
 

 

 

 

 

Networks of spillover effects to spot systemic risk in the 

banking industry: testing Granger causality in a High 

Dimensional VAR model. 

 

 

Lund University, School of Economics and Management  

Department of Economics  

 

 

 

 

 

Essay seminars: 29/05 – 02/06/2023 

Author: Emanuele Paccagnella  

 

Supervisor: Luca Margaritella  

 



1 
 

Table of contents: 

 

Introduction ……………………………………………………………………………………………………………………….. 2 

 

Methods ………………………………………………………………………………………….…………………….………. 3 

Sparse vector heterogeneous autoregressive modelling for realized volatility and long memory 

phenomena   ……………………………………………………………………………………………………………………………….. 4 

Volatility heterogeneous AR model (Corsi 2009): Long Memory ………………………………………… 4 

The validity of Post Double Selection ………………………………………………………………………………. 6 

Granger causality notions and Information Set ……………..…………….………………………………….. 7 

High dimensionality and GC testing …………………………………………………………………………………. 9 

LASSO estimation ……………………………………………………………………………………………………………. 11 

The use of Lasso to detect Granger Causality in High Dimensionality ……………………………… 11 

The Post Double selection method: procedure and overview ………………………………………….. 12 

 

Networks and Communities (Data and results) ……………………………………………………………... 15 

Data      ……………………………………………………………………………………………………………………………………….…. 15 

Results   …………………………………………………………………………………………………………………………………………. 18 

 

Conclusions ……………………………………………………………………………………………………………………….28 

 

References ……………………………………………………………………………………………………………………... 30 

 

Stationary data ……………………………………………………………………………..………………………………. 31 

 

 



2 
 

Introduction 

The recent turmoil in the banking industry, and the collapse of Silicon Valley Bank (SVB) 

alongside the crisis of many others, once again brought up the fear among the public of a 

new recession affecting the global economy. Moreover, as in recent history has been many 

times the case, more abruptly than ever in 2008, the downfalls of U.S. banks, have affected 

within a small time frame the banks and the financial institutions across the ocean. The 

reasons of these co-movements in banks wellbeing can be ascribed to many factors. First, 

firms carrying out businesses together or in the same sector are affected by the same risks 

(for instance same credit risks). Second, banks whose balance sheets are closely related 

suffer from the same kinds of macroeconomic variations (such as an increase in interest rates 

by the central bank as was the case for SVB). Third, bank-runs triggered on a cross-border 

level by the fall of a big financial institution tend to spread panic across the depositors, 

ultimately threatening to create a huge cascade effect. Hence it is of great public interest to 

understand how specific institutions health and performance will affect each other, much like 

in a network of infrastructures, that ultimately may highlight a deep systemic risk or a 

dangerous situation for regulators to deal with. Moreover it is often the case that trying to 

analyse each single bank’s balance sheet is of great importance both for financial supervisors 

and central banks, in order to assess the activities of the firm and the risks the specific bank 

is subject to, it may however become really difficult to put these information together and 

assess the level of entanglement of the banking industry, and more importantly to 

understand the way specific banks behave when compared to one another, ultimately 

allowing governments and regulators to undertake timely and aimed actions to counteract 

the crisis spreading from one singular bank or a set of them.  

In this thesis we use the econometric toolbox of estimation of Granger Causality relations in 

a high dimensional Vector Autoregressive (VAR) model. The objective is to shape a network 

of spillover effects among a pool of banks, to depict the degree of possible contagion in a 

financial distress moment. The VAR is specifically casted on a large sample of the banking 

industry with the purpose of determining whether it exists a significant dynamic effect in 

time of the performance of pairs of banks with the respect to the others. Or in other words 

we’re interested in answering to the question “Does the degree of predictability of a bank 

performance increase when conditioning on performances previously recorded by other 
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banks?”. The magnitude of this relationship will depend on the specific macroeconomic and 

industrial environment that banks pertaining to a certain geographic or economic area will 

be subject to. Furthermore, it is reasonable to expect the network of Granger causal 

relations to assume different degrees of connectivity over time. Therefore, we’ll highlight this 

behaviour in the network results and try to pair it with relevant macroeconomic events, 

ultimately providing a simple interpretation of the evolution over time. 

However, because of the econometric testing procedure that we’re using, we’ll just be able 

to tell whether the causing relation is there or not, but not why it exists, it will take a further 

breaking down of the relationship (mainly by looking at specific balance sheets and activities) 

to understand the nature of the relation. The aim of the research is therefore to analyse the 

existence and the extent of such interconnections among banks, and ultimately their 

evolution over time. 

The definition of Granger Causality will force us to account for all the possible information 

(control variables) at disposal, leading into a context of High Dimensionality (HD). The 

problems related to HD will be dealt with by using a variable selection method, the Post 

double selection proposed by Belloni et al.  2014, and expanded by Margaritella et al. 2021 

(PDS-LM VAR), that rests on the notions of Lasso estimation and sparsity. 

 

Methods: 

Before proceeding with the analysis of our main topic some considerations of general term 

are to be drawn, together with a brief review of some relevant literature in the field. 

The methods and indicators used in tracking systemic risk, or to alert regulators about a risk 

of financial distress are of various nature and they rest on different financial variables 

Tressel et al. (2022).  

The stock price of a bank and its evolution over time, offer a good depiction of the general 

well being of a bank (in a way in financial literature the evolution of price is deemed to 

condense “all the informations” available to the public and to the market). Using the concept 

of Granger Causality we detect the degree of interdependence among individuals in the 

banking industry, which seems to be a good depiction of exposure to systemic risk. 
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Alternative methods: Sparse vector heterogeneous autoregressive modeling for realized 

volatility and long memory phenomena. 

Baek and Park 2021 construct a model of Heterogeneous Autoregression to analyse realized 

volatilities in a multivariate case, the work rests on the pillars built in the field by Andersen et 

al. 2003 and Corsi 2009, and stems from the growing necessity to model co-movements in 

network of interactions and spill over effects in a time series context. Realized volatility is a 

measure (investigated extensively by Andersen et al. 2003) of volatility that can be extracted 

from data and computed over a certain frequency. The framework is particularly suitable 

when dealing with portfolio and risk management, and, more generally, financial measures. 

The framework proposes to accurately predict the linkages and interactions occurring in a 

network (in Baek and Park, twenty financial indexes that show a certain level of financial 

integration) jointly, and in a multivariate context. These papers are of interest in shaping 

some issues related to the frequency of data (particularly in case of realized volatilities) that 

are interesting to understand even when dealing with level variables that are not subject to 

the same kind of problems. This literature also introduces issues of the long -memory 

phenomena that data may be subject to.  

Volatility heterogeneous AR model (Corsi 2009): Long Memory 

The paper proposes a model able to consistently estimate financial returns evolution over 

time, so suitable to our analysis of stock returns. Financial data of this kind are most of the 

times subject to problematics in their modelling, requiring specific modelling tools. Long 

memory volatility is obtained by employing fractional difference operators, meaning 

heterogeneous lags: such as using in the same autoregressive model a day lag, a week lag 

and a month lag at the same time; in order to have comparable measures of realized 

volatility over different time horizons. However, the method of fractional difference filter is 

critiqued in lacking clear economic interpretation, instead only being able to accurately 

predict the long-memory volatility effects in the dataset.  

There’s a difference between actual long-memory volatility patterns and simple component 

model but these last ones are much easier to estimate, and since in empirical settings the 

two different things are hard to tell apart it may be just easier to model a simple component 

model.  
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The idea to model heterogeneity, as proposed by Corsi 2009, stems from the financial 

context and the nature of realized volatilities. The idea is as follows: different agents in the 

market trade on different time horizons and with different frequencies, such that certain 

traders manage their portfolios on an intraday horizon taking into account high frequency 

informations, and pension funds or other financial institutes trade on a much longer term 

horizon and with a lower frequency approach to informations. Then it is reasonable to expect 

the realized volatilities will be fractioned into different volatilities components contributing 

to the dependent variable were modelling. Generally, the idea can be summarized by the 

quote “the multicomponent structure stems from the heterogeneous nature of the 

information arrivals”, referring to the fact that each agent contributing to the volatility will be 

subject to some heterogeneity, in the specific circumstance of Corsi this is due to different 

frequency of information that the agents are associated to. Then it is reasonable to model 

variables in three chronological dimensions: the day (subject to operations of short-term 

agents), the week (subject to operations of medium-term agents) and the month (subject to 

long term ones). This setting also offers us a simple and appealing econometric 

interpretation; this allows to analyse in a more isolated context the dynamics of components 

of the network we’re investigating. Corsi concludes upon further analysis that the volatility of 

long term has a stronger effect on short term volatility than it is the other way around 

(“volatility cascade from low frequencies to higher frequencies”). Conceptually this can be 

explained by the fact that short term traders take into account the expected level of long-

term volatility, since this one determines the future level of risk and exposure to loss (short 

traders adapt to volatility in the long term by reassessing their current positions hence 

producing volatility in the short term). The HAR RV proposed by Corsi can be defined as a 

cascade model defined for different frequencies (different components) in the usual context 

of autoregressive model (it can be seen simply as a three-factor stochastic volatility model, 

where each factor corresponds to the past realized volatilities at different frequencies). This 

model is found to appropriately model the volatility memory, and to accurately represent the 

long memory of the empirical volatility (even though the HAR model itself is a model of short 

memory, model long memory volatility in a simple and parsimonious way, showing good 

forecasting performances). The big advantage of this model compared to ARFIMA is the 

simplicity and the easiness in extending it by adding new variables, to account for different 

components of heterogeneity.  
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The VHAR model produces three k*k matrices of parameters, representing: daily, weekly, and 

monthly relationships among elements of the analysis. It is likely that in this setting we find 

ourselves in a situation of high dimensions and low sample size, as such (similarly to our 

main situation) we won’t be able to estimate the model using traditional estimation methods 

as OLS; instead we’ll need to rely on sparsity seeking/variable selection methods as adaptive 

LASSO and standard LASSO (is later shown to poorly perform in this context, bringing with it 

a big bias issue. The paper finds that VHAR model improves realized volatilities forecasting. 

The sparse VHAR is compared against a non-sparse usual OLS model and a usual lasso 

(adaptive weight = 1). Note the advantages of multivariate VHAR model over the univariate 

HAR: the VHAR specifically quantifies the effect of one element (stock market index/bank) on 

all the others one by one; allowing for both a more precise estimation and prediction ability 

as provided by the analysis in the paper, and a punctual and clear representation of the 

network behaviours (by making it easier to outline the edges connecting different elements, 

or representing the relationships as a matrix of coefficients where the magnitude of each 

one can be highlighted and the most significant relations and individuals can be identified).  

The heterogeneous modelling approach is however not considered further in this thesis. Also 

consider that the medium-term nature of the dataset used (17 years) seems too small to be 

subject to long memory effects. The issue may however arise in longer time spans 

considered. 

The validity of Post Double Selection 

In the main paper of reference to this work, Margaritella et al. 2021 consider the realized 

volatilities of 30 stock returns, to identify network of volatility spillovers in a high 

dimensional VAR setting. Post Double Selection (PDS) procedure is proposed as a valid 

variable selection method to cope with the High Dimensionality originated. (The method 

itself is explained in detail in post double selection section). The analysis is conduced upon a 

big-time horizon, this allows to obtain a huge number of observations that allow to use a 

standard “full var” (without employing any variable selection and sparsity tool) alongside the 

PDS Var, to outline a comparison in performance and understand whether this double post 

selection method is worth the use. The results on a long-time horizon dataset employing the 

two different kinds of VAR model take into consideration realized variances of a variable 

(namely stock returns) and provide similar results. However, when considering a different 
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time horizon the HD becomes an issue once again, and the standard full VAR model is not an 

available choice anymore. “Graph theory” is employed to identify cluster of elements which 

are closely related allowing to identify so called “communities” (densely related within 

group, and poorly related across groups). PDS-LM Var seems the best model in identifying 

such communities and shaping them. While the result obtained over the full time period 

using the full-var model is almost the same, when we move to the shorter time period, such 

introducing HD, the PDS-LM VAR model is the only able to identify the same community 

patterns identified over the whole time window (confirming the exogenous spill over effects 

existing among individuals and previously found). Note that correctly identify the spillover 

effects and the communities’ pattern in the end is our main objective.  

Increasing the information set and considering a high dimensional VAR instead of bivariate, 

Margaritella et al. are able to obtain more realistic effects than in two dimensions; BiHVAR 

(bivariate VAR testing) just poorly performs in both settings. After these considerations, and 

the performance comparison proposed in Margaritella et al., the PDS-LM VAR model seems 

the best way to deal with our proposed analysis of Granger Causal relations.  

We won’t model measures of realized volatilities, however. Instead, we’ll deal with pure 

stock prices expressed in nominal terms. 

 

Granger causality notions and Information set 

The concept of Granger Causality can be defined as capturing predictability, given 

(conditional on) a particular information set. If the distribution of a variable Y conditional on 

an information set Ω which is made from all the information available in the world at time t-

1, changes when removing the variable “X” at t-1 from Ω, then we can say X “Granger 

causes” Y. The term ‘’causality’’ should be read as ‘’predictability’’ in practice. Particularly in 

the context of time series two main features were identified as a ground to identify causal 

relationships, these are: temporal precedence, the causes should precede the effects, and 

physical influence, manipulations of the causes change the effects (“enforced changes in the 

causing variable will induce changes on the caused variable”). 
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Eichler 2013 identifies different kinds of causality in the context of time series analysis: like 

intervention causality, stating that a cause-effect relationship should persist when the 

causing variable is manipulated, whereas any non-causal relation should vanish. Note 

however that: in time series, controlled experiments cannot be carried out, hence, effect of 

interventions can only be detected in the distribution. This effect can be detected only if it 

affects just the distribution of the variable of interest whereas all other conditional 

distributions remain the same.  

Granger causality relies on the definition of a probabilistic causal relationship such that we’re 

able to define it in empirical settings. As such GC takes more the shape of an increase in 

predictability that some information can add, than that of a proper causal relationship which 

can only be identified by means of train and control groups. The concept relies on two 

characteristics. The first is temporal precedence, as before this is the basis for all concepts of 

causality. The second is slightly more stringent and states that: the causal series should 

contain unique information about the caused variables that would otherwise be unavailable 

(such that the predictability of our interest variable is enhanced). The second element 

allowing to define granger causality, “unique information”, first requires the definition of two 

information sets: the set containing all information in the universe up to time t, and the set 

containing all information in the universe aside from the information provided by X (the 

allegedly causal variable) up to time t. Then if Y is caused by X, we would expect the two 

distributions of Y conditional on the two different information sets to differ from one 

another. This kind of definition is however hard if not impossible to detect in actual data 

settings, to define the complete information set will be a hard task. However, the definition 

involving information sets clearly stresses the idea of Granger that the information set should 

be chosen as large as possible, so that all possibly relevant variables will be included. So, GC 

definition remains strongly tied to its identification always conditionally upon a certain 

information set, that we want to contain all the information in our interest and available to 

us (to be controlled for). Then the main task in an empirical context is that of the inclusion of 

all relevant variables, to satisfy the notion of complete information; the reason is, not 

including a variable that affects two or more of the observed variables (confounders) may 

turn out being wrongly interpreted as Granger causality results, even though just spurious 

causal. Spurious causalities can be understood conceptually in this way: the omission of 
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relevant variables may induce associations between the lagged variable, that are then 

wrongly interpreted as causal relations, and that disappear if the relevant variables are 

added. Thus, in our VAR analysis as discussed, we should try to involve all the relevant 

variables. 

High dimensionality and GC testing 

To avoid spurious causality generated by a missing variable, one may want to include all the 

variables at disposal in the regression, however this may introduce a problem of high 

dimensionality, that becomes even more troublesome in the present VAR context, where the 

number of parameters increases quadratically with the number of series included in the 

system. This high dimensionality (specially in a context where T dimension is relatively short) 

prevents the estimation by standard means of Ordinary Least Squares (OLS) or (ML). Reason 

being that overfitting and high-variance estimates are obtained in high dimensional 

regression (“curse of dimensionality’’); and, even more importantly, in cases the number of 

parameters is higher than the number of observations OLS is not feasible at all. 

The Vector Autoregressive Model of order “p”, VAR(p), identifies a k-dimensional vector Yt 

(all the individuals, or variables in a Var context), which is modelled as the autoregression 

with “p” lags: 

𝑌𝑡 =  𝐴1 𝑌𝑡−1  +  … +  𝐴𝑝 𝑌𝑡−𝑝  +  𝑢𝑡 

Where A1…Ap are k*k matrices of parameters (hence k^2*p total parameters) and 𝑢𝑡 is a 

disturbance vector that is a martingale difference sequence (MDS), which equals to saying its 

expected value conditionally on the “past” is zero (behaves as white noise). 

The bivariate Granger causality can be tasted on the VAR model by individually testing the 

coefficients (via t-test or Wald test) and jointly significance testing all the elements “i,j” for 

every i = 1,…,I and j = 1,…,J; in the matrices A1,…, Ap (via F-test). We’ll test every pair of 

individuals (banks) for GC relation for 87 x 87 possible relations. GC is considered a feature of 

the “population” hence a joint significance test of the coefficients is necessary. Also, note 

that more precisely we test for Granger “non-causality” from a group J to I, as we’re testing 

𝐻0 : 𝐴1 = 𝐴2 = ⋯ = 𝐴𝑝 = 0, if we reject this null hypothesis, we’ll find Granger Causality. 



10 
 

In a case where p = 1 we can easily understand the situation by defining a group J (Granger 

Causing), group I (Granger Caused); then the VAR model is defined as the distribution of 

𝑌 𝐼, 𝑡 conditional on 𝑌 𝐽, 𝑡 − 1; then if the coefficient 𝐴 𝑖, 𝑗 = 0 we’ll have no Granger 

Causality (this is for simplicity, but in reality we test conditionally on the whole information 

set Ω, HD). In most cases as in ours, J and I will only correspond to one variable (one bank). 

We test GC from one bank J to one bank I conditional on all the others. 

The issue arising with high dimensionality is not only that of dealing with estimation but also 

the interpretation becomes a hard task for the researcher. Belloni et al. 2014 discuss how 

controlling for so many variables may render almost impossible to really grasp the effect of 

the treatment variable that we’re truly interested in. In this context we say exogeneity holds 

for the treatment variables (potentially p > n if High Dimensional) once we account for a 

certain number (s < n) of control variables. Then the problem of estimating the coefficients of 

the treatment variables (the ones we want to test for GC) becomes a variable selection 

problem. Assuming there exist many potentially “p” controls, of which a small minority “s” is 

sufficient to correctly approximate and represent the DGP. The true DGP is given by a linear 

combination of treatment and a function of control variables to be correctly identified, it is 

objective of the researcher to best approximate and identify the function of controls that 

characterizes DGP. Post double selection procedure proposed by Belloni et al., later analysed 

(in section Post Double Selection procedure), performs estimation and inference on 

“structural effects” in an environment where treatment variables can then be considered as 

exogenous. 

We want thus to impose on our coefficients a sparsity pattern, trying to reduce the number 

of covariates to allow for a much easier interpretation of the key explanatory variables. The 

idea of sparsity finds an intuition in the conceptual framework that is the following: in 

economics research many times we expect to be able to capture some complex phenomena 

by observing just a small number of relevant variables representative of the DGP.   

In detecting Granger causality, the concept of sparsity will become a method to overcome 

the issue of High Dimensionality by identifying only the relevant control variables 

(individuals). 
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LASSO estimation 

The most used estimation methods to deal with seeking/imposing sparsity are Ridge and 

Lasso regression. In this thesis we’re interested on the Lasso method as it is the basis of Post 

Double Selection method, and it solves the issues arising in Ridge regression related to the 

variable selection (Tibshirani 1996). First, we assume sparsity on β vector, that is assuming β 

vector of coefficients can be correctly approximated by a vector containing a large 

(significant) portion of coefficients equal to 0. “The sparsity assumption validates the use of 

variable selection methods, thereby reducing the dimensionality of the system without 

having to sacrifice predictability” Margaritella et al. We then proceed to minimize a loss 

function, which is the usual residual sum of squares with the novelty being an “L1 norm 

constraint”, a weighted penalty term that is governed by the magnitude of the Beta 

coefficient and a tuning parameter “λ “. For a general n-dimensional vector of responses y 

and n × M-dimensional matrix of covariates X, the lasso simultaneously performs variable 

selection and estimation of the parameters by solving:  

�̂�(λ) =  arg min
𝛽

( 
1

𝑇
 ‖𝑦 − 𝑋𝛽‖2

2
 +  λ ∑  |βm|𝑀

𝑚=1  )  

where λ is a non-negative tuning parameter determining the strength of the penalty. The 

notation βˆ(λ) highlights that the solution to the minimization problem depends on λ, the 

choice of which is not unique: in the context of Var models, Margaritella et al. compares 

different methods for the selection of the tuning parameter (various methods exist to choose 

λ, the ones found to best perform in our context consists in using Bayesian Information 

Criteria). Also, it can be noted that the number of selected coefficients is a function of λ; the 

L1 norm constraint has the property of constraining the sum of all the beta coefficients, such 

that some of them must be forced equal to zero by the estimation process. Lasso succeeds in 

performing variable selection and reducing the effect of overfitting (Tibshirani). 

The use of Lasso to detect Granger Causality in High Dimensionality 

Oracle property is intended as the ability to correctly detect the sparsity pattern, by correctly 

identifying the zero parameters as being zero and the non-zero parameters as being non-

zero. Kock And Callot 2015 prove the asymptotic efficiency and oracle ability of LASSO and 

Adaptive LASSO in a context of sparsity in DGP; with the advantage of LASSO being feasible 
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even with fewer observations than variables (HD) and that means also in our setting HD-VAR 

for granger causality. The validity of these methods also allows to focus on shorter and most 

recent time spans than being obliged to go back huge time spans to obtain more 

observations. Since adaptive LASSO can be used to correctly detect zero and non-zero 

parameters this can be used in testing for HD Granger Causality. (Adaptive lasso is 

asymptotically oracle-efficient as the OLS, probability of selecting the correct sparsity pattern 

tending to 1, lasso asymptotically and non-asymptotically correctly identifying zero and non-

zero parameters). However, we’ll use LASSO in a different way than to directly test for 

granger Causality.  

In our empirical setting we’ll use Lasso to perform control variable selection. We’ll then be 

able in the linear estimation post selection to detect a Granger Causality relation going from 

the treatment to the outcome variable in an exogenous setting, as required by the notion of 

Granger Causality and as discussed in Eichler et al.  Using just one step of Lasso selection, 

however, is not a feasible option.  

The Post Double selection method: procedure and overview  

An issue that arises often when trying to inference on causal effects is to identify which 

control variables allow to perform inference in a randomic (population like) setting, 

otherwise meeting the risk of wrongly detecting spurious relationships or reaching biased 

conclusions. The randomic setting can be obtained as a set of control variables of interest can 

be taken to be randomly assigned if we are controlling for some variables in the population. 

Most of the time this will be coped with by identifying these control variables from the 

economic theory, or report results after using different set of control variables for each one 

of them; these methods however are not automatically the best to be used. 

Even though, as said, we employ Lasso for the selection of controls, LASSO on its own creates 

problems when dealing with “post-selection inference”, the LASSO “oracle use” such as 

adaptive lasso, produces what we may consider an omitted-variable bias, ruling out variables 

which in a common estimation would otherwise be significant. When in presence of 

coefficients close but not equal to zero, Lasso may wind up discarding potentially important 

covariates, not being able to distinguish them as being qual to zero or not. This can be solved 

by imposing some selection criteria and conditions to rule out small parameters, thus 
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drawing a sharp separation line between zero and non-zero coefficients. These methods are 

however strict theoretical devices that we cannot strongly rely upon. 

A Lasso estimation is performed for the outcome (Granger Caused) variable on all the control 

variables, and of the treatment (Granger Causing) variable on all the controls as well. Then a 

post-selection least squares estimation of the outcome is performed on the treatment 

variables and all the control variables selected in at least one of the two Lasso estimations. 

Note that the controls correspond to all the other individuals (banks in our context) on which 

we are not performing the test for Granger Causality. Clearly the ratio is to capture all the 

relevant control variables, for each one of the treatment and outcome separately, and to 

only rule out those coefficients that are not relevant in either two of the selections. 

The use of Belloni post double selection method proves to substantially diminish the afore 

mentioned omitted variable bias, otherwise present in the post-single selection, still being 

able to correctly detect the sparsity pattern and allowing for interpretability on the 

treatment variable when facing a context of High dimensionality. It also ensures with almost 

certainty the errors of the model obtained after OLS are orthogonal w.r.t the treatment 

variable (exogeneity).  

In a VAR context the post double selection method can be formalized as follows: 

Let 𝑥𝐺𝐶,𝑗  with j = 1,…, 𝑁𝑥 where 𝑁𝑥 = p𝑁 𝑗  , denote the j-th column of 𝑋𝐺𝐶   (p is the 

number of lags), and consider the partial regressions: 

a) 𝑌𝐼 =  𝑋−𝐺𝐶   γ0 + e0 

b) 𝑥𝐺𝐶,𝑗 = 𝑋−𝐺𝐶   γ𝑗 + e𝑗   

Note that in this context 𝑌𝐼 represents the outcome variable, 𝑋𝐺𝐶   is the treatment variable 

(or block), these are the variables we want to investigate Granger Causality about. 𝑋−𝐺𝐶  

represents all the available control variables that we are not directly testing in GC 

relationship (all the others).  

The two partial regressions above still represent a High Dimensional setting in our VAR 

context. We’ll perform Lasso estimation method on both a) and b) in order to collect all the 
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relevant controls, before performing the final least squares estimation of 𝑌𝐼 on 𝑋𝐺𝐶   and on 

all the relevant variables selected in the previous double selection procedure.  

The omitted variable bias w.r.t the coefficients of 𝑋𝐺𝐶    would be originated where it exists a 

variable in 𝑋−𝐺𝐶  that has a non-zero coefficient in both regressions a) and one of the 

regressions in b). If the coefficient of such a 𝑥−𝐺𝐶  variable is zero in regression a) it means 

that it does not affect the outcome and hence not wrongfully omitted. If the coefficient is 

zero in all the regressions in b) it means that this control is not related to any variable in the 

treatment and omitting, it wouldn’t result in a bias. Meaning the Lasso procedure would 

have to wrongfully rule out a non-zero parameter in both regressions a) and b) in order to 

create omitted variable bias (the probability of this happening gets asymptotically negligible). 

(Margaritella et al.) 

The innovation is to perform variable selection useful for inference (selecting the controls to 

be included in the GC testing, for some treatment variable), without incurring in the bias 

generated by just using one Lasso selection passage.  

The procedure in easy steps: 

-First select a set of control variables which are useful to predict the treatment of interest 

(regress treatment “X” on all available controls using LASSO), helps identifying controls 

strongly related to the treatment thus helping to identify possible confounding. 

-Then select additional control variables, choosing the variables that predict “Y” (the 

dependent we’re modelling in our main model, VAR), this helps avoid omitted variable bias. 

 (These two steps will allow us to gather all the relevant variables, minimizing omitted 

variable bias) Given that we essentially have 𝑁𝐺𝐶  = NJ × NI × p steps of selection, it would be more 

appropriate to refer to this method as “post-NGC-selection”.  

-Estimate the coefficients of interest (of the treatment X on the dependent Y) by linear 

regression of Y on treatment X and on all variables selected in the first two steps. This in our 

context corresponds to OLS estimate the VAR (p) model on the variables (time-series) retained 

by post double selection. 
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Networks and Communities (Data and results): 

Data  

The main characteristic defining a stationary time series process, is that the variable tends to 

revert always to the mean, and the process is invariant when moved arbitrarily over time, so 

the properties of the series do not depend on the time at which the series is analysed. Such 

that no time trends can be identified, and modelling a subsection of the data corresponds in 

some way to model the whole-time horizon (appears like the series when located above its 

mean is subject to some “pressure” to go down again and cross the mean, to then be subject 

to a upward pressure when located below it). Non-stationary processes on the other hand 

are subject to upwards or downwards trends that are characteristic of the period considered, 

meaning that modelling one period instead of another makes a difference. Is our duty, to 

correctly estimate the model, to understand what the long-time behaviours of the variable 

are.  The first problem arises when actually identifying whether a process is stationary or not; 

in fact, since we’re dealing with variables evolving over time, how can we be really sure that 

a variable showing a strong upward trend in its history, will not in fact revert to its mean 

when evolving over the next time periods? It is impossible for us to certainly forecast the 

future, but with some degree of confidence we can say that some processes show non-

stationarity because of the theoretical background that data come from. For example it is 

reasonable to expect an AR(1) process on GDP of one country will show non-stationarity, and 

will in fact tend to grow over time without inverting the trend. The main issue however, 

when trying to model nonstationary data, is that we have a high risk of detecting spurious 

correlations. The trend nature of a particular variable, when regressed on one or more 

variables that follow the same time trend, will cause our estimates to always generate high 

significance level and prediction capacity, just because the model is able to identify the same 

trend pattern followed by data, but without really being able to detect the real “co-

movements of variables”. Instead, in the case of stationary data the behaviour of the 

variables can be taken “in a vacuum” and estimates can be carried on with less risk of finding 

spurious relations. Of course the issue arises in cases such the one in our analysis, when 

dealing with high dimensionality and ultimately with a lot of variable that we don’t know ad 

priori whether subject to a causal relation or not (since is our aim to find out whether this 

relation exists or not); so, ruling out causal relationship wrongly detected by the model, by 
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means of a conceptual approach (like knowing that decreases in car crashes are not causing 

increases in GDP) is not a feasible approach when dealing with HD VAR models. We must be 

careful when identifying the time dependence of data and the way time, as sort of a control 

variable in this case, is affecting all the other variables in our problem. That’s why most of the 

times we’re just interested in modelling stationary time series data, or we make our non-

stationary data stationary by performing manipulations as taking first differences. The 

exception to trying to always model stationary data is when we find ourselves facing 

variables that are “co-integrated”. 

Checking for cointegrated time series processes allows to spot nonspurious correlations: two 

series with integration of order 1 ( I(1) meaning they’re nonstationary but their first 

differences are), can be cointegrated (a linear combination of them leads to a trend with 

integration level zero), only if there exists a real relationship between the two. We can define 

the difference between the two time-series Yt-B*Xt, if a B exists such that this process is 

stationary, we can call B the cointegration parameter (or example if B is 1, means Yt-Xt is 

stationary, but Xt and Yt are alone nonstationary). Cointegration can be viewed as the mean 

reverting property of the difference between these two variables, such that the more the 

two variables are apart the more the mean reversion “tendency” is strong, like a rubber band 

pulling them back together whenever they start to deviate from each other; while two not 

cointegrated time series will not show this tendency to avoid distancing from one another. 

The important property is: cointegrating parameter can be estimated consistently via OLS by 

regressing one variable on the other (Xt on Yt as normal OLS, the marginal effect will in this 

case be our cointegration parameter), without having the problem of facing wrongly 

identified spurious relations ONLY if the two variables are cointegrated (two integrated I(1) 

series which are not directly causal related may none the less show significant correlation, 

spurious as explained above, and which is the main problem of trying to model non 

stationarity). It is clear how in general understanding the nature of our time series data is of 

great importance before proceeding with any estimation; and testing for unit-root and 

cointegration is pivotal.  

The validity of tests employed in detecting degree of integration or cointegration depend 

however on the correct specification of the DGP. 
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The model we’re using can be employed on non-stationary data without need for 

cointegration test beforehand. 

 Even if we tested for the selection of the corrected length p=2, in order to avoid issues of 

spurious relationships we impose p > d, where d is the suspected maximum order of 

integration of our time series, (d=2 handles potentially nonstationary time series). This 

means when selecting the lag, we will always need to impose a number of lags that is at least 

equal or greater to the suspected degree of integration. Artificially augmenting the number 

of lags of the Granger causing variable over the suspected degree of integration, allows to 

avoid spurious relationships being highlighted without the need to test for any cointegration 

or unit root before, this is explained among others in Toda and Yamamoto 1995. We need to 

reach a balance between the lag length employed and the suspected degree of integration 

so that when running post double selection by Lasso, the model has the sufficient variables 

to perform first difference estimation. The R package provides us with a function that selects 

for our dataset the correct number of lags to be employed using Bayesian Information 

criteria. In our case the selected lag is 2, and we set our maximum degree of integration to 2 

(reasonable to expect economic variables to be integrated at most of degree 2). Hence 

spurious causality shouldn’t be a problem. The data we’re modelling in the main results are 

‘levels’ (not differenced into stationary), however in the end of the thesis we also run models 

on differenced data that are made stationary artificially to compare the results obtained. 

In cases the time series length and of covariates have the same magnitude, the post double 

selection criteria tend to select too many variables (better explained at page 22). Thus, the 

function we run to perform post double selection also presents a lower bound parameter, 

that regulates the number of coefficients selected, allowing the model to stop selecting 

significant variables in the double lasso sparsity seeking, only after a certain share of the 

parameters was selected (in the models presented here after this lower bound is set at 50 

%). 

The dataset is made up of 88 variables (Globally Systemically Important Banks and other 

banks showing global systemic importance from around the world) observations correspond 

to the price of the stock in different denominations, daily, over weekdays from 04/01/2005 

to 17/03/2021 (for a total of 4227 observations). Variables are expressed in different units of 

measure, namely different currencies; however, this should not affect our analysis in finding 
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patterns of causal relationship, as these can be detected from the movements more than the 

nominal values. 

We obtain a network of 87 x 87 relations of spillover effect/GC relation, for 88 individuals.  

Results 

Our aim is to identify the existence of communities of individuals, and their evolution over 

time. Generally, we’re interested in understanding the shape of the bank network (the extent 

and location of GC relationships among banks’ stock prices) and how it changes in time. 

More precisely: the way the network and the communities changed in different economic-

financial moments of the last 17 years. Thus 14 models employing post double selection 

method are run for each year from 2005 to 2021. The world, and most of others the western 

economies, was subject to different crises and subsequent reactions by central banks that 

brought to various economical moments, ranging from post 2008-2011 austerity measures 

and post covid-19 QE and other measures of expansion. Different periods of prosperity or 

recession, and the corresponding measures adopted by central banks, brought private banks 

to commonly enjoy the gains from Quantitative Easing for example, or, on the other end 

suffer the losses from the withdrawal of investments or measures of liquidity containment. 

The network of GC allows us to detect the extent to which the banking industry is tight in 

shared movements and reaction to changes in the economy (through the price of stocks over 

time, which however is a good depiction of this dynamics). As such, we can capture whether 

the system is so tangled up and “interdependent” to just expect shocks affecting one bank to 

have widespread effects on the whole network, or whether communities sharing isolated 

causal relations exist: such that shocks affecting a bank in a community will strongly 

determine the effects on other banks in that community. An arrow drawn in the network 

represents GC relation detected in the PDS model. 

Decreasing the lower boundary on the selection process, or doing the same with the 

significance level, the models estimated over more years together does not increase in 

interpretability. 

Figure 1 refers to the model estimated over 2019-21 simultaneously, Figure 2 refers to the 

model over 2005-07. 
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Figure 1 
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Figure 2 
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The networks show arrows of GC (predictability) occurring among and between almost all 

the individuals, and the communities being tangled, appearing as a big main community with 

just few individuals living on the border and showing fewer relationships. This may prove 

when considering time intervals of more years together the banking industry is deeply 

interconnected in a network of spillover effects.  

The fact big commercial, investment banks, and particularly publicly traded banks (such as 

the ones belonging to our data pool), are subject to stringent regulations that, both 

previously and even more following the 2008 crisis, were put in place to decrease the 

amount of risk undertaken by financial institutions. Most of these big banks share a large 

pool of investment activities that they put their depositor’s money into. These investments, 

however, are so differentiated that in aggregate terms they just tend to reflect in their 

outcomes the well-being of the financial system and of the economy. Even though the 

investments of banks are under constant inspection by the authorities to precisely avoid 

situations of systemic risk; this may cause the activities of all the big banks in the world to 

converge in the same direction to some extent especially during tumultuous times, 

explaining to some extent the behaviour we observe in the networks. 

The situation however is different when it comes to smaller banks which are not part of our 

dataset, banks that are not publicly listed for example. These smaller financial institutions 

most of the times are inserted and deeply dependent on a specific economic/geographic 

area that their clients/depositors pertain to and do business in. Also, they’re particularly 

active and focused on specific economic activities as serving a particular industrial sector in 

one country. This kind of banks are expected to enjoy a much bigger degree of 

“independence” and detachment from the rest of the banking industry. Analysing these 

smaller banks, we would rightly expect to observe more communities to show up and fewer 

causal relationships to be highlighted in the network, as each bank will be subject to different 

settings and environments that however will be much more stringent in determining the 

price of their stock.  

Furthermore, publicly listed stocks are subject to movements of retail traders and other 

dynamics that will be likely to affect the whole banking industry through the stock prices, 

while for small banks the price of their stock will likely be determined mainly by the decisions 

undertake by the bank and the economic activities the bank is subject to. In our case, 
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identifying a big main community, without being able to detect an evolution of smaller 

communities of bank over time, may just be a confirm of this conceptual intuition about the 

nature of the banking industry.  

Still, the most reasonable cause for observing such dense networks over different years would 

be the effects of having a lot of temporal observations, or a lot of observations in general. Two 

observations should be pointed out: on one hand one may be led to think the number of 

observations when increasing will lead to a higher amount of information (which seems always 

a good thing for the researcher).  

A trade-off exists between the amount of information we can fit into a model and the inference 

that can be done upon that model. In a sense, under Granger conception of causality for 

example, which is described in Eichler 2013, the causality relationship is always defined 

conditionally on an information set, which Granger defines as all the information available in 

the universe; since collecting all the information in the universe is an impossible task, the 

notion could be readapted to including all the possible treatment and control variables that 

we have at disposition, thus the more variables are included the better the chance of really 

capturing true causal relationships among individuals (from which our need to perform post 

double selection and use sparsity imposing methods). The situation however changes when 

dealing with the number of (temporal) observations: when performing the last step in our 

model, namely identifying significant coefficients of VAR model for GC in an OLS step, the 

significance of variables is defined by an F test. The F statistic is defined by a critical value which 

increases with the difference “n-k” so that when “n” is much bigger than “k”, the test will likely 

produce critical values always falling in the rejection area and thus always lighting up a 

significant coefficient. The result is that when we try to fit models over a temporal horizon that 

exceeds the year, the effect described above takes place producing a highly interconnected 

and tangled network. Furthermore the model won’t be able to identify communities, as each 

individual is highly dependent on one another; almost all the coefficients seem to show 

significance. Conceptually this can be confronted with a usual linear regression in the case the 

number of observations equal the number of variables, hence a perfect fit can always be 

found; the principle is almost identical. This means the huge amount of informations, and in 

particular the number of observations (since by conceptual framework we are to involve as 
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many variables as possible), leads the model to always be able to find significant GC 

relationships to occur among individuals.  

The reason why we observe these tangled and confused results over multiple years, may also 

be that the model detects GC relationships when these occur even in a small portion of time 

and not persistently over the entire time window. Even if a GC relation between two individuals 

exist in only one of the years considered by the model, the model is going to highlight it, in the 

end always producing a dense network that never shows sparse relations. For this reason, we 

try to plot the evolution of the banks pool by running 17 different models, one for each year, 

and order them chronologically.  

We must also pay particular attention to the correct interpretation of our model. We’re dealing 

with a model for VAR analysis of GC; a coefficient being highlighted or not, thus the GC arrow 

being drawn or not, corresponds to detecting the predictability of current values (stock price) 

of a particular individual conditional on the values assumed by the Granger Causing individual 

in the previous period (and on all the other “relevant” individuals). In this case having two lags 

on the previous two days over the whole year, (or more than one depending on the number 

of lags selected, which in our case is 2 as selected by BIC). What the network is telling us is the 

degree of predictability conditional on previous observations.  

The density of the network, which can be easily understood from a picture, represents the 

degree of interconnection of the industry, or more precisely the degree of predictability of 

individual banks conditionally on the others. Observing the evolution of the network over the 

years allows to associate the changes in the density and the shape with the economic and 

financial condition respectively of each year. The networks and communities depict a 

particular pattern of response to financial events (such as great recession or covid pandemic). 

One could use the networks and its density as an indicator of financial stress and use it to 

detect whether an industry is forecasting a financial crisis. Furthermore, the degree of density 

and the existence of communities itself is an indicator of financial well being of an industry, 

and it can be used to forecast spillover effects of the failure of a specific bank for example by 

using concepts offered by “Graph theory”.  

Graph theory offers different instruments helpful in identifying useful measures to study our 

spillover networks. For example, we can define a centrality measure that allows to identify 
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the relative importance of nodes and edges. Eigenvector centrality identifies nodes that tend 

to be most frequently reached. Still there exist different ways to analyse centrality measures 

depending on the characteristics of the network we’re dealing with and on the kind of 

analysis we want to perform. We may be interested in studying the dynamics of the network 

or the robustness of the network when a link is removed (dynamic importance of node 

removal is of great interest and importance). The concept of non-conserved spread is used to 

study changes to a complex network when, contrary to the conserved case, the source of 

“excitement” in the network is possibly infinite; this is used and best suited to study 

situations such as the transmission of infectious diseases, neural excitation and spread of 

information and rumour. This framework of non-conserved spread could be also employed in 

our analysis to study the effect of a financial crisis hitting on the network and the response 

(determine a measure of Stress withstanding of the banking industry). In the same way it 

may be useful to identify so called “hubs”, nodes that are subject to a larger number of links.  

We could use some of the above methods to answer: “what are the institutions more 

endangered?”, “which are the subjects that may cause systemic risk to arise in the industry 

and cascade effects on the whole banking sector?”. In this report of results, we’re just 

interested in depicting a general interpretation of the networks evolution and of the pool of 

banks in its integrity. 

By a visual analysis of the plotted networks evolution over the years we can understand how 

the level of interconnection and predictability within the network varies over time. Then we 

can then compare the behaviour assumed by the network with the economic and financial 

events of the period. The idea is to identify a pattern that the network assumes in financial 

crises and that can be detected to forecast in advance the degree of systemic risk or the 

envisage of such crises by the banking industry.  

It appears that the communities are much more shaped, we can identify different ones, in 

years that are fair from financial crises, namely years fair from 2008/09 Great Recession or the 

2011/13 European sovereign debt crisis and 2019/20 covid-19 pandemic. The communities 

melt into just one big group with some outliers when in the years struck by crisis. We can 

clearly see the same evolution over time when observing the networks, with the number of 

arrows, defining GC relationships detected by the model, increasing significantly when moving 
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towards the crisis, and diminishing when moving away. The network assumes an extremely 

tangled and hardly interpretable shape in the years of the interested by financial turmoil.  

This could be interpreted (as suggested before) as the crisis hitting all the industry in the same 

way and forcing it to abide the same strategies and employ the same solutions to thrive. And 

as the degree of financial interconnection and co movements increasing making it much more 

likely for other banks to suffer losses from other banks. To provide an example we can think of 

bank runs being much more likely for all other banks when one bank fails, as the public trust 

in banks collectively diminishes with a fast-spreading fear bank failure. In this way the 

behaviour of one bank will likely affect much more the behaviours of one or more banks, in 

what we may define a “tension” arising. In the same way when the industry is calm and thriving 

the banks adopt different strategies and sectors of interest, developing ties among one 

another which are likely to shape into communities, each one bearing interdependence 

relations that they share (for example we can sometimes observe communities made of banks 

that belong to the same country). Networks are showing less dense as the causal relationships 

become fewer and better defined. By the definition of Granger Causality, we can observe over 

time how the degree of predictability of one individual bank stock price increases conditional 

on the lagged stock prices values of all the other individual banks in the chosen sample.  

Below is presented the evolution of networks and communities in the years 2005 to 2021. 

Figures 3 and 4 show the evolution of communities in the same years with a gap (2011-2017).
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The idea behind plotting communities is that: we’re able to detect certain groups of 

elements which share more connections internally than with the rest of the network, this 

helps in a visual interpretation of the evolution over time. 
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Figure 3 (2005 to 2010) 
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Figure 4 (2018 to 2021) 

 

 

Conclusions: 

The use of alternative estimation and variable selection methods to impose sparsity, namely 

the Post Double Selection method proposed by Belloni et al. and discussed by Margaritella et 

al. , allows the detection of Granger Causality relationships in High Dimensions (after the due 

theoretical premises) with a sufficient degree of certainty about the goodness and solidity of 

results obtained, and avoiding the omitted variable bias entailed by the use of post-single 
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selection. In a context of Vector autoregression analysis over a pool of 88 banks this method 

allowed to shape the evolution of a spillover network over 17 years, with the objective of 

understanding the evolution of the network and obtaining a marker/indicator of financial 

crises to be detected from the network itself. Overlapping the results with the economic and 

financial macro events of the time periods we can observe the tendency of the spillover effects 

to become stronger under the crisis showing an higher level of entanglement and 

interconnection; this can be interpreted as the degree of predictability of the whole sample 

(banking industry) to increase in the crisis (conditional on “itself”) , probably because of the 

same macroscopic events that the industry is subject to require the same reaction by all the 

banks and are luckily to affect all of them in the same way (and most of the cases in the same 

direction). It’s important to stress how the nature of this results rests strongly on the nature 

and nominal size of these banks, which make them subject to some common elements (most 

importantly the degree of control and the economic activities that they’re subject to). Also 

consider that even a formal detection of Granger Causality is not enough to define a true causal 

relation, and we may in fact think of it as predictability. The main advantage of the post double 

selection framework is to consistently handle high dimensionality, so that even with few 

temporal observations with respect to variables we’re able to estimate a model. Taking smaller 

time periods of some months or some weeks can allow to build a forecasting measure: an 

index of industry interdependence could be built on the varying number of connections 

detected in the network of spillovers. So that, resting on our results, an alert for financial crises 

can be triggered by the increasing degree of interdependence and by the disappearance of 

isolated communities. A suggestion for further research would be to perform the same analysis 

dealt with in this short paper on a pool of regional banks; subject to some 

theoretical/conceptual premises to be discussed by the researcher. This may give the chance 

to detect more precisely and verify the presence of Granger Causal relations, also being able 

to contextualize the pool of banks and their main activities (sometimes extremely 

differentiated from one regional bank to the other) and to understand the way a situation of 

distress affected that specific economic or geographic area that the dataset is referring to, and 

how systemic risk was originated.  
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Stationary data  

We run the same models that we reported in the main results, but now instead of running 

levels (raw variables), we difference the data into stationary. We can observe the networks 

show overall the same behaviour over years as the networks computed using nonstationary 

data. Namely showing the spillovers increasing and the communities losing shape to reach a 

peak under the crisis of 2008 and 2020, and to then decrease and reshaping in well-defined 

communities when moving from the crisis. We can see the model better identifies 

communities, shaping them in a much more precise way, and the number of edges in the 

network (of GC relations/ spillover effects selected) is significantly smaller than those 

identified over nonstationary data. Networks are much less tangled and more interpretable. 

The lower number of edges and significant GC relations is what makes the identification of 

the communities much easier and better defined, as it becomes easy to observe nodes 

sharing many connections together and few connections with the rest of the network. The 

model can group together in the same communities banks sharing the same country of 

origin, which is a great result. For instance, we can observe in 2005 the Japanese banks (J:) all 

being closely connected one another, and Chinese banks (CN:) showing the same behaviour 

in years from 2007 to 2010, differently from those of other nations.  

 

Above are Communities 2005-2010 from up left corner moving right 
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Above are communities 2018-2021 
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Above are Networks 2005-2010 

 

 

Above are networks 2018-2021 


