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Abstract

While pollination is essential for many plant species and ecosystem functions, pollinator
populations worldwide are declining. This decline is largely due to abiotic changes in
the environment: climate change and other anthropogenic impacts, such as pesticides
and land use change. Against this background, I investigate the effects of introducing
a non-native pollinator species (substituting invader”) in a pollination network with
declining resident pollinators. In particular, I ask 1) whether interspecific competition is
a necessary driver for local extinctions of resident pollinator species after environmental
changes; and 2) how much the pollination benefits for the resident plants differ between
a pollination network including a substituting invader and a network without. To answer
this, a standard Lotka-Volterra competition model is extended with terms accounting
for mutualism (pollination) and adaptation to the environment. I model a community
of two resident plants, as well as two resident pollinators and a substituting invader. I
find that interspecific competition is a necessary driver for local pollinator extinction
following an abiotic change in the environment. The competitive effect of the substituting
invader on resident pollinators is therefore negative, although a minor indirect benefit is
observed for one resident pollinator species. However, the resident plants benefit from
the introduction of a substituting invader, which leads to a small relative change in the
plant population numbers.
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Populärvetenskaplig sammanfattning

I denna rapport innebär pollinering, eller pollination, att ett djur transporterar pollen från
en växt till en annan växt. Djuren somutför pollineringen (ofta insekter) kallas pollinerare,
eller pollinatörer, och växterna sägs bli pollinerade. Det uppskattas att omkring 90% av
alla kända växtarter, och 35% av all odling av grödor, behöver pollinering för att växterna
ska kunna sprida sina fröer och föröka sig. Pollineraren får ofta näring i form av nektar
från växterna, och gynnas därmed också av pollineringen. Eftersom pollinering fyller en
viktig funktion, är många forskare oroade över att pollinerare världen över minskar i
antal. Det antas bero till stor del på klimatförändringar och annan mänsklig påverkan,
såsom bekämpningsmedel och förändrad markanvändning.

I detta kandidatarbete modelleras effekterna av att introducera ej inhemska polline-
rare i ekosystem där de inhemska pollinerarna minskar i antal på grund av förändringar
i sin livsmiljö. Det är tänkbart att en ej inhemsk pollinerare med lämpliga egenskaper
(”ersättande pollinerare”) skulle kunna tillgodose en fortsatt fungerande pollinering av
växterna i ekosystemet, när de inhemska pollinerarna har blivit färre. Jag skapar därför
en matematisk modell för tillväxten av populationerna för växter och pollinerare. Växter
och pollinerare interagerar genom pollinering, och mellan växter respektive pollinerare
sker en konkurrens om resurser. Exempel på sådana resurser är lämpliga växtplatser
eller pollinatörernas föda och boplatser. Modellen tillämpas på fem arter: två inhemska
växter samt två inhemska pollinerare och en ersättande pollinerare. Jag jämför fallet när
miljön ändras, men ingen ersättande pollinerare införs, med fallet då miljön ändras och
en ersättande pollinerare införs. Genom denna jämförelse utreder jag 1) om konkurrens
mellan pollinerande arter är nödvändig för att de ska utrotas lokalt i samband med att
deras livsmiljö förändrats. Jag undersöker även 2) om de inhemska växterna gynnas
olika mycket med aller utan ersättande pollinerare.

Modellen visar att 1) konkurrens mellan pollinerande arter är nödvändig för att
pollinerande arter ska utrotas vid miljöförändring. Dessutom visar modellen att 2) en
ersättande pollinerare gynnar de inhemska växterna när de två inhemska pollinerarna
minskat i antal. En ersättande pollinerare kan alltså påverka inhemska växter positivt,
medan inhemska pollinerare påverkas negativt eller till och med utrotas lokalt. För att
undersöka om det är gynnsamt att införa en ersättande pollinerare är det därmed viktigt
att väga de positiva effekterna för växter mot de negativa effekterna för pollinerare. Ett
viktigt steg för en sådan jämförelse är att studera och modellera fler olika nätverk av
pollinerare och växter för att besvara hur de positiva och negativa effekterna beror på
arternas egenskaper i det nätverk som undersöks. Det bör has i åtanke att det finns
stora risker med att en ej inhemsk art införs av människor, med tanke på att vi inte kan
förutse exakt hur det kommer påverka ekosystemet. Därför är det viktigt att en ersättande
pollinerare enbart införs om det är väl beforskat och om det förväntas vara mer gynnsamt
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än andra alternativ. I första hand bör det undersökas ifall en liknande positiv effekt kan
uppnås utan mänskligt ingrepp eller med ingrepp utan att en ej inhemsk art införs.
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1 Introduction

1.1 Background

Pollination is a common mutualistic interaction between plants and animals (together
constituting a pollination network), most of them insects [9], which underpins reproduc-
tion and yields of many wild plants and crops [4]. Pollination plays an important role in
ecosystem functioning [4]; out of all angiosperm species, 87.5% [9] to 90% [4] depend on
pollination for their reproduction. In addition to its importance for wild plant diversity,
it is also estimated that 35% of crop production comes from animal-pollinated plant
species [4]. Not only the number of pollinators is important for ecosystem functioning,
but also the diversity of pollinator species. For example, a decreased diversity has been
shown to lead to reduced process rates and stability in ecosystems, which suggests that
the presence of different pollinator species underpins many ecosystem functions [2].

Because of the dependence of ecosystem functioning on both the number of pollinator
individuals and the number of pollinator species, it is difficult to predict the consequences
of lost species richness of pollinating insects [2]. Understanding such consequences is
made more urgent by the decline of many pollinators (including insects) and associated
plants globally [4]. An example is the bumblebee (Bombus) genus, of whichmany species
have decreased in population number in Sweden [2]. The pollinator decline has been
attributed mainly to the abiotic factors of climate change and other human-induced
changes (”anthropogenic impacts”) [4]. However, there are indications that such abiotic
changes in the environment are not enough in themselves to drive extinctions. For
example, a study modelling eco-evolutionary responses of species to a changing climate
found no case where extinctions happened in the absence of competition from other
species [8]. This suggests an opportunity for the pollination function to be maintained
even in a changed environment, which for example agriculture depends on.

Specifically, the decline of wild pollinators has made agriculture increasingly re-
liant on managed pollinators for crop yields. Several studies have therefore been made
regarding the introduction of the principal managed pollinators globally, the Western
honeybee Apis mellifera and the buff-tailed bumblebee Bombus terrestris [12]. From
the managed colonies, escaped individuals have often formed feral populations [12, 1].
Such feral populations can in many cases be considered invasive alien species (IAS),
which are defined as species introduced beyond their natural ranges by humans, and
then spreading rapidly to impact native species both ecologically and evolutionarily [12].
While IAS often affect their host ecosystems adversely, positive impacts have also been
observed [12]. One example is that introduced pollinators can benefit native pollination
networks by maintaining pollination function over large distances, especially in cases
where pollinator loss mediated by humans has disrupted the ecosystem and indigenous
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10 1. introduction

pollinators [12]. However, this benefit has mainly been observed for small numbers of
introduced pollinators [12]. Hence, there is a research gap in quantifying the potential
benefits and risks of intentionally introducing non-native pollinator species in pollina-
tion networks disrupted by abiotic environmental changes mediated by humans. Such
quantification is the purpose of the present thesis.

1.2 Aims of this thesis

I aim to investigate the effects on native (”resident”) pollination networks from the intro-
duction of a non-native pollinator species (a ”substituting invader”) when the resident
pollinators are declining due to an abiotic change in their environment. I assume that
the substituting invader is introduced into a community of two resident pollinators and
two plants to maintain the pollination services that the resident pollinators provided
before their decline. I compare the equilibrium populations of the species in the com-
munity between two scenarios: one with and one without a substituting invader. I seek
to find 1) a mechanism for pollinator extirpations catalyzed by an abiotic change in the
environment, and 2) whether a non-native pollinator species can substitute the services
provided to the resident plants by the resident pollinators. Specifically, I ask:

1. Does the model support that an abiotic change in the environment leads to the
extirpation of resident pollinator species only in the presence of interspecific
competition?

2. What is the difference in mutualistic benefits to the resident plants between the
two scenarios?

To answer these questions, I develop a model accounting for competition, mutualism
and use of resources in the environment, as well as a framework for quantification of the
associated parameters. The model thus developed applies to pollination networks in a
changing environment. I then use this model to study the introduction of a substituting
invader as a potential way of maintaining the pollination function otherwise lost due to
the decline of resident pollinator species.



2 Methods

2.1 Model description

Modelled pollination network

Figure 2.1 shows the pollination network considered in this thesis. Firstly, there is the
”environment”, which contains all the resources pollinators and plants can use to survive
and reproduce except those derived from pollination. There are three pollinators: the
resident pollinators, 𝐵1 and 𝐵2, as well as the substituting invader, 𝐵3. These compete
(red arrows) over resources from the so-called ”environment” (green arrows). These
resources include food sources and nesting space. In addition, there are plants belonging
to the resident community, 𝑅1 and 𝑅2, which compete over other resources in the envi-
ronment than the pollinators, such as access to sunlight and the area for them to spread
their seeds. Pollination is modeled as a mutualistic interaction between the plants and
pollinators (blue arrows), which means that both species interacting are benefited from
the pollination.

Figure 2.1: Illustration of the studied pollination network, including the resident
community and the substituting invader. Double-headed arrows represent interactions
between species, where red (competition) is mutually negative and blue (mutualism) is
mutually positive. The green arrows represent the resources derived from the environ-
ment (positive impact).

Each individual of a species has one environmental trait value and onemutualistic trait
value. The environmental trait value determines which resources an individual can use
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12 2. methods

from the environment. Since the resources derived from the environment are different
between plants and pollinators, the environmental trait value for pollinators represents
another real-world characteristic of a pollinator individual than the environmental trait
value for plants does for a plant individual. Henceforth, the plant environmental trait
value will be exemplified by plant height and the pollinator environmental trait value
by pollinator body size. The mutualistic trait value determines if a pollinator and a
plant individual can interact through pollination, and is exemplified by flower size and
preference for flower size for plants and pollinators, respectively. Pollination is likely
to happen when the mutualistic trait value for the plant individual is close to that of
the pollinator individual, and unlikely when the two mutualistic trait values are widely
different. A representative (average) individual of each species is given the following
characteristics related to these trait values:

• 𝑅1: A short plant with small flowers
• 𝑅2: A tall plant with large flowers
• 𝐵1: A small pollinator with a preference for small flowers
• 𝐵2: A large pollinator with a preference for large flowers
• 𝐵3 (the substituting invader): A small pollinator with a generalist preference for
flowers of a wide range of sizes, although it is given a bias towards smaller flowers,
such as 𝑅1

Population equation

In my model, the population number of a plant species 𝑅𝑖 is denoted 𝑁Ri, and for a
pollinator species 𝐵𝑖, the population number is 𝑁Bi. The model accounts for all the
interactions shown in 2.1 and also the decline of the resident pollinators catalyzed by a
changing environment. The following population equations are used to calculate the
growth rate of each plant and pollinator population, respectively:

1
𝑁Ri

𝑑𝑁Ri
𝑑𝑡 = 𝑔Ri ⋅ ( exp ( −

1
2(
𝜇r,Ri − 𝜇r,env

𝜎r,env
)
2
) +

−∑𝑗 𝛼Ri,Rj𝑁Rj +∑𝑘 𝑐Ri,Bk𝑁Bk

𝐾m,Ri
), (2.1)

and

1
𝑁Bi

𝑑𝑁Bi
𝑑𝑡 = 𝑔Bi ⋅ ( exp ( −

1
2(
𝜇b,Bi − 𝜇b,env

𝜎b,env
)
2
) +

−∑𝑘 𝛼Bi,Bk𝑁Bk +∑𝑗 𝑐Bi,Rj𝑁Rj

𝐾m,Bi
), (2.2)

with notation explained in Table 2.1.

Competition

The population equations (2.1) and (2.2) are based on the standard Lotka-Volterra com-
petition model according to Kot [5, Chapter 12]. To account for competition between
species (interspecific competition), I define an interspecific competition component for
species 𝐵𝑖:
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Explanation of notation Plant Pollinator
Population number 𝑁Ri 𝑁Bi
Intrinsic growth rate 𝑔Ri 𝑔Bi

Average environmental trait value 𝜇r,Ri 𝜇b,Bi
Optimal environmental trait value 𝜇r,env 𝜇b,env
Environment distribution width 𝜎r,env 𝜎b,env

Competition coefficient 𝛼Ri,Rj 𝛼Bi,Bk
Mutualistic conversion coefficient 𝑐Ri,Bk 𝑐Bi,Rj

Ideal carrying capacity 𝐾m,Ri 𝐾m,Bi
Table 2.1: Variables and constants in the population equations (2.1) and (2.2).

𝑁comp,Bi = ∑
𝑘≠𝑖

𝛼Bi,Bk𝑁Bk, (2.3)

where 𝛼Bi,Bk is the competition coefficient for a pollinator species 𝐵𝑖 competing with a
pollinator species 𝐵𝑘. It translates the population number of species 𝐵𝑘 into the number
of individuals of species 𝐵𝑖 which would give the same competitive cost for an individual
of species 𝐵𝑖. Therefore, 𝑁comp,Bi is the equivalent number of 𝐵𝑖 individuals added due
to the competition with other pollinator species, 𝐵𝑘. The definition is analogous for
𝑁comp,Ri, the interspecific competition component for the plant species𝑅𝑖. The red arrows
entering a species in Figure 2.1 correspond to the interspecific competition experienced
by this species, and the negative impact is defined to become smaller with an increasing
difference between the average environmental trait values of the two competing species.

Mutualism

A mutualistic component is defined in line with Kot [5, Chapter 13]. The mutualistic
component accounts for the mutualistic benefit derived from the pollination interactions
between plants and pollinators in the pollination network. For a pollinator 𝐵𝑖, this is
given by:

𝑁mut,Bi = ∑
𝑗
𝑁Bi,Rj = ∑

𝑗
𝑐Bi,Rj𝑅𝑗, (2.4)

where 𝑐Bi,Rj is amutualistic conversion coefficient, which is multiplied by the population
number of plant species 𝑅𝑗 to translate the total mutualistic benefit from pollinating
plants of species 𝑅𝑗 into how large competitive cost to an individual of pollinator species
𝐵𝑖 that it weighs up for. The definition is analogous for𝑁mut,Ri, themutualistic component
for a plant 𝑅𝑖. The mutualistic component corresponds to all the blue arrows entering
a species in Figure 2.1, and is defined to become smaller with an increasing difference
between the average mutualistic trait values of the two interacting species.
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Adaptation to the environment

In addition, an ideal carrying capacity is defined, 𝐾m,Ri for plants and 𝐾m,Bi for pollinators.
For a given species, this ideal carrying capacity assumes an average environmental trait
value equal to the optimal environmental trait value (a situation hereafter called ”optimal
adaptation to the environment”), for which there is the largest amount of resources to
be used by an individual with the optimal environmental trait value. Note that the word
”adaptation” does not in this thesis imply the evolution of any species, but rather the
suitability of their constant average trait values in the given environment. By assuming
that the resources in the environment are normally distributed (see Appendix A for
rigorous definition), the realized carrying capacity is defined for a pollinator 𝐵𝑖 by scaling
the ideal carrying capacity, 𝐾m,Bi, by a factor accounting for the difference between its
average environmental trait value, 𝜇b,Bi, and the optimal environmental trait value for
pollinators, 𝜇b,env. This difference in environmental trait values gives a measure of the
degree of adaptation to the environment, from no adaptation at large differences to
optimal adaptation for zero difference. For 𝐵𝑖, the realized carrying capacity is given by:

𝐾Bi = 𝐾m,Bi ⋅ exp ( −
1
2(
𝜇b,Bi − 𝜇b,env

𝜎b,env
)
2
), (2.5)

where 𝜎b,env is the width of the environment (resource) distribution with respect to
pollinator environmental trait values. The definition and formula are analogous for𝐾m,Ri,
the realized carrying capacity of a plant 𝑅𝑖. The realized carrying capacity corresponds
to the green arrows in Figure 2.1 since they represent the total amount of resources
available to the different species from the environment. By definition, the realized
carrying capacity becomes smaller with an increasing difference between the average
environmental trait value and the optimal environmental trait value. Note again that
these environmental trait values are defined differently between plants and pollinators.
The realized carrying capacity is by definition smaller than or equal to the ideal carrying
capacity since the adaptation to the environment is in general not optimal. By letting the
species have a (realized) carrying capacity, and thus a maximum equilibrium population
number, dependent on their adaptation to the environment, it is possible to model how
an abiotic change in the environment affects the different populations by changing their
adaptation to the environment.

2.2 Modelled scenarios

Description of scenarios

I consider two different scenarios. The first scenario, the ”declining residents scenario”
(DRS), includes only the resident community. The second scenario, the ”substituting
invader scenario” (SIS), includes both the resident community and the substituting
invader. Both scenarios assume the same abiotic change in the environment which
only directly affects pollinators by changing their realized carrying capacities. When
the population numbers of the species in these scenarios do not change appreciably on
time scales short enough for evolution to be negligible, the populations are said to be at
ecological equilibrium and are called equilibrium populations for the associated scenario.
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Figure 2.2: Schematic diagram of the numerical procedure to calculate the different
equilibrium population numbers compared in this thesis. ”Initial” refers to the equilib-
rium population numbers of the resident community before the abiotic change in the
environment. ”DRS” refers to the declining residents scenario and ”SIS” to the substitut-
ing invader scenario, both assuming the same abiotic change in the environment. These
two scenarios differ in that the pollination network in SIS also includes a substituting
invader, whereas DRS includes only the resident community.

Note that this definition of ecological equilibrium ismathematically approximate. Figure
2.2 shows the methodology used for numerically calculating the equilibrium population
numbers. The initial equilibrium population numbers are calculated before an abiotic
change in the environment, and the equilibrium population numbers in the DRS and
SIS are calculated with a change in the environment.

To investigate the effects of the substituting invader, the equilibrium populations in
the SIS are compared to the equilibrium populations in the DRS. To obtain the population
numbers over time, a numerical solver for ordinary differential equations (ODEs) is used
to solve the systemof ODEs consisting of the coupled population equations (2.2) and (2.1).
The population numbers obtained at the model end time (”final time”) of a scenario are
chosen as equilibriumpopulation numbers. First, the equilibriumpopulation numbers of
the resident community are calculated with 𝜇b,env held constant. These were the resident
community population numbers at the start of the DRS and to which a population of
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the substituting invader was added at the start of the SIS. To model the assumed abiotic
change in the environment over time in both the SIS andDRS, the optimal environmental
trait value for pollinators, 𝜇b,env, changed as a function of time, 𝑡, according to:

𝜇b,env(𝑡) = 𝜇b,env,init + (1 − exp(−𝑡/𝜏))(𝜇b,env,fin − 𝜇b,env,init), (2.6)

where the initial and final values are, respectively:

𝜇b,env,init = 𝜇b,env(0) and 𝜇b,env,fin = lim
𝑡→∞

𝜇b,env(𝑡),

and 𝜏 is a time constant (see Figure 2.3). This function gives a decreased optimal envi-
ronmental trait value for pollinators (and not for plants), where the abiotic change over
time in the environment can be for example temperature rise or increasing pesticide use.
The substituting invader is given a smaller average environmental trait value, 𝜇b,B3, than
the other two species to make it the pollinator which is best adapted to the changed envi-
ronment. However, this means that it will be the least adapted to the initial environment.
For more details regarding the theory used to model a changing environment as well as
the resulting relative advantages and disadvantages of the studied species, see Figures
A.4 and A.5, and associated arguments in Appendix A.

Figure 2.3: Change of the optimal environmental trait value, 𝜇b,env, over time according
to (2.6).

Components of population numbers

In the implementation of the scenarios, a threshold population number, 𝑁𝑡 = 1, was
defined. As soon as a population number (of either pollinators or plants) decreased
below 𝑁 = 𝑁𝑡, the associated population was set to 𝑁 = 0, after which the population
equations (2.1) and (2.2) give that for all future times, 𝑁 = 0.

If 𝐵𝑖 has a nonzero equilibrium population number, 𝑁∗
Bi > 0, it can be divided into

three components: mutualism component (𝑁∗
mut,Bi), interspecific competition (𝑁∗

comp,Bi)
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and realized carrying capacity (𝐾Bi). Using the equilibrium population sizes of all species
in the studied community, the mutualism component is given by (2.4), the interspe-
cific component by (2.3) and the realized carrying capacity by (2.5). This gives the
decomposition:

𝑁∗
Bi = 𝑁∗

mut,Bi − 𝑁∗
comp,Bi + 𝐾Bi. (2.7)

An analogous decomposition can be made for a plant 𝑅𝑖. Since this decomposition
depends on the population number being nonzero, (2.7) is not valid for a population
number of 0. However, when (2.7) gives the ecological impossibility𝑁∗

Ri < 0, it should be
interpreted as𝑅𝑖 becoming extirpated (locally extinct). This holds even if new individuals
of 𝑅𝑖 are introduced, because of the persistingly negative growth rate of the population.

2.3 Selected parameter values

The values for the competition coefficients are shown in (2.8) and (2.9), while mutualistic
conversion coefficients are shown in (2.10) and (2.11). All remaining parameter values
used in the population equations, (2.1) and (2.2), are shown in Tables 2.2, 2.3 and 2.4.
The derivation of formulas for 𝛼Ri,Rj, 𝛼Bi,Bk, 𝑐Ri,Bk, 𝑐Bi,Rj, 𝐾m,Ri and 𝐾m,Bi, is described in
Appendix A, and the internal model parameter values to calculate these in Appendix B.

(𝛼R1,R1 𝛼R1,R2
𝛼R2,R1 𝛼R2,R2

) = (1.00 0.82
0.20 1.00) (2.8)

(
𝛼B1,B1 𝛼B1,B2 𝛼B1,B3
𝛼B2,B1 𝛼B2,B2 𝛼B2,B3
𝛼B3,B1 𝛼B3,B2 𝛼B3,B3

) = (
1.00 1.11 0.79
0.28 1.00 0.14
0.79 0.54 1.00

) (2.9)

(𝑐R1,B1 𝑐R1,B2 𝑐R1,B3
𝑐R2,B1 𝑐R2,B2 𝑐R2,B3

) = (0.092 0.0092 0.14
0.027 0.021 0.054) (2.10)

(
𝑐B1,R1 𝑐B1,R2
𝑐B2,R1 𝑐B2,R2
𝑐B3,R1 𝑐B3,R2

) = (
0.046 0.053
0.0046 0.042
0.048 0.071

) (2.11)

Parameter For all plants, 𝑅𝑗 For all pollinators, 𝐵𝑘
𝜇z,env 3 5→ 2 *
𝜎z,env 2 2

Table 2.2: Parameter values for the environment. The trait ”z” stands for either ”r” or
”b” when the parameter applies to the plant or pollinator environment, respectively. *
The value of 𝜇b,env starts at 5 and asymptotically approaches 2 (see Figure 2.3).
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Parameter 𝑅1 𝑅2
𝑔Ri 1.51 1.10
𝜇r,Ri 2 4
𝐾m,Ri 3500 3250

Table 2.3: Parameter values for every plant species, 𝑅𝑖.

Parameter 𝐵1 𝐵2 𝐵3 (substituting invader)
𝑔Bi 1.51 1.10 1.51
𝜇b,Bi 4 6 3
𝐾m,Bi 1500 1125 1500

Table 2.4: Parameter values for every pollinator species, 𝐵𝑖.



3 Results

In the DRS, it is apparent that the population number of 𝐵2 is zero, meaning that this
species is extirpated in the DRS (see Figure 3.1). Similarly, 𝐵1 becomes extirpated in
the SIS. In contrast, the plants, 𝑅1 and 𝑅2, are relatively unaffected by the changes
between the scenarios, as seen by the relatively small differences between their respective
population numbers at the different equilibria.

As intended in the SIS, the substituting invader, 𝐵3, had an equilibrium population
number comparable to those of 𝐵1 and 𝐵2 initially (see Figure 3.1). The method used to
achieve this was setting the environmental trait value of the invader, 𝜇b,B3 = 3, closer
to the optimal value in the changed environment, 𝜇b,env,fin = 2, than the other two
pollinator species, 𝐵1 and 𝐵2, with 𝜇b,B1 = 4 and 𝜇b,B2 = 6, respectively. Even if the
optimal environmental trait value, 𝜇b,env, is not the only determinant of the population
numbers, changing it has a large impact on the realized carrying capacities and thus
the equilibrium population numbers, as implied in comparing Figures A.5 and A.4 in
Appendix A.

Figure 3.2 shows the population numbers in Figure 3.1 divided into components
according to (2.7): mutualism, interspecific competition and realized carrying capacity.
The mutualism and realized carrying capacity components are positive for all species at
all equilibria, in contrast to the negative (or zero) interspecific competition components.
Although the realized carrying capacities of the pollinators changewhen the environment
changes, they never reach below the threshold population number, 𝑁𝑡 = 1. Therefore,
it would not be possible in the present model for any of the pollinator species to be
extirpated from the assumed abiotic change in the environment, in the absence of
interspecific competition. I conclude that interspecific competition is required in the
scenarios studied for the environmental change to catalyze the extirpation of any species.
Since the mutualism component is much smaller than the realized carrying capacity for
almost all species in all equilibria, the mutualism is facultative, as defined by Kot [5],
since the plants can survive independently of the pollinators and vice versa.

Figure 3.3 shows the difference in population numbers between the SIS and the DRS.
From the increase in population numbers for both plants, the benefit of introducing an
invader was positive for the plants. This represents that the substituting invader would
ensure more pollination for the plants when the environment has changed than the
scenario without a substituting invader (DRS). The introduction of a substituting invader
also benefited 𝐵2 by outcompeting 𝐵1, the main competitor for both 𝐵2 and 𝐵3. This is
seen by the large decrease in population number for 𝐵1 and the slight increase for 𝐵1,
shown in Figure 3.3. 𝐵3 and 𝐵2 don’t compete strongly with each other, as defined by
the small values of their competition coefficients, 𝛼B2,B3 = 0.14 and 𝛼B3,B2 = 0.54, com-
pared to the other coefficients in (2.9). This leads to the small interspecific competition
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Figure 3.1: Equilibrium population numbers in the different scenarios of the honeybee
case. ”Initial” refers to the initial equilibrium, ”DRS” to the declining residents scenario,
and ”SIS” to the substituting invader scenario.

components when these are the only pollinators in the SIS compared to the DRS, where
𝐵2 has a substantially larger interspecific competition component. Because of the weak
competition between them, 𝐵2 and 𝐵3 can coexist in the SIS, even if 𝐵3 vastly outnumbers
𝐵2.
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Figure 3.2: Equilibrium population number components in the different scenarios of
the honeybee case. ”Initial” refers to the initial equilibrium, ”DRS” to the declining
residents scenario, and ”SIS” to the substituting invader scenario. Note that the sum
of all three components gives the equilibrium population numbers seen in Figure 3.1,
whenever these are non-zero, according to (2.7).

Figure 3.3: Difference in equilibrium population number between the substituting
invader scenario (SIS) and the declining residents scenario (DRS) relative to the initial
equilibrium population numbers.





4 Discussion

The results support that interspecific competition is a necessary driver for the loss of any
pollinator species following an abiotic change in the environment. This is expected, since
a species has a negative growth rate when the interspecific competition that a species
faces is larger than the sum of its mutualism and realized carrying capacity components,
according to the model used. In reality, a negative growth rate means that the species
can’t survive and reproduce sufficiently well to maintain its population number, which
decreases. If the negative growth rate persists over time, extirpation occurs. This gives an
approximate mechanism for how an abiotic change in the environment can contribute
to the loss of pollinator species: by reducing the realized carrying capacity of a pollinator
species to the extent that it becomes smaller than the magnitude of the interspecific
competition. By identifying the negative impact of competition as a mechanism for
species extirpations, it might seem as if the introduction of a substituting invader cannot
benefit the resident pollinators. However, it was also found that the introduction of a
substituting invader can outcompete competitively dominant resident pollinators and
thus have an indirect positive effect on other resident pollinators. The results of modeling
suggest that this happens when the competition between the substituting invader and
the previously disadvantaged resident pollinators is weak compared to their competition
with the previously dominant pollinators.

In addition, the plant population numbers increase with the introduction of a sub-
stituting invader in the model community, which is a positive effect of substituting
pollinators in decline. Such a benefit is expected, considering that the substituting in-
vader is chosen to be well adapted to the changed environment and to the two plant
species compared to the two resident pollinators. However, the contribution of the
mutualistic benefit to the entire population number of a species was small in both sce-
narios, with and without a substituting invader. The difference in the mutualistic benefit
between these two scenarios will likely be larger if plants that are more dependent on
mutualism are considered. Within the present model, such a situation can be modeled
with larger mutualistic conversion coefficients for the plants. Since the mutualistic
benefit of introducing a substituting invader is strongly dependent on the mutualistic
conversion coefficients, it is important to choose empirically supported values for these
coefficients before drawing conclusions about the potential effects of substituting pol-
linators in decline in real pollination networks. Such validation of the positive effect
on resident plants is particularly relevant when the substituting invader is a bee species
because it would support the finding that some pollination networks experience several
positive effects from introduced managed bees, even if the impacts are mainly negative
for a majority of studied bee invasions.

To better understand the effects of substituting pollinators in decline, the model
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allows for several extensions. For example, it is possible to use another function for the
changing environment or change another parameter than the optimal environmental
trait value for pollinators. For example, dynamic effects arising from a periodically or
very slowly changing environmentmight be studied. Importantly, empirical observations
and measurements might make it possible to determine parameter values corresponding
to a real pollination network. This enables using the model to generate testable predic-
tions about the effects of substituting pollinators in decline. It has been suggested by
Parra-Tabla et al [10] that testable predictions are crucial for understanding the effects
of invasive species, even if it was mainly stated for invasive plant species. Empirical
studies are needed to confirm or refute such predictions. Even if the idea of substituting
pollinators in decline were found to be untenable after further study, the understanding
of how the resident community would respond to this intervention is likely beneficial to
other areas of study. For example, such understanding can contribute to better mapping
of how invasive species affect pollination networks as well as contributing to guidelines
for responsible human interventions to preserve declining pollination functions. Be-
cause of the potentially negative effects of introducing non-native pollinator species,
it is important to not deploy this intervention to ensure continued pollination if more
certain measures are feasible or if the risks of this intervention have not been extensively
studied. Therefore, I make no judgment of whether substituting pollinators in decline is
a desirable intervention in any real pollination network.



5 Conclusion

The results are in line with my expected answers to the two questions posed. Firstly,
I show that the model requires interspecific competition for an abiotic change in the
environment to catalyze the extirpation of pollinator species. Secondly, I find larger
mutualistic benefits for the resident plants with the introduction of a non-native pollina-
tor species than without, when the resident pollinators are declining in number. These
two findings clarify a mechanism for the extirpation of pollinator species and suggest
that a non-native pollinator species can benefit the resident plants by substituting lost
resident pollinators. The impact of the non-native pollinator species is mainly negative
for the resident pollinators, while mainly positive for the resident plants. Therefore, it is
not possible to conclude whether it is beneficial to the resident pollination network as
a whole, without specifying how to evaluate the trade-off between resident pollinator
population numbers and resident plant population numbers.

To better understand the effects of substituting pollinators in decline, it would be
beneficial to model a wide variety of pollination networks, with respect to the degree
of dependence between plants and pollinators, as well as considering the magnitude
of the resident pollinator decline. At a later stage, such modeling might be followed by
empirical studies to investigate whether the model results are in line with the effects
observed in field studies or controlled experiments. Crucially, before trying this method
in a real pollination network, it is necessary to as extensively as possible confirm that it
can ensure a substantial positive difference in maintained pollination function compared
to without a substituting invader and that it is more suitable for the given pollination
network than other methods to mitigate the negative consequences from the loss of
pollinators. Since a diversity of pollinators is crucial for crop production and many
ecosystem functions, it is important to be cautious in applying this method because of
the risks it poses to the resident pollinators.

25





References

[1] Marcelo A. Aizen et al. ”Chapter Two - Invasive bees and their impact on agri-
culture”. In: Advances in Ecological Research 63 (2020), pp. 49–92. url: https:
//www.sciencedirect.com/science/article/pii/S0065250420300246.

[2] Riccardo Bommarco et al. ”Drastic historic shifts in bumble-bee community com-
position in Sweden”. In: Proc. R. Soc. B 279 (1727 2011). url: https://doi.org/
10.1098/rspb.2011.0647.

[3] Troy Day and Kyle A. Young. ”Competitive and Facilitative Evolutionary Diver-
sification”. In: BioScience 54 (2 2004), pp. 101–109. url: https://doi.org/10.
1641/0006-3568(2004)054[0101:CAFED]2.0.CO;2.

[4] Maël Doré, Colin Fontaine, and Elisa Thébault. ”Relative effects of anthropogenic
pressures, climate, and sampling design on the structure of pollination networks
at the global scale”. In: Global Change Biology 27 (2020), pp. 1266–1280. url:
https://doi-org.ludwig.lub.lu.se/10.1111/gcb.15474.

[5] Mark Kot. Elements of Mathematical Ecology. Cambridge: Cambridge Univer-
sity Press, 2001. isbn: 9780511608520. url: https : / / doi . org / 10 . 1017 /
CBO9780511608520.

[6] Aidan Lyon. ”Why are Normal Distributions Normal?” In: The British Journal for
the Philosophy of Science 65 (3 2014), pp. 621–649. url: https://www.jstor.
org/stable/26398398.

[7] David Mouillot et al. ”Niche overlap estimates based on quantitative functional
traits: a new family of non-parametric indices”. In: Oecologia 145 (2005), pp. 345–
353. url: https://doi.org/10.1007/s00442-005-0151-z.

[8] Jon Norberg et al. ”Eco-evolutionary responses of biodiversity to climate change”.
In: Nature Clim Change 2 (2012), pp. 747–751. url: https://doi-org.ludwig.
lub.lu.se/10.1038/nclimate1588.

[9] Jeff Ollerton. Pollinators and Pollination : nature and society. Exeter: Pelagic Pub-
lishing, 2021. isbn: 9781784272302.

[10] Víctor Parra-Tabla and Gerardo Arceo-Gómez. ”Impacts of plant invasions in
native plant–pollinator networks”. In: New Phytol 230 (6 2021), pp. 2117–2128.
url: https://doi.org/10.1111/nph.17339.

[11] Heidi K. Swanson et al. ”A newprobabilisticmethod for quantifying n-dimensional
ecological niches and niche overlap”. In: Ecology 96 (2 2015), pp. 318–324. url:
https://doi.org/10.1890/14-0235.1.

27



28 references

[12] Adam J. Vanbergen, Anahí Espíndola, and Marcelo A. Aizen. ”Risks to pollinators
and pollination from invasive alien species”. In: Nat Ecol Evol 2 (2018), pp. 16–25.
url: https://doi-org.ludwig.lub.lu.se/10.1038/s41559-017-0412-3.



A Derivation of the model

All figures in this appendix are made using the parameter values for the modeled com-
munity in the main text, found in their entirety in Appendix B.

A.1 Probability theory

A stochastic variable X can be defined as a variable for which each possible value is taken
on by X with a given probability. If it can only take on discrete values, this probability
is given by the function 𝑝𝑋(𝑘) and in the case of a continuous variable X, it takes on a
value in the open interval 𝑥 ∈ (𝑥1, 𝑥2) with a probability

𝑃(𝑥1 < 𝑋 < 𝑥2) = ∫
𝑥2

𝑥1
𝑓𝑋(𝑥) d𝑥, (A.1)

where 𝑝𝑋(𝑘) and 𝑓𝑋(𝑥) are respectively called a probability mass function and a prob-
ability density function (PDF) for the variable X. An example of a PDF is given by the
normal distribution, 𝑁(𝜇, 𝜎), which for 𝑋 ∈ 𝑁(𝜇, 𝜎), gives the PDF

𝑓𝑋(𝑥) =
1

√2𝜋 ⋅ 𝜎
exp ( − 1

2(
𝑥 − 𝜇
𝜎 )

2
). (A.2)

Often, quantitative physical traits are assumed to be normally distributed, for example
the weight of individuals of a given animal species or the height of plants of the same
species in the same geographical area, although many such traits are only approximately
normally distributed [6, 7]. Since there aremanymechanisms impacting the expression of
such a trait, often divided into genetic and environmental factors, they can be considered
stochastic variables for each individual [6]. For the species as a whole, the PDF for a trait
of an individual in the species can define one dimension of the ecological niche of that
species, since it shows the interval(s) in which the majority of the individuals of that
species have their trait value [6, 11].

Natural selection operates on the principle that individuals with certain traits have
a better ability to survive and reproduce than those who do not have the same trait
[3]. This drives evolution of the species as a whole towards a larger proportion of the
population having that trait [3]. In particular, this applies to quantitative traits, which
means that the niche as described by a PDF is likely to move along the trait value axis
and change its width when subjected to selection pressure [3]. Assuming no evolution or
rapid disturbance directly to the population, the PDF representing the niche of a given
species will therefore be considered constant in this thesis. This is likely accurate, since
this thesis considers ecological, but not evolutionary, population effects.
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Many of the arguments below are made for pollinators, 𝐵𝑘, but all of them also apply
analogously to plants, 𝑅𝑗, if not explicitly stated otherwise.

A.2 Environment

Each species is assumed to have an associated ”environmental trait PDF” (ETPDF)
describing the distribution of an ”environmental trait” in the species population (see
Figure A.1). Such a trait indicates what resources in the environment that an individual
of the species can use for its survival and reproduction. For plants, this is 𝑟, and for
pollinators, 𝑏. They are assumed to be normally distributed, with peak trait values
denoted by 𝜇r,Rj and 𝜇b,Bk, respectively, as well as standard deviations, 𝜎r,Rj and 𝜎b,Bk,
respectively. The ETPDF for a pollinator 𝐵𝑖 is given by:

𝑓Bi(𝑏) =
1

√2𝜋 ⋅ 𝜎b,Bi
exp ( − 1

2(
𝑏 − 𝜇b,Bi
𝜎b,Bi

)
2
). (A.3)

Figure A.1: Environmental trait PDF (ETPDF), 𝑓B1(𝑏), for species 𝐵1.

Furthermore, the pollinator species are assumed to have a common ”environment
distribution function” (EDF), 𝑑𝐾/𝑑𝑏, giving a distribution of resources in the environ-
ment, necessary for pollinator survival and reproduction (see Figure A.2). This EDF is
assumed to be a scaled normal PDF with its peak at 𝑏 = 𝜇b,env and the standard deviation
𝜎b,env:

𝑑𝐾
𝑑𝑏 =

𝐾max,b
√2𝜋 ⋅ 𝜎b,env

exp ( − 1
2(
𝑏 − 𝜇b,env
𝜎b,env

)
2
). (A.4)

The coefficient 𝐾max,b represents the maximal carrying capacity of the environment. It is
determined so that, when integrated between two trait values, 𝑏1 and 𝑏2, this distribution
gives the amount of resources in the environment that are possible to consume for
individuals with traits in the range 𝑏 ∈ (𝑏1, 𝑏2). In line with its definition as the maximal
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carrying capacity of the environment, 𝐾max,b is obtained by integrating the EDF over the
entire real axis.

Figure A.2: Environment distribution function (EDF), 𝑑𝐾/𝑑𝑏, for all pollinators, 𝐵𝑘.

Using the ETPDF and the EDF, it is possible to define an ideal carrying capacity,
𝐾m,Bi, for each pollinator species. It represents the carrying capacity a species would
have if it were optimally suited to the environment, i e 𝜇b,Bi = 𝜇b,env. To calculate 𝐾m,Bi,
the ETPDF is translated along the b axis to be centered at 𝑏 = 𝜇b,env and then scaled to
have its peak at the same environmental trait value as the EDF (see Figure A.3):

𝑑𝐾
𝑑𝑏

|||𝑏=𝜇b,env
=

𝐾max,b
√2𝜋 ⋅ 𝜎b,env

.

After dividing by the individual resource use, 𝑘Bi, the integral of the resulting distri-
bution (no longer a PDF) over the real axis gives 𝐾m,Bi. This simplifies to

𝐾m,Bi =
𝜎b,Bi
𝜎b,env

𝐾max,b
𝑘Bi

.

Based on the ideal carrying capacity, 𝐵𝑖 has a so-called ”realized carrying capacity”, 𝐾Bi.
It stems from the fact that 𝐵𝑖 is not optimally adapted to the environment and thus has
to have its ETPDF scaled to have its peak at the function value of the EDF at 𝜇b,Bi (see
Figure A.4), rather than the peak value of the EDF (see Figure A.3).

The scaling of the ETPDFs shown in Figure A.4 gives the following relation:

𝐾Bi = 𝐾m,Bi ⋅ exp ( −
1
2(
𝜇b,Bi − 𝜇b,env

𝜎b,env
)
2
). (A.5)

We define an effective population for 𝐵𝑖, with consideration of both competition and
mutualism:

𝑁Bi,eff = ∑
𝑗
𝛼Bi,Bk𝑁Bk −∑

𝑘
𝑐Bi,Rj𝑅𝑗. (A.6)
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Figure A.3: Visualization of the ideal carrying capacity. Environment distribution
function (EDF), 𝑑𝐾/𝑑𝑏, together with a translated and scaled ETPDF for pollinator
species 𝐵1.

Figure A.4: Visualization of realized carrying capacities at the beginning of the SIS.
Environment distribution function (EDF), 𝑑𝐾/𝑑𝑏, together with scaled ETPDFs for
pollinator species 𝐵1, 𝐵2 and 𝐵3.

By the definition of 𝐾Bi as a carrying capacity, equilibrium should be reached when
𝑁Bi,eff = 𝐾Bi, which is shown using the pollinator population equation (2.2):

1
𝑁Bi

𝑑𝑁Bi
𝑑𝑡 =

𝑔Bi
𝐾m,Bi

(𝐾Bi − 𝑁Bi,eff). (A.7)

By analogous arguments and definitions (see Table B.1), for a plant species, 𝑅𝑖, the
realized carrying capacity is given by
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FigureA.5: Visualization of realized carrying capacities at final time of the SIS (compare
with Figure A.4). Environment distribution function (EDF), 𝑑𝐾/𝑑𝑏, together with scaled
ETPDFs for pollinator species 𝐵1, 𝐵2 and 𝐵3.

𝐾Ri = 𝐾m,Ri ⋅ exp ( −
1
2(
𝜇r,Ri − 𝜇r,env

𝜎r,env
)
2
),

where

𝐾m,Ri =
𝜎r,Ri
𝜎r,env

𝐾max,r
𝑘Ri

.

To model a changing environment, the optimal environmental trait value for polli-
nators is changed over time. This is equivalent to translating the EDF along the b-axis
without changing its shape (compare Figures A.5 and A.4). The resulting change in
species adaptation to the environment is illustrated by the decreased peak heights of the
scaled ETPDFs for 𝐵1 and 𝐵2 in Figure A.5 compared to Figure A.4, which correspond to
smaller realized carrying capacities, 𝐾B1 and 𝐾B2, according to (A.5). The increased peak
height of 𝐵3 corresponds to an increased realized carrying capacity, 𝐾B3. However, 𝐵3
was less adapted to the environment initially, seen by the lower peak of its scaled ETPDF
compared to 𝐵1 and 𝐵2 initially (compare Figures A.4 and A.5).

A.3 Competition

The competition effect in the model is based on the interaction between two individuals
of the same type (plant or pollinator). They can be of either the same species or two
different species. These two individuals have a certain probability of trying to consume
the same resource and thus competing. Exactly what constitutes ”consuming the same
resource” depends on the resource. If the resource is a nesting space, for example,
consuming the resource can mean that a pollinator has already claimed it, so that it
becomes unavailable for the competitor. Furthermore, the relative resource needs for
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survival and reproduction of the two individuals determine how large the per capita
impact of this competition is. The method described below to calculate the competition
coefficients, 𝛼Ri,Rj, uses the ETPDFs of the respective species. It is slightly similar to a
method of calculating niche overlap briefly mentioned in [11].

The two individuals competing are denoted 𝑋1 and 𝑋2, of species 𝐵𝑖 and 𝐵𝑘, respec-
tively. First, assume that 𝑋1 has the fixed environmental trait value 𝑏. Assume that 𝑋2
has a stochastically determined trait value 𝑏′ with a probability determined by its ETPDF.
We define the probability to compete for two individuals with a difference in trait value
Δ𝑏 = 𝑥 as a scaled normal PDF:

ℎBi,Bk(𝑥) = exp ( − 1
2(

𝑥
𝜎Bi,Bk

)
2
), 𝜎Bi,Bk =

𝜎b,Bi + 𝜎b,Bk
5 (A.8)

The scaling in (A.8) compared to the associated normal PDF means that two different
individuals with exactly the same trait would compete with a probability ℎ(0) = 1,
which declines proportionally to a normal PDF as the difference 𝑥 in their trait values is
increased. The ETPDFs and ℎ(𝑏 − 𝑏′) are shown in Figure A.6.

Figure A.6: ETPDFs for 𝐵1 and 𝐵2, respectively 𝑓B1(𝑏) and 𝑓B2(𝑏), as well as the associ-
ated interaction probability, ℎ(𝑏).

We further define the convolution operation for two functions, 𝑓 and 𝑔:

(𝑓 ∗ 𝑔)(𝑥) = ∫
∞

−∞
𝑓(𝑥 − 𝑦)𝑔(𝑦) d𝑦. (A.9)

𝑋2 will compete with 𝑋1 with a probability ℎ(𝑏−𝑏′) given by (A.8). Thus, the probability
of 𝑋1 to experience competition from 𝑋2 is given by (𝑓Bk ∗ ℎ)(𝑏), since the trait 𝑏′ is
determined stochastically according to the ETPDF 𝑓Bk(𝑏′). With also the trait 𝑏 being
stochastic, distributed according to 𝑓Bi(𝑏), one can define the so called ”competition
PDF”:

𝑓Bi,Bk(𝑏) = 𝑓Bi(𝑏) ⋅ (𝑓Bk ∗ ℎ)(𝑏), (A.10)
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which gives the probability of competing:

𝑝Bi,Bk = ∫
∞

−∞
𝑓Bi,Bk(𝑏) d𝑏. (A.11)

The way that the pollinator population equation (2.2) is defined, the competition coeffi-
cient 𝛼Bi,Bk needs to translate 𝑁Bk, the population size of species 𝐵𝑘, into the equivalent
population size of species 𝐵𝑖 giving the same competition effect.

The population equation (2.2) assumes that the competition coefficient, 𝛼Bi,Bk, mea-
sures the average cost for each pollinator of species 𝐵𝑖 from the competition per pollinator
of species 𝐵𝑘. By deriving it from their respective ETPDFs, the competition is assumed to
be caused by their need for the same resources in the environment. This can for example
be food or nesting space.

Thus, I define 𝛼Bi,Bk as a measure of the average amount of resources unavailable
to a pollinator 𝑋1 of species 𝐵𝑖 due to a single individual of species 𝐵𝑘 already having
consumed them. By multiplying with 𝑁Bk, the population size of 𝐵𝑘, I calculate the
cost of unavailable resources that 𝑋1 experiences from the competition with the entire
population of 𝐵𝑘. This total cost for 𝑋1 is defined as the equivalent number of competing
individuals of the species 𝐵𝑖 that the competition with 𝐵𝑘 adds:

𝑁Bi,Bk = 𝛼Bi,Bk𝑁Bk. (A.12)

Considering the interaction with all pollinator species, including 𝐵𝑖 itself, the equivalent
number of 𝐵𝑖 competitors added is given using (A.12):

𝑁comp,Bi + 𝑁Bi = ∑
𝑘
𝑁Bi,Bk = ∑

𝑘
𝛼Bi,Bk𝑁Bk, (A.13)

which is the competition term in the pollinator population equation (2.2). 𝑁comp,Bi
represents the interspecific competition.

To calculate 𝛼Bi,Bk, 1) the probability of competition in (A.11) is put in relation to the
probability of intraspecific competition, and 2) the possibly different individual resource
needs 𝑘Bi and 𝑘Bk of species 𝐵𝑖 and 𝐵𝑘, respectively, are accounted for. To achieve 1), the
probability of intraspecific competition is calculated by replacing 𝐵𝑘 with 𝐵𝑖 in (A.10)
and (A.11):

𝑝Bi,Bi = ∫
∞

−∞
𝑓Bi,Bi(𝑏) d𝑏. (A.14)

Since an individual of species 𝐵𝑘 consumes 𝑘Bk/𝑘Bi times the amount of resources as an
individual of 𝐵𝑖, 2) is fulfilled if the competition coefficient is multiplied by this factor.
With definitions according to (A.11) and (A.14), this gives:

𝛼Bi,Bk =
𝑘Bk
𝑘Bi

𝑝Bi,Bk
𝑝Bi,Bi

. (A.15)

Note that 𝑝Bi,Bk in (A.11) is not very useful by itself, since the ”probability of competition”
is not well-defined. For example, is it the probability of competing when 𝑋1 and 𝑋2 are
foraging for food in the same geographical area, or is it the probability that 𝑋1 would find
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a resource missing because it has been consumed by 𝑋2? Because the alleged probability
is normalized by𝑝Bi,Bi before feeding into the competition coefficient, according to (A.15),
the interpretation of the probability is somewhat arbitrary, as long as it is interpreted
consistently for all pollinator species. The definition in (A.15) also has the feature that
𝛼Bii = 𝛼Bkk = 1, which is to be expected since this refers to intraspecific competition,
where the number of competitors is given directly by the population size of 𝐵𝑖. Therefore,
it is already translated into the equivalent number of 𝐵𝑖 competitors, which is otherwise
the purpose of multiplying with 𝛼Bi,Bk ≠ 1.

Also note that in general 𝛼Bi,Bk ≠ 𝛼Bki, for two reasons. The first is that the compe-
tition coefficient is dependent on the individual resource need, which is ecologically
motivated. Assume that 𝐵𝑘 has a larger individual resource need than 𝐵𝑖, i e 𝑘Bk > 𝑘Bi.
Then it is reasonable that 𝑋1 would face a larger competition from 𝑋2 than vice versa,
since the competitive interaction amounts to a larger share of the resource need of 𝑋1
than for 𝑋2. Secondly, the ETPDFs of 𝐵𝑖 and 𝐵𝑘 are in general different, meaning that
the factor 1/𝑝Bi,Bi ≠ 1/𝑝BkBk, thus leading to different competition coefficients according
to (A.15). This can be understood as individuals of 𝐵𝑖 having another probability of
competing with other individuals of 𝐵𝑖, than for 𝐵𝑘 individuals to compete with each
other.

Similar arguments can be made with the affected species changed from pollinator
𝐵𝑖 to plant 𝑅𝑖, and the competing species changed from pollinator 𝐵𝑘 to plant 𝑅𝑗. A
key difference is that plants compete over other resources than pollinators, for example
access to sunlight and nutrients in the soil. However, the definition of 𝛼Ri,Rj is analogous
to 𝛼Bi,Bk: a measure of the average amount of resources unavailable to a plant of species
𝑅𝑖 due to a single individual of species 𝑅𝑗 already having consumed them. Paralleling
the competition term (A.13) in the pollinator population equation (2.2), the competition
term in the plant population equation (2.1) represents the equivalent number of 𝑅𝑖
competitors added from competition with all plant species:

𝑁comp,Ri + 𝑁Ri = ∑
𝑗
𝛼Ri,Rj𝑅𝑗. (A.16)

Analogously to 𝛼Bi,Bk in (A.15), with similar definitions, the competition coefficient for
plant 𝑅𝑖 competing with plant 𝑅𝑗 is:

𝛼Ri,Rj =
𝑘Rj
𝑘Ri

𝑝Ri,Rj
𝑝Ri,Ri

. (A.17)

A.4 Mutualism

Similarly to the ETPDF, one can also define a ”mutualistic trait PDF” (MTPDF), which
differs from the ETPDF by being a function of the mutualistic trait for a pollinator, 𝛽, or
a plant, 𝛾. These traits give a measure of how well suited the pollinator individual and
the plant individual are to each other. The MTPDFs are given for pollinator species 𝐵𝑖
and plant species 𝑅𝑗, respectively, by:
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𝜙Bi(𝛽) =
1

√2𝜋 ⋅ 𝜎𝛽,Bi
exp ( − 1

2(
𝛽 − 𝜇𝛽,Bi
𝜎𝛽,Bi

)
2
), (A.18)

and

𝜙Rj(𝛾) =
1

√2𝜋 ⋅ 𝜎𝛾,Rj
exp ( − 1

2(
𝛾 − 𝜇𝛾,Rj
𝜎𝛾,Rj

)
2
). (A.19)

First, assume that a pollinator individual, 𝑋1, of species 𝐵𝑖 has the fixed trait 𝛽, while
the plant individual, 𝑌2, of species 𝑅𝑗, has a stochastic trait value 𝛾′ determined by 𝜙Rj(𝛾′).
We define the probability to interact mutualistically for two individuals with a difference
in mutualistic trait values 𝛽 − 𝛾′ = 𝑥 as

ℎBi,Rj(𝑥) = exp ( − 1
2(

𝑥
𝜎Bi,Rj

)
2
), 𝜎Bi,Rj =

𝜎𝛽,Bi + 𝜎𝛾,Rj
5

analogously to (A.8). The MTPDFs and ℎ(𝛽) are shown in Figure A.7.

Figure A.7: MTPDFs for 𝐵1 and 𝑅2, respectively 𝜙B1(𝛽) and 𝜙R2(𝛾), as well as the
associated interaction probability, ℎ(𝛽).

𝑋1 will interact mutualistically with (i e pollinate) 𝑌2 with a probability ℎ(𝛽 − 𝛾′).
Thus, the probability of 𝑋1 to experience mutualistic benefits from 𝑌2 is given by the
convolution (𝜙Rj ∗ ℎ)(𝛽), which integrates over all possible values of 𝛾′ and calculates
the associated interaction probability at fixed 𝛽. Now, let also the trait 𝛽 be stochastic,
distributed according to 𝜙Bi(𝛽). One can then define the so called ”mutualism PDF”:

𝜙Bi,Rj(𝛽) = 𝜙Bi(𝛽) ⋅ (𝜙Rj ∗ ℎ)(𝛽), (A.20)

which gives the probability of mutualistic interaction:

𝑝Bi,Rj = ∫
∞

−∞
𝜙Bi,Rj(𝛽) d𝛽. (A.21)
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The pollinator population equation (2.2) requires that the mutualistic conversion
coefficient, 𝑐Bi,Rj, measures the average benefit derived by each pollinator of species 𝐵𝑖
from the mutualistic interaction with each plant of species 𝑅𝑗. From pollination, the
pollinator receives this benefit mainly in the form of food. Thus, I define 𝑐Bi,Rj as a
measure of the nutrition a pollinator 𝑋1 of species 𝐵𝑖 receives on average from the nectar
of a plant of species 𝑅𝑗, taking into account that they may not undergo a pollination
interaction. By multiplying with𝑁Rj, the population size of 𝑅𝑗, I calculate the mutualistic
benefit that 𝑋1 experiences from the mutualism with the entire population of 𝑅𝑗. This
total benefit is defined as the equivalent number of other pollinators of the species 𝐵𝑖
whose competition the mutualism with 𝑅𝑗 weighs up for:

𝑁Bi,Rj = 𝑐Bi,Rj𝑁Rj. (A.22)

Considering the interaction with all plant species, the equivalent number of 𝐵𝑖 competi-
tors removed is given using (A.22):

𝑁mut,Bi = ∑
𝑗
𝑁Bi,Rj = ∑

𝑗
𝑐Bi,Rj𝑅𝑗, (A.23)

which is the mutualism term in the pollinator population equation, (2.2).
To calculate 𝑐Bi,Rj, the mutualistic conversion coefficient for 𝐵𝑖 benefitting from 𝑅𝑗,

1) the probability of mutualistic interaction, 𝑝Bi,Rj in (A.21), is put in relation to that of
intraspecific competition, 2) themutualistic benefit of a mutualistic reference interaction
is determined, and 3) the individual resource need, 𝑘Bi, of species 𝐵𝑖 is accounted for.
To acheive 1) and 2), the mutualistic reference interaction is defined to have the same
probability as for intraspecific competition, 𝑝Bi,Bi according to (A.14). The average benefit
to 𝑋1 from this reference interaction with one plant individual is called the ”reference
mutualistic benefit” and is denoted by 𝑐m,B,Rj. The actual interaction between individuals
of 𝐵𝑖 and 𝑅𝑗 is assumed to give an average absolute benefit of:

𝑐Bi,Rj,abs = 𝑐m,B,Rj
𝑝Bi,Rj
𝑝Bi,Bi

,

measured in absolute resources. To satisfy 3), I divide by 𝑘Bi. These steps give:

𝑐Bi,Rj =
𝑐m,B,Rj
𝑘Bi

𝑝Bi,Rj
𝑝BiReq

. (A.24)

Analogous arguments can be made with the benefiting species changed from pollina-
tor 𝐵𝑖 to plant 𝑅𝑖, and the benefit-providing species changed from plant 𝑅𝑗 to pollinator
𝐵𝑘. A key difference is that a plant benefits from pollination mainly through increased
dispersion of its seeds and thus a higher reproductive success, rather than the additional
food source that a pollinator receives. Therefore, 𝑐Ri,Bk represents the average increase
in reproductive success for a plant of species 𝑅𝑖 per pollinator of species 𝐵𝑘. Paralleling
the mutualism term (A.23) in the pollinator population equation (2.2), the mutualism
term in the plant population equation (2.1) represents the equivalent number of 𝑅𝑖
competitors removed from mutualistic interaction considering all pollinators:
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𝑁mut,Ri = ∑
𝑘
𝑐Ri,Bk𝐵𝑘, (A.25)

Analogously to 𝑐Bi,Rj in (A.24), with similar definitions, the mutualistic conversion coef-
ficient for plant 𝑅𝑖 benefiting from pollinator 𝐵𝑘 is:

𝑐Ri,Bk =
𝑐m,R,Bk
𝑘Ri

𝑝Ri,Bk
𝑝Ri,Ri

. (A.26)





B Values to calculate parameters in population
equations

Table B.1 labels the parameters not used directly in the population equations, (2.1) and
(2.2), which are used to calculate 𝛼Ri,Rj, 𝛼Bi,Bk, 𝑐Ri,Bk, 𝑐Bi,Rj, 𝐾m,Ri and 𝐾m,Bi. The other
parameters present in the population equations are labelled in Table 2.1. The values for
all parameters, whether directly used in the population equations or not, are shown in
Tables B.2, B.3 and B.4.

Parameter description Plant, 𝑅𝑖 Pollinator, 𝐵𝑖
Individual resource need 𝑘Ri 𝑘Bi
Environmental niche width 𝜎r,Ri 𝜎b,Bi
Reference mutualistic benefit 𝑐m,B,Rj 𝑐m,R,Bk
Peak mutualistic trait value 𝜇𝛾,Ri 𝜇𝛽,Bi
Mutualistic niche width 𝜎𝛾,Ri 𝜎𝛽,Bi

Table B.1: Description of parameters used in themodel, which the population equations,
(2.1) and (2.2), indirectly depend on. See Appendix A for detailed definitions.

Parameter 𝑅1 𝑅2
𝑔Ri ln 5 ≈ 1.51 ln 3 ≈ 1.10
𝑘Ri 1 2
𝜇r,Ri 2 4
𝜎r,Ri 0.7 1.3
𝑐m,B,Rj 0.05 0.1
𝜇𝛾,Ri 1 2
𝜎𝛾,Ri 0.5 1

Table B.2: Parameter values for every plant species, 𝑅𝑖.

As a general consideration, it is intended that the ETPDFs and MTPDFs should
have standard deviations rising in rough proportion to their respective peak trait values,
also considering whether a species might be generalist or specialist in a given aspect.
Notably, the standard deviations for the substituting invader, assumed to be a honeybee,
are chosen to be in line with a very generalist species.

It was judged that reasonable bounds for the parameters varied were:

41
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Parameter 𝐵1 𝐵2 𝐵3 (substituting invader)
𝑔Bi ln 5 ≈ 1.51 ln 3 ≈ 1.10 ln 5 ≈ 1.51
𝑘Bi 1 2 1
𝜇b,Bi 4 6 3
𝜎b,Bi 1 1.5 1
𝑐m,R,Bk 0.1 0.05 0.15
𝜇𝛽,Bi 1 2 1.2
𝜎𝛽,Bi 0.2 0.2 0.4

Table B.3: Parameter values for every pollinator species, 𝐵𝑖.

Parameter For all plants, 𝑅𝑗 For all pollinators, 𝐵𝑘
𝜇z,env 3 5→ 2 *
𝜎z,env 2 2
𝐾max,z 10,000 3,000

Table B.4: Parameter values for the environment. The trait ”z” stands for either ”r” or
”b” when the parameter applies to the plant or pollinator environment, respectively. *
The value of 𝜇b,env starts at 5 and asymptotically approaches 2 (see Figure 2.3).

𝜇𝛽,B3 ∈ (0, 3),
𝜎𝛽,B3 ∈ (0.1, 0.6), and

𝑐m,R,B3 ∈ (0, 1).

For the substituting invader to be relevant in providing benefits to the plants, it
was judged suitable for 𝜇𝛽,B3 to be close to 𝜇𝛾,R1 and 𝜇𝛾,R2. Since it was judged hard to
biologically interpret negative trait values, it was judged reasonable that 𝜎𝛽,B3 < 0.5𝜇𝛽,B3,
since there would otherwise be an appreciable fraction of the 𝐵3 population with a
negative trait value. Considering that the species in the pollination network are assumed
to be dependent mainly on the resources from the environment, and less so on the
mutualism, it is reasonable that 𝑐m,R,B3 > 0, corresponding to a non-negligiblemutualistic
benefit from the invader, and 𝑐m,R,B3 < 1 corresponding to a mutualistic benefit which is
smaller than the competition cost for the plants.

The values for 𝑔Ri and 𝑔Bi were chosen to correspond to either a 5-fold or 3-fold
increase in population number per model time unit in the absence of any competition
or mutualism (i e intrinsic growth, hence the name ”intrinsic growth rate” for these
parameters).

For each scenario, each species (denoted by ”S” below) were given initial populations

𝑁0,𝑆 = 0.1𝐾m⋅,

which corresponds to 10% of their ideal carrying capacity, 𝐾m𝑆. The time period for the
model runs of each scenario was 100 model time units, with a time constant for the
environmental change, 𝜏 = 10model time units, in the DRS and SIS.
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Other than the above considerations, the choice of parameter values is largely based
on reasonable relations between species, so that a large species would also have a large
resource need, for example. The absolute values of the parameters are not considered in
detail in this thesis. When time units are given, it is done mainly to give an indication of
how the model might be applied to real ecosystems. However, the time scale used has
not been subjected to rigorous scrutiny in this thesis.







Bachelor’s Theses in Mathematical Sciences 2023:K11
ISSN 1654-6229

LUTFMA-4010-2023

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


