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Abstract

This paper presents a Deep Learning-based Hybrid Recommendation System (DLHR) de-
signed specifically for institutional investors with public portfolio holdings on the Stockholm
Stock Exchange. The objective is to provide personalized investment recommendations,
complement existing portfolios, and explore untapped cross-selling opportunities. We eval-
uate the DLHR’s effectiveness using selected metrics and compare it to widely used baseline
methods. We utilize the mean-variance spanning tests to assess the potential for expanding
the investment opportunity set. We find that investors seeking to maximize the Sharpe
Ratio would have benefitted from adding the recommended stocks. Our results demonstrate
that leveraging deep learning techniques enables effective identification and exploitation of
untapped cross-selling opportunities, leading to enhanced portfolio performance and im-
proved risk management. Thus, we conclude that implementing the DLHR approach on
the Swedish stock market can provide personalized investment recommendations for insti-
tutional investors. This research highlights the practicality of employing machine learning
techniques within the financial sector.
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1 Introduction

Learning to choose is hard. Learning to choose well is harder.
And learning to choose well in a world of unlimited possibilities
is harder still, perhaps too hard.

Barry Schwartz (2004)

As the financial service industry is expanding, investors now have access to an unprece-
dented number of investment options. For example, investors can choose from a range of
stocks, bonds, mutual funds, exchange-traded funds (ETFs), and alternative investments
like real estate and commodities. While this can be positive, the sheer magnitude of choices
can also be overwhelming and confusing, leaving investors struggling to identify the best
investment products that align with their needs and preferences. It’s clear that investors re-
quire more than just generic advice - they need investment solutions tailored to their unique
situations. This requirement has created a growing demand for investment advice that is
both effective and personalized, and the race is on to develop solutions that can meet this
need.

To meet this need, utilizing machine learning is becoming increasingly popular. Machine
learning involves the development of algorithms and models capable of automatically learning
and improving from data, without explicit programming. It relies on statistical techniques
to analyze large datasets and identify patterns, trends, and relationships that can be used
to make predictions or decisions. Recommendation systems are especially popular in this
field. They use algorithms to suggest potential products based on specific inputs and criteria
derived from sample data. Over the past two decades, personalized recommendation systems
have become a frequent tool in several industries to offer customized product and service
suggestions based on the specific preferences and requirements of the consumers.

Conventional recommendation systems comprise content-based filtering (CBF), which
bases its recommendations on user/item characteristics, or collaborative filtering (CF), which
bases its recommendations on past interactions. Hybrid filtering (HF) combines the strengths
of both methods and delivers more effective and personalized recommendations. However,
recent research has shown that deep learning techniques can further enhance the effectiveness
of recommendation systems. Deep learning, a branch of machine learning, revolves around
the training of artificial neural networks, which are models inspired by the intricate workings
of the human brain. These networks can learn from data, discern patterns, and subsequently
utilize this knowledge to make predictions or decisions. Such acquired insights find appli-
cations in a multitude of tasks, including but not limited to classification and prediction
(Kiran et al., 2020).

Netflix has been a pioneer in leveraging machine learning to enhance its recommenda-
tion system. The company introduced tailored movie recommendations as early as 2000
and launched the Netflix Prize in 2006, a competition that leveraged machine learning and
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data mining to improve its recommendation system (Bennett et al., 2007). Today, Netflix’s
personalized recommendation system remains highly effective, with an impressive 80% of
stream time being attributed to the system. This has resulted in significant cost savings for
the company, estimated to be around $1B per year as of 2016. The effectiveness of personal-
ized recommendation systems has been demonstrated in several industries, from e-commerce
to entertainment, indicating the potential for similar success in the financial sector.

However, the majority of the prior research on recommendation systems for investment
recommendation has focused on two main areas:
a)Providing investment portfolio recommendations to individual investors (Gonzales & Har-
greaves, 2022) or
b)Supporting financial advisors in devising investment strategies (Musto et al., 2015). The
body of research on institutional investors is relatively sparse in the area, despite their unique
characteristics and potential for cross-selling opportunities. Institutional investors tend to
be larger, have specific investment goals and risk preferences, and are subject to regulatory
requirements. Moreover, the research in the financial area has mainly focused on conven-
tional approaches like collaborative filtering (Sayyed et al., 2013b), content-based filtering
(González et al., 2015), or hybrid filtering (Tseng, 2004) and the use of deep learning-based
hybrid recommendation systems have been largely unexplored. While these approaches have
shown promise in some cases, they have limitations, such as the cold start problem and data
sparsity Zibriczky (2016).

In this context, this study aims to develop and test a deep learning-based hybrid recom-
mendation system (DLHR) specifically designed for institutional investors who have public
portfolio holdings on the Stockholm Stock Exchange. The objective is to provide personalized
investment recommendations that complement their current portfolios and explore untapped
cross-selling opportunities that have not been addressed in previous research. Through this
investigation, valuable insights can be gained regarding the effectiveness of personalized rec-
ommendation systems for institutional investors and the potential advantages of employing
deep learning-based techniques in the financial service industry.

To evaluate the effectiveness of the DLHR, the study will employ selected evaluation
metrics to assess its precision in providing recommendations. These metrics will allow for
a comprehensive assessment of the accuracy and quality of the personalized investment
recommendations generated by the DLHR method. By evaluating the system’s precision,
the study aims to determine its efficacy in assisting institutional investors in making informed
investment decisions.

Overall, this research aims to contribute to the existing literature by:
a) Providing insights into the effectiveness of personalized recommendations for institutional
investors and the enhancement of cross-selling opportunities.
b) Advancing the understanding of the potential benefits of deep learning-based recommen-
dation techniques in the financial service industry.

The thesis is organized as follows: section 2 presents the theoretical background of recom-
mendation systems. Section 3 presents relevant literature findings underpinning this study’s
investigation into the employment of DLHR techniques in the financial service industry and
the target group, institutional investors. Section 4 provides an overview and analysis of the
data and back-testing procedure used for the empirical approach, followed by a summary of
the methodology of the executed experiment in Section 5. Section 6 presents the results in
conjunction with an analysis. The thesis ends with concluding remarks in section 7.
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2 Recommendation Systems

To motivate our empirical analysis and shed light on the underlying model, we provide an
introduction to recommendation systems and the different types of filtering. Specifically,
we will begin by introducing the necessary theoretical prerequisites before delving into the
existing literature on the models used.

2.1 Recommendation Systems

Recommendation systems address information overload commonly faced by users by offer-
ing personalized recommendations for exclusive content and services. The systems utilize
algorithms that suggest items, products, or services to users based on different criteria.
These systems typically use machine learning techniques to analyze user data and generate
personalized recommendations.

Researchers have divided opinions regarding the application of recommendation systems
to real-world financial problems. Several researchers mentioned below have successfully
applied a recommendation system approach to solving real-world financial problems. Other
researchers criticize the approach to real-world financial problems.

To understand the background and application of recommendation systems and the sys-
tem deployed in this paper, one must understand the different types of recommendation
systems. There are three main types of recommendation systems: collaborative filtering and
content-based filtering, as well as the combination of both; hybrid filtering.

2.2 Collaborative Filtering

Collaborative filtering (CF) involves using the preferences of users with similar characteristics
to the target user, also known as user-to-user filtering, to recommend products and services
based on what the similar user has chosen. In addition, it also uses the preferences of the
target user by tracking their likes and dislikes for product-related information to predict
personal preferences and recommend products with similar characteristics, also known as
user-to-product filtering. In conclusion CF generates recommendations by finding similarities
between users or items.
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Figure 2.1: Overview of user interactions with items for CF method (Klacanova, 2022).

Figure 2.1 shows the architectural overview of user interactions with items. Both user-
to-user filtering and user-to-product filtering use a similarity measure to determine which
users or items are most similar. Examples of similarity measures used in CF are the Pearson
correlation coefficient and the Cosine similarity measure. Once similar users or items have
been identified, CF predicts a rating or preference for an item by combining the ratings or
preferences of similar users or items.

CF is one of the most often used approaches when applying a recommendation system
to financial settings (Zibriczky, 2016).

In their study, Sayyed et al. (2013a) conducted a preliminary investigation into the imple-
mentation of CF methods in the stock market. They use recommendation systems to suggest
items to users using historical records of user purchases. These systems leverage data min-
ing techniques to analyze historical user data, identify similarities among data items, and
extract valuable hidden information or patterns. The system intends to establish relation-
ships between new individuals and existing data items in order to determine similarities and
provide recommendations. However, they did not validate these methods using stock data.

Gonzales & Hargreaves (2022) propose a CF technique to develop a stock recommender
system that addresses the challenges of decision-making in the stock market. Gonzales &
Hargreaves focus on understanding investors’ needs and interests, and they explore three dif-
ferent approaches: K-Nearest Neighbour (kNN), Singular Value Decomposition (SVD), and
Association Rule Mining (ARM). The three different approaches are popular CF methods
used. By performing hierarchical clustering, the authors improve computational efficiency
and identify similar groups of traders. They evaluate the recommended portfolios using
financial metrics as well as statistical metrics. The results show that the kNN approach
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produces the most accurate recommendations. Overall, the study demonstrates promising
recommendation results that cater to users’ profiles, contribute to portfolio profitability, and
minimize financial loss, thereby providing beneficial stock recommendations when consider-
ing user preferences.

In this study, we adopt the kNN approach as the CF method, similar to the one proposed
by Gonzales & Hargreaves (2022).

2.3 Content-based Filtering

Content-based filtering (CBF) relies on the attributes of the items being recommended. This
method suggests products comparable to what the user prefers based on the characteristics of
the products and the user’s previous actions or feedback. The approach creates a model using
available features to explain interactions between users and items. The algorithm assesses
the similarity of products and offers recommendations for items with similar attributes to
previous products the user has engaged with. In conclusion CBF generates recommendations
by finding similarities between the attributes of items and the user’s past behavior.

CBF techniques overcome challenges associated with CF methods. They can recommend
new items even when no user ratings are available, ensuring that recommendation accuracy
is not affected by a lack of user preferences. These techniques can quickly adjust recom-
mendations when user preferences change. Additionally, CBF can handle situations where
different users share only identical items based on intrinsic features rather than the same
items. This preserves user privacy, as recommendations can be provided without requiring
the sharing of user profiles.

CBF also offers the advantage of providing explanations to users regarding how recom-
mendations are generated. However, the technique does have its limitations. It relies on rich
item metadata and well-organized user profiles for precise recommendations. Content over-
specialization is another problem associated with CBF, as it restricts users from receiving
recommendations similar to items already defined in their profiles (Isinkaye et al., 2015).

San Miguel González et al. (2015) propose a metadata-driven, data that describes or
provides information about other data, CBF approach to peer-to-peer lending, which differs
from traditional CBF. The authors present a framework that, by using vector-based and
semantic models, can represent user data. While CBF algorithms are less susceptible to the
cold start problem, they are usually less accurate than CF algorithms (Zibriczky, 2016).

Yoo et al. (2003) introduced the Stock Tracker, an adaptive recommendation system for
trading stocks that focuses on personalized filtering based on user-deemed relevant trading
information. Their approach utilizes the Moving Average Convergence Divergence (MACD)
to provide buy and sell advice by analyzing the difference between two moving averages.
The system incorporates an efficient algorithm that takes advantage of the fixed structure
of user models and employs data-gathering techniques. The results indicate that the Stock
Tracker can rapidly adapt its advice to cater to different types of users.

Similar to Yoo et al., Chalidabhongse & Kaensar (2006) proposed an adaptive user model
framework for a personalized stock recommendation system. Their approach aims to provide
investors with personalized and relevant information based on their individual profiles and
historical interactions with the system. The system includes components such as user model
initialization and updating, monitoring user interactions, and tailoring information to match
user behavior and investment styles. The results demonstrate that their proposed system
rapidly adapts to provide appropriate advice to users with diverse backgrounds.
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2.4 The Cold Start Problem

The cold start problem is a common issue that arises in the recommendation systems field
when there is not enough data available to provide accurate recommendations for new users
or products. When a new user signs up for a platform or service, and there is no historical
data regarding their preferences or behavior, the situation is known as a cold start for new
users. Therefore, a cold start makes it difficult for the system to generate personalized
recommendations for them.

The cold start problem is mainly a problem for CF algorithms due to the fact that they
rely on the item’s interactions to make recommendations. Without such interactions, a pure
collaborative algorithm cannot suggest an item. On the other hand, CBF algorithms are less
susceptible to the cold start problem in theory. As CBF rely on the features possessed by the
items to make suggestions, even a new item with no interactions can still be recommended
based on its features (Isinkaye et al., 2015).

2.5 Hybrid Filtering

Hybrid filtering (HF) combines the strengths of both collaborative and content-based filtering
techniques. By merging these two approaches, HF can overcome several issues, e.g. the cold
start problem. There are multiple ways for setting up hybrid recommendation systems,
including Weighted HF and Switching hybrid filtering.

Figure 2.2: Overview of Weighted Hybrid Recommendation System (Chiang, 2021).

In Weighted HF, illustrated in figure 2.2, the system blends the outputs from different
models using fixed weightings that remain constant across both the training and testing sets.
In contrast, Switching HF selects a sole recommendation system based on the particular
scenario. The criteria for the recommendation selector should depend on the user profile or
other relevant characteristics. By adding an extra layer to the recommendation model, the
Switching hybrid approach introduces a selector that determines the appropriate model to
employ.

Tseng (2004) propose a novel hybrid recommendation system that integrates artificial
intelligence techniques to effectively access, filter, evaluate, and incorporate information
from diverse sources within the investment domain. Their system aims to provide human
users with personalized decision recommendations on stock portfolio management, enabling
them to optimize their investment strategies and maximize returns while considering their
individual objectives and constraints.
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2.6 Deep Learning Based Hybrid Recommendation Sys-

tem

This paper focuses on a Deep Learning Based Hybrid Recommendation System (DLHR)
for our proposed recommendation system. Deep neural networks (DNNs) are a subfield of
machine learning that use neural networks with three or more layers. Neural networks are
inspired by the human brain and consist of layered representations of data. The input layer
of the neural network model receives data, which is transformed as it passes through hidden
layers. The hidden layers ultimately produce an output, also known as the last layer or
model target.

Figure 2.3: Overview of a fully connected multilayer feedforward neural network with multiple
hidden layers (IBM, 2020).

Figure 2.3 illustrates the architectural layout of a multilayer feedforward neural network
with three hidden layers. DNNs allow the neural network to ”learn” from a large dataset, by
iteratively adjusting their internal parameters presented below. While a neural network with
only one layer can produce approximate predictions, incorporating hidden layers enhances
accuracy by refining and optimizing the model. In a multilayered network, each neuron
in a particular layer is connected to every neuron in the subsequent layer. There are no
connections that skip layers or form backward loops, ensuring a strictly feedforward infor-
mation flow. This sequential flow from one layer to the next facilitates efficient and effective
learning.

The output ŷ is determined by the N input values, hi, the weights, wi, the bias term b,
and the activation function f according to the following equation.

ŷ = f

(
b+

N∑
i=1

wihi

)
(2.1)

The activation function, a critical component of neural networks, enables the model to
approximate nearly any function. By introducing non-linearity into the neural network,
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the activation function allows for complex mappings between inputs and outputs. This
non-linearity is essential for the model to learn and represent intricate relationships within
the data. With the flexibility provided by the activation function, the neural network can
capture and approximate a wide range of functions, making it a powerful tool for various
tasks such as classification, regression, and pattern recognition.

To approximate the accuracy of the feedforward DNN, a loss function L is introduced.
This function measures the error between the predicted output and the expected output of
the network. As the loss function decreases, the network’s robustness increases (Heaton,
2011). The most commonly used loss functions are Mean Absolute Error (MAE) and Mean
Squared Error (MSE), defined as:

LMAE =
1

N

N∑
i=1

|ŷi − yi| (2.2)

LMSE =
1

N

N∑
i=1

(ŷi − yi)
2 (2.3)

where ŷi is the expected output and yi the actual output, N denotes the number of cases.
DNNs learn through a training process where they process various examples. Each example
consists of a known input and the corresponding expected output. The model learns by
determining the difference, known as the error, between the output of the model and the
target output given. The model does this with the help of a backpropagation algorithm,
which aims to optimize the weights by tracking the error term back to the neuron units.
The model does this by computing the partial derivative of the loss function for the neuron
weights and biases and adjusting them to minimize the loss function. The partial derivatives
are given by:

[
∂L

∂w1,1

, ...,
∂L

∂wN,N

,
∂L

∂b1
, ...,

∂L

∂bN
] (2.4)

A DLHR method combines the power of deep learning techniques with hybrid recom-
mendation approaches to provide personalized recommendations to users.

Deep learning algorithms, specifically DNNs, are employed in the DLHR to learn patterns
and representations from large volumes of data. By leveraging the hierarchical structure of
neural networks with multiple hidden layers, DNNs can capture complex relationships and
dependencies in the data, enabling more accurate and effective recommendation outcomes.
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3 Litterature Review

In this section, we examine relevant findings from existing literature that form the basis of our
study. By evaluating the application of deep learning recommendation systems, institutional
investment decision-making, and cross-selling strategies, we aim to enhance the accuracy and
effectiveness of our recommendation system for institutional investors.

3.1 Application of Deep Learning Recommendation Sys-

tems

Deep learning recommendation systems have gained attention as a promising alternative to
conventional methods due to their inherent ability to process non-linear data effectively. One
notable study by Kiran et al. (2020) addresses the limitations of collaborative filtering (CF)
and content-based filtering (CBF) systems, such as the cold start problem and the linear
nature of latent factors. The authors propose a deep-learning-based hybrid recommendation
system (DLHR) incorporating embeddings to represent users and items. By employing a
deep neural network (DNN), this approach learns non-linear factors by incorporating side
information about users and items. The proposed technique outperforms the baseline meth-
ods in both cold start and non-cold start cases, as demonstrated through benchmarking on
several data sets. Importantly, the proposed approach is generic and can be applied to other
rating prediction data sets in recommendation systems. By incorporating side information
about users and items and using a DNN, this approach can learn non-linear factors and
improve recommendation performance. This aspect is crucial when working with financial
data, which is often sparse in terms of explicit ratings.

In their study, Wang et al. (2017) address the issue of non-explicit selection criteria faced
by editors when choosing news articles for end users. They develop a news article recom-
mendation model that employs a dynamic attention-deep model to assist editors in selecting
a subset of articles from a pool of dynamically changing news feeds. Unlike traditional ap-
proaches, this research employs deep learning techniques to understand the editor’s dynamic
style of article selection. By generating complex features using attention models, Wang et
al. aims to represent the article style and classify whether the editor would like or reject the
article.

Even though their approach is not implemented in a financial setting, the findings of this
study are relevant to our research on using a deep learning-based recommendation system for
financial investment recommendations. The use of deep learning attention models to capture
complex features and understand user preferences can potentially enhance the accuracy and
effectiveness of our recommendation system. By adapting and applying similar techniques
to a pool of financial data, we may be able to create a system that learns the criteria of
institutional investors and offers personalized investment recommendations based on their
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dynamic preferences and styles.
Jannach & Ludewig (2017) have shown that combining DNN with k-Nearest Neighbors

(kNN) can improve recommendation accuracy in e-commerce applications. The kNN ap-
proach seeks to classify the k-most similar users or items by using similarity measures like
Pearson correlation or cosine similarity. This approach enhances personalized recommenda-
tions by considering similarity measures between users or items. As personalized investment
recommendations are the focus of our study, this work highlights the potential of combining
deep learning techniques with collaborative filtering methods. This combination of deep
learning and collaborative filtering methods holds immense promise. Institutional investors
often face unique challenges and have distinct preferences and requirements compared to in-
dividual investors. By leveraging the fusion of DNN and kNN, we can effectively capture the
intricate nuances of institutional investors’ investment behaviors and preferences, resulting
in more accurate and tailored recommendations.

In their research, Dong et al. (2017) present a deep learning-based hybrid recommendation
system that addresses the challenge of limited information within the sparse user-item rating
matrix. They propose a comprehensive deep learning framework that incorporates both item
and user-side information to overcome this limitation. By incorporating both item and user-
side information, this framework overcomes the limitation and improves recommendation
performance. Since our study aims to develop a DLHR in a setting with sparse user-item
ratings, this work provides insights into handling sparse data and incorporating additional
information, which aligns with our research objectives.

In contrast to previous research, Taghavi et al. (2013) proposes a preliminary framework
for a multi-agent recommendation system in computational investing. The framework uti-
lizes a hybrid filtering technique trained with artificial neural network machine learning. It
aims to provide adaptive recommendations on profitable stocks at the optimal time, consid-
ering individual investor preferences. Taghavi et al. study is valuable because it introduces
a multi-agent recommendation system for computational investing, employing a hybrid fil-
tering technique trained with artificial neural network machine learning. Moreover, their
framework emphasizes adaptivity and individual investor preferences, which aligns with our
goal of offering personalized investment recommendations. By integrating deep learning
techniques into our hybrid recommendation method, we can dynamically adjust and up-
date recommendations based on changing market conditions and investor preferences. This
adaptability enhances the relevance and effectiveness of our recommendations, ensuring they
stay aligned with the evolving needs and goals of institutional investors. While our research
groups differ from theirs, we find inspiration from their work in applying our DLHR method
in a financial setting.

3.2 Institutional Investment Decision-Making

Institutional investors are legal entities that manage and invest other people’s money. They
can take various legal forms, including profit-maximizing joint stock companies, limited
liability partnerships, and statutory corporations. These investors may act independently or
be part of a larger company group, such as mutual funds that are subsidiaries of banks and
insurance companies.

The primary types of institutional investors include mutual funds, commercial banks,
hedge funds, pension funds, and insurance companies. These institutional investors are
known as intermediary investors since they handle and invest other people’s money. Nonethe-
less, there are exceptions to this rule, as sovereign wealth funds may function as financial
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stabilization funds or de facto state ownership agencies. Some institutional investors, such
as private equity funds, also have hybrid forms where the managing partner co-invests with
limited partners.

Because of their experience and the fact that they are sometimes subject to less stringent
regulations than retail investors, it is a common belief that they are better positioned to
protect themselves. Overall, they are intermediary investors who manage and invest other
people’s money and are crucial to the financial market.

Institutional investors are known for their ability to manage large amounts of capital
and diversify their investments across various asset classes. According to a 2021 report by
McKinsey, the standard allocation for institutional investors is roughly 30.5% of assets to
equity, 16% to real estate, 14% to infrastructure, 12.4% to private debt, and 9% to natural
resources (Averstad & et al., 2023).

With the complexity and vastness of the market, institutional investors often rely on
investment recommendations to inform their decision-making process. These recommenda-
tions offer valuable insights and analysis on various stocks and investment opportunities.

Chen & Cheng (2006) investigation focuses on whether institutional investors’ excep-
tional performance can be attributed, at least partially, to their utilization of these stock
recommendations. Their findings reveal compelling evidence supporting this notion. Firstly,
Chen & Cheng find a positive correlation between the quarterly change in institutional own-
ership and consensus recommendations. This implies that institutional investors tend to
increase their holdings in firms with favorable recommendations and decrease their holdings
in those with unfavorable recommendations.

Moreover, after considering other factors that may influence institutional holdings, Chen
& Cheng observe that firms with favorable recommendations experience a significant aver-
age increase of 0.90 percent in institutional ownership compared to those with unfavorable
recommendations. This suggests that institutional investors place importance on stock rec-
ommendations when adjusting their portfolios.

To further validate their findings, Chen & Cheng employ large trades as a proxy for insti-
tutional trading activity. They note a higher frequency of buyer-initiated trades surrounding
favorable recommendations, providing further evidence of institutional investors acting upon
stock recommendations in their trading decisions.

Importantly, the change in institutional ownership driven by stock recommendations is
found to be associated with future positive abnormal returns, indicating that the utilization
of these recommendations contributes to institutional investors’ overall outperformance in
the market. On average, this association amounts to approximately 4.2 percent in annual
returns, further highlighting the benefits gained from incorporating investment recommen-
dations into their strategies.

Taken together, these findings suggest that institutional investors actively trade based on
stock recommendations, and such trading activity plays a role in their superior performance.
The utilization of investment recommendations serves as a valuable tool for institutional
investors, enabling them to navigate the complexities of the market and make informed
investment decisions that contribute to their overall success.

According to Basak & Pavlova (2013), the primary focus of institutional investors re-
volves around their performance relative to a specific index. The study presents a practical
framework incorporating precise mathematical expressions, yielding the following analytical
findings. The research indicates that institutional investors adjust their portfolios to favor
stocks that are part of their benchmark index. This portfolio adjustment exerts upward
pressure on the prices of the index stocks. As institutional investors demonstrate a stronger
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inclination towards riskier stocks than retail investors, they contribute to increased volatility
in both the index stocks and the overall stock market. Consequently, this leads to counter-
cyclical Sharpe ratios. Furthermore, the trading activities of institutional investors result
in heightened correlations among stocks within their benchmark, generating an asset-class
effect.

In portfolio optimization, institutional investors still often rely on the mean-variance
model proposed by Markowitz (1952). Despite criticisms leveled against the model, it has
found applicability in analyzing institutional investors’ portfolios. The model’s popularity
and Markowitz’s recognition with the Nobel Prize in Economics have contributed to its
continued relevance.

However, it is crucial to note that the model has faced criticism regarding its underlying
assumptions, which some argue are not fully supported by empirical evidence (Maillard et
al., 2010). Critics, such as Merton (1980), highlight that the mean-variance analysis can be
sensitive to input parameters, resulting in significant variations in portfolio composition even
with minor changes. The sensitivity is particularly observed in expected returns. However,
much of the criticism has been directed toward retail investors concerning the risk-return
tradeoff. Yu & Yuan (2011) provide insights into the influence of retail investors on the
risk-return tradeoff, offering two explanations. Firstly, as noise traders, retail investors often
inaccurately estimate the variance of returns, thereby distorting the relationship between
mean and variance. Secondly, due to restrictions on short selling, retail investors are more
likely to trade when they feel optimistic rather than pessimistic.

In contrast, institutional investors are regarded as possessing greater sophistication,
which makes them less susceptible to behavioral biases compared to retail investors (Bushee,
1998). They are more likely to accurately estimate the variance of returns and maintain a
more balanced relationship between mean and variance in their portfolio decisions. There-
fore, the mean-variance model remains applicable when analyzing institutional investors’
portfolios due to their higher level of expertise and reduced susceptibility to behavioral
biases.

Measuring risk-reward is of utmost importance for institutional investors as it allows
them to assess the performance of their investment portfolios in a comprehensive manner.
The Sharpe ratio, proposed by Sharpe (1966) and widely adopted as the de facto ”gold stan-
dard” for evaluating performance in terms of risk-adjusted returns, provides a framework for
comparing different investment strategies based on their ability to generate returns relative
to the level of risk taken.

By integrating the measure into Markowitz’s mean-variance framework, Sharpe estab-
lished it as one of the most renowned metrics for performance evaluation. This ratio takes
into account the trade-off between the expected return and the volatility of an investment,
enabling investors to assess whether the returns generated justify the level of risk undertaken.

However, de Prado et al. (2005) shed light on the limitations of the Sharpe ratio. Their
research revealed that the underlying assumptions of independence and identical distribution
of returns, which are fundamental to the ratio, may not hold in certain investment strategies,
such as hedge funds. These assumptions can mask significant drawdown risks, potentially
exposing investors to unforeseen losses.

To address the drawdown risk limitation, the Sortino ratio was introduced as a com-
plementary measure for evaluating and comparing the performance of fund managers with
skewed return distributions Rollinger & Hoffman (2013). Unlike the traditional Sharpe ra-
tio, which considers all deviations from the mean as risky, the Sortino ratio incorporates
downside deviation. It focuses solely on returns that fall below a user-defined target or re-
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quired rate of return, providing a more accurate assessment of the risk associated with an
investment strategy.

In conclusion, institutional investors play a significant role in the financial market with
their expertise, capital management capabilities, and utilization of investment recommenda-
tions. They contribute not only to their success but also to the overall functioning of the
market.

3.3 Cross-Selling

Cross-selling is a crucial marketing strategy for businesses, particularly in the financial in-
dustry. It involves offering existing customers additional financial products or services that
complement or expand their current relationship with the company. Financial institutions
are increasingly utilizing cross-selling as a vital technique in customer relationship manage-
ment (CRM) to deepen their existing customer relationships, increase revenue, and foster
customer loyalty. The approach involves the selling of additional financial products to cus-
tomers. The primary objective of cross-selling in the context of CRM is to enhance the
firm’s share of the customer wallet, broaden the scope of the customer relationship, and
improve customer retention (Kamakura, 2008). Kamakura (2008) provides valuable insights
into collaborative filtering as an analytical tool for cross-selling within a CRM setting. The
study emphasizes the importance of a comprehensive and complete customer database for
implementing cross-selling strategies utilizing collaborative filtering. Such a database should
contain detailed information on customer activities and provide a holistic view of each cus-
tomer across all contact points. Additionally, the study highlights the need for a contact-
management application to manage and register customer contacts. Financial institutions
can successfully implement cross-selling strategies that deepen customer relationships and
increase revenue by fulfilling these key factors.

Financial advisors can also benefit from cross-selling, as it can be a way to earn additional
revenue from their existing client base. However, it is crucial to approach cross-selling in a
way that adheres to regulations and protects the client’s best interests. The act of referring
clients to additional products or services solely to receive incentives can result in negative
repercussions such as customer complaints and disciplinary action.

Boustani et al. (2023) conducted a study to improve cross-selling models in retail banking
by analyzing several years of account transaction data, specifically credit card transactions,
using a deep-learning algorithm. They developed several models to extract features from
the transaction data, which they used as input to a classifier, which showed that they had
predictive power and significantly increased the accuracy of the cross-selling model. The
study demonstrated that utilizing transaction data can enhance the performance of cross-
selling models in retail banking.

Therefore, we will create a comprehensive and complete database to determine if the
proposed method can improve cross-selling. To conduct this study, we will use publicly
listed holdings data for the selected target group of institutional investors.
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4 Data

4.1 Institutional Investor Data

We focus on institutional investment managers with public portfolio holdings on the Stock-
holm Stock Exchange. To obtain comprehensive and reliable data, we gather portfolio
holdings information from the Modular Finance Holdings database. This database tracks
ownership in the Swedish financial markets, providing valuable insights into the investment
activities of institutional investors.

Our dataset includes portfolio holdings information from 2949 institutional investors. The
data set encompasses a wide range of details that offer a comprehensive view of institutional
investors and their portfolios. Firstly, we collect information about the name of each owner,
allowing us to identify and analyze individual investment managers. This enables us to assess
the investment strategies and preferences of different institutional investors operating on the
Stockholm Stock Exchange.

Additionally, we capture portfolio value data, which gives us an indication of the financial
resources managed by each institutional investor. By examining the size of their portfolios,
we can identify the major players in the market and assess their potential impact on stock
prices and market trends.

The number of positions held by each investor is another crucial aspect of our dataset.
This information allows us to understand the diversification strategies employed by these
investors. Analyzing the number of positions and the weights assigned to each position
provides insights into the level of concentration or dispersion in their portfolios, highlighting
their risk management approaches.

Moreover, our dataset includes country and sector overviews for each institutional in-
vestor’s portfolio holdings. This enables us to understand their geographic and industry
preferences. By analyzing these factors, we can identify regional or sectorial biases in their
investment decisions and assess their impact on specific stocks or sectors within the Stock-
holm Stock Exchange.

To further investigate the investment activities, we track buying and selling activities of
the institutional investors in our dataset. This data offers insights into their trading patterns,
such as the frequency of transactions, the timing of trades, and the volume of shares bought
or sold. These activities help us identify trends and patterns indicating investment strategies
or market sentiments.

Furthermore, the performance history of institutional investors’ portfolios is essential.
This historical data allows us to evaluate the investment performance of each manager over
time. By assessing their returns, risk-adjusted measures, and other performance metrics, we
can compare and rank institutional investors based on their track records.

Lastly, our dataset includes the date of verification, ensuring that we have the most up-to-
date information on institutional investors’ portfolio holdings. This allows us to accurately

14



analyze their current positions and help make assessments of their investment preferences.

4.2 Asset Overview

To investigate how recommendation systems can suggest complementary assets to institu-
tional portfolios, this study incorporates stocks from the OMXSPI index. The OMXSPI, also
known as Stockholm All-share, provides a comprehensive overview of the Stockholm Stock
Exchange by encompassing all listed companies. The index follows a market-value-weighted
methodology, where the weights assigned to the constituent stocks are based on their total
market value. It includes all companies listed on the exchange, offering a holistic represen-
tation of market development. We source historical stock price data for this study from
FinBas, a financial database provided by the Swedish House of Finance. FinBas provides
daily end-of-day stock price information from the Nordic Stock Exchanges.

For this study, we select stocks from the 2021 index composition as the end point of the
analyzed period. This choice is made to evaluate and compare investment recommendations
for current institutional portfolios rather than constructing portfolios that mimic the index.
By selecting constituents from the index at the end of the period, the study avoids potential
survivorship bias (Sharpe, 1966).

Preprocessing of the data was necessary due to a few companies being listed on the
exchange after 2011 and some companies being delisted, resulting in missing data. To ensure
a high-quality model, stocks with missing data points were removed. Consequently, the final
dataset consists of 460 stocks and their quarterly observations. The observation period
ranges from 3 January 2011 to 31 December 2016.

4.3 Descriptive Statistics

To account for the quarterly reporting of institutional holdings, we utilize quarterly returns
for our analyses. Adopting a larger investment interval would yield insufficient sample size
observations, rendering the empirical analysis less meaningful.

To ensure the robustness of our findings, we evaluate the results of our main analyses
using different investment intervals, following the approach outlined by Prakash et al. (2003).
In this process, we scale the returns to a simple annual rate using the formula:

Rt =
Pricet − Pricet−1

Pricet−1

× 365

Days in Interval
(4.1)

This scaling methodology allows us to express the returns on an annual basis, facilitating
easier comparison and analysis across different investment intervals.

To enhance the recommendations later on, we categorize the selected stocks into three
clusters, high risk, moderate risk and low risk assets. In Table 4.1 we can see the descriptive
statistics for the three clusters for the whole period, 2011-2021. When comparing average
returns, the High-Risk cluster stands out with the highest mean return (0.247), followed by
the Moderate-Risk cluster (0.166), and the Low-Risk cluster (0.110). This suggests that the
cluster of higher-risk assets has the potential for greater returns.

In terms of volatility, the High-Risk cluster exhibits the highest standard deviation
(0.191), indicating larger price fluctuations compared to the Moderate-Risk cluster (0.131)
and the Low-Risk cluster (0.099). This confirms that the High-Risk cluster carries a higher

15



level of inherent risk. Assessing risk-adjusted returns using the Sharpe ratio, the High-Risk
cluster again shows a notable result, with the highest ratio (1.293). The Moderate-Risk
cluster follows closely with a Sharpe ratio of 1.267, while the Low-Risk cluster has a slightly
lower ratio of 1.09. A higher Sharpe ratio suggests better risk-adjusted performance.

Considering the maximum drawdown, which represents the largest quarterly decline, the
High-Risk cluster experienced the largest drop (0.098), indicating higher susceptibility to
significant losses. The Moderate-Risk cluster had a maximum drawdown of 0.073, while the
Low-Risk cluster experienced a smaller decline (0.064).

In terms of market sensitivity, all three clusters have betas less than 1. This implies that
their returns are relatively less sensitive to overall market movements, providing a certain
level of stability.

Table 4.1: The table presents descriptive statistics for quarterly asset returns, of each asset cluster,
scaled by a factor of four throughout the whole period. SR represents the Sharpe Ratio.

Low-Risk Moderate-Risk High-Risk
N. of obs. 44 44 44
Mean 0.110 0.166 0.247
StdDev 0.099 0.131 0.191
SR 1.09 1.267 1.293
Max Drawdown 0.064 0.073 0.098
Beta 0.527 0.536 0.479

Table 4.2 displays the distribution of institutional investors from various countries invest-
ing in the Swedish stock market. The data shows that Swedish institutional investors hold
a significant portion of the market, with 161 institutions representing 58.94% of the total
number of institutions and accounting for 52.05% of the total market value. This indicates a
significant presence and impact of local investors in the Swedish stock market. The data also
demonstrates the international nature of the Swedish stock market, with institutions from
various countries participating. The countries with notable representation include the USA
(11.8% of institutions and 25.87% of total market value), the UK (5.46% of institutions and
4.16% of total market value), Switzerland (2.31% of institutions and 1.64% of total market
value), and Norway (2.64% of institutions and 3.70% of total market value).

16



Table 4.2: The table presents an overview of the institutional investors in the dataset grouped by
home-country

Country Number of institutions % of total Total market value (MSEK) % of total
Australia 17 0.58 29685 0.27
Austria 11 0.20 4830 0.04
Belgium 15 0.37 33287 0.31
Canada 71 1.73 104739 0.96
China 80 0.20 132301 1.21
Cyprus 66 0.51 17696 0.16
Denmark 11 2.41 131669 1.21
Finland 8 2.71 218187 2.00
France 19 2.24 130710 1.20
Germany 11 2.44 285590 2.62
Hongkong 51 0.37 8623 0.08
Iitaly 6 0.27 3096 0.03
Ireland 41 0.64 20404 0.19
Japan 34 0.37 66222 0.61
Luxemmbourg 78 1.39 70638 0.65
New Zeeland 6 0.2 5538 0.05
Norway 68 2.64 403148 3.70
Singapore 8 0.27 20236 0.19
Spain 23 0.78 13739 0.13
Sweden 161 58.94 5671032 52.05
Switzerland 1738 2.31 178545 1.64
The Netherlands 72 1.15 72428 0.66
UK 348 5.46 453555 4.16
USA 6 11.8 2818480 25.87
Total 2949 100.00 10894379 100.00

To simplify the analysis later on, we categorize the selected investors into four groups
according to their portfolio value: Ultra, Large, Medium, and Small investors. The 45 largest
institutional investors in our dataset can be found in Appendix A3. Table 4.3 showcases
descriptive statistics for each of these investor groups. Notably, the Ultra investors possess a
significantly larger total asset under management (AUM) of the combined total of the other
three groups, roughly 73% of the total AUM.

When examining the number of distinct assets held in each portfolio, we observe a clear
pattern: the higher the portfolio value, the greater the number of distinct assets owned by
the investors.

Table 4.3: The table presents an overview of the institutional investors in the dataset grouped by
AUM.

Number of institutions % of total AUM Number of Positions
Ultra 737 93.6 33382
Large 739 4.3 8380
Medium 736 1.6 8334
Small 737 0.5 7305
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5 Methodology

5.1 Assumptions

In constructing the investment recommendations, certain assumptions were taken into ac-
count.

To begin with, it is important to note that no short-sale constraints were applied in this
study. This choice was made based on the understanding that fund managers generally have
the freedom to participate in short-selling activities, making this assumption reasonable.

Secondly, due to the utilization of quarterly filings of institutional holdings, a buy-and-
hold strategy for at least a quarter is assumed. However, it should be noted that this
assumption poses a limitation, as the institutional investors included in this study may
adopt different strategies or have shorter holding periods.

Finally, an additional assumption made in this study is that the investors included have
the ability to borrow money at the risk-free rate. This assumption is based on the premise
that investors can access borrowed funds at a rate that is considered risk-free in order to
support their investment activities.

5.2 Constructing the Recommendation System

1. Data pre-processing and feature engineering : We prepare the data by cleaning, trans-
forming, and selecting relevant features for analysis.

2. Implicit ratings to explicit ratings : We estimate explicit ratings from implicit ratings
using appropriate assumptions or criteria.

3. Clustering and classification: we use K-means clustering to group similar items based
on their characteristics and employ K-nearest neighbors (KNN) for classifying users
with similar preferences or item characteristics.

4. Preference generation: we integrate the different techniques used, using hybrid filtering
and deep learning, to generate accurate user preferences and recommendations.

5. Data split: Divide the data into a training set (60%), development set (20%), and test
set (20%) for model training, validation, and evaluation.

6. Evaluation: We evaluate the DLHR model using appropriate evaluation metrics and
compare its performance to baseline models.

7. Real-world testing : we randomly select one investor from each investor group to test
and evaluate the model’s performance in a real-world scenario.
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5.2.1 Data Pre-Processing and Feature Engineering

Data pre-processing prepares data for machine learning by transforming it into a functionable
format. The process involves handling missing or irrelevant data, cleaning inconsistencies,
and standardizing data. Feature selection and hyperparameter tuning are also part of the
pre-processing. The goal is to create a data set the model can work with effectively.

One accepted method of representing categorical variables like users and items is to use
embeddings, which represent each categorical value as a vector in N-dimensional space. The
categorical variables in this study are presented in table 4.1.

We create two embedding matrices, one for the users, Euser, and one for the items, Eitem.
The hyper-parameters KU and KI represent the number of embeddings or factors for users
and items in our model. We select and tune these hyper-parameters, listed in table 4.1.
These embeddings are similar to the latent factors used in collaborative filtering, but with
the difference that we treat their values as parameters, like weight matrices at different
hidden layers learned by the deep learning network. This means that they can capture both
linear and non-linear factors of users and items. To update the weights of these embeddings,
we include the matrices of embeddings for users and items as model parameters, randomly
initialize them, and modify them using stochastic gradient descent.

Table 5.1: The table shows the different categorical variables deployed in the model and further
specifications.

Category Category Specifications Variables Variable Specifications

Target Variable

We focus on Implicit ratings,
a type of feedback that users
provide through their behav-
ior, rather than explicitly
providing a rating or feed-
back.

• Annual Returns

• Annual Volatility

• Annual Max Drawdown

• Sharpe ratio

These variables measure the
risk and reward of an invest-
ment.

User Features

A set of attributes or charac-
teristics of a user that can be
used to describe their prop-
erties.

• AUM

• Risk profile

• Investment objectives

• Investment horizons

• Sector allocation

The variables offer crucial in-
sights into the behavior and
preferences of investors, en-
abling the system to evaluate
users and group them together
for targeted investment oppor-
tunities or customized recom-
mendations.

Product Feautures

A set of attributes or charac-
teristics of an item that can
be used to describe its prop-
erties.

• Adjusted closing price

• Volatility

• Daily change

• Beta

• Sector

The variables offer crucial in-
sights into the characteristics
of the products, enabling the
system to evaluate products
and group them together for
targeted investment opportu-
nities or customized recom-
mendations.

We grouped the investors into small, medium, large and ultra investors based on their
portfolio value and provided relevant recommendations for each group.

One of the challenges we encounter with our dataset is the absence of explicit ratings from
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users indicating their preferences for the stocks they invest in. These ratings are essential for
building our recommendation system. Therefore, as mentioned above, we need to construct
implicit ratings. To address this challenge, we follow the example of Gonzales & Hargreaves
(2022) where they make the assumption that the more of the same stock an investor holds,
the higher their preference for those stocks. Based on this assumption, we estimate the
explicit rating of stock j for each user i by utilizing:

rij = 1 + 4

∑
k Q

(k)
ij∑

j,k Q
(k)
ij

(5.1)

The numerator represents the total volume of stock j held by user i in their kth holding.
The denominator represents the total quantity of all the stocks held by user i across all
holdings. We only include ratings greater than 1 in the training set or dev set respectively,
so now each rating, rij,in either training set or development set is a real number in the range
(1, 5].

5.2.2 Feauture Learning

To identify stocks with similar attributes for our recommendations, we employ a clustering
algorithm. This algorithm partitions a dataset into sub-clusters, facilitating the identification
of meaningful groups within the data (Isinkaye et al., 2015). An effective clustering method
ensures the creation of high-quality clusters with high intra-cluster similarity and low inter-
cluster similarity. In our approach, we use the clustering algorithm to categorize assets into
three risk groups: High risk, Medium risk, and Low risk. This clustering process enables us
to provide tailored recommendations based on the risk preferences of individual users. We
cluster the items by utilizing K-means Clustering. K-means Clustering is an unsupervised
machine-learning technique utilized to group similar data points based on their features.
Its operation involves assigning data points to cluster centers iteratively and updating the
centers to achieve convergence. A cluster represents a collection of data points grouped due
to their similarities. The parameter ”k” determines the desired number of centroids in the
dataset. A centroid is a central point, either real or imaginary, representing the center of a
cluster.

The K-means algorithm allocates each data point to one of the clusters, aiming to min-
imize the sum of squares within each cluster. In simpler terms, it identifies ”k” centroids
and assigns each data point to the nearest cluster, while ensuring that the centroids remain
as compact as possible.

The term ”means” in K-means refers to the process of finding the centroid, which involves
averaging the data points.

We use the product features presented in table 5.1 to perform the clustering. The three
clusters deployed are high risk, moderate risk and low risk assets.

5.2.3 Baseline Models

For the purpose of our comparison evaluation, we employ two baseline collaborative filter-
ing (CF) models: user-based k-Nearest Neighbors (kNN) and item-based kNN. The kNN
algorithm is employed to identify similar user preferences or items among users. It is a
non-parametric and lazy learning algorithm that only trains the dataset when a recommen-
dation is required. The kNN approach seeks to classify the k-most similar users or items by
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utilizing similarity measures like Pearson correlation or cosine similarity. In this study, we
utilize both similarity measures for both an item-based kNN approach and user-based kNN
approach, we also leverage the baseline as the CF component of our proposed system. The
cosine similarity for an item-based kNN approach is calculated using the following equation:

sim(i, j) =

∑N
u=1 rui · ruj√∑N

u=1 r
2
ui ·
√∑N

u=1 r
2
uj

(5.2)

where i and j are items, in the case of a user-based kNN approach, i and j would be two
different users. rxy is the rating provided by user x on item y and N is the total number of
users in the dataset. After calculating the cosine similarity and the Pearson correlation we
need to choose a k value, the number of nearest neighbors that are considered when making
a prediction or classification. It is an important parameter that determines the influence
of neighboring data points on the prediction. The choice of the optimal k value in kNN
is crucial. A large k can be computationally expensive and lead to underfitting, while a
small k can cause overfitting. To find the best k, we plot error rates for different k values
and select the one with the lowest error rate. It is recommended to choose an odd k to
avoid tie situations (Zhang, 2016). After choosing k we present the formula for the user-
based algorithm to calculate the predicted rating for target user i on item j at the k nearest
neighbor, using their weighted average, defined as:

rij = r̄i +
∑
k

sim(j, k)
(rik − rk)∑
k |sim(i, k)|

where r̄i is the average rating of user i.

5.2.4 Deep Learning Based Hybrid Recommendation System

Once we have acquired the user and item feature embeddings, we combine them with sup-
plementary side information, including user and item features from Table 5.1, as well as
the explicit ratings generated by the kNN approach. By incorporating these embeddings
and content-based features, our solution functions as a hybrid recommendation system. We
employ the preference generation component to forecast user preferences. This integration
of models enables us to examine and comprehend data characteristics from multiple angles.
Consequently, this approach overcomes the shortcomings of individual models, capitalizes
on the advantages of each model, and ultimately produces more precise outcomes.

To further explore the deep nonlinear relationship between users and items, we employ
deep neural networks to train the hybrid recommendation system. Deep neural networks
allow us to uncover intricate patterns and capture complex interactions, providing a better
understanding and prediction of user preferences.

The deep learning model comprises several neuron units connected by weights. The
mathematical definition of a single neuron, also referred to as a perceptron (Rosenblatt,
1958), can be expressed as:

ŷ = f

(
b+

N∑
i=1

wihi

)
(5.3)
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The output, ŷ, is determined by the N input values, hi, the weights, wi, the bias term,
b, and the activation function, f . The activation function is vital in enabling the model
to approximate a wide range of functions. Specifically, the weighted sum of the outputs
from the previous layers determines the output of each neuron in the network, which, in
turn, is passed through the activation function. A loss function is introduced to evaluate the
accuracy of the DNN. This function measures the discrepancy between the predicted output
and the expected output of the network.

Our neural network architecture consists of three layers, each performing specific com-
putations as described in Formula 5.3. To learn and update the weights of the deep neural
network (DNN), we employ the ADAM optimization algorithm proposed by Kingma & Ba
(2014). The algorithm is based on a gradient descent, and efficiently updates the weights of
the neural network, enabling effective learning and optimization of the model.

5.3 Evaluation Metrics for Recommendation Algorithms

Evaluating the model is crucial as the recommendations’ quality can heavily impact users’
experience and business value. Therefore, using established evaluation metrics that align
with our objectives is critical. For this study, we evaluate the performance of our algorithm
using the following evaluation metrics as sugested by Isinkaye et al. (2015). One of the initial
metrics used is the mean absolute error (MAE), a statistical accuracy metric calculated as
follows:

MAE =
1

N

N∑
i=1

|ŷi − yi| (5.4)

where N is the total number of users in the dataset, yi is the true value and ŷk is the
expected value. It serves as a measure of the deviation between the recommendation and
the specific value from the user.

We also consider another statistical accuracy metric, the Mean Squared Error (MSE),
defined as:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (5.5)

Using both MAE and MSE in evaluating regression models is beneficial because they
provide different perspectives on error magnitude, sensitivity to outliers, model compre-
hensibility, and decision-making trade-offs. MAE captures the average absolute difference
between predicted and actual values, while MSE focuses on the average squared difference.
MAE is less sensitive to outliers and is more interpretable, representing errors in the original
units. MSE amplifies larger errors and may be more suitable for extreme cases.

Explicit ratings, such as the Mean Absolute Error and Root Mean Square Error, are
not suitable, on their own, for evaluating recommendation systems that rely on implicit
ratings. Consequently, we cannot directly evaluate the performance of implicit and explicit
recommendation systems using these metrics. We use the mean average precision at K
(mAP@K) to obtain a more comparable evaluation metric. This metric assesses the relevance
of the recommended ’k’ items while considering the item order in the list and disregards the
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exact rating provided by the user. This approach enables us to evaluate models with implicit
or explicit data as input (Gonzales & Hargreaves, 2022).

To calculate mAP@k, the AP@k is first computed for each user in the dataset at a
threshold of k items using:

AP@k =
1

r

k∑
i=1

Precision(i) · relevant(i) (5.6)

Precision(i), which quantifies the fraction of recommended items in the top i set that
are relevant, and relevant(i), an indicator function where 1 indicates that item i is relevant
and 0 otherwise. The value of r represents the total number of items that are relevant to
the user.

Then mAP@k is simply the average of AP@k among all users in the dataset and is given
by:

mAP@k =
1

N

N∑
i=1

AP@ki (5.7)

5.4 Mean-Variance Analysis

We use the metrics MAE, RMSE, and mAP@k to assess the quality and robustness of rec-
ommendations. However, institutional investors are more interested in understanding the
potential gains and losses associated with said recommendations. Evaluating the profitabil-
ity and financial risks of the investment recommendations is crucial. We aim to determine
whether the assets suggested by the recommendation systems can expand investment oppor-
tunities.

We will use the mean-variance spanning test, introduced by Huberman & Kandel (1987),
to perform this evaluation. This approach statistically tests the effects of adding N new
assets to an existing collection of K benchmark assets. If the new frontier of the combined
portfolio of N and K assets overlaps with the frontier of the portfolio of K assets, the outcome
is known as ”spanning.” Spanning means that investors gain no benefit from adding the N
assets to their portfolio. However, if the frontier of the combined portfolio is larger than the
frontier of the portfolio of K assets, investors gain diversification benefits from adding the N
assets.

Further, to assess the economic magnitude of the diversification benefits, we will look at
the change in Sharpe Ratio of the tangency portfolio and the change in standard deviation
of the global minimum-variance portfolio as suggested by Bekaert and Urias (1996).

We define Rt =

[
R1t

R2t

]
as the raw returns on N +K risky assets at time t, where R1t is

a K-vector of the returns on the K benchmark assets and R2t is an N-vector of the returns
on the N test assets.

We define the expected returns on the N +K assets as

µ = E[Rt] =

[
µ1

µ2

]
(5.8)
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and the covariance matrix of the N +K risky assets as

V = Var[Rt] ≡
[
V11 V12

V21 V22

]
(5.9)

We then estimate the following model using Ordinary Least Squares (OLS) regression.

R2t = α + βR1t + εt (5.10)

Where α represents the intercept term and ϵ represents the error term in the equation.
As per Huberman & Kandel (1987), the null hypothesis of spanning is then:

H0 : α = 0N , δ = 1N − β1K = 0N (5.11)

Where 1N and 1K represent a column vector of size N and K with all elements equal to
1. When condition (5.11) holds, it implies that for every recommended asset (or portfolio of
recommended assets), there exists a portfolio of the K benchmark assets with the same mean,
but a lower variance compared to the recommended asset. As a result, the N recommended
assets are dominated by the K benchmark assets.

We then calculate the Wald, Likelihood Ratio and Lagrange Multiplier tests as described
by Kan & Zhou (2008)

W = T (λ1 + λ2) ∼ χ2
2 (5.12)

LR = T (ln(1 + λ1) + ln(1 + λ2)) ∼ χ2
2 (5.13)

LM = T

(
λ1

1 + λ1

+
λ2

1 + λ2

)
∼ χ2

2 (5.14)

They follow an asymptotic chi-squared distribution with two degrees of freedom, and
where λ1 and λ2 are the eigenvalues of the ĤĜ−1 matrix where

Ĥ =

[
α̂′Σ̂−1α̂ α̂′Σ̂−1δ̂

α̂′Σ̂−1δ̂ δ̂′Σ̂−1δ̂

]
(5.15)

Ĝ =

[
1 + µ̂′

1V̂
−1
11 µ̂1 µ̂′

1V̂
−1
11 1K

µ̂′
1V̂

−1
11 1K 1′K V̂

−1
11 1K

]
(5.16)

Where Σ̂ represents the residual variance.
To gain a better understanding of the importance of the null hypothesis and to aid in our

later discussion regarding the allocation of weights to the recommended assets, we analyze
two portfolios located on the minimum-variance frontier of the N + K assets, the global
minimum variance (GMV) portfolio and the tangency (T) portfolio. The weights assigned
to these portfolios are presented below, as outlined in Kan & Zhou (2008).

WT =
V −1µ

1′N+KV
−1µ

(5.17)

WGMV =
V −1µ

1′N+KV
−11N+K

(5.18)
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6 Empirical Analysis

In this section, we present the outcomes of our empirical methodology, which was introduced
in Section 5. Furthermore, we critically analyze and discuss these results.

6.1 Performance Evaluation of the System

We start by presenting the performance of the DLHR and comparing it to four baseline meth-
ods. The evaluation metrics provide insights into the performance of the recommendation
system models and are presented in Table 6.1.

For the Mean Absolute Error (MAE), DLHR achieves the lowest value of 0.68, indicating
the smallest average difference between predicted and actual ratings. The low MAE suggests
that DLHR performs better in accurately predicting user preferences than the other models.
On the other hand, User KNN – Pearson has the highest MAE value of 0.85, implying that
it has a higher average prediction error and may face challenges in accurately predicting user
preferences.

Moving on to the Mean Squared Error (MSE), DLHR again performs the best with
the lowest value of 0.95 and has the lowest average squared difference between predicted
and actual ratings, showcasing better overall prediction accuracy. Conversely, User KNN –
Pearson has the highest MSE value of 1.25, suggesting that it may struggle in accurately
predicting user preferences and could result in higher prediction errors.

Considering the Mean Average Precision at 10 (mAP@10), DLHR achieves the highest
value of 0.73, indicating better precision in the top 10 recommended items. Users are more
likely to find relevant recommendations among the top 10 suggestions from DLHR. On
the other hand, User KNN – Pearson has the lowest mAP@10 value of 0.61, implying lower
precision in the top 10 recommendations and potentially fewer relevant suggestions for users.

Lastly, the adjusted R2 (Coefficient of Determination), a modified version of R-squared
that has been adjusted for the number of predictors in the model, metric reflects how well
the models fit the data. DLHR achieves the highest adjusted R2 value of 0.82, suggesting
that it is the best-fitting method for the data compared to the other models. This indicates
that DLHR captures a higher portion of the variance in the actual ratings, resulting in more
accurate predictions. User KNN – Pearson has the lowest adjusted R2 value of 0.68, implying
a weaker fit to the data and potentially more difficulty in capturing the underlying patterns
in the user-item ratings.
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Table 6.1: The table presents MAE, MSE, mAP@10 and R-squared for the different systems de-
ployed.

Method MAE MSE mAP@10 (Higher is better) R2
Adj

User KNN – Cosine 0.82 1.15 0.63 0.72
User KNN – Pearson 0.85 1.25 0.61 0.68
Item KNN – Cosine 0.78 1.10 0.67 0.75
Item KNN – Pearson 0.80 1.12 0.66 0.74
DLHR 0.68 0.95 0.73 0.82

6.2 Mean-Variance Analysis

Table 6.2 reports the results of the mean-variance spanning test for the three different peri-
ods. The asymptotic tests reject the null hypothesis of spanning at a 1% significance level
for the Likelihood Ratio and the Lagrange Multiplier test and a 5% significance level for
the Wald test in the training period. For the development period, the Wald test and the
Lagrange Multiplier are statistically significant at a 1% level, while the Likelihood Ratio test
is significant at a 5% level. In the test period all three tests reject the null hypothesis at a
1% significance level. Hence, we can conclude that the recommended assets proposed by the
system expand the investors’ mean-variance efficient frontier and, therefore, their investment
opportunity set.

Table 6.2: The table shows the results for the mean-variance spanning test of N-recommended assets
with K-benchmark assets for all three periods.

Training Period Development Period Test Period
Value p-Value Value p-Value Value p-Value

Wald 8.409 0.015** 10.494 0.005*** 22.987 0.000***
Likelihood Ratio 10.013 0.007*** 8.002 0.018** 24.708 0.000***
Lagrange Multiplier 23.674 0.000*** 28.437 0.000*** 29.120 0.000***

***, **, * denote statistical significance at the 1%, 5%, 10% level.

Table 6.3 represents the tangency (T) and global minimum-variance (GMV) portfolios
for the mean-variance spanning test involving N-assets and K-benchmark-assets for the Ultra
investor across the three asset clusters.

We can see that the T portfolios have an allocated weight of 40.5% to 43.9% across all
asset clusters to the N-recommended assets, while the GMV portfolios have an allocated
weight of 8.7% to 37.8%. This suggests that the T portfolios are more skewed towards the
recommended assets than the GMV portfolio.

Moving on to the metrics, the mean (expected quarterly return) for the N+K portfolio is
0.397, 0.403, and 0.525 for low, moderate, and high-risk assets, respectively. The standard
deviation (StdDev), which measures the portfolio’s volatility, is 0.220, 0.218, and 0.237 for
low, moderate, and high-risk assets, respectively.

The Sharpe Ratio (SR) represents the risk-adjusted return, calculated by dividing the
mean return by the standard deviation. For low-risk assets, the SR is 1.57 for the T portfolio
and 1.32 for the GMV portfolio. Similarly, for moderate-risk stocks, the SR is 1.76 for the
T portfolio and 1.10 for the GMV portfolio. For high-risk assets, the SR is 2.13 for the T
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portfolio and 1.21 for the GMV portfolio. Higher SR values indicate better risk-adjusted
performance.

Table 6.3: The table presents the tangency (T) and global minimum-variance (GMV) portfolios of
the Ultra investor for the mean-variance spanning test of N-Recommended assets with K-benchmark-
assets for all three asset clusters.

Low Risk Assets Moderate Risk Assets High Risk Assets
Ultra T GMV T GMV T GMV
N 41.0% 37.8% 43.9% 31.5% 40.5% 8.7%
K 59.0% 62.2% 56.1% 68.5% 59.5% 92.3%
Mean 0.397 0.259 0.403 0.233 0.525 0.266
StdDev 0.220 0.182 0.218 0.193 0.237 0.203
SR 1.57 1.32 1.76 1.10 2.13 1.21
∆ StdDev -23.5% -18.9% -14.6%
∆ SR 28.6% 44.3% 74.6%

SR depicts the Sharpe Ratio. ∆ denotes the change of the respective metric of the N+K portfolio
with regards to the respective metric of the K benchmark portfolio.

The Large investor exhibits comparable findings to those observed in the Ultra investor
case. The T portfolios exhibit a higher bias towards the suggested assets (27.2%-74.1%) than
the GMV portfolios (-6.4%-17.5%). However, it is worth noting that the GMV portfolio
assigns negative weights to the N-recommended assets for high-risk assets, implying a short
position on those assets. In addition, the T-high-risk asset portfolio demonstrates the highest
Sharpe ratio (1.57), while the GMV-low-risk portfolio exhibits the lowest standard deviation
(0.182).

Table 6.4: The table presents the tangency (T) and global minimum-variance (GMV) portfolios
of the Large investor for the mean-variance spanning test of N-Recommended assets with K-
benchmark-assets for all three asset clusters.

Low Risk Assets Moderate Risk Assets High Risk Assets
Large T GMV T GMV T GMV
N 27.2% 17.5% 30.6% 14.7% 74.1% -6.4%
K 72.8% 82.5% 69.4% 85.3% 25.9% 106.4%
Mean 0.218 0.153 0.267 0.162 0.292 0.109
StdDev 0.178 0.140 0.190 0.151 0.199 0.141
SR 1.11 0.95 1.30 0.94 1.37 0.63
∆ StdDev -30.4% -25.2% -30.3%
∆ SR 23.3% 44.4% 52.2%

SR depicts the Sharpe Ratio. ∆ denotes the change of the respective metric of the N+K portfolio
with regards to the respective metric of the K benchmark portfolio.

Similar findings are observed for the Medium investor, as seen with the Ultra investor.
The T portfolios exhibit a higher bias towards the suggested assets (40.0%-40.6%) than the
GMV portfolios, except for the GMV-Low risk portfolio that assigns the highest weight
value of 42% to the N recommended assets. In addition, the T-high-risk asset portfolio
demonstrates the highest Sharpe ratio (1.30), while the GMV-low-risk portfolio exhibits
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the lowest standard deviation (0.153), while the GMV-moderate-risk portfolio has a higher
standard deviation (0.164) than the GMV-high-risk portfolio (0.159).

Table 6.5: The table presents the tangency (T) and global minimum-variance (GMV) portfolios
of the Medium investor for the mean-variance spanning test of N-Recommended assets with K-
benchmark-assets for all three asset clusters.

Low Risk Assets Moderate Risk Assets High Risk Assets
Medium T GMV T GMV T GMV
N 40.0% 42% 40.6% 17.4% 40.5% 4.0%
K 60.0% 58.0% 59.4% 82.6% 59.5% 96.0%
Mean 0.286 0.231 0.315 0.205 0.441 0.235
StdDev 0.205 0.153 0.270 0.164 0.223 0.159
SR 1.30 1.05 1.42 0.94 1.89 1.28
∆ StdDev -27% -22.6% -24.8%
∆ SR 36.8% 49.5% 98.0%

SR depicts the Sharpe Ratio. ∆ denotes the change of the respective metric of the N+K portfolio
with regards to the respective metric of the K benchmark portfolio.

We observe distinct outcomes for the Small investor concerning the allocations of the T
and GMV portfolios. Concerning the low and high-risk asset clusterings, the GMV portfolios
display a higher skewness towards the recommended assets (78.2% and 82.9%) than the T
portfolios (13.1% and 25.8%). Furthermore, we observe that the GMV-Low and T-High
portfolios assign greater weights to the N-recommended assets than to the K-benchmark
assets (21.8% and 17.1%), a trend not observed among the three other investor groups,
except for the T-high risk portfolio for the large investor with a 74.1% weight allocated to
the N-recommended assets.

Table 6.6: The table presents the tangency (T) and global minimum-variance (GMV) portfolios
of the Small investor for the mean-variance spanning test of N-Recommended assets with K-
benchmark-assets for all three asset clusters.

Low Risk Assets Moderate Risk Assets High Risk Assets
Small T GMV T GMV T GMV

N 13.1% 78.2% 25.8% 20.0% 82.9% 1.4%
K 86.9% 21.8% 74.2% 80.0% 17.1% 98.6%

Mean 0.279 0.190 0.317 0.171 0.444 0.215
StdDev 0.220 0.162 0.228 0.161 0.260 0.168
SR 1.18 1.05 1.30 0.94 1.63 1.28

∆ StdDev -28.7% -29.1% -26.2%
∆ SR 19.2% 31.3% 64.6%

SR depicts the Sharpe Ratio. ∆ denotes the change of the respective metric of the N+K portfolio
with regards to the respective metric of the K benchmark portfolio.

Overall, the N-recommended assets had a net positive impact on the T and GMV port-
folios. For the T portfolios, they increased the Sharpe ratio, For the GMV portfolios, the
recommended assets helped lower the volatility. The T-High risk portfolio for the medium
investor had the highest increase, 98%, in terms of Sharpe ratio. The GMV-Low risk port-
folio for the large investor had the most significant decrease, -30.4%, in terms of standard
deviation.
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6.3 Financial Performance

This section focuses on showcasing the financial performance of the tangency and GMV
portfolios containing the N+K assets, compared to the benchmark K asset portfolio. The
financial performance metrics used in this section are presented and defined in Appendix A1.
We provide an overview of the cumulative returns as well as risk and return statistics for the
testing period spanning from start of 2020 to end of 2021 for all four types of institutional
investors.

Starting with the Ultra investor, figure 6.1 shows the cumulative returns for the 6 differ-
ent N+K portfolios and the Ultra benchmark portfolio. The T-High portfolio demonstrated
strong outperformance compared to the benchmark Ultra, delivering higher cumulative re-
turns, as illustrated in figure 6.1. The inclusion of the N-recommended assets in the T
portfolios plays a significant role in boosting the portfolio’s performance.

Figure 6.1: Cumulative returns for the K benchmark (Ultra) and N+K portfolios during 2020-2021.

In table 6.1, we present the return-risk statistics for all of the portfolios. The rec-
ommended assets increase the portfolio’s Sharpe ratio, indicating improved risk-adjusted
returns compared to the benchmark. The T-High portfolio showcases the highest Sharpe
ratio (2.13) among the portfolios compared to the benchmark (1.22), suggesting that the
recommended assets aid in enhancing its risk-adjusted performance.
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Similarly, the T-High portfolio exhibits the highest Sortino ratio (2.62) compared to
the benchmark (1.73), indicating superior risk-adjusted returns with a focus on downside
volatility. The N-recommended assets likely contribute to this outcome by improving the
portfolio’s downside protection.

On the other hand, the GMV portfolios display lower volatility compared to the bench-
mark. The inclusion of the N-recommended assets in the GMV portfolios has the effect of
decreasing their volatility. This suggests that the recommended assets aid in constructing
diversified portfolios with reduced risk, resulting in lower overall volatility. While the GMV
portfolios have lower returns compared to the T-High portfolio and the benchmark, it’s
important to note that their primary objective is to achieve the global minimum variance,
prioritizing risk reduction rather than maximizing returns. Including the N-recommended
assets in the GMV portfolios contributes to constructing portfolios that minimize volatility
while still generating positive returns. The GMV Low portfolio records the lowest annual
volatility (18.12%) compared to the benchmark (23.80%). It also records the lowest maxi-
mum drawdown (-24.52%) compared to the benchmark (-30.31%).

Overall, the N-recommended assets have a net positive impact on the T and GMV port-
folios. For the T portfolios, they increase the Sharpe ratio, indicating improved risk-adjusted
returns and higher performance compared to the benchmark. For the GMV portfolios, the
recommended assets help lower the volatility, resulting in more stable performance.

Table 6.7: Risk and return statistics for the K benchmark (Ultra) and N+K portfolios during 2020-
2021.

Portfolio
Annual
Return
(%)

Cumulative
Return
(%)

Annual
Volatility

(%)

Sharpe
Ratio

Sortino
Ratio

Maximum
Drawdown(%)

Ultra 31.05 71.36 23.80 1.22 1.73 -30.31
T-High 52.50 141.35 23.70 2.13 2.62 -32.35
T-Moderate 40.30 105.79 21.80 1.76 2.24 -34.14
T-Low 39.7 94.49 22.00 1.57 2.05 -34.58
GMV-High 26.62 60.02 20.33 1.21 1.75 -26.43
GMV-Moderate 23.27 51.70 19.33 1.10 1.52 -30.25
GMV-Low 25.93 58.27 18.12 1.32 1.85 -24.52

Similar to the case of the Ultra investor, the findings for the Large portfolio reveal
compelling insights. The T-High portfolio consistently outperforms the benchmark portfolio,
delivering higher cumulative returns, as seen in figure 6.2, superior risk-adjusted metrics, and
enhanced downside protection. However, it is worth noting that the outperformance of the
T-High portfolio, while significant, may not be as extreme as observed in the case of the
Ultra investor. Including the N-recommended assets within the T-High portfolio significantly
contributes to its overall performance. Likewise, the GMV portfolios, like their counterparts
in the Ultra investor case, exhibit lower volatility compared to the benchmark Large portfolio.
However, this time the GMV-High portfolio performs the worst in terms of returns.

All N+K portfolios record a lower maximum drawdown than the Large portfolio, unlike
with the Ultra investor where only the GMV portfolios record a lower maximum drawdown.
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Figure 6.2: Cumulative returns for the K benchmark (Large) and N+K portfolios during 2020-2021.

As seen in table 6.8, the T-High portfolio outperforms the benchmark portfolio and the
other portfolios in terms of annual return (29.2%) and with a Sharpe ratio of 1.63 compared to
the benchmark of 0.99. However, the T-Moderate comes close in performance with a return
of 26.65% and a Sharpe ratio of 1.3. The GMV-Low records the lowest annual volatility
(14.03%) compared to the benchmark (20.16%).

Table 6.8: Risk and return statistics for the K benchmark (Large) and N+K portfolios during 2020-
2021.

Portfolio
Annual
Return
(%)

Cumulative
Return
(%)

Annual
Volatility

(%)

Sharpe
Ratio

Sortino
Ratio

Maximum
Drawdown(%)

Large 20.15 44.15 20.16 0.90 1.26 -27.47
T-High 29.20 66.57 19.85 1.37 1.87 -23.77
T-Moderate 26.65 60.09 18.96 1.30 1.76 -26.43
T-Low 21.79 48.08 17.82 1.11 1.50 -26.08
GMV-High 10.86 22.8 14.06 0.63 0.90 -18.29
GMV-Moderate 16.17 34.79 15.07 0.94 1.30 -20.14
GMV-Low 15.33 32.84 14.03 0.95 1.35 -16.16
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Figure 6.3: Cumulative returns for the K benchmark (Medium) and N+K portfolios during 2020-
2021.

In table 6.9, we see similar results as earlier, the T-High portfolio performs better in terms
of annual return, Sharpe ratio, and Sortino ratio. The GMV-Low (-19.67%) has once again
the lowest drawdown, and the T-Moderate portfolio (-31.42%) has the highest drawdown.

Table 6.9: Risk and return statistics for the K benchmark (Medium) and N+K portfolios during
2020-2021.

Portfolio
Annual
Return
(%)

Cumulative
Return
(%)

Annual
Volatility

(%)

Sharpe
Ratio

Sortino
Ratio

Maximum
Drawdown(%)

Medium 22.12 48.89 21.18 0.95 1.35 -24.53
T-High 44.10 107.98 22.30 1.89 2.23 -31.19
T-Moderate 31.48 73.0 20.70 1.42 1.74 -31.42
T-Low 28.64 65.15 20.50 1.30 1.59 -32.00
GMV-High 23.50 51.30 15.92 1.28 1.78 -19.67
GMV-Moderate 20.50 37.05 16.40 0.94 1.28 -22.39
GMV-Low 23.11 51.29 15.29 1.05 1.53 -17.92
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Figure 6.4: Cumulative returns for the K benchmark (Small) and N+K portfolios during 2020-2021.

In the case of the small investor we see once again that the T-High portfolio significantly
outperforms the benchmark portfolio and the other portfolios in terms of annual return
(44.4%) and with a Sharpe ratio of 1.63 compared to the benchmark of 0.99. The GMV-
Moderate records the lowest annual volatility (16.1%) compared to the benchmark (22.73%).

Table 6.10: Risk and return statistics for the K benchmark (Small) and N+K portfolios during
2020-2021.

Portfolio
Annual
Return
(%)

Cumulative
Return
(%)

Annual
Volatility

(%)

Sharpe
Ratio

Sortino
Ratio

Maximum
Drawdown

(%)
Small 24.58 54.91 22.73 0.99 1.39 -28.54
T-High 44.43 107.98 26.03 1.63 2.23 -31.19
T-Moderate 31.68 73.00 22.83 1.30 1.74 -31.42
T-Low 27.90 63.26 21.95 1.18 1.56 -20.48
GMV-High 21.48 47.34 16.78 1.28 1.78 -17.88
GMV-Moderate 17.14 37.05 16.11 0.94 1.28 -22.39
GMV-Low 19.02 41.45 16.21 1.05 1.53 -19.67
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6.3.1 Correlation

In Figure 6.5, we present the correlation coefficients, based on the Pearson correlation coeffi-
cient defined in Appendix A2, between the original Ultra investor portfolio and the tangency
portfolios, providing insights into their interrelationships. These correlation coefficients in-
dicate the extent to which portfolios are correlated with one another.

Among the tangency portfolios, all of them demonstrate a strong correlation with the
benchmark portfolio. Notably, the T-High portfolio exhibits the highest correlation coeffi-
cient of 0.96, indicating a close association with the original portfolio. This suggests that
the T-High portfolio closely tracks the performance of the original portfolio, reflecting a high
degree of similarity.

Conversely, the T-Low portfolio displays the lowest correlation coefficient of 0.91 with
the benchmark portfolio. This suggests a relatively weaker correlation with the original
portfolio, implying some divergence in performance. The T-Low portfolio’s lower correlation
indicates that its returns may not align as closely with the original portfolio compared to
the other tangency portfolios.

Figure 6.5: Heat map of the correlation coefficients between the original Ultra investor portfolio
and the T portfolios

In Figure 6.6, we present the correlation coefficients between the original Ultra investor
portfolio and the GMV portfolios, providing insights into their interrelationships. Notably,
the GMV portfolios demonstrate a weaker correlation with the benchmark portfolio than
the tangency portfolios.

The GMV-L portfolio exhibits the weakest correlation coefficient of 0.68, indicating a
divergence in association with the original portfolio. On the other hand, the GMV-H portfolio
exhibits the highest correlation coefficient of 0.78, reflecting a moderate level of correlation
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with the original portfolio. This implies that the GMV-H portfolio’s performance aligns
relatively more closely with the benchmark, displaying a greater similarity.

Figure 6.6: Heat map of the correlation coefficients between the original Ultra investor portfolio
and the T portfolios

6.4 Discussion

The main findings presented in the previous sections provide valuable insights into the poten-
tial of personalized investment recommendation systems to uncover untapped cross-selling
opportunities for institutional investors. By tailoring investment recommendations to com-
plement the investors’ current portfolios, the DLHR system demonstrated its ability to iden-
tify previously overlooked assets.

The performance evaluation of the DLHR system revealed its superiority over the baseline
methods in accurately predicting user preferences. This suggests that the system has a
higher capability to identify investment opportunities that align with the specific needs
and preferences of institutional investors. Through the utilization of deep learning-based
techniques, the DLHR system effectively captured underlying patterns in user-item ratings,
leading to more accurate predictions and personalized recommendations.

The mean-variance spanning test show that the recommended stocks expand the opportu-
nity set of the unconstrained institutional investor. The inclusion of the recommended assets
improves the Sharpe Ratio of the tangency portfolio and reduces the standard deviation of
the global minimum-variance portfolio. The results indicated that the recommended assets
proposed by the DLHR system expanded the investors’ mean-variance efficient frontier and
their investment opportunity set. This implies that the personalized investment recommen-
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dations not only complemented the investors’ existing portfolios but also introduced new
assets that improved the overall risk-return profile.

Additionally, the analysis of the tangency (T) and global minimum-variance (GMV)
portfolios revealed interesting insights. The recommended assets showed a higher bias in the
T portfolios compared to the GMV portfolios, indicating that they had a greater influence
on the asset allocation decisions in the T portfolios. This suggests that the recommended
assets potentially uncovered new cross-selling opportunities for institutional investors.

Furthermore, the financial performance evaluation of the tangency and GMV portfolios
provided evidence of the positive impact of the recommended assets on risk-adjusted returns
and volatility reduction. The T portfolios exhibited higher risk-adjusted returns compared to
the benchmark portfolios, while the GMV portfolios displayed lower volatility. These findings
indicate that the recommended assets had the potential to enhance the performance and risk
management strategies of institutional investors.

By incorporating the recommended assets into their portfolios, institutional investors
can potentially diversify their holdings, access new market opportunities, and optimize their
risk-return trade-offs. This highlights the untapped cross-selling opportunities that person-
alized investment recommendation systems can uncover by providing tailored investment
suggestions that complement investors’ current portfolios. In summary, the findings of this
study suggest that personalized investment recommendation systems, such as the DLHR
system developed and tested, have the potential to identify and exploit untapped cross-
selling opportunities for institutional investors. By leveraging deep learning techniques and
providing personalized recommendations, these systems can enhance portfolio performance
and risk management strategies and expand the investment opportunity set for institutional
investors on the Stockholm Stock Exchange.

6.4.1 Caveats

The DLHR approach utilized in this study has certain caveats that should be taken into
consideration as they may impact the real-world performance and efficiency of the mod-
els. One important consideration is the testing period of two years, which may not fully
capture the long-term value and performance of the portfolio constructed by the DLHR al-
gorithms. In real-world scenarios, market capitalization-weighted tracking portfolios have a
lengthy performance history and low transaction costs. However, the presented models do
not incorporate transaction costs, which are a real consideration when implementing these
strategies.

Managing the DLHR algorithms in a real-world environment introduces additional chal-
lenges. Timely and accurate data delivery becomes crucial as the models rely on up-to-date
and correct data for making informed decisions. While the approach suggests quarterly port-
folio recommendations, portfolio managers in the real world often engage in high-frequency
trading, making decisions at a much faster pace. This means the models do not account
for price changes that occur when the market is closed or situations where a company goes
bankrupt and ceases trading.

Another important caveat relates to the holding period assumption. While the study
assumes a buy-and-hold strategy for at least a quarter, institutional investors may adopt
different investment strategies or have shorter holding periods. Hedge funds or mutual
funds, for example, often have varying investment goals and trading strategies that result in
shorter time horizons for holding stocks. Therefore, the recommendations generated by the
study’s method might not accurately reflect the needs and preferences of individual or retail
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investors with different investment horizons.
The method used in the study constructs implicit ratings based on the assumption that

the more of the same stock an investor holds, the higher their preference for those stocks.
However, this assumption might not capture the full complexity of investor preferences. In-
vestors have diverse strategies, risk tolerances, and preferences going beyond the number of
holdings. Factors such as company fundamentals, industry trends, and market conditions
significantly affect investment decisions. Therefore, it’s crucial to interpret the recommenda-
tions generated by the method with this limitation in mind and consider additional factors
beyond the number of holdings.

Additionally, the quality and effectiveness of the recommendation system heavily rely on
data pre-processing and feature engineering. These steps involve cleaning and transforming
the data and selecting relevant features for analysis. It’s important to acknowledge that
limitations and biases are present during these processes, which can impact the performance
of the recommendation system. For instance, incomplete or inaccurate data cleaning can
distort information, and inadequate feature selection may lead to recommendations lacking
accuracy or relevance. Conducting these steps with care and thoroughness is essential to
mitigate any potential limitations or biases that could affect the reliability of the recommen-
dations.
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7 Conclusion

The staggering amounts of investment options led us to explore the employment of rec-
ommendation systems for personalized investment recommendations. In conclusion, the
research conducted in this thesis has successfully demonstrated the effectiveness of person-
alized investment recommendation systems, specifically the use of a Deep learning-based
hybrid recommendation system (DLHR), in uncovering untapped cross-selling opportunities
for institutional investors on the Stockholm Stock Exchange. The tailored recommenda-
tions provided by the DLHR system complemented existing portfolios, identified overlooked
assets, and offered personalized suggestions that diversified holdings, access new market
opportunities, and optimized risk-return trade-offs.

The superiority of the DLHR system over baseline methods in accurately predicting user
preferences highlights the value of employing deep learning techniques to capture underlying
patterns in user-item ratings. The effectiveness of the DLHR is in line with similar previ-
ous research conducted in the area (Kiran et al. (2020), Huang et al. (2019)), suggesting
that personalized recommendation systems can identify investment opportunities that align
accurately with the specific needs and preferences of institutional investors.

Furthermore, the study found that investment recommendations are crucial for insti-
tutional investors and significantly contribute to their ability to make profits, in line with
Chen & Cheng (2006). The tailored recommendations provided by the DLHR system were
instrumental in guiding investment decisions and maximizing returns.

The mean-variance analysis conducted in this research further supported the potential for
untapped cross-selling opportunities by expanding the mean-variance efficient frontier and
investment opportunity set for the different types of institutional investors. Furthermore,
the examination of tangency (T) and global minimum-variance (GMV) portfolios revealed
crucial insights into the influence of recommended assets on asset allocation decisions. This
finding signifies that the suggested assets have a substantial impact on shaping the optimal
distribution of investments within institutional portfolios. By suggesting stocks that mod-
ify the initial asset allocation choices, this analysis uncovers new avenues for cross-selling
opportunities among institutional investors. These opportunities arise from the ability to
offer complementary products that align with the preferred portfolio, thus enhancing the
overall portfolio performance and meeting the diverse needs and preferences of institutional
investors.

Moreover, the financial performance evaluation of the portfolios with the added recom-
mended assets demonstrated a positive impact of the recommended stocks on risk-adjusted
returns and volatility reduction. The tangency portfolios exhibited higher risk-adjusted
returns than the original benchmark portfolios, while the GMV portfolios displayed lower
volatility. These findings indicate that the recommended assets have the potential to enhance
performance and risk management strategies for institutional investors. We also show that
institutional investors demonstrate a stronger inclination towards riskier stocks, in line with
Basak & Pavlova (2013), as seen in the close association of the high-risk tangency portfolio
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with the original portfolios.
It is crucial to acknowledge the limitations of this study, which include the restricted

testing period, the absence of transaction costs, and the assumptions made regarding hold-
ing periods and investor preferences. Future implementations of the DLHR system should
address these limitations and biases to ensure the reliability of the recommendations.

Additionally, further research can explore the employment of personalized recommenda-
tion systems in different financial contexts and address the identified limitations. Incorporat-
ing richer data sources, such as an extended testing period, a broader index covering more
countries, or including additional financial factors like financial news, could lead to more
robust and comprehensive results. Exploring personalized recommendation systems beyond
stocks, and considering other asset classes, such as private equity and private debt, would
also contribute to a more comprehensive understanding of their effectiveness in supporting
institutional investors.

In summary, this research has provided valuable insights into the potential of person-
alized recommendation systems for institutional investors, particularly the DLHR system.
By leveraging deep learning techniques, these systems can effectively identify and exploit
untapped cross-selling opportunities, enhance portfolio performance, and improve risk man-
agement strategies. Future advancements in personalized recommendation systems hold the
promise of unlocking new opportunities and improving investment decision-making processes
for institutional investors in the financial service industry.
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Appendix A

A.1 Financial Performance Measures

In this study, we implement eight different performance measures to evaluate the five dif-
ferent portfolio construction strategies. Performance statistics, discussed below, correlation,
concentration and turnover. The chosen measures are in line with previous research within
the area of portfolio evaluation (Maillard et al., 2010). The mentioned measures should
provide an in-depth discussion of the differences between the compared portfolio strategies.
They should also tell whether DRL is a competitive and valuable strategy in the area.

The Swedish risk-free interest rate for the whole period 2011-2021, obtained from the
Swedish national bank, is used whenever a risk-free rate is needed for the performance
measures.

Annual return

Annual return is the annualised geometric average return. The Annual return for each
portfolio was calculated using the bellow formula (CAGR=compound annual growth rate):

CAGR =

((
Final value

Initial value

) 1
years

)
− 1 (A.1)

Cumulative Return

Cumulative returns are cumulative sum of the daily returns. It can also be calculated as a
single number, based on the final and initial value:

CR =
Final value− Initial value

Initial value
(A.2)

Annual volatility

The annual volatility (standard deviation) is the annualised volatility. The annual volatility
of the portfolio was calculated by multiplying the daily volatility by

√
252, since there are

usually 252 trading days in a year.

Sharpe ratio

The Sharpe ratio is a financial measure introduced by Nobel laureate Sharpe (1966). The
Sharpe ratio measures the performance of an investment´s, one single security or portfolio

43



of securities, return compared to its risk. Sharpe (1966) defines the ratio as:

SP =
E[rP − rf ]

σP

(A.3)

Maximum drawdown

Maximum drawdown is the largest peak-to-through downturn of the portfolio value. The
maximum drawdown of each portfolio was calculated as:

MDD(T ) = max{0, max
t∈(0,t)

P (t)− P (T )} (A.4)

Where T is the time at the end of the period and P (t) is the stock price at time t.

Sortino ratio

The Sortino ratio is similar to the Sharpe ratio, it aims to provide risk-adjusted return. The
Sortino ratio of the portfolios was calculated using the following formula:

Sortino Ratio =
E(r)

σd

(A.5)

Where σd is the standard deviation of the negative results (downside).

A.2 Pearson correlation coefficient

The correlation of the portfolios and the items is computed using the Pearson correlation
coefficient, calculated as the covariance of the two portfolios divided by the product of their
standard deviations.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(A.6)

=

∑n
i=1 xiyi − nx̄ȳ√

(
∑n

i=1 x
2
i − nx̄2) (

∑n
i=1 y

2
i − nȳ2)

(A.7)
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A.3 Top 40 Institutional Investors

Investor
Portfolio Value

(MSEK)
Country

Investor 516653,6 Sweden
BlackRock 514150,9 USA
Vanguard 385124,3 USA

Capital Group 321645,8 USA
Swedbank Robur Fonder 320489,6 Sweden

Norges Bank 249767,2 Norway
AMF Pension & Fonder 227656,0 Sweden
Alecta Tjänstepension 219939,4 Sweden
Handelsbanken Fonder 214027,8 Sweden

SEB Fonder 176733,4 Sweden
Fidelity Investments (FMR) 170953,0 USA
Stefan Persson & Familj 141803,3 Sweden

Industrivärden 137764,0 Sweden
Knut och Alice Wallenbergs Stiftelse 135704,5 Sweden

Geely Holding 130141,7 China
Volkswagen AG 125848,6 Germany
T. Rowe Price 124723,2 USA
Gustaf Douglas 111896,1 Sweden
Nordea Fonder 109787,6 Finland

Melker Schörling AB 109787,1 Sweden
Wellington Management 106091,9 USA
Lundbergföretagen AB 105313,0 Sweden

Fjärde AP-fonden 90547,3 Sweden
Första AP-fonden 84756,7 Sweden

Folksam 77542,9 Sweden
Carl Bennet 75523,7 Sweden

Länsförsäkringar Fonder 73444,3 Sweden
State Street Global Advisors 68812,9 USA

EQT 68621,5 Sweden
Cevian Capital 68193,9 Sweden

Investment AB Latour 64616,1 Sweden
PRIMECAP 64537,0 USA

Avanza Pension 63742,6 Sweden
Invesco 61697,4 USA

Tredje AP-fonden 60021,9 Sweden
Livförsäkringsbolaget Skandia 59125,8 Sweden

Fredrik Lundberg 58545,6 Sweden
Storebrand Fonder 56512,4 Sweden

Government of Japan Pension Investment Fund 56097,8 Japan
Spiltan Fonder 55373,0 Sweden
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