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Abstract

This study aims to forecast the Swedish FCR-D Down A2 market prices through a
hybrid model combining a volatility model and a machine learning approach, and
compares its performance with a standalone machine learning model. We further
examine the impact of different lag orders (1-Hr vs. 24-Hr) on volatility estimates
and forecast performance. Evaluation metrics include root of mean squared error
(RMSE) and mean absolute error (MAE). Results suggest that the hybrid model
incorporating day-to-day volatility changes effectively predicts market price spikes,
providing a competitive edge for energy traders. However, this model falls short
during docile market periods, indicating a need for supplementary models. The
study concludes that the current hybrid model does not yield significant forecast
performance increases compared to simpler machine learning models, prompting
further investigation into the optimization of such hybrid models for effective market
price forecasting.

Keywords: Hybrid model, Volatility model, Machine learning model, Price spike

prediction, Energy trading, Time series forecasting, Ancillary service market
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Introduction

1.1 Research Problem

The Swedish energy system is undergoing a rapid transition towards increasing the
share of renewable electricity production. While this shift brings numerous environ-
mental benefits, it also presents significant challenges in balancing the power system
due to the variable nature of renewable energy sources (Mureddu et al. (2015)).
Consequently, there is a growing demand for flexible services to help mitigate these
imbalances in the grid to ensure the stability and reliability energy delivery. Such
services are called ancillary services whose purpose are to support power system re-
liability and perform the necessary services that the energy market cannot provide
(Ela et al. (2018)). In Sweden, Svenska Kraftnät serves as the transmission system
operator (TSO) for electricity, and they are responsible with maintaining a constant
balance between energy consumption and production to keep the grid frequency at
the standard level of 50 Hz.

To ensure operational reliability and manage fluctuations in power supply and
demand, Svenska Kraftnät purchases different types of reserves from BRPs within
the ancillary service market. One of these reserve types is the Frequency Contain-
ment Reserve (FCR), which plays a crucial role in stabilizing the frequency in the
power system in response to any deviations. The procurement of FCR is divided
into three ancillary service markets: Normal (FCR-N), Disturbance - Up regulation
(”FCR-D Up”), and Disturbance - Down regulation (”FCR-D Down”). FCR-N is a
constant, automatic service that helps stabilize the grid frequency for small changes
in consumption or production, thus protecting from both positive and negative de-
viations from 50 Hz. Similarly, FCR-D is an automatic service that swiftly responds
to large positive (negative) disturbances, where BRPs need to reduce (increase)
production.

The FCR-D Down market was recently brought online at the start of 2022.
Since then, the amount of procured reserves has increased quarterly in response to
available and pre-qualified volume supplied by BRPs, per Svenska Kraftnät. The
FCR-D Down market’s design is provided in table 1.1:

TSO procures ancillary services from each market separately for each hour of
the day through two auctions. The first auction (A1) closes two days prior to
operation while the second auction (A2) closes the day prior. In these auctions,
BRPs submit asking bids for each hour of day for energy volume (MW) and the
price rate of Euros to megawatts. The TSO fulfills the cheapest bids first (i.e. merit
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Table 1.1: FCR-D Down market design

System Design Choice

Currency Traded in Euros

Hourly volume requirement: Up to approx. 538 MW

Hourly volume procurement: Changes quarterly. As of 2023 Q2: 255 MW

Bidding Frequency: Auction 1 occurs two days before activation

Auction 2 occurs one day before activation

Minimum bid size: 0.1 MW

Pricing rule: Pay-as-bid

Market Clearing Condition: Merit order (ascending order of price)

Market information provided to BRPs: Procured volume & weighted-average prices via Mimer.se

Activation: Automatic linear activation in Hz range 50.1− 50.5

Activation time: 50% witin 5 seconds and 100% within 30 seconds

Endurance: Minimum 20 minutes

ordering) under a pay-as-bid market structure to satisfy the minimum daily reserve
requirements. Given the pay-as-bid structure, there does not exist a set market
clearing price. Consequently, price rates for procured volumes are published as an
aggregated weighted average of all satisfied bids for each hour.

As will be discussed later, the amount of MW procured and price rate for each
unit is highly volatile and difficult to forecast. Additionally, the FCR-D Down
market was established in the start of 2022, so there is a lack of historical data. The
TSO also plans to adjust the total amount of procured reserves every quarter.

This paper focuses on forecasting the Swedish FCR-D Down A2 market prices
via a combination of a volatility model and machine learning model, and compare
its performance to that of a standalone machine learning model. Thus, for ease
of discussion the aggregated A2 market prices will be referred to as simply the
market prices. The benefits gained by an energy trader by accurately predicting
the market price are competitive advantage in placing successful bids along with
strategic bidding of energy volume types to ensure a price above the marginal cost
of production. Additionally, this paper will make a comparison between volatility
estimates calculated by two different lag orders (1-Hr lag vs. 24-Hr lag), and the
resulting forecast performance improvements over each other. This is motivated by
the long 24-hour forecast horizon the predictions are made on, with the assumption
that day-over-day changes will carry greater volatility information than hour-over-
hour changes in regards to measuring intraday price spikes. The Performance of all
models will be evaluated side-by-side using the root of mean squared error (RMSFE)
and mean absolute error (MAE) to confirm if such configuration of time series data
and models improve forecast performance over a standalone machine learning model.

I find that the chosen artificial neural network model combined with a volatility
estimate of day to day changes of market prices predicts market prices during a
price spike better than the other measured models. However, the utility of the
model diminishes during period of docility in market prices, and so the predictions
would be best aggregated with another model capable of capturing docile market
prices better.

The paper will be organized as follows. Section 2 will review related work on
ancillary markets and the use of hybrid models. Section 3 will introduce a market
price analysis, a description of features, and the hybrid model design. Section 4
contains the analysis of the forecasts. Section 5 concludes the paper.
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2

Related Work

Performing analysis with the combination of parametric and non-parametric models
is not a new concept. Donaldson and Kamstra (1997) introduces a nonlinear semi-
non-parametric model built by combining the structure of the sign-autoregressive
conditionally heteroskedastic (ARCH) model by Glosten et al. (1993) with that of
an artificial neural network 1 to forecast stock return volatility in several markets.
Zhang (2003) also uses a hybrid model assembled by combining an autoregressive-
integrated-moving average (ARIMA) model and artificial neural network to capture
the linear and non-linear component of a time series, respectively. They concluded
that the hybrid model outperformed each component model used in isolation. On a
similar note, Liu et al. (2022) used a hybrid model consisting of two non-parametric
models, a weighted K-nearest neighborhood (WKNN) and Gaussian process regres-
sion, to detect electricity market price spikes and predict market prices. Two subsets
of the data were created by the WKNN model identifying price spike indicator val-
ues, for which the Gaussian process model forecasted market prices conditionally
on.

Several papers use machine learning models to model and forecast electricity mar-
ket prices. Giovanelli et al. (2017) compares several models on the Finland’s Fingrid
ancillary market to forecast FCR-N market prices. They concluded that gradient
boosted trees performed the best against linear regression, support vector regression,
regression tree, and ARIMA(1,1,1) models for each month of 2016. Giovanelli et al.
(2018) extends the prior study and compares SVR and ARIMA model to an artifi-
cal neural network, finding that the neural network performed best in most months
during the year 2016. In the paper by Kraft et al. (2020), FCR market prices for the
largest European markets were forecasted using the seasonal ARIMA process with
exogenous variables model (SARIMAX) and artificial neural network model. They
concluded that an optimized neural network outperformed the SARIMAX model,
and that artificial networks benefited from an expanding training window approach.
Time series analysis has also been considered when forecasting electricity market
prices. Nogales et al. (2002) compares a dynamic regression model and a transfer
function model to capture the serial correlation present in price forecast errors of
the Spanish and California electrical market.

1Introduced in Section 2, Equation 7, Page 23
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3

FCR-D Down Price Forecasting

3.1 A2 Market Pricing

The analysis of the FCR-D A2 market prices consists of 10,176 data points covering
over one year’s worth of hourly time series data (January 2022 - February 2023).
The data was collected from several open data sources apart from a few weather
forecast variables which were received from an energy trading company. The market
prices are represented in Euros. Figure 3.1 depicts the movement of FCR-D Down
A2 market prices over the time frame of interest. Large variances in market prices
can be see in the months surrounding May 2022, October 2022, and January 2023.
The descriptive statistics of the market prices are found in Table 3.1.

Figure 3.1: Boxplot of A2 Prices, 01/2022 - 02/2023

FCR-D is intended to automatically activate in order to control positive fre-
quency deviations. If the TSO happens to procure all of the ancillary volume it
needs for operation in the first auction, then there will be missing values in the sec-
ond auction due to the lack of action by the TSO. This explains the approximately
2.4% of missing A2 market price data. The missing values have been replaced with
the values of zero to ensure the continuity of the data and because the intuition
remains the same. Also, volatile periods have been observed surrounding the quar-
terly changes in volume with persistent behavior which is seen in the large variances
appear to follow quarter-endings (Apr-2022, Sep-2022, Jan-2023), possibly due to
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Mean 44.797

Median 19.930

Standard Deviation 91.592

Sample Variance 8389.114

Kurtosis 86.275

Skewness 7.941

Minimum 0.000

Maximum 1630.150

% of Zeros 2.394

Table 3.1: Descriptive Statistics of FCR-D Down A2 Market Prices for Jan-2022 / Feb-2023

the changes in the amount of energy volume procurement. There exists mild nega-
tive correlations between FCR-D A2 prices and hydro energy production. According
to Energiföretagen, reservoir storage levels dropped from 60% in January 2022 to
below 30% in April 2022, and climbed back to about 80% in July 2022.

3.1.1 Price Analysis

I compute two time series rh,t by taking the first differences of A2 market prices
St with two different lag orders h. The hourly changes, h = 1, and daily changes,
h = 24, are calculated as

rh,t = St − St−h. (3.1)

The series are visualized in Figures 3.2 and 3.3. The descriptive statistics for both
series are found in Table 3.2.
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Figure 3.2: Hourly Changes, r1,t

Figure 3.3: Daily Changes, r24,t

Statistic r1,t r24,t

Mean −0.001 −0.060

Median 0.000 −0.130

Standard Deviation 41.437 96.566

Sample Variance 1716.989 9324.988

Kurtosis 296.437 71.868

Skewness 3.666 −1.187

Minimum −911.28 −1601.36

Maximum 1372.86 1267.73

Table 3.2: Descriptive Statistics of r1,t and r24,t for Jan-2022 / Feb-2023
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Note, the log of differences was not computed like in typical time series ap-
proaches on financial market prices due to the existence of zero values in the prices.
The motivation behind creating two time series for this analysis is that since pre-
dictions are made for 24 hours ahead, then there are two potential ways of view-
ing changes with the market prices; changes can be analyzed either in daily or
hourly intervals. I perform two tests on each time series to test for stationarity
and unit roots: the augmented Dickey-Fuller (ADF) test for stationarity and the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test for level stationarity. The calcu-
lated p-values can be found in table 3.3.

Stationarity Test r1,t p-values r24,t p-Values

ADF Test < 0.01 < 0.01

KPSS Test > 0.1 > 0.1

Table 3.3: Unit Root and Stationarityy Tests. Estimates for p-values were returned by R-program
functions, provided by the tseries package.

We can see that for a chosen alpha level of 0.5, the two time series exhibit
stationary characteristics. The ADF test results in p-values less than 0.01 for both
series, resulting in the rejection of the null hypothesis of a unit root present in the
series. The KPSS test results in p-values greater than 0.1, resulting in the failure to
reject the null hypothesis of the series being stationary.

3.2 Feature Selection

When modeling machine learning algorithms, it is important to use features that
are related to the dependent variable at hand. Thus, the following types of data
have been chosen to use in modeling the A2 market price:

• FCR-D market data, such as A1 price and volumes and spot pricing

• Renewable energy production, such as hydro production

• Day relative items, such as holiday, weekend, hour of day, etc.

The feature types are broken down in more detail in Table 3.4:

Table 3.4: Selected Features for Price Forecasting

Feature Name Number of Features

Calendar (year, hour, holidays, etc.) 6

eSett Spot Price 1

Highly Correlated FCR-D Market Values 8

Renewable Energy Production Values 8

Volatility Forecast 1

Total Features 24

The collected features were standardized prior to modeling with the artificial
neural network model, but were not pre-processed with GBRT and random forest
models.
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Remark. Potential Feature Bias In a time series analysis with several features/re-
gressors, it is important to have all data appropriately aligned so as to not induce
any bias of future values on forecast predictions. In this paper an assumption is
made that since market prices are forecasted a day prior to fulfillment, then energy
traders will have access to highly accurate renewable energy production forecasts.
Thus, when training the models in this paper, actual energy productions values were
substituted for forecast values to make market price predictions of the same time
frame.

3.3 Model Design

3.3.1 Hybrid Modeling

An axiomatic saying is that there is no perfect model to answer every problem. Page
(2018) states the motivation behind many-model thinking is that it produces wisdom
through a ”diverse ensemble of logical frames.” Herein lies the main motivation
behind the usage of the following hybrid model structure.

The intent of the hybrid model used in this paper is to use a traditional, paramet-
ric model to fit and forecast volatility in market prices, and implement the results
in a non-parametric model to improve forecast performance. The volatility forecast
is intended to be a strong explanatory variable for modeling market prices among
other variables when inputted through a regression-based machine learning model.
The hybrid structure used in this paper is shown in Figure 3.4.

Volatility Forecast
ARMA-GARCH(1, 1)

model returns
variance forecast σ2

f

=⇒

ML Model
Machine learning
model outputs
price forecast

=⇒
Evaluation

Evaluate forecast
performance against

test values

Figure 3.4: Proposed Hybrid Model Structure

The model design and methodology used for forecasting FCR-D Down market
prices will be explained in depth in the following sections.

3.3.2 Volatility Modeling

I test for heteroskedastic volatility in r1,t and r24,t by following the process laid
out in Enders (2009)1 by first fitting an Autoregressive-Integrated-Moving Average
(ARIMA) process to both time series and then analyzing the ACF correlogram of
the squared residuals of both processes. The ARIMA process was fitted on r1,t and
r24,t using the auto.arima function in the R programming package forecast. The
resulting ACF plots are shown in Figures 3.5 and 3.6, with dotted red lines at every
12 lags.

We can see in Figure 3.5 there are significant autocorrelations at the first and
14th lag. In Figure 3.6, there are significant autocorrelations at the first and 24th
lag. This is indicative of an underlying autoregressive conditionally heteroskedastic
(ARCH) process in our two time series. Since I detected an ARCH process in

1Page 129

14



Figure 3.5: ACF correlogram for the squared residuals from the fitted ARIMA on r1,t

Figure 3.6: ACF correlogram for the squared residuals from the fitted ARIMA on r24,t

both r1,t and r24,t, I assume that the conditional mean forecast of r1,t and r24,t is
E(r1,t|I1,t−1) and E(r24,t|It−1), respectively, and is expressed as the following:

rh,t = E(rh,t|Ih,t−1) + εh,t, h = 1, 24 (3.2)

where εh,t represents the residuals and Ih,t−1 represents the information set of prior
market price changes. I also assume the forecast residuals εh,t have zero mean and
conditional variances represented as

E(ε2h,t|Ih,t−1) = σ2
h,t h = 1, 24 (3.3)

The aim of selecting a conditional volatility model is to produce an accurate

15



forecast of σ2
1,t and σ2

24,t to include in the data prior to the processing by the non-
parametric model. Thus, I chose to forecast σ2

1,t and σ2
24,t with a Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH) model by Bollerslev (1986),
which has the following framework:

σ2
t = α +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

γjε
2
t−j, (3.4)

where α represents the sample mean of σt
t, and p, q represent the number of lags

to include of σ2
t and ε2t , respectively. I chose this model due to its wide-usage

in econometrics analysis. The model also is able to fit and forecast time series
data whose variance appears to be time dependent, or in other words the model
assumes that the conditional volatility of the time series is dependent on previous
observations, which in turn allows it to capture periods of volatility and docility.
This is equivalent to the assumptions made in Equation (3.3). In this paper, I model
rh,t with an ARMA-GARCH(1,1) process. The ARMA-GARCH process is defined
as follows for rh,t:

rh,t = E(rh,t|Ih,t−1) + εh,t h = 1, 24

= µh + ahrh,t−1 + bhεh,t−1 + εh,t,
(3.5)

εh,t ∼ σh,tϵh,t, ϵh,t ∼i.i.d. N (µϵ = 0, σϵ = 1) (3.6)

σ2
h,t = E[(rh,t − µh,t)

2]

= βhσ
2
h,t−1 + γhε

2
h,t−1

(3.7)

where µh is the mean of rh,t, {ah, bh} represent the coefficients for the ARMA pro-
cess on the conditional mean of rh,t, and {βh, γh} represent the coefficients for the
GARCH process on the conditional variance of rh,t.

With the above framework, our volatility forecasts take the following form:

σ̂2
h,t+1 = β̂(h)σ2

h,t + γ̂(h)ε2h,t (3.8)

where β̂(h), γ̂(h) are maximum likelihood estimates respective to the lag order h
calculated via the R programming package rugarch by Ghalanos (2022).

3.3.3 Regression Modeling

An ideal scenario in the FCR-D market would be that all information of market
players and their respective bids is known, so as to be able to ”reverse-engineer”
an algorithm that captures the behavior of market pricing. In such ideal scenario,
the reserve supply function equilibrium would be calculable by an energy trader,
and lead to strategically placed bids. Since such a scenario does not exist, a re-
gression analysis is performed on the collected data to find a relationship between
A2 market prices and regressors. A regression analysis is a statistical tool used to
investigate relationships between a dependent variable yt and independent variables
{x1,t, ..., xn,t} for t = 1, ..., T . In the context of this paper, t represents time in
hours, xi,t represents the i-th independent variable at time t for i = 1, ..., 24. A
simple linear regression with n independent variables can be modeled as

yt = β0 + β1x1,t + ...+ βnxn,t + εt, t = 1, ..., T

16



which then by ordinary least squares (OLS) we can estimate the coefficients {β0, β1, ..., βn}.
The estimated coefficient values {β̂0, β̂1, ..., β̂n} can be considered as measures of ex-
planatory power that each independent variable {xt,1, xt,2, ..., xt,n} has on yt.

The estimated coefficients can also then be used to forecast the value of yt+1

with the introduction of new data {x1,t+1, x2,t+1, ..., xn,t+1} such that

yt+1 − εt+1 = ŷt+1 = β̂0 + β̂1x1,t+1 + ...+ β̂nxn,t+1.

A measure of forecast performance can then be calculated, which will be measured
in this paper via the root mean square error (RMSE) metric. I use the RMSE metric
to leverage its sensitivity to outliers in the data, which in our case would be price
spikes. Given a 24 element vector of forecasts ŷ = [ŷt+1 ŷt+2 ... ŷt+24]

⊤, this metric
is written as, √

MSE(ŷ) =

√√√√ 1

24

24∑
i=1

(yt+i − ŷt+i)2. (3.9)

In this paper I explore a few machine learning regression models to learn a function
F : R24 → R to obtain predictions such that,

F (xt+1) = ŷt+1 = yt+1 − εt + 1,

where xt+1 represents a vector of new data input, yt+1 the A2 market price at time
t+ 1, and F (xt+1) = ŷt+1 the predicted market price at time t+ 1.

Decision Trees and Ensemble Methods

A decision tree is a capable rule-based, supervised machine learning algorithm that
maps an input space to ”leaves”, or disjoint regions defined by rules or restrictions
on regressors. Each leaf then has a constant value as an output, which in our case
of market prices, an averaged market price. These decision trees with continuous
output spaces are considered regression trees. The advantage of using a decision
tree is that it is a highly interpretable algorithm, ideal for a business environment.
A predictive decision tree can be generalized mathematically as,

ŷt =
L∑
l=1

ŷl I{xt ∈ Rl}, (3.10)

where L is the total number of leaf regions in the decision tree, Rl is the lth region,
I is the indicator function, and ŷl is the constant, real-valued prediction assigned
to the lth region. This paper introduces and utilizes two sophisticated regression
tree-based algorithms: Gradient Boosted Regression Trees (GBRT) and Random
Forests, both of which are forms of ensemble learning methodologies. GBRTs are
a distinct category of ensemble learning algorithms, characterized by the sequential
training of simple decision trees, known as ’weak learners’. Each tree is meticulously
trained to focus on the residuals, yt+1− ŷt+1, left by its predecessor. This systematic
approach of adding new models to correct the errors made by existing models facili-
tates a reduction in overall model bias while simultaneously maintaining a low model
variance. Among the various forms of GBRTs, this study employs an advanced ver-
sion, known as the Extreme Gradient Boosted Regression Tree (XGBoost) by Chen
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and Guestrin (2016). XGBoost is extensively recognized and utilized in numerous
machine learning competitions and analytical procedures due to its inherent abil-
ity to include regularization in the learning process, thereby effectively controlling
overfitting to the training data. Random Forests, another type of ensemble learning
algorithm, construct and aggregate the predictions of multiple regression trees. Con-
trary to the sequential training process of GBRTs, decision trees in a Random Forest
are trained in parallel. Each tree is independently built using a random subset of the
predictors and a bootstrapped sample of the training data. The randomness induced
in the feature selection and data sampling processes effectively prevents overfitting
to the training data, thereby improving the model’s generalization capabilities. The
XGBoost Python package will be employed through the Scikit-Learn API to train
both the GBRT and Random Forest models in this study. One significant advantage
of using this package is its capacity to provide highly optimized implementations of
gradient boosting and decision tree learning algorithms. This enables a significant
reduction in processing time, thereby increasing the computational efficiency of the
model-building process. According to the XGBoost documentation, XGBoost uses
2nd order approximation to the objective loss function. In comparison, other typical
packages used to learn Random Forest models use exact approximation, leading to
increased computation times. Unfortunately, another caveat with the package is
that bootstrap sampling is not available to use with random forest model training,
so different ratios of data subsampling is instead used to tune the model to control
overfitting.

Artificial Neural Networks

ANNs are composed of interconnecting artificial neurons (also called nodes or units)
which are organized in layers. These networks can model intricate, non-linear rela-
tionships that may exist in large, multi-dimensional data. The fundamental building
block of an ANN, an artificial neuron or node, applies a non-linear function, typi-
cally called the activation function, to the weighted sum of its inputs. The network
is made up of multiple layers of these neurons—input layers, hidden layers, and an
output layer. The hierarchical structure allows an ANN to transform the input in a
way that makes it possible to learn and represent complex patterns.

Figure 3.7: Example of ANN architecture
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Figure 3.8: Structure of ANN neuron by Giovanelli et al. (2018), where {xj}pj=1 represents p input
neurons from the prior layer, {wij}pj=1 represents the weights for the i-th neuron, bi represents the
bias term, and ρ represents the non-linear function

One of the unique characteristics of an ANN is its ability to learn from the data.
During the training process, the network adjusts the weights of the connections
based on the error it made in its predictions, striving to minimize this error. This
learning procedure, often called backpropagation, allows the network to map inputs
to the right outputs.

The activation function chosen in this paper is a rectified linear unit (ReLU)
function due to its popularity, which is defined as ReLu : ρ(x) = max(0, x), for
x ∈ R. The The design of the ReLU function helps to mitigate the vanishing
gradient problem, which is a difficulty encountered when training neural networks
during the backpropagation process. This problem arises when the gradients, or
partial derivatives, of the loss function with respect to the model parameters become
minuscule. Parameter updates are proportional to the size of the gradients, meaning
that learning can become slow or stop altogether. Because the derivative of the ReLU
function is always 1 for positive inputs, this helps ensure that the gradients do not
vanish during training.

The ANN model used in this paper also includes a dropout layers. Dropout is a
regularization technique used in ANNs to prevent overfitting. It was introduced by
Srivastava et al. (2014) and has since become a standard method in training deep
learning models.

During training, dropout randomly selects a subset of neurons and temporarily
”drops out” or deactivates them, along with all their incoming and outgoing connec-
tions. The proportion of neurons dropped out is a hyper-parameter and is usually
set to a value between 0.2 and 0.5; that is, during each training stage, each neuron
is set to zero with that probability.

The stochastic process within dropout layers makes the model more robust be-
cause it forces the model to learn multiple independent representations of the same
data2. A neuron cannot rely on the presence of particular other neurons and is
forced to learn more robust features that are useful in conjunction with many dif-
ferent random subsets of the other neurons.

At forecast time, no units are dropped out; rather, their outputs are scaled down
by a factor equal to the dropout rate to take into consideration that more units are
active than during training. In other words, the weights of each node are multiplied
by the dropout rate.

2”Dropout is a bagging-like technique that allows us to combine many neural networks without
the need to train them separately” - Lindholm et al. (2022)
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3.4 Empirical Model Training & Tuning

The volatility model was initialized with data covering the entirety of the months
January 2022 and March 2022. As a result, the volatility forecasts extend from April
2022 to February 2023, which represents the time frame of data the regression models
are trained on. Forecasts were performed using a training and evaluation method
called rolling-origin-recalibration (ROR), as defined by Bergmeir and Beńıtez (2012).
In this method, forecasts for 24-hr horizon are performed by sequentially moving
values from the test set to the training set, thus changing the value of the last known
time point t representing the last known set of values {x1,t, x2,t, ..., xn,t}. For each
forecast, the model is re-trained using all available data in the training set, which
often means a complete retraining of the model. In other words, the training window
expanded with each iteration with 24 hours worth of data, and the test window was
moved ahead 24 hours. In the testing of the volatility model this implies that for
each new day that passed, the ARMA-GARCH model was retrained and new values
of coefficients were obtained. Consequently, this involves a higher computation cost
to thoroughly measure each combination.

Each regression model was calibrated via a grid search of hyper-parameters,
which is a looping through combinations of hyper-parameters within the models
to identify the combination resulting in the lowest calculated RMSE, without the
implementation of the volatility forecast. This calculation of RMSE was done via
the previously mentioned ROR methodology. The initial window size chosen for the
regression models was 180× 24 hours, or about half of a year’s worth of hours.

The decision to retrain the models after each day was due to the lack of historical
data in the FCR-D Down market and the frequent changes in market design. In
future applications, a rolling-window approach may be better suited to decrease the
noise from older data stemming from different market designs. Such a method was
chosen by Giovanelli et al. (2018) to analyze the Finnish Fingrid ancillary market.

3.4.1 Gradient Boosted Regression Tree Tuning

The hyperparameter tuning process on the GBRT model began the default param-
eters as proposed by the XGBoost package and later tuned via experimentation of
combination of paramaters. The default and tuned parameters can be found in
Table 3.5.

First, max tree depths and data subsampling rates were first tuned simultane-
ously. Then, the number of sequential trees trained (boosting rounds) was trained
tuned simultaneously with the learning rate. Finally, the regularization parame-
ters Alpha and Lambda, reflecting L1 lasso and L2 ridge regression regularization
techniques respectively, were trained. The experimental results are shown in Figure
3.9.

3.4.2 Random Forest Tuning

Many parameters in the Random Forest model were tuned through a similar process
performed with the GBRT model. The default parameters for the Random Forest
model provided through the Scikit learn API and the resulting tuned parameters
are listed in Table 3.6. One of the most important hyperparameters when tuning
a Random Forest model is to choose how many trees will be trained, affecting the
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Parameter
Default
Value

Tuned
Value

Description

Max Tree Depth 6 5 Maximum depth of a regression
tree. Higher values increase model
complexity

Subsample ratio 1 0.5 %Data randomly uniformly sam-
pled for training. Occurs in each
boosting iteration

Learning Rate 0.3 0.1 Step size shrinkage in weight up-
dates

Number of Estimators
No
Limit

20 Number of boosting rounds

Alpha Value 0 4 L1 lasso regularization term

Lambda Value 1 4 L2 ridge regression regularization
term

Table 3.5: RMSE performance of GBRT model with varying combinations of data sub-sampling
rates and max tree depths. The pair of values of max tree depth and subsampling rate the lead to
the lowest RMSE value is highlighted in the plot.

total number of predictions to be aggregated. Thus, this was the first parameter
tuned. In Figure 3.10a, it is seen that the RMSE reaches a minimum when the
number of trees trained is equivalent to 64. After the parameter has been adjusted,
I performed a grid search between the ratio of subsampled features and the ratio
of subsampled data. In theory, Random Forest models incorporate bootsampling of
the data, but since bootsampling is not an available option in the XGboost pacakge
in Python, the ratio of subsampled data is tuned to mimic the induced randomness
bootstrap sampling creates. The result of this tuning process included two pairs of
ratios, feature subsampling and data subsampling, that performed similarly, which
can be seen in Figure 3.10b. Lastly, the regularization values Alpha and Lambda
were tuned to achieve the best measure of RMSE. By increasing these values, the
model is also increasingly regularized and thus trains decisions trees that are not as
deeply grown. According to Figure 3.10c, we see that changes in Lambda, the value
for type L2 regularization, affects the model more than changes in the Alpha value,
the value for type L1 regularization.

3.4.3 Artificial Neural Network Tuning

The structure of the ANN used in this paper is shown in Table 3.7. I chose an
ANN with 7 hidden layers in between the input and output layer, which includes
two dropout layers preceding each linear input layer. To tune the ANN model, I
first experimented with grid search of hyper-parameter values between epochs and
dropout rates. The reasoning is that a lower dropout rate will require a higher
number of epochs to balance the increased regularization in the model. I then
followed this with an experiment on the learning rate. Have a smaller learning
rate will imply slower training process, which would need to be optimized since we
have updated the number of epochs we train the model. The final model will have
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Parameter
Default
Value

Tuned
Value

Description

Max Tree Depth
No
Limit

No
Limit

Maximum depth of a regression
tree. Higher values increase model
complexity

Data Sampling
ratio

0.8 0.7
%Data randomly uniformly sam-
pled for training. Occurs in each
tree

Feature Sam-
pling Ratio

0.8 0.25
Features randomly uniformly sam-
pled for training. Occurs at each
node of each trained tree

Learning Rate 1 1
Step size shrinkage in weight up-
dates

Trees in Forest 100 64
Number of Trees in the trained in
parallel in Random Forest model

Alpha Value 0 16 L1 lasso regularization term

Lambda Value 0.00001 1
L2 ridge regression regularization
term

Table 3.6: List of default and tuned parameters for Random Forest model

a dropout rate of 30%, be trained using 500 epochs, and have a learning rate of
0.0001.

Layer Description

Input Layer Independent variables {xi,t}24i=1 for t ∈ {1, 2, ..., T}
Hidden Layer 1 Dropout layer with 30% drop rate

Hidden Layer 2 Linear regression layer

Hidden Layer 3 ReLu activation layer - 32 nodes

Hidden Layer 4 Dropout layer with 30% drop rate

Hidden Layer 5 Linear regression layer

Hidden Layer 6 ReLu activation layer - 16 nodes

Output Layer Linear regression layer

Table 3.7: Structure of ANN used in the paper
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(a) RMSE performance of varying
combinations of data sub-sampling
rates and max tree depths. The
pair of values of max tree depth
and subsampling rate the lead to
the lowest RMSE value is high-
lighted in the plot.

(b) RMSE performance of varying
combinations of number trees
trained sequentially trees and
learning rates. It is a tradeoff
between boosting rounds and
learning rate, with lower rates
leading to more boosting rounds
to converge on the lowest RMSE
resulting in higher computational
costs. Thus, a value of 20 boosting
rounds was chosen to keeps
computation costs low, which is
highlighted in the plot.

(c) RMSE performance of vary-
ing combinations of regularization
parameters Alpha and Lambda.
Changing Lambda resulted in a
greated decrease in RMSE than
changing Alpha.

Figure 3.9: RMSE performance of GBRT model with varying combinations of hyperparameters
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(a) RMSE performance of
Random Forest model with
different forest sizes of
[8, 16, 32, 64, 128, 256, 512, 1024]
trees. RMSE decreases before
64 trees and increases after 64
trees, meaning there is an optimal
amount of aggregated predictions
around 64 trees.

(b) RMSE performance of Ran-
dom Forest model with different
ratios of sub-sampled features and
input data. The ratios of sub-
sampled data followed incremen-
tal increases of 10% starting at
10% to 100%, while the ratios
of subsampled features tested were
[1/4, 1/3, 1/2]. The chosen pair of
values here was 70% of subsampled
data and 25% of subsampled fea-
tures.

(c) RMSE performance of Ran-
dom Forest model with different
values of regularization parameters
Alpha and Lambda. There was lit-
tle to no improvement when ad-
justing the value of Alpha, but in
the pursuit of a simpler model, a
combination of values of 1 and 16
were chosen from Lambda and Al-
pha, respectively.

Figure 3.10: RMSE performance of Random Forest model with varying combinations of hyperpa-
rameters
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(a) RMSE performance of varying combinations of dropout rates and epochs. RMSE
value decreased as dropout rate decreased until around a value of 0.3, meaning less
nodes were activated in each layer. I chose a combination of 30% dropout rate with a
500 epochs for the ANN model.

(b) RMSE performance of varying values of learning rates. After having chosen 500
epochs and a dropout rate of 30%, the best performing learning rate was a value of
0.0001.

Figure 3.11: RMSE performance of ANN model with varying combinations of hyperparameters
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4

Empirical Analysis

4.1 Volatility Estimates

I have calculated the forecast estimates for the time frame of 2022-03-01 to 2023-02-
28, using the initial three months of the year 2022 to initialize the window for the
ARMA-GARCH model. After each forecast, the training and test set was expanded
forward by 24 hours and the model subsequently retrained. The resulting volatility
forecasts σ̂2

1,t and σ̂2
24,t are plotted against each other in Figure 4.1.

Figure 4.1: Comparison of Volatility Estimates

We see that volatility estimates for σ̂2
24,t are mostly greater than the estimates

calculated for σ̂2
1,t. According to Figure 4.2, I find that the volatility estimates σ̂2

24,t

are higher because they have a higher level of perseverance after a period of high
volatility. Also, it appears that σ̂2

24,t has higher monthly maximum and minimum
values in comparison to σ̂2

1,t in the data. The values are shown in Table 4.1.
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Figure 4.2: Comparison of Volatility Estimates Between 01/05/2022 and 31/07/2022

Volatility σ̂2
1,t σ̂2

24,t

Month Min Max Mean Min Max Mean

May-22 5.18 89.39 17.27 7.91 107.98 28.48

Jun-22 4.15 66.85 15.77 6.47 67.27 24.84

Jul-22 3.31 18.1 5.89 4.2 17.87 8.23

Aug-22 3.11 49.86 7.44 3.9 65.38 12.54

Sep-22 3.85 46.18 17.36 4.27 61.45 24.85

Oct-22 4.25 284.05 44.09 5.34 309.27 57.89

Nov-22 3.76 44.53 11.98 4.65 104.65 17.91

Dec-22 3.56 153.78 18.88 4.33 163.53 23.88

Jan-23 5.00 334.24 41.21 5.71 378.26 68.27

Feb-23 4.02 64.24 14.32 4.91 87.21 21.37

Table 4.1: Range and Mean of Variance Estimates

4.2 Performance Evaluation

An initialization window of 24×30 hours was chosen for all regression models repre-
senting a window of 30 days. Thus, predictions for market prices begin 2022-05-01
and end at 2023-02-28. I also calculated the results of the models for three sets of
data consisting of

1. data with no volatility forecast (No σ̂2
h,t),

2. data with σ̂2
1,t,

3. data with σ̂2
24,t.

Variable Importance

To analyze the impact of the calculated variables have made on the models, I ex-
tracted the feature importance values from both the GBRT and Random Forest
models in each iteration of the expanding window, and calculated the averages for
each feature. The results are shown in Figure 4.3 and Figure 4.4.
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Under the GBRT model, the selection of the top four most important weights did
not change. The volatility estimates, named as ”sigma GARCH01” and ”sigma GARCH24”
for σ̂2

1,t and σ̂2
24,t, respectively, were not in the top ten of important features meaning

that the model did not find the feature to be as meaningful as other features in re-
gards to the fitted data. One of the most important features ”PRIS A2 SE LAGGED”
represents the A2 market price lagged by 24 hours. The other feature, ”Hydro to Total,”
represents a ratio of hydroelectricity production to total energy production.

Under the Random Forest model, the volatility estimates were ranked higher
than they were in the GBRT models, but were not the most important feature. The
distribution of importance values in the Random Forest model appears to be more
spread out across the features in comparison to the GBRT, potentially due to the
induced randomness in modeling caused by feature subsampling.

Forecast Performance

Table 4.2 represents the performance of the models trained on the three sets of
data. Here it is seen the RMSE values of each model for the months between May
2022 and February 2023. I note here that model performances worsened during
the months of October 2022 and January 2023, partly due to months containing
a high number price spikes. Focusing on the month of October 2022, we can see
that the ANN model performed the best in comparison to the other models. We
can infer that since the RMSE metric is sensitive to outliers, then the ANN was
able to adapt to price spikes better than the other models. I confirm that across
all models, the differencs in RMSE values is small except for months with high
volatility. Also, models with the volatility forecast σ̂2

24,t performed better than their
counterparts with lower values of RMSE. Looking at the month January 2023, the
models exhibit varying levels of performances. The best model overall appears to
be the ANN, with significant improvements in predictions between the data without
the volatility estimate and the data with σ̂2

24,t.
The average of the monthly RMSE values is shown at the bottom of Table 4.2.

It appears that the models with lower monthly RMSE values on average are the
models using the data set without the volatility. That being said, there are minor
differences in averages between the data set containing σ̂2

24,t and the data set without
a forecast. At the bottom of the table also lies a total mean of all predictions. The
largest range of means in the models is between the data sets of the ANN model The
result from the data set without the volatility forecast is a mean RMSE of 83.85,
while the data set with the volatitlity forecast σ̂2

1,t has a mean RMSE 91.73.
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(a) Without Volatility Forecast

(b) With Volatility Forecast ”sigma GARCH01” = σ̂2
1,t

(c) With Volatility Forecast ”sigma GARCH24” = σ̂2
24,t

Figure 4.3: Importance Values generated from the GBRT model with and without the volatility
forecasts. Values were generated for each time the model was trained daily and then aggregated
by taking the mean of all values. The volatility estimates, named as ”sigma GARCH01” and
”sigma GARCH24” for σ̂2

1,t and σ̂2
24,t, respectively, are ranked 11th against the other features in

their respective models. The most important feature values are similar across all models.
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(a) Without Volatility Forecast

(b) With Volatility Forecast ”sigma GARCH01” = σ̂2
1,t

(c) With Volatility Forecast ”sigma GARCH24” = σ̂2
24,t

Figure 4.4: Importance Values generated from the Random Forest model with and without the
volatility forecasts. The volatility forecasts
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RMSE GBRT Random Forest ANN

Month No σ̂2
h,t With σ̂2

1,t With σ̂2
24,t No σ̂2

h,t With σ̂2
1,t With σ̂2

24,t No σ̂2
h,t With σ̂2

1,t With σ̂2
24,t

May-2022 73.59 81.40 73.43 67.97 69.34 69.98 73.29 73.61 73.48

Jun-2022 42.14 41.55 41.34 40.37 41.62 40.27 44.42 44.63 44.22

Jul-2022 9.07 9.60 9.65 10.20 10.13 10.01 11.46 9.38 11.74

Aug-2022 23.56 23.71 23.63 23.56 24.18 24.36 24.68 24.95 24.42

Sep-2022 42.85 42.56 42.65 41.25 40.18 40.72 46.33 44.52 43.69

Oct-2022 183.66 184.27 181.57 180.88 180.70 178.29 171.88 188.25 166.79

Nov-2022 22.56 23.82 24.07 30.34 28.14 28.24 40.87 33.23 35.07

Dec-2022 70.29 66.60 66.75 65.97 66.14 67.72 66.03 78.43 90.73

Jan-2023 162.85 164.92 164.9 160.09 171.24 166.71 143.91 164.43 143.69

Feb-2023 41.43 43.81 44.97 40.90 43.61 44.32 48.40 50.07 46.12

Monthly Mean 67.20 68.23 67.30 66.15 67.53 67.06 67.13 71.15 68.00

Total Mean 89.00 90.01 88.80 87.08 89.42 88.20 83.85 91.73 84.60

Table 4.2: Monthly RMSE mean values from models with and without volatility estimates, with total RMSE values for all predictions.
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MAE GBRT Random Forest ANN

Month No σ̂2
h,t With σ̂2

1,t With σ̂2
24,t No σ̂2

h,t With σ̂2
1,t With σ̂2

24,t No σ̂2
h,t With σ̂2

1,t With σ̂2
24,t

May-2022 47.6 51.41 48.35 44.37 45.65 45.55 48.09 49.00 48.93

Jun-2022 23.89 23.38 23.63 27.04 27.76 26.59 30.94 30.8 30.45

Jul-2022 5.61 6.12 6.24 7.15 7.24 6.99 8.95 6.13 8.59

Aug-2022 6.16 6.26 6.51 7.34 8.18 8.35 11.37 11.28 11.36

Sep-2022 26.39 26.49 26.17 25.31 25.17 25.59 28.96 27.07 26.71

Oct-2022 80.54 83.69 80.75 83.93 83.32 80.94 87.86 93.91 86.31

Nov-2022 14.30 14.27 14.63 23.54 21.80 21.81 28.5 21.57 23.84

Dec-2022 25.00 23.47 23.94 28.55 29.00 28.81 29.25 35.09 39.28

Jan-2023 56.93 56.25 56.22 65.27 69.32 67.61 67.12 77.95 69.77

Feb-2023 14.99 16.67 17.49 20.79 22.54 23.06 20.58 22.53 22.08

Monthly Mean 30.14 30.8 30.39 33.33 34.00 33.53 36.16 37.53 36.73

Total Mean 30.37 31.03 30.61 33.53 34.20 33.72 36.38 37.79 36.97

Table 4.3: Monthly absolute mean values from models with and without volatility estimates, with total MAE values for all predictions.
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The mean absolute errors (MAE) of each model were also analyzed. The equation
used to measure the mean absolute errors is

MAE =
1

T
ΣT

i=1|yi − ŷi| (4.1)

They are shown in Table 4.3. Unlike in Table 4.2, the ANN model does not perform
the best when measured with MAE. Since RMSE is sensitive to outliers, then we
see that ANN performs better on capturing price spikes. During periods of lower
volatility, such as July 2022 to August 2022, the ANN does not perform as well as
the GBRT model when measured with a less sensitive metric.

From both Tables 4.2 and 4.3, I find that the models with the data sets containing
the volatility forecasts had similar or larger total mean values in comparison to the
models without the volatility forecasts. However in the month October 2022, which
had high volatility, the models with the volatility forecast σ̂2

24,t performed similar or
better than their counterparts. Results differ in January 2023, the next month with
volatile behaviour, where the ANN model tested with volatility estimate σ̂2

24,t had a
similar RMSE score to the ANN model tested without volatility estimates. GBRT
models performed similar to each other under the MAE metric, and outperformed
all other models in this regard.

The dispersion of the predictions to actuals are shown in Figures 4.5, 4.6, and
4.7. In combination with the calculated root of covariances and correlations between
predictions and actual market prices in Table 4.4, I find that the ANN model has the
weakest relationship between its predictions and the actual values, while the GBRT
has the strongest relationship. This makes since since GBRT and Random Forest
Models return averaged values of market prices based on trained feature values. A
GBRT and Random Forest model will not return a value outside the range of the
actual values because of this averaging in the leaves of the trees in the ensembles.

Figure 4.5: Actuals vs. Predictions for all models without σ̂2
h,t
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Figure 4.6: Actuals vs. Predictions for all models with σ̂2
1,t

Figure 4.7: Actuals vs. Predictions for all models with σ̂2
24,t

Model Data Set
√
Covariance Correlation

GBRT

No σ̂2
h,t 2409.28 0.81

With σ̂2
1,t 2404.36 0.81

With σ̂2
24,t 2400.71 0.81

Random Forest

No σ̂2
h,t 2301.43 0.80

With σ̂2
1,t 2365.06 0.80

With σ̂2
24,t 2345.02 0.80

ANN

No σ̂2
h,t 1980.81 0.74

With σ̂2
1,t 1996.34 0.68

With σ̂2
24,t 1922.76 0.69

Table 4.4: Root covariance values are shown here between the predictions by each respective model
and to the actual market prices.
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5

Conclusion

The intent of the paper was to produce a hybrid model design that would pre-
dict market prices on the FCR-D Down market, using the Swedish ancillary service
market as a case study. The paper outlined a price analysis, model theory and
methodology used to predict the market prices. The analysis included data sources
that would be available in accurate measure to predict the FCR-D Down market
prices, followed by a comparison of model performances between the outlined hybrid
approach and a machine learning approach. The hybrid approach utilized analysis
from a time series forecast combined with a non-parametric machine learning ap-
proach. The outlined methodology then described the process of model training
via the rolling-origin-recalibration process. Lastly, the methodology introduced the
analysis done in tuning each model to then compute the predictions.

Section 4 contains the performance analysis of all models developed for the pre-
diction of FCR-D Down market prices. During the case study, a window size of
30× 24 hours was chosen to initialize all models. Thus, predictions are available for
the months of May 2022 to February 2023. The resulting performance metrics were
analyzed, with the conclusion that there are no observable forecast performance
increases with the current hybrid model structure.

5.1 Future Research

There are many ways I could have adjusted the hybrid model design, such as choosing
a different variation of the GARCH model. Similarly, a value at risk model can
replace the first step in the hybrid model and be used as a feature in the machine
learning models. In regards to the chosen machine learning models, the outcome
of this paper leads me to conclude that a average of model predictions would be
best; such a model would place a large weight on ANN model predictions during
periods of high volatility, and place a large weight on the GBRT model during
periods of docility. Such a model would then capture best results from both models
as described in Section 4. Considering that the time series analysis in this paper
revolved around forecasting a volatility estimate for series rh,t+1, another approach
would be to fit a volatility model on a feature xt+1 that is highly correlated with the
A2 market price, and use the resulting fitted volatility values as an input in the first
step process of the hybrid model design. From a preliminary experiment, forecasting
performance was improved by modeling the volatility of A1 market prices.
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