figure
(3.2) by the scatters diverging from the 45-degree line at more extreme quantiles.
We further demonstrate the fit between the Gaussian distribution1 and the observed

1We estimate the parameter for fitting the theoretical distribution upon the empirical frequency
distribution by Maximum Likelihood.
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return distribution by superimposing the theoretical distribution on a histogram of
the returns, as demonstrated in Figure (3.3).

Figure 3.3: Histogram of the return series with a superimposed theoretical Gaussian dis-
tribution.

The Gaussian distribution does not depict a suitable fit for the empirical return
distribution of either commodity. This result distinctly corroborates previous re-
search and the empirical findings of, for instance, Youssef, Belkacem and Mokni
(2015) of an EVT approach for estimating VaR and ES as this approach does
not explicitly assume a distribution a priori and concentrates on the tails (Hull,
2018). Nevertheless, we investigate how well the empirical return distributions fit
the Student’s t-distribution (cf. Section 4.3.2 for an overview of the Student’s t-
distribution). Figure (3.4) illustrates the Q-Q plots of the commodities in conjunc-
tion with the theoretical quantiles of the Student’s t-distribution.

Figure 3.4: Q-Q plot of the empirical return distribution together with the theoretical
quantiles of the Student’s t-distribution.

Comparing Figure (3.2) and (3.4), it is indisputable that the Student’s t-distribution
presents a refinement to the Gaussian distribution. Contrary to the Gaussian dis-
tribution, the scatters at the extreme ends of the Q-Q plot for both commodities
are more adjacent to the 45-degree line. It is consistent with our expectations that
this theoretical distribution demonstrates a more suitable fit for our data given the
leptokurtosis presented in Table (3.1). This result emerges because the Student’s
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t-distribution with low degrees of freedom has relatively higher kurtosis and is more
qualified to capture certain aspects of the stylised facts of financial time series. Fig-
ure (3.5) illustrates a histogram of the empirical return distribution alongside the
theoretical Student’s t-distribution.

Figure 3.5: Histogram of the return series with a superimposed theoretical Student’s t-
distribution.

It is discernible that the Student’s t-distribution better captures both the lep-
tokurtosis and intermediate parts of the empirical distributions of the daily returns
of WTI and Brent crude oil. However, given that we do not uncover a perfect
fit even for this theoretical distribution, it further supports the intuition of fitting
the generalised Pareto distribution of the EVT approach (cf. section 4.3.3 for an
overview of the EVT). A Q-Q plot of the return series jointly with the generalised
Pareto distribution from the EVT method presents an intriguing observation, as
illustrated by Figure (3.6).

Figure 3.6: Q-Q plot of the empirical return distribution together with the theoretical
quantiles of the generalised Pareto distribution.

As depicted by Figure (3.6), the fit of the generalised Pareto distribution is
suboptimal for the intermediate parts of the empirical distribution for both WTI
and Brent crude oil. Nevertheless, the most extreme quantiles lie virtually precisely
on the 45-degree line, suggesting a suitable fit for these quantiles of the distribution
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and that the generalised Pareto distribution is highly applicable for VaR and ES
estimation.

This section has presented plots and summary statistics based on the daily re-
turns. The remainder of the thesis employs the loss distribution. That is, we mul-
tiply the daily continuously compounded returns by negative one, as demonstrated
by:

ℓi,t = ri,t · (−1)

where ℓi,t denotes the loss observed at time t for the ith commodity. This thesis
assumes that we hold a long position of 100 units of each commodity i, implying
that we multiply each loss by the factor 100.
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4 Methodology

4.1 Out-of-Sample Forecasting

A dataset used for forecasting requires an in-sample and an out-of-sample com-
ponent. We can conceptualise the timeline as an event study. In the event, the
in-sample is akin to the estimation period, i.e., the data utilised to derive a model
and estimate its parameters to yield forecasts. The out-of-sample is analogous to the
event window of the event study, i.e., the data used to test the model’s goodness of
fit. Given our intent of conducting one-step-ahead forecasts, it is not feasible to ob-
serve and control the model’s fit contra the realisation at t+1 at time t. Therefore,
we allot a portion of the previous dataset between an in-sample (estimation) set
and an out-of-sample (test) set, where we use the fitted values from the in-sample
to determine the suitability of the model on the out-of-sample to locate the optimal
model for forecasting.

A rolling window alludes to a fixed length of an in-sample period where the start
and end date increase by one with each observation (Brooks, 2019). This technique
is particularly effective when the statistical properties of a dataset progressively
change. That is, the first data point is replaced from the window by the incremental
observation and, consequently, alters the descriptive statistics of the sample data.
Hence, it possesses the capability to capture the dynamics of the data. In contrast,
an expanding window keeps the initial estimation date fixed and incrementally adds
more recent observations to the sample period (Brooks, 2019). This window in-
corporates more data points and can generate more accurate parameter estimates
vis-à-vis a rolling window.

This thesis utilises a rolling window for out-of-sample forecasting instead of an
expanding window despite the greater accuracy in the parameter estimates. A rolling
window accommodates a standardised sample size to compute descriptive statistics,
which renders the results comparable. In contrast, an expanding window is unable
to trace the dynamics of the data as rigorously as its rolling counterpart due to
its recursive qualities. Therefore, we opt for a window size of 500 observations for
the nonparametric and 1000 observations for the parametric estimation window to
produce one-step-ahead forecasts. The rationale for implementing a smaller window
size for the nonparametric methods is that most of them effectively assume a con-
stant variance for the duration of the window size. Contrarily, we implement the
parametric estimation methods with a GARCH-type model, which introduces time
dependence in the volatility level. Therefore, we can utilise a larger window size for
the parametric methods and generate more consistent estimates of the parameters.
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4.2 Nonparametric Methods

As aforementioned in Section 2.3.3, nonparametric estimation methods do not spec-
ify a distributional form a priori and depend on the empirical loss distribution
when estimating one-day-ahead VaR and ES forecasts. We proceed by delineating
the three nonparametric methods implemented in this thesis.

4.2.1 Basic Historical Simulation (BHS)

Basic historical simulation (BHS) is a straightforward nonparametric estimation
method. The BHS is implemented directly on the empirical loss distribution without
modification by electing the pertinent loss as its estimate for time t. For a sample
size of M and a confidence level of α, we expect (1 − α) ·M losses to be in excess
of VaR. Accordingly, the estimate for VaR is simply the (1−α) ·M +1 largest loss.
Mathematically, we describe the BHS as:

Pr(L > ℓsk) ≤ 1− α

Pr(L > ℓsk+1) > 1− α

=⇒ V aRα,t = ℓsk (4.1)

where ℓs denotes the sorted loss distribution in descending order. Since the proba-
bility of losing more than ℓsk+1 is greater than the desired level of 1−α, we select the
smallest loss that begets the probability of losing more than VaR being less than or
equal to 1− α, i.e., the kth largest loss. Furthermore, a prevailing implementation
scheme of the estimate of ES using BHS is the arithmetic average of the k−1 losses,
which are greater than the VaR estimate from the empirical loss distribution. How-
ever, this interpretation of ES is not theoretically valid because the observed losses
emanate from a discrete distribution. A common justification of the approach is the
implicit assumption that the sample data is drawn randomly from some underlying
but unknown continuous loss distribution. We utilise this somewhat arbitrary in-
terpretation of ES in this thesis. Therefore, our approach for deriving the estimate
for ES is given by:

ESα,t =
1

k − 1

k−1∑
i=1

ℓsi (4.2)

where ℓs once again denotes the sorted loss distribution in descending order.
Although the simplicity of the BHS is intuitively appealing, there are various lim-

itations that require attention when applying it in practice. Boudoukh, Richardson
and Whitelaw (1998) accentuate two specific problems related to the procedure of
locating extreme quantiles when the data availability is scarce and that the method
essentially assumes an identical and independent distribution. The latter issue can
be rectified by simply implementing the BHS with a rolling window, which intro-
duces some degree of time dependence. For our purposes, the simplicity of the BHS
makes it an exemplary model to employ as a benchmark. Ideally, a more complex
methodology to generate estimates for VaR and ES should at least outperform the
BHS.

20



4.2.2 Age Weighted Historical Simulation (AWHS)

The age-weighted historical simulation (AWHS) was first introduced by Boudoukh,
Richardson and Whitelaw (1998) and is a nonparametric estimation method which
accentuates the intuition that newer observations are more pertinent for one-day-
ahead estimation of VaR and ES (Hull, 2018, p. 301). Recent observations are
allocated a superior weighting than older ones. Conceptually, the BHS is nested as
a special case of the AWHS where all observations are assigned an equal weight.
This is formally proved by utilising l’Hôpital for evaluating the limit where the
exponential decay factor, λ, of AWHS tends towards one, albeit not demonstrated
in this thesis. Moreover, the weight of the first observation (i.e., the newest loss) in
the AWHS is defined as:

wT =
1− λ

1− λT
(4.3)

where λ < 1. Older observations are then recursively multiplied by the exponential
decay factor as:

wt = λT−t · wT , t = T − 1, T − 2, ..., 2, 1 (4.4)

To estimate VaR using AWHS, the losses are sorted in descending order according
to the size of the loss and the weights are then summed until we find Pr(L > ℓsk) ≤
1 − α and Pr(L > ℓsk+1) > 1 − α where the kth largest loss is taken as the VaR
estimate for time t. To estimate ES, the same procedure and assumptions are applied
as in the case for the BHS. As for the selection of the exponential decay factor, we
specify λ as 0.995 for technical reasons of estimating VaR and ES at both the 95%
and the 99% confidence level.

4.2.3 Volatility Weighted Historical Simulation (VWHS)

The volatility-weighted historical simulation (VWHS) emphasises that estimates of
VaR and ES should reflect volatility clustering (Hull and White, 1998; Hull, 2018).
More specifically, estimates of VaR and ES ought to account for turbulent market
conditions with elevated risk levels. Many authors in the literature classify VWHS
as a semi-parametric method, as GARCH-type models are frequently utilised in the
implementation. Nevertheless, we divert from this classification in this thesis for a
more unambiguous distinction between the parametric and nonparametric methods.
Therefore, we implement the VWHS by utilising the EWMA volatility forecasting
scheme, which in turn can be conceptualised as a simplified GARCH(1,1) model
(cf. Section 4.4.2), to preserve this method as fully nonparametric. One technique
for implementing the VWHS is to scale the observed sample losses by the ratio of
the volatility on day t and the one-day-ahead forecasted volatility on day T + 1.
Mathematically, we describe the scaled losses, ℓ∗t , as:

ℓ∗1 =
σT+1

σ1

· ℓ1

ℓ∗2 =
σT+1

σ2

· ℓ2

...
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ℓ∗T =
σT+1

σT

· ℓT

To implement the estimation of VaR at time t, BHS (cf. Section 4.2.1) is applied
to the rescaled losses. Similarly, the estimate of ES at time t is computed in the same
manner as for the BHS but for the rescaled losses. The VWHS is a straightforward
and efficient approach to accommodate the stylised fact of time-varying volatility in
the estimates of VaR and ES. Finally, as the nonparametric methods have been ex-
tensively covered, we divert our attention to a different approach towards estimating
VaR and ES, namely, the parametric methods.

4.3 Parametric Methods

In Section 2.3.3, we discuss that the parametric estimation methods of VaR and ES
differ from the nonparametric in that they explicitly assume that the loss distribution
follows a known and well-defined theoretical probability distribution. We proceed
by providing an overview of three different parametric estimation methods, which
we implement in this thesis.

4.3.1 Gaussian Distribution

A standard benchmark model for parametric methods is the Gaussian distribution,
also known as the normal distribution, which is a bell-shaped continuous distribu-
tion. The distribution is fully described by two parameters, and the probability
density function (pdf) is given by:

L ∼ Φ(µ, σ) =⇒ f(ℓ) =
1

σ
√
2π

exp

[
−1

2

(
ℓ− µ

σ

)2
]

(4.5)

where µ denotes the location parameter (i.e., the mean) and σ denotes the scale
parameter (i.e., the standard deviation). Given that VaR is the α quantile of the
loss distribution (Hull, 2018), the formula for VaR and ES based on the Gaussian
distribution is:

V aRα,t = µ+ σ · zα (4.6)

ESα,t = µ+ σ · fstd(zα)
1− α

, where fstd(zα) =
1√
2π

exp

[
−1

2
z2α

]
(4.7)

where zα denotes the α quantile of the standardised normal distribution. It is
straightforward to incorporate time-varying volatility in these estimates by substi-
tuting σ by σt, i.e., the conditional volatility estimate at time t. Moreover, we
estimate the parameters of the Gaussian distribution and other parametric methods
in each rolling window by Maximum Likelihood, which is an estimation method that
selects the parameter estimates to maximise the likelihood that the observed sample
is collected from the relevant distribution.
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4.3.2 Student’s t-distribution

The Student’s t-distribution possesses a similar distributional form to the Gaussian
distribution but consists of three parameters. Therefore, the pdf is:

L ∼ ST (µ, σ∗, ν) =⇒ f(ℓ) =
Γ[(ν + 1)/2]

σ∗√νπΓ(ν/2)

[
1 +

1

ν

(
ℓ− µ

σ∗

)2
]−(ν+1)/2

(4.8)

where Γ denotes the gamma function, ν denotes the degrees of freedom, σ∗ denotes
the scale parameter, and µ denotes the location parameter. Notice that µ is equiva-
lent to the location parameter of the Gaussian distribution and σ∗ is similar to the σ
(i.e., the scale parameter of the Gaussian distribution), nevertheless, not equivalent.
There is a defined relationship between σ and σ∗ if and only if the degrees of freedom
is greater than two. The relationship is captured by:

σ∗ =

√
ν − 2

ν
· σ (4.9)

As briefly discussed in Section 3, the Student’s t-distribution with low degrees
of freedom has a higher kurtosis than the Gaussian distribution. Therefore, the
Student’s t-distribution is better suited for capturing some of the stylised facts of
financial time series, such as leptokurtosis. The closed-form equations for VaR and
ES of the Student’s t-distribution are given by:

V aRα,t = µ+ σ∗ · tα,ν = µ+

√
ν − 2

ν
· σ · tα,ν (4.10)

ESα,t = µ+ σ∗ · fstd(tα,ν)
1− α

(
ν + t2α,ν
ν − 1

)
,

where fstd =
Γ[(ν + 1)/2]√
νπΓ(ν/2)

[
1 +

1

ν
t2α,ν

]−(ν+1)/2
(4.11)

where tα,ν denotes the α quantile of a standardised Student’s t-distribution with ν
degrees of freedom. Analogous to the Gaussian distribution, it is straightforward to
incorporate time-varying volatility utilising the conditional estimate instead of the
unconditional volatility.

A deficiency of the Student’s t-distribution is that it is not closed under convo-
lution. Specifically, if x ∼ ST and y ∼ ST , the sum of the two random variables
x and y cannot follow a Student’s t-distribution. Consequently, if continuously
compounded daily returns follow a Student’s t-distribution, weekly returns cannot
pursue the same distributional form. The Gaussian distribution, on the other hand,
is closed under convolution, which makes it a conducive distributional assumption
when developing theory. Nevertheless, this limitation of the Student’s t-distribution
is negligible for our purposes since we implement one-day-ahead forecasts of VaR
and ES for the backtesting period and are not interested in the multi-period return.

We restrict the degrees of freedom in the Maximum Likelihood estimate to be
strictly greater than 2. This restriction is because the relationship between the scale
parameter of the Student’s t-distribution and the standard deviation in Equation
(4.9) is stipulated if and only if this restriction holds.
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4.3.3 Extreme Value Theory - Peaks over Threshold (POT)

The Extreme Value Theory (EVT) introduces an alternative approach to implement
a parametric estimation of VaR and ES, with authors such as Gnedenko (1943)
credited with the early development. Peaks over Threshold (POT) has become
the favoured implementation of EVT in finance and, unlike the former parametric
estimation methods presented, it does not explicitly pre-specify an underlying dis-
tribution, f , of the losses and instead endeavours to model the tails. Hence, EVT
alleviates the adverse model risk inherent in implementation methodologies for the
parametric estimation methods. It is straightforward to locate VaR by taking the
inverse of the CDF, F , of this unspecified distribution as:

F (V aRα) = α =⇒ V aRα = F−1(α) (4.12)

To find the inverse of the F , we define two separate events, A and B, where B
denotes the event of some loss being greater than some threshold, u, and A denotes
the event where the loss is smaller than u + y where y = ℓ − u. We specify the
conditional probability of event A given event B as:

A : L ≤ u+ y

B : L > u

}
=⇒ Pr(A|B) =

Pr(A ∩B)

Pr(B)

The conditional cumulative distribution function of A given B, Fu(y), is described
as:

Fu(y) = Pr(A | B) = Pr(L ≤ u+ y | L > u) =
F (u+ y)− F (u)

1− F (u)

Fu(ℓ− u) =
F (ℓ)− F (u)

1− F (u)
⇐⇒ F (ℓ) = (1− F (u))Fu(ℓ− u) + F (u)

Furthermore, Balkema and de Haan (1974) and Pickands (1975) formally prove
that if the defined threshold is sufficiently large, then the conditional cumulative
distribution function can be approximated by the generalised Pareto distribution
(GPD) (Marimoutou, Raggad and Trabelsi, 2009). We mathematically capture the
approximation by the cumulative GPD of Fu(ℓ− u) as:

Fu(ℓ− u) ≈ Gξ,β(ℓ− u) =

1−
(
1 + ξ ℓ−u

β

)− 1
ξ
, ξ ̸= 0

1− exp
(
− ℓ−u

β

)
, ξ = 0

(4.13)

where ξ is the parameter related to the right tail of the loss distribution and β is the
parameter associated with the volatility of the (unspecified) underlying distribution
(Marimoutou, Raggad and Trabelsi, 2009). The estimation of the parameters is
implemented via the first derivative of Equation (4.13) and applying Maximum
Likelihood (Hull, 2018, p. 308). However, there is a pragmatic trade-off to consider
in the EVT method. Maximum Likelihood is an asymptotic estimator, implying that
a large sample is required to derive an adequate estimate which argues for selecting
a low threshold, u. On the other hand, the underlying EVT theory asserts that we
can approximate with the GPD if and only if the threshold is ’sufficiently’ large.
Therefore, we utilise two separate thresholds in this thesis. When estimating VaR
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and ES at the 95% confidence level, we select the threshold as the loss at the 93rd

quantile. For the estimation at the 99% confidence level, we define the threshold
as the loss at the 97th quantile of the sample of losses. The rationale is that we
desire to retain an adjacent threshold for each confidence level without discarding
too many observations. The equations for estimating VaR and ES using the EVT
method are given by:

V aRα,t =

u+ β
ξ

[(
N
Nu

(1− α)
)−ξ

− 1

]
, ξ ̸= 0

u− β ln
(

N
Nu

(1− α)
)
, ξ = 0

(4.14)

ESα,t =

{
V aRα,t+β−u·ξ

1−ξ
, ξ ̸= 0

V aRα,t + β, ξ = 0
(4.15)

where Nu denotes the number of large losses (i.e., losses above the threshold).
McNeil and Frey (2000) introduce the idea of conditional volatility in the EVT

method to incorporate the stylised fact of time-varying volatility, referred to as
the conditional EVT. Youssef, Belkacem and Mokni (2015, p. 103) outline the
conditional EVT methodology in three steps: (i) fit a volatility model to estimate
the conditional mean and standard deviation on the losses by Maximum Likelihood;
(ii) standardise the residuals from the volatility model to make the assumption that
they are white noise and apply the EVT method on the standardised residuals to
compute the quantile at the germane confidence level; and (iii) use the estimated
conditional mean and standard deviation with the results from step (ii) to get the
estimates for the conditional EVT. Mathematically, we describe the conditional EVT
by:

V aRα,t+1 = µt+1 + σt+1 · V aR(qα) (4.16)

ESα,t+1 = µt+1 + σt+1 · ES(qα) (4.17)

where V aR(qα) and ES(qα) denote the VaR and ES estimates, respectively, of the
standardised residuals from the volatility model, µt+1 denotes the conditional mean
at time t + 1 and σt+1 denotes the conditional volatility at time t + 1. We utilise
the conditional EVT method in this thesis, consistent with previous research (cf.
Section 2.5).

4.4 Volatility Forecasting

As discussed in the stylised facts of financial time series (cf. Section 2.4), volatil-
ity clustering suggests the presence of autocorrelation and nonlinear dependence in
crude oil returns, i.e., violating the assumptions of conventional econometric mod-
els. To account for such violations, Engle (1982) proposes a class of models called
Autoregressive Conditional Heteroscedasticity (ARCH) models. Suppose ηt is the
stochastic innovation that impacts asset returns and is conditional on some past
information, Ωt−1, with some unspecified continuous distribution, f :
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rt = µ+ ηt

ηt | Ωt−1 ∼ f(0, σ2
t )

The ARCH(q) model, where q refers to the lagged values of ηt, follows:

σ2
t = ω +

q∑
i=1

αiη
2
t−i

Bollerslev (1986) generalises the ARCH(q) process to a GARCH(p, q) model,
where p denotes the order of autoregressive terms, σ2

t−j, to facilitate the model to
depend on past variances. The GARCH model is specified by:

σ2
t = ω +

q∑
i=1

αiη
2
t−i +

p∑
j=1

βjσ
2
t−j

Bollserslev (1986) also suggests that a GARCH(1,1) is highly effective in most
volatility forecasting instances despite being the simplest form of the model with
one lagged value of the squared stochastic innovation process, η2t−1, and one autore-
gressive term, σ2

t−1:

σ2
t = ω + αη2t−1 + βσ2

t−1 (4.18)

where the α parameter reflects the sensitivity of volatility to new innovations and
the β parameter relates to the persistence of the effects of past shocks and defines
the smoothness of the variance series.

Subsequently, we consider the mean equation utilised in the volatility models
and present alternative specifications for a GARCH-type model and how they differ
from the simple GARCH(1,1) model.

4.4.1 Conditional Mean

Autoregressive Moving Average (ARMA) model is often employed in practice and
academia to derive and forecast the conditional mean. The ARMAmodel is specified
as:

µt = ϕ0 +

p∑
i=1

ϕirt−i +

q∑
j=1

θjεt−j (4.19)

where p and q are the orders of the AR and MA processes, respectively (Brooks,
2019). The AR and MA processes are commonly determined by observing the
Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF)
in correlograms (i.e., the ACF and PACF plots) (Tsay, 2005).

Figures (4.1) and (4.2) demonstrate a lack of clear AR or MA process for both
WTI and Brent crude oil. However, ACF and PACF plots can be cumbersome to
deduce accurate information from and, therefore, we employ the pmdarima package
in Python to find the AR and MA orders to WTI and Brent. We observe an
information criterion to determine the correct specifications for the ARMA orders,
namely, Akaike’s (1974) Information Criterion (AIC) and Schwarz’ (1978) Bayesian
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Figure 4.1: ACF and PACF plots for WTI crude oil based on returns from estimation
period.

Figure 4.2: ACF and PACF plots for Brent crude oil based on returns from estimation
period.

Information Criterion (BIC). According to Chakrabarti and Ghosh (2011, pp. 599-
600) and Brooks (2019, pp. 275-276), the AIC tends to opt for more complex models
than the BIC when selecting parameters to fit a specific dataset. That is, the AIC
has a tendency to induce over-fitting, which implies modelling the randomness of
the data. The model picked by the AIC may perform exemplary on in-sample data
but ineffectively on out-of-sample data, whereas the BIC tends to select a model
better suited for generalisation purposes. We denote the AIC and the BIC by:

AIC = ln σ̂2 +
2(p+ q + 1)

T

BIC = ln σ̂2 +
p+ q + 1

T
lnT

where p and q are simply the orders from the ARMAmodel, σ̂2 denotes the estimated
residual variance, and T denotes the number of observations (Brooks, 2019).

Searching for the optimal ARMA model for the data from the estimation period
of daily returns with the BIC and the AIC results in two different model specifica-
tions. The BIC returns a model without any AR or MA orders for both WTI and
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Brent, which is in line with our expectations from Figure (4.1) and (4.2). Contrarily,
the AIC criterion returns an ARMA(4,4) and an ARMA(0,0) for WTI and Brent,
respectively. An ARMA model of these dimensions raises concerns for over-fitting
given the size of our rolling window and supports the arguments of Chakrabarti and
Ghosh (2011) and Brooks (2019) of the AIC choosing a model that is overly com-
plex. Therefore, we assume that a constant mean model best describes the daily
continuously compounded returns, consistent with the BIC estimates. We utilise
these results for the volatility models considered in this thesis.

4.4.2 Exponentially Weighted Moving Average (EWMA)

Although GARCH-type models are strongly preferred in academia, practitioners
often opt for more simplistic models for forecasting volatility. Specifically, the Ex-
ponentially Weighted Moving Average (EWMA) model is widely employed in prac-
tice and is a model that captures time-varying volatility. Hull and White (1998)
utilise the EWMA model when developing their version of the VWHS. Interestingly,
the EWMA model can be interpreted as a simplified GARCH(1,1) with parameters
chosen in a specific manner. The EWMA model is described as:

σ2
t = (1− λ)η2t−1 + λσ2

t−1 (4.20)

where σ2
t denotes the conditional variance at time t, ηt denotes the innovation at

time t, and λ denotes the exponential decay factor. EWMA places higher weights
on recent observations and lesser weights on older observations to capture the effects
of the latest shocks while exponentially decaying the impact of preceding changes in
volatility. The resemblance of a GARCH(1,1) is that EWMA puts the constant to
zero and the coefficients as a function of the exponential decay factor. Hence, the
EWMA model does not require any estimation, as the exponential decay factor is
endowed with a value arbitrarily.

The simplicity of the EWMA model serves as a double-edged sword. The ad-
vantage of not having to estimate the parameters accompanies the cost of the ex-
ponential decay factor endowed with a suboptimal value. Nevertheless, RiskMetrics
(1996) establishes λ = 0.94 for daily volatility estimates, which Hull (2018, p. 226)
notes as the parameter value producing the closest estimates to the realised volatility
rate. We embrace this practice in this thesis and put the exponential decay factor
equal to 0.94. As aforementioned in Section 4.2.3, we utilise the EWMA model in
conjunction with the VWHS because no parameter estimates are required and, thus,
the VWHS remains entirely nonparametric.

4.4.3 GJR-GARCH

Consistent with the stylised facts of financial time series, Wei, Wang and Huang
(2010) evaluate the leverage effects present in the time series of crude oil to better
forecast VaR and ES. They corroborate that the financial time series is nonlinear
and, therefore, a nonlinear GARCH specification is required to capture these leverage
effects. The simple GARCH(1,1) specification is a symmetric model and does not
account for these properties. Therefore, Glosten, Jagannathan and Runkle (1993)
introduce a GARCH specification that captures the asymmetry in the effects of
positive and negative shocks. The GJR-GARCH(1,1) model is given by:
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σ2
t = ω + (α + γIt−1)η

2
t−1 + βσ2

t−1 (4.21)

where the γ parameter reflects the magnitude and direction of the leverage effects
with the binary variable, It−1, which follows the condition:

It−1 =

{
1, if ηt−1 < 0

0, if ηt−1 ≥ 0

Under conventional leverage effects, adverse shocks define the binary variable
as one and, therefore, increase the conditional variance in the following observa-
tion. However, as discussed in Section 2.4, spot prices of crude oil encounter inverse
leverage effects where positive shocks accelerate volatility more than adverse shocks
(Chen and Mu, 2021). After implementing the model for our data during the es-
timation period with Maximum Likelihood estimation, the γ parameter takes the
expected negative sign, given the inverse leverage effects.

There are other specifications of the nonlinear GARCH model that capture lever-
age effects. Ding, Granger and Engle (1993) propose the Asymmetry Power ARCH
(APARCH) model, which is a substitute for the GJR-GARCH and used in an equiv-
alent manner for the purpose of capturing leverage effects. As discussed in Sec-
tion 2.4, crude oil markets follow a long-memory process and the extension to the
APARCH model, the Fractionally Integrated APARCH (FIAPARCH) model (Tse,
1998), captures the asymmetry along with the long-memory process for volatility
forecasting. Yet, Wei, Wang, and Huang (2010) find that the GARCH specification
is irrelevant as long as the specification is nonlinear for crude oil commodities con-
cerning shorter-term horizon forecasts. Therefore, we disregard the GARCH-type
specifications that model the long-memory processes in this thesis as we implement
one-step-ahead forecasts.

In implementing this volatility forecasting model, we incorporate it within the
Gaussian and Student’s t-distribution for VaR and ES. Concerning the implementa-
tion of the conditional EVT, we adhere to the method by Marimoutou, Raggad and
Trabelsi (2009) and utilise a simple GARCH(1,1). For the distributional assump-
tions of the innovations of the GARCH-type models, the parametric methods use
their respective distributions except for the conditional EVT method, which utilises
the Gaussian distribution.

4.5 Backtesting

Section 2.3.3 discusses that the best estimation method ought to yield the correct
number of violations given the confidence level, α, and sample size, M . There are
a myriad of backtests available to determine if the method performs adequately.
Nonetheless, this thesis implements three predominant backtests for the backtesting
period: the Kupiec (1995) test, the Christoffersen (1998) test, and the Acerbi and
Szekely (2014) Test 2.

4.5.1 The Kupiec (1995) Test

Comparing the one-day-ahead estimate of VaR with the observed loss at time t, ℓt,
denoting losses exceeding VaR with a 1 and 0 otherwise, we introduce a Bernoulli
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distributed random variable (Brooks, 2019, p. 113). From elementary statistics, the
sum of a Bernoulli distributed variable over the backtesting sample is a binomial
distributed random variable. Hence, the Kupiec (1995) test is a binomial test given
by:

Pr(X ≤ x) =
x∑

i=1

(
M

i

)
pM−i
0 pi1

where
(
M
i

)
denotes the binomial coefficient and p1 equals the frequency of violations

under the null hypothesis with p0 being the complement. That is, p1 under a correct
method is equal to 1 − α. The Kupiec (1995) test counts the number of violations
over a specified period and compares it to the expected number of violations given
a correct VaR level (Gordy and McNeil, 2020). The simple implementation and
interpretation of the Kupiec (1995) test make it a prevalent backtest in practical
settings.

It is possible to investigate the Kupiec (1995) test utilising a likelihood ratio test,
in which case, it is common to refer to it as a test for unconditional coverage. That
is, {

H0 : π1 = p1 = 1− α

H1 : π1 ̸= p1 = 1− α

LRuc = −2(lnL0 − lnL1) = −2(ln pn0
0 pn1

1 − ln πn0
0 πn1

1 ) ∼ χ2(1) (4.22)

where L0 and L1 denote the likelihood functions for the null and the alternative
hypothesis, respectively, and π0 and π1 denote the observed probabilities of a non-
and violation, respectively. Given that we only impose one restriction, this two-sided
likelihood ratio test statistic follows a χ2 distribution with one degree of freedom
under the null hypothesis (Youssef, Belkacem and Mokni, 2015).

The Kupiec (1995) test encounters backlash from authors such as Escanciano and
Pei (2012), providing evidence that the test yields inconsistencies in its endeavour
to discover suboptimal nonparametric estimation methods of VaR forecasts. Never-
theless, we employ the Kupiec (1995) test due to its straightforward interpretation
and extensive usage in practice.

4.5.2 The Christoffersen (1998) Test of Independence and
Conditional Coverage

In contrast to the Kupiec (1995) test, the Christoffersen (1998) test is agnostic to-
wards the number of violations and models the stochastic process of the Bernoulli
distributed random variables as a two-state Markov Chain. The Christoffersen
(1998) test inquires whether the probability of a violation differs, contingent on
the observation of a violation at a previous time or not. The conditional probabili-
ties of interest are denoted as π11 = Pr(s1|s1) and π01 = Pr(s1|s0) where si denotes
state i and the violation is coded as a 1. A model that captures the dynamics of
the data properly should not have a first-order Markov Chain (i.e., violations ought
to be independently distributed over time) and, therefore, the null hypothesis, H0,
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states that π11 = π01 = π1. That is, the conditional probability of observing a vio-
lation is equal to its unconditional probability. The Christoffersen (1998) test is a
two-sided likelihood ratio test following a χ2-distribution with one degree of freedom
under the null hypothesis denoted as:{

H0 : π11 = π01 = π1

H1 : π11 ̸= π01 ̸= π1

LRind = −2(lnL0 − lnL1) = −2(lnπn0
0 πn1

1 − ln πn00
00 πn01

01 πn10
10 πn11

11 ) ∼ χ2(1) (4.23)

where LRind denotes the likelihood ratio of the independence test statistic, L0 and L1

denote the likelihood functions of the null and alternative hypothesis, respectively.
The benefit of this test is that dependencies of violations over time mean that the
probability of a violation, given a violation state, is greater than what is desirable.
Thus, the user of a model with dependencies of violations over time endures a greater
risk of imposing large losses amidst turbulent times than the expected level.

The Christoffersen (1998) test of independence may be merged with a Kupiec
(1995) type test for unconditional coverage, in which case, a test for conditional cov-
erage is implemented. The null hypothesis of the conditional coverage test dictates
that the probability of a violation at time t is equal to 1 − α. The actual test is a
likelihood ratio test following a χ2 distribution with two degrees of freedom under
the null hypothesis (Aloui and Mabrouk, 2010). Mathematically, we summarise the
conditional coverage test as:{

H0 : Pr(violationt|Ωt−1) = 1− α

H1 : Pr(violationt|Ωt−1) ̸= 1− α

LRcc = LRuc + LRind ∼ χ2(2) (4.24)

where Ωt−1 denotes the information available at time t− 1 (i.e., whether a violation
is observed or not at time t − 1), α denotes the confidence level and LRcc denotes
the likelihood ratio of the conditional coverage test.

There are limitations to the Christoffersen (1998) test as it models only first-
order dependencies in the time series of Bernoulli-distributed random variables. The
implication is that more complex dependencies remain undetected, for instance, a
violation every Monday. More sophisticated backtests (e.g., Engle and Manganelli,
2004) amend this limitation considerably. Nevertheless, we utilise the Christoffersen
(1998) test to be able to test for conditional coverage and produce results comparable
to previous authors who deploy the same test (see e.g., Marimoutou, Raggad and
Trabelsi, 2009; Aloui and Mabrouk, 2010; Chiu, Chuang and Lai, 2010; Abad and
Benito, 2013). Hence, the Christoffersen (1998) test of independence and conditional
coverage are simple models to test for dependencies in the time series of non- and
violations.

4.5.3 The Acerbi and Szekely (2014) Test 2

Numerous backtesting models for ES have recently been developed, including models
by authors such as Costanzino and Curran (2018), Du and Escanciano (2017), and
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Gordy and McNeil (2020). However, this thesis utilises the backtest developed by
Acerbi and Szekely (2014) because of its transparent connection to the mathematical
definition of ES.1 The authors employ the dual-representation of ES in McNeil, Frey
and Embrechts (2015) for a continuous loss distribution, which is given by:

ESα,t =
E[Lt · It]
1− α

= E [Lt | Lt > V aRα,t] , ∀t

⇐⇒ −E[Lt · It]/(1− α)

ESα,t

+ 1 = 0, ∀t

where It is a dummy variable taking the value 1 if a VaR violation and 0 otherwise
and E[·] denotes the expectation operator. The test statistic, Z2, is implemented by
utilising the sample data of size M as:

Z2 = − 1

M

M∑
t=1

ℓt · It/(1− α)

ESP
α,t

+ 1 (4.25)

where ESP
α,t denotes the estimated ES at the α confidence level at time t and ℓt

denotes a realised loss at time t. Under the null hypothesis, the expected value
of the test statistic, E[Z2], is equal to zero, whilst the null hypothesis states that
the expected value is less than zero (Acerbi and Szekely, 2014). Hence, this is a
one-sided test for underestimation of ES.

A considerable disadvantage of the Acerbi and Szekely (2014) test in comparison
to the previous tests of VaR is that the asymptotic distribution of the test statistic
under the null hypothesis is not known (cf. Costanzino and Curran, 2018). There-
fore, a Monte Carlo simulation is necessary to retrieve the critical values of the test
statistic. Furthermore, a simple manipulation of Equation (4.25) reveals that the
Acerbi and Szekely (2014) Test 2 is susceptible to the magnitude of the losses and
the number of violations. The authors develop another test that is solely sensitive
to the extent of the losses (i.e., Test 1). Contrary to Test 1, the critical values
under Test 2 are more stable across different loss distributions (Acerbi and Szekely,
2014) and, therefore, this thesis utilises the latter test statistic and extracts the
critical values from the original article. This introduces some stringent limitations
and restrictions to our thesis. By employing the critical values directly from the
Acerbi and Szekely (2014) paper, we are required to outline the backtesting sample
according to the specification of the authors. Nevertheless, these limitations do not
have major consequences for the generalisations of our results since the Acerbi and
Szekely (2014) test is developed according to the Basel requirements. For uniformity
between the backtesting schemes of VaR and ES, we backtest on approximately 250
observations of trading days for an annual backtesting sample. We apply this pro-
cedure for each calendar year, allowing us to investigate how a particular method
performs between different years and risk levels.

1Any of the aforementioned models can be used with no change in credibility as a model is yet
to be formally recognised by the Basel Committee on Banking Supervision.
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5 Results and Analysis

Implementing the models yields evidence that the different implementation method-
ologies generate vastly different estimates for VaR and ES, especially amidst market
turmoil and post-pandemic. Appendix (C.1) to (D.2) presents an ocular overview
of all models. However, an interesting comparison is observed by contrasting the
different models at the 99% confidence level.
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(a) BHS: VaR at α = 0.99
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(b) AWHS: VaR at α = 0.99
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(c) VWHS: VaR at α = 0.99

Figure 5.1: Nonparametric estimation methods for VaR at the 99th quantile for WTI for
the backtesting period.

20
16

20
17

20
18

20
20

20
21

20
22

−50

0

50

100

Date

L
os
se
s

(a) Gaussian: VaR at α = 0.99
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(b) t: VaR at α = 0.99
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(c) Cond. EVT: VaR at α = 0.99

Figure 5.2: Parametric estimation methods for VaR at the 99th quantile for WTI for the
backtesting period.

Figure (5.1) contributes to the inference that the simple nonparametric methods
of BHS and AWHS seem to heavily overestimate VaR in the direct period after
the pandemic, requiring an extended period to readjust to more appropriate levels.
Nevertheless, the VWHS appears to be a simple but effective method to capture
the dynamics of the data. Figure (5.2), on the other hand, showcases that the
parametric methods do not generate any obvious over- or underestimation of VaR.
The formal results of the backtests for VaR at the 95% and 99% confidence levels
concerning WTI are rendered in Table (5.1).
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Confidence level: 95% Confidence level: 99%
Year LRuc LRind LRcc LRuc LRind LRcc

BHS

2016 0.6367 0.4519 0.6740 0.7327 0.8264 0.9209
2017 0.0042 0.6865 0.0154 0.0250 1.0000 0.0811
2018 0.0761 0.0686 0.0395 0.0583 0.5561 0.1401
2019 0.4812 0.7130 0.7293 0.3805 0.6865 0.6275
2020 0.0006 0.0018 0.0000 0.0003 0.3720 0.0011
2021 0.0133 0.0736 0.0094 0.0247 1.0000 0.0802
2022 0.0815 0.5632 0.1855 0.7630 0.7555 0.9103

AWHS

2016 0.4363 0.3720 0.4958 0.2732 0.8994 0.5443
2017 0.0366 0.5570 0.0947 0.0250 1.0000 0.0811
2018 0.0761 0.0686 0.0395 0.0583 0.5561 0.1401
2019 0.6571 0.4552 0.6856 0.7419 0.8257 0.9245
2020 0.0260 0.0004 0.0002 0.3880 0.0415 0.0863
2021 0.0805 0.1671 0.0836 0.2756 0.8992 0.5475
2022 0.3370 0.7157 0.5902 0.7373 0.8261 0.9227

VWHS

2016 0.1553 0.4418 0.2710 0.0244 1.0000 0.0794
2017 0.8853 0.2146 0.4582 0.1619 0.6203 0.3325
2018 0.0230 0.0437 0.0099 0.3767 0.6859 0.6235
2019 0.4529 0.0488 0.1083 0.7419 0.8257 0.9245
2020 0.4363 0.3720 0.4958 0.1662 0.0732 0.0771
2021 0.6799 0.1825 0.3777 0.7630 0.7555 0.9103
2022 0.8726 0.2526 0.5131 0.7630 0.7555 0.9103

Gaussian

2016 0.4363 0.3398 0.4683 0.0244 1.0000 0.0794
2017 0.2860 0.3869 0.3893 0.2781 0.8990 0.5508
2018 0.6674 0.2916 0.5229 0.7466 0.8254 0.9263
2019 0.1632 0.4400 0.2808 0.7419 0.8257 0.9245
2020 0.2738 0.2963 0.3185 0.3880 0.0415 0.0863
2021 0.0010 0.7555 0.0041 0.0247 1.0000 0.0802
2022 0.0010 0.7555 0.0041 0.0247 1.0000 0.0802

Student’s t

2016 0.6367 0.2947 0.5165 0.0244 1.0000 0.0794
2017 0.2860 0.3869 0.3893 0.2781 0.8990 0.5508
2018 0.1292 0.0848 0.0716 0.2806 0.8988 0.5542
2019 0.6571 0.0741 0.1839 0.7419 0.8257 0.9245
2020 0.2261 0.1033 0.1276 0.3880 0.0415 0.0863
2021 0.0805 0.4976 0.1725 0.0247 1.0000 0.0802
2022 0.4446 0.3388 0.4725 0.0247 1.0000 0.0802

C. EVT

2016 0.9084 0.2166 0.4630 0.2732 0.8994 0.5443
2017 0.8853 0.2146 0.4582 0.1619 0.6203 0.3325
2018 0.1292 0.0848 0.0716 0.3767 0.6859 0.6235
2019 0.8853 0.1484 0.3482 0.7419 0.8257 0.9245
2020 0.5001 0.0065 0.0197 0.0614 0.1149 0.0502
2021 0.4446 0.3388 0.4725 0.7630 0.7555 0.9103
2022 0.8969 0.2156 0.4606 0.7373 0.8261 0.9227

Table 5.1: Backtesting results of p-value for VaR regarding non- and parametric methods
for WTI crude oil. A method is rejected for a given year if it produces a p-value less than
5%

At the 95% confidence level for WTI crude oil, the BHS produces a correct num-
ber of violations for the majority of the years, evident from the unconditional cov-
erage test. However, amid and post-2020, the performance of the BHS deteriorates,
where we observe considerably more violations than expected. In 2020, we reject
the hypothesis of independent violations and retrieve a misspecified conditional cov-
erage. It also produces a misspecified conditional coverage for 2021, however, we do
not reject the hypothesis of independent violations. The AWHS produces similar
results at the 95% confidence level, although, marginally improved. On the other
hand, the VWHS generates only one rejection at the 95% confidence level for all
three tests, specifically, in 2018. This means that the VWHS performs reasonably
well on the unconditional and conditional coverage test mid- and post-2020. At
the 99% confidence level, the same tendencies are prevalent for all three nonpara-
metric methods. However, an interesting and unexpected observation is that the
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BHS performs reasonably well on the independence test. The only time we reject
independence of violations for the BHS is at the 95% confidence level during 2020.
Nevertheless, this is presumably due to more complex dependencies that are not
captured by a simple Christoffersen (1998) test of independence.

Investigating the backtesting results of VaR for WTI for the parametric estima-
tion methods, as expected, the Gaussian assumption performs the worst at both the
95% and 99% confidence levels for the unconditional coverage test. The Student’s
t-distribution, on the other hand, performs very well in the unconditional and con-
ditional coverage tests at the 95% confidence level. At the 99% confidence level, the
performance of the Student’s t-distribution deteriorates post-2020, possibly due to
an overestimation of the unconditional coverage. Conditional EVT does not reject
the unconditional coverage at all for both confidence levels. However, it does reject
independence and conditional coverage at the 95% confidence level in 2020. This
does not carry over at the 99% confidence level. Nevertheless, it is in accordance
with our expectations that the conditional EVT displays a superior performance at
very high quantiles, considering that it is a method developed for modelling extreme
risk.

Comparing the nonparametric with the parametric backtesting results for VaR
of WTI crude oil at the 99% confidence level, the AWHS and the VWHS perform
slightly better than the Gaussian and Student’s t-distribution for all three backtests.
Yet, they perform marginally worse than the conditional EVT regarding the uncon-
ditional and conditional coverage and the independence test. It is interesting to note
that the AWHS and the VWHS seem to handle 2020 and post-2020 equally well as
the conditional EVT at the 99% confidence level. At the 95% confidence level, on the
other hand, the AWHS displays an inferior performance in 2020 for all three back-
tests. The VWHS still performs well and is a solid contender for conditional EVT.
Overall, the different backtests demonstrate that a parametric estimation method
performs best (i.e., the conditional EVT), but it is noteworthy that the VWHS dis-
plays a robust performance at both confidence levels and even transcends some of
the parametric methods. Therefore, the initial result indicates that practitioners
should employ conditional EVT to estimate VaR, whilst the VWHS appears to be
an uncomplicated substitute that yields robust results.

Table (5.2) provides the results of the same backtests for the VaR of Brent to
investigate if the same results also hold for this crude oil commodity.

Regarding the unconditional and conditional coverage at the 95% confidence
level in Table (5.2), the BHS is rejected for the majority of the years, failing to yield
a correct estimate of VaR. It performs marginally better for the unconditional and
conditional coverage at the 99% confidence level but is unsuccessful in managing the
extreme change in volatility at the commencement of the pandemic. The AWHS
provides an improvement to the BHS at both confidence levels but still displays
a suboptimal performance amid the pandemic in 2020. At the 99% confidence
level for 2020, it fails to produce the correct conditional coverage when the risk of
the underlying change drastically. Similar to WTI, the VWHS for Brent crude oil
appears to capture the dynamics of the data and yields a reasonable VaR level in
most of the years at both confidence levels. The conditional coverage test is only
rejected once, videlicet, at the 95% confidence level in 2018. Therefore, the VWHS
replicates its effectiveness for Brent.

Analogous to WTI, the Gaussian distribution performs reasonably well on the
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Confidence level: 95% Confidence level: 99%
Year LRuc LRind LRcc LRuc LRind LRcc

BHS

2016 0.3682 0.7185 0.6251 0.7829 0.7574 0.9179
2017 0.0008 0.7578 0.0034 0.0233 1.0000 0.0763
2018 0.3446 0.7165 0.5990 0.0614 0.5586 0.1465
2019 0.3844 0.0694 0.1318 0.4071 0.6906 0.6552
2020 0.0038 0.0157 0.0008 0.0000 0.1031 0.0000
2021 0.0038 0.6883 0.0139 0.0241 1.0000 0.0787
2022 0.0135 0.6661 0.0432 0.7327 0.8264 0.9209

AWHS

2016 0.7235 0.6688 0.8572 0.7190 0.8274 0.9153
2017 0.0302 0.5617 0.0807 0.0233 1.0000 0.0763
2018 0.0843 0.5660 0.1911 0.0614 0.5586 0.1465
2019 0.5876 0.0702 0.1675 0.7928 0.7583 0.9214
2020 0.0930 0.1817 0.1000 0.0211 0.1642 0.0266
2021 0.0333 0.5594 0.0875 0.2708 0.8996 0.5410
2022 0.5001 0.7122 0.7442 0.7327 0.8264 0.9209

VWHS

2016 0.0718 0.5011 0.1578 0.0236 1.0000 0.0771
2017 0.5972 0.2987 0.5068 0.7145 0.8278 0.9134
2018 0.0135 0.6661 0.0432 0.3880 0.6877 0.6355
2019 0.2452 0.2903 0.2911 0.7928 0.7583 0.9214
2020 0.8278 0.5273 0.7998 0.3995 0.0410 0.0869
2021 0.4282 0.3408 0.4641 0.7730 0.7564 0.9142
2022 0.3446 0.7165 0.5990 0.7327 0.8264 0.9209

Gaussian

2016 0.1440 0.4446 0.2567 0.0236 1.0000 0.0771
2017 0.4045 0.3662 0.4697 0.0233 1.0000 0.0763
2018 0.5001 0.7122 0.7442 0.7680 0.7560 0.9123
2019 0.2452 0.2903 0.2911 0.7100 0.8281 0.9115
2020 0.4123 0.3676 0.4762 0.7829 0.0191 0.0619
2021 0.0038 0.6883 0.0139 0.0241 1.0000 0.0787
2022 0.0039 0.6877 0.0144 0.0244 1.0000 0.0794

Student’s t

2016 0.2564 0.3918 0.3639 0.0236 1.0000 0.0771
2017 0.4045 0.3437 0.4513 0.0233 1.0000 0.0763
2018 0.0843 0.5321 0.1853 0.7327 0.8264 0.9209
2019 0.3968 0.3648 0.4632 0.2613 0.9004 0.5279
2020 0.0535 0.5902 0.1342 0.3995 0.0410 0.0869
2021 0.1514 0.4428 0.2662 0.0241 1.0000 0.0787
2022 0.0344 0.5586 0.0898 0.0244 1.0000 0.0794

C. EVT

2016 0.8278 0.5273 0.7998 0.2660 0.9000 0.5344
2017 0.4045 0.3437 0.4513 0.7145 0.8278 0.9134
2018 0.2261 0.1060 0.1302 0.1662 0.6217 0.3396
2019 0.8058 0.0113 0.0393 0.4071 0.6906 0.6552
2020 0.0535 0.5902 0.1342 0.0646 0.1134 0.0518
2021 0.2679 0.3899 0.3740 0.7730 0.7564 0.9142
2022 0.6907 0.6727 0.8450 0.2732 0.8994 0.5443

Table 5.2: Backtesting results of p-value for VaR regarding non- and parametric methods
for Brent crude oil. A method is rejected for a given year if it produces a p-value less than
5%

unconditional coverage for Brent at the 95% and 99% confidence levels pre-pandemic,
which is consistent with our expectations given a relatively stable period. However,
the performance of the Gaussian distribution deteriorates in 2021 and 2022 and even
generates the wrong conditional coverage at the 95% confidence level. The Student’s
t-distribution exhibits similar tendencies as for WTI at the lower confidence level.
A noteworthy observation regarding the unconditional coverage for Brent is that
we reject the Student’s t-distribution in the majority of the years at the higher
confidence level, whilst the other two backtests remain conducive. On the other
hand, conditional EVT performs extraordinarily well for Brent, especially at a higher
confidence level. More specifically, at the 99% confidence level, we do not reject any
of the three tests applied to VaR. It also controls the risk effectively when the
underlying risk level changes dramatically at the commencement of the pandemic in
2020. Therefore, it is apparent that the conditional EVT is well-suited for estimating
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VaR for crude oil at high confidence levels, corresponding to results for WTI.

Comparing the nonparametric and parametric estimation methods for Brent,
the Gaussian and Student’s t-distribution underperform the BHS and the AWHS
at the 99% confidence level regarding the unconditional coverage but marginally
transcend them regarding the conditional coverage test. At the lower confidence
level, the Gaussian and Student’s t-distribution are superior, at least at the margin.
The conditional EVT displays a dominant performance at both confidence levels
and all three tests. Nevertheless, the VWHS appear to be only marginally inferior
to the conditional EVT at both confidence levels, which indicates that it is a robust
alternative to the more preeminent parametric method for estimating VaR concern-
ing crude oil commodities. All in all, the backtesting results of VaR for Brent are
analogous to WTI. Therefore, our findings demonstrate that the conditional EVT
is particularly conducive for estimating VaR concerning crude oil, which is robust
for an extended backtesting period and across commodities.

The results of the Acerbi and Szekely (2014) Test 2 for the nonparametric and
parametric estimation methods for both WTI and Brent are displayed in Table
(5.3). Nonetheless, we reiterate that our procedure concerning the implementation
of the Acerbi and Szekely (2014) Test 2 is a test for underestimation only, unlike
the backtests applied to VaR.

The BHS is not rejected in the majority of the backtesting years at either confi-
dence levels for the Acerbi and Szekely (2014) Test 2 for underestimation. However,
we strongly reject a correct ES level in 2020 at both confidence levels. Hence, the
BHS strongly underestimates ES as the risk abruptly increases for WTI and Brent
crude oil. The AWHS displays a similar tendency to the BHS for both commodi-
ties and is strongly rejected when the underlying riskiness suddenly increases at
the commencement of the pandemic. Nevertheless, the AWHS exhibits an improve-
ment in comparison to the BHS. The VWHS provides only one rejection at the 95%
confidence level for both WTI and Brent. However, there is evidence of underesti-
mation generated by the VWHS at the higher confidence level, especially in 2020
for both crude oil commodities. None of the nonparametric estimation methods
displays a robust performance for estimating ES for the duration of the backtesting
period and across confidence levels. Therefore, computing ES with a nonparametric
methodology is suboptimal and may induce severe underestimation amidst market
turmoil.

As can be inferred from Table (5.3), we do not reject the Student t-distribution
at all for the backtesting period for either WTI or Brent crude oil. The Gaus-
sian distribution displays an equivalent performance with a few exceptions at the
commencement of the pandemic in 2020. Given the backtesting results of VaR,
the worst overall performance in the category of parametric estimation methods for
ES is unexpectedly the conditional EVT. It underestimates ES in 2020 for WTI
and Brent crude oil at both confidence levels. Overall, the robust performance of
the Student’s t-distribution suggests that the parametric estimation methods are
especially preeminent for a volatile commodity, such as Brent and WTI crude oil.

Comparing the nonparametric and parametric estimation methods for ES, it
is apparent that the Student’s t-distribution and Gaussian distribution transcend
all the nonparametric estimation methodologies. A noteworthy observation is that
the VWHS and conditional EVT produce a comparable backtesting performance
across WTI and Brent crude oil for the backtest concerning ES. This finding further
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Confidence level: 95% Confidence level: 99%
Year Brent WTI Brent WTI

BHS

2016 -0.2413 0.1335 -0.0043 0.3352
2017 0.7895 0.7167 1.0000 1.0000
2018 -0.4356 -0.6897 -1.5909 -1.7572
2019 -0.2355 -0.1873 -0.5170 -0.5678
2020 -2.1784 -2.5733 -5.8216 -5.6590
2021 0.7891 0.8078 1.0000 1.0000
2022 -0.4561 -0.1909 0.4182 0.1868

AWHS

2016 -0.0264 0.2645 0.3365 0.6340
2017 0.5873 0.5747 1.0000 1.0000
2018 -0.6119 -0.6838 -1.4422 -1.6395
2019 0.1266 0.1078 -0.1077 0.1715
2020 -1.3764 -1.6789 -2.9271 -2.7784
2021 0.6747 0.7050 0.7528 0.8005
2022 -0.0512 0.0165 0.3668 0.5003

VWHS

2016 0.5089 0.4922 1.0000 1.0000
2017 0.1462 -0.1614 0.2540 -1.0573
2018 -0.8123 -0.6653 -0.8389 -0.6155
2019 0.2496 0.1330 -0.1178 -0.0266
2020 -0.1662 -0.1361 -1.1422 -1.4335
2021 0.1117 0.0398 -0.2541 0.0350
2022 -0.0836 0.1090 0.3333 0.1666

Gaussian

2016 0.4131 0.2957 1.0000 1.0000
2017 0.2666 0.2718 1.0000 0.6087
2018 -0.1448 0.1086 -0.1383 0.2384
2019 0.2977 0.3674 0.2562 0.2303
2020 0.1636 0.1908 -0.2469 -0.7068
2021 0.7070 0.7795 1.0000 1.0000
2022 0.7221 0.7913 1.0000 1.0000

Student’s t

2016 0.3769 0.2719 1.0000 1.0000
2017 0.3022 0.3004 1.0000 0.6558
2018 -0.3382 -0.2968 0.3184 0.6387
2019 0.2849 0.2034 0.6705 0.3097
2020 -0.4214 -0.2615 -0.4145 -0.4082
2021 0.4722 0.5610 1.0000 1.0000
2022 0.6091 0.3981 1.0000 1.0000

C. EVT

2016 0.1866 0.1400 0.7045 0.7088
2017 0.2595 -0.0639 0.3675 -0.6242
2018 -0.4032 -0.4058 -1.0223 -0.6493
2019 0.0157 -0.0663 -0.5449 -0.0805
2020 -1.0243 -0.7473 -2.8966 -2.6213
2021 0.1447 0.1905 -0.3831 -0.0637
2022 -0.0057 0.1728 0.5320 0.5035

Table 5.3: Backtesting results of the test statistic of the Acerbi and Szekely (2014) Test
2. For simplicity, a method is rejected at the 5% level of significance in a given year if
the test statistic is less than -0.70. NB: the test statistic equals exactly one whenever no
violations are observed in a given year.

supports the proposal that the VWHS is an uncomplicated substitute for condi-
tional EVT. Nevertheless, as evident from the Acerbi and Szekely (2014) Test 2, the
Student’s t-distribution generates the most rigorous ES estimates across confidence
levels and crude oil commodities. Therefore, this finding further supports that the
parametric estimation methods excel the nonparametric methods concerning crude
oil, which exhibits periods of extreme and nuanced volatility levels.

Subsequent to presenting the results from our backtests on VaR and ES, how
do our findings compare to previous research? Regarding the VaR estimates for
the parametric estimation methods, in line with Marimoutou, Raggad and Trabelsi
(2009) and Youssef, Belkacem and Mokni (2015), we find that the conditional EVT
based on a simple GARCH(1,1) model performs extraordinarily well for both com-
modities throughout the backtesting period. In contrast to Chiu, Chuang and Lai
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(2010), our findings demonstrate that the VWHS slightly underperforms the condi-
tional EVT, which is robust across crude oil commodities and for the duration of the
backtesting period. Interestingly, the nonparametric estimation methods regarding
the AWHS and the VWHS display a more robust performance than the Student’s
t-distribution at the 99% confidence level for unconditional coverage. The AWHS
and the VWHS swiftly readjust themselves to the appropriate risk level in 2021
and 2022, as far as VaR is concerned, whilst the Student’s t-distribution does not
adjust adequately. Future research can apply a comparison of the skewed Student’s
t-distribution as this might better describe the underlying data than an ordinary
Student’s t-distribution and generate more robust estimates for VaR (see e.g., Aloui
and Mabrouk, 2010). Overall, our findings for VaR contrast with authors such as
Brooks and Persand (2002) and Sadorsky (2006) since there is an advantage for the
parametric estimation methods given the strong results of the conditional EVT.

The conclusions from our backtest of ES contrast with those of the VaR back-
tests and, equivalently, contrast with previous research. We find that the Student’s
t-distribution display the most robust performance across commodities and for the
duration of the backtesting period. This finding is possibly due to the leptokurto-
sis of the Student’s t-distribution with low degrees of freedom, which is especially
prevalent mid- and post-2020. In contrast to Marimoutou, Raggad and Trabelsi
(2009), we find evidence that the conditional EVT intermittently underestimates
ES, which is overstated around the commencement of the pandemic. Hence, our
findings demonstrate that the backtesting performance of the conditional EVT is
equivalent to the VWHS, except that the VWHS appears to marginally excel over
the conditional EVT at the 95% confidence level in 2020. These results are more con-
sistent with Chiu, Chuang and Lai (2010), who find similar performance tendencies
between the VWHS and the conditional EVT. However, the results of the backtest-
ing performance regarding conditional EVT for ES are plausibly due to the volatility
model and not inherent to the model itself. Future research can investigate these
results for other commodities and periods and compare the performance of different
GARCH-type models applied to EVT. In contrast to Brooks and Persand (2002) and
Sadorsky (2006), all parametric estimation methods for ES transcend the nonpara-
metric BHS and AWHS for the duration of the backtesting period, indicating that
these methods are suboptimal for estimating ES concerning a volatile commodity
such as crude oil. However, Boudoukh, Richardson and Whitelaw (1998) champion
a relatively small weight of old observations relative to new ones. A smaller value
of the exponential decay factor might have induced a more robust result for the
AWHS. Future research may consider providing a similar comparison but with a
smaller exponential decay factor for the AWHS. Additionally, it is vital to remem-
ber that our implementation of the Acerbi and Szekely (2014) test does not consider
the overestimation of ES. Future research should amend the backtest to permit a
two-sided test to provide a more robust conclusion of the performance of ES. Over-
all, our findings for ES are consistent with authors such as Abad and Benito (2013)
since the parametric estimation methods yield better estimates during both stable
and turbulent periods.

It is ambiguous whether our findings translate to other periods. For instance,
Chiu, Chuang and Lai (2010) find that nonparametric methods excel over para-
metric peers for a sub-period of the horizon utilised by Marimoutou, Raggad and
Trabelsi (2009), who make an equivalent conclusion to ours. Therefore, it is in-
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conclusive whether similar findings transfer to shorter periods. Nevertheless, as
we exploit a relatively extensive backtesting period in this thesis, we expect that
the parametric estimation methods transcend nonparametric over an extended pe-
riod. This suggestion is apparent by the finding that conditional EVT performs
extremely well pre-, mid-, and post-pandemic, whilst most of the nonparametric
estimation methods struggle considerably at the commencement of the pandemic.
Previous research on parametric estimation methods, specifically, conditional EVT
(see e.g., Marimoutou, Raggad and Trabelsi, 2009; Youssef, Belkacem and Mokni,
2015), indicates that our results translate to securities which exhibit similar fea-
tures to crude oil. We expect the parametric estimation methods to be particularly
conducive for asset classes prone to sudden and extreme changes in the underlying
risk levels, such as cryptocurrency. Nevertheless, since our results demonstrate that
nonparametric estimation methods display an adequate performance pre-pandemic
for the majority of the backtests, we expect that differences between the estimation
methods are negligible for asset classes which are stable over extended periods of
time, such as Treasury bonds.

To sum up, we find that a parametric method displays superior performance to
the nonparametric estimation methods for VaR and ES. This finding is especially
apparent for ES. More specifically, our findings contradict the conclusion of Brooks
and Persand (2002) that uncomplicated estimation methods are superior to more
complex methodologies. We find that the conditional EVT is the most robust es-
timation method for VaR, consistent across WTI and Brent. Concomitantly, the
Student’s t-distribution markedly outperforms the nonparametric methods concern-
ing the estimation of ES. The VWHS appears to be the dominant methodology
in the category of nonparametric estimation methods and transcends the BHS and
AWHS. However, our findings suggest that practitioners ought to implement para-
metric methods to estimate the risk of commodities that exhibit equivalent features
to crude oil. Practitioners generate biased estimates of VaR and ES that induce pe-
riods of solvency issues by implementing inferior estimation methods. Our findings
demonstrate that parametric estimation methods are least likely to induce misspec-
ification of the risk level.
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6 Conclusion

In this thesis, we contrast the performance of nonparametric and parametric estima-
tion methods of VaR and ES for crude oil commodities amidst a challenging back-
testing period with major geopolitical events such as the COVID-19 pandemic. WTI
displays a negative price due to the COVID-19 pandemic, which is extraordinary
for a commodity. The nonparametric estimation methods entail the basic histori-
cal simulation, age-weighted historical simulation, and volatility-weighted historical
simulation. The parametric estimation methods include the Gaussian distribution,
the Student’s t-distribution, and the conditional EVT. Our findings demonstrate
that parametric estimation methods transcend those of the nonparametric methods
in backtests for unconditional and conditional coverage, independence of violations
and ES. This finding is especially prevalent mid- and post-2020. Specifically, the
conditional EVT is the most robust estimation method for VaR, while the Student’s
t-distribution is superior for estimating ES. The BHS and AWHS display signifi-
cant issues in dealing with drastic changes in the risk of the underlying commodity.
The VWHS captures these changes in a more satisfactory manner in comparison
to its nonparametric peers and outperforms the Student’s t-distribution and the
Gaussian distribution in estimating VaR at both confidence levels post-2020. Albeit
the nonparametric estimation methods are inferior to more sophisticated paramet-
ric methods, the VWHS is an uncomplicated substitute of conditional EVT that
captures the dynamics of the underlying data and yields adequate estimates of VaR
at both confidence levels. The results for ES differ due to the extremely robust
performance of the Student’s t-distribution for the duration of the backtesting pe-
riod. This result further supports the finding that parametric estimation methods
are generally superior to nonparametric methodologies. These results are crucial
given the amendments to Basel IV, in which the derivation of capital requirement
calculations emanates from ES instead of VaR.

Following our findings, we recommend that practitioners seize their reliance on
nonparametric methods (i.e., historical simulation) and adopt the parametric meth-
ods championed by academia. That is, a challenging commodity requires a sophisti-
cated estimation method and elementary nonparametric estimation methods are not
equipped to deal with sudden changes in risk. Such is evident from the independence
test in 2020 at the 95% confidence level, simple nonparametric methods provide de-
pendent violations which are detrimental to the ability of financial institutions to
remain solvent during market turmoil. Hence, the parametric estimation methods
are more robust across commodities and backtesting years for both VaR and ES and
should, consequently, be the preferred estimation method among practitioners.
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Appendix A WTI

A.1 Indexing of WTI

Since the spot price of WTI crude oil turns negative in 2020, it is not possible
to apply logarithms to calculate continuously compounded returns. Therefore, to
remedy this issue, we index the price series by putting the base of 100 on April 20,
2020, which is the data where the price is at its lowest. Subsequently, we replicate
the shape of the series by multiplying the simple returns to the index. The result of
this manipulation is showcased in Figure (A.1).
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Figure A.1: Spot price and index of WTI crude oil from 2003 to 2022.

As can be seen in Figure (A.1b), the general shape and dynamics of the price
series is the same in the index series. However, one small difference is that there is not
as nuanced drop in the index in comparison to the price series in 2020. Nevertheless,
this is a necessary manipulation to be able to apply logarithms and the extreme
volatility of the commodity is still salvaged in the index. Therefore, we believe
that the manipulation will not have an adverse effect on the generalisability of our
results.
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Appendix B Time Series Effects

B.1 Tests for Time Series Effects in GARCHResid-

uals

LB-Q(20) LB p-value LM LM p-value
WTI 15.30036 0.75897 21.07347 0.39282
Brent 19.33405 0.50022 13.25061 0.86637

Table B.1: Tests for autocorrelation (i.e., the Ljung-Box Test) and ARCH effects (i.e., the
LM Test) in the standardised residuals of a GARCH(1,1) for the estimation period.
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Appendix C VaR Plots

C.1 VaR Plots for WTI
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(a) BHS: VaR at α = 0.95
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(b) AWHS: VaR at α = 0.95
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(c) VWHS: VaR at α = 0.95

Figure C.1: Nonparametric estimation methods for VaR at the 95th quantile for WTI for
the backtesting period
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(a) Gaussian: VaR at α = 0.95
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(b) t: VaR at α = 0.95
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(c) Cond. EVT: VaR at α = 0.95

Figure C.2: Parametric estimation methods for VaR at the 95th quantile for WTI for the
backtesting period
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(a) BHS: VaR at α = 0.99
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(b) AWHS: VaR at α = 0.99
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(c) VWHS: VaR at α = 0.99

Figure C.3: Nonparametric estimation methods for VaR at the 99th quantile for WTI for
the backtesting period.
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Figure C.4: Parametric estimation methods for VaR at the 99th quantile for WTI for the
backtesting period.

C.2 VaR Plots for Brent
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(a) BHS: VaR at α = 0.95

20
16

20
17

20
18

20
20

20
21

20
22

−40

−20

0

20

40

60

Date

L
os
se
s

(b) AWHS: VaR at α = 0.95
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(c) VWHS: VaR at α = 0.95

Figure C.5: Nonparametric estimation methods for VaR at the 95th quantile for Brent for
the backtesting period.
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(b) t: VaR at α = 0.95
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(c) Cond. EVT: VaR at α = 0.95

Figure C.6: Parametric estimation methods for VaR at the 95th quantile for Brent for the
backtesting period.
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(c) VWHS: VaR at α = 0.99

Figure C.7: Nonparametric estimation methods for VaR at the 99th quantile for Brent for
the backtesting period.
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Figure C.8: Parametric estimation methods for VaR at the 99th quantile for Brent for the
backtesting period.
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Appendix D ES Plots

D.1 ES Plots for WTI
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(c) VWHS: ES at α = 0.95

Figure D.1: Nonparametric estimation methods for ES at the 95th quantile for WTI for
the backtesting period.
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(a) Gaussian: ES at α = 0.95
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(b) t: ES at α = 0.95
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(c) Cond. EVT: ES at α = 0.95

Figure D.2: Parametric estimation methods for ES at the 95th quantile for WTI for the
backtesting period.
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(a) BHS: ES at α = 0.99
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(b) AWHS: ES at α = 0.99
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(c) VWHS: ES at α = 0.99

Figure D.3: Nonparametric estimation methods for ES at the 99th quantile for WTI for
the backtesting period.
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(a) Gaussian: ES at α = 0.99
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(b) t: ES at α = 0.99
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(c) Cond. EVT: ES at α = 0.99

Figure D.4: Parametric estimation methods for ES at the 99th quantile for WTI for the
backtesting period.

D.2 ES Plots for Brent
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(a) BHS: ES at α = 0.95
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(b) AWHS: ES at α = 0.95
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(c) VWHS: ES at α = 0.95

Figure D.5: Nonparametric estimation methods for ES at the 95th quantile for Brent for
the backtesting period.
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(a) Gaussian: ES at α = 0.95
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(b) t: ES at α = 0.95
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(c) Cond. EVT: ES at α = 0.95

Figure D.6: Parametric estimation methods for ES at the 95th quantile for Brent for the
backtesting period.
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(a) BHS: ES at α = 0.99
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(b) AWHS: ES at α = 0.99
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(c) VWHS: ES at α = 0.99

Figure D.7: Nonparametric estimation methods for ES at the 99th quantile for Brent for
the backtesting period.
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(a) Gaussian: ES at α = 0.99
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(b) t: ES at α = 0.99
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(c) Cond. EVT: ES at α = 0.99

Figure D.8: Parametric estimation methods for ES at the 99th quantile for Brent for the
backtesting period.
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