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Abstract
Quantum thermodynamics deals with the behavior of thermal machines that operate in
the quantum regime, where coherences and entanglement can have a significant impact.
However, detecting such quantum effects in thermal machines can be challenging, as they
are primarily manifested as fluctuations. This thesis theoretically studies the protocol
for the work fluctuation-dissipation relation (FDR) from stochastic thermodynamics. We
find Quantum signatures including coherence and entanglement in the FDR. When there
is coherence or entanglement, corrections are introduced into the FDR. To study the effect
of entanglement, a generalized protocol is proposed.
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1 Introduction
Classical thermodynamics is a successful theory to describe complex physics systems us-
ing several quantities including heat, work, and energy. One natural idea is to extend
classical thermodynamics to the quantum regime. In that case, quantum effects including
coherence and entanglement play roles [4, 18]. However, it is not easy to experimentally
observe genuine quantum effects from microscopic thermal machines.
Stochastic thermodynamics is a framework to study the thermodynamics of small systems
where fluctuations play a crucial role. The work fluctuation-dissipation relation from
stochastic thermodynamics:

β

2 Var(W ) = ⟨W ⟩−∆F (1)

gives us a chance to detect the quantumness of the system. In the relation, W is the
work, β is the inverse temperature and F is the free energy. Var(W ) is the variance
of work: ⟨W 2⟩ − ⟨W ⟩2. It has been both theoretically and experimentally verified that
the relation can be violated when there is coherence in the system [8, 9, 13]. This is a
genuine quantum signature from the effect of coherence. This result reveals how quantum
coherence influences the work extraction protocol. Since entanglement is also a quan-
tum effect, it is natural to ask whether entanglement will also bring violations to the
fluctuation-dissipation relation. In this work, our goal is to extend this result to the case
when there is entanglement. To reach the goal, we study a two-qubit system since in such
a system the entanglement of a mixed quantum state can be easily found [11].
In the series of studies on coherence, a quantum process with discrete quenches on the
Hamiltonian and thermalization is considered [8, 9, 13]. We first generalize the discrete
thermodynamical protocol proposed by Scandi et al (2020) when studying the coherence
system [13]. We argue that a generalization of the protocol within the framework of the
discrete quantum process is needed to study the effect of the entanglement. Specifically,
one extra unitary global evolution is applied to the thermal state. We proved that all
two-qubit unitary operators can be divided into two subsets. Operators in one set are
able to generate entanglement while operators in the other set can not. When entangle-
ment operators are applied, there is a larger violation of the work fluctuation-dissipation
relation. This can be understood as a quantum signature from entanglement.
The thesis is organized as follows: necessary theory and concepts are introduced first.
Basic concepts that will be used including density matrices, the definition of quantum
work, the fluctuation-dissipation relation, discrete thermodynamical quantum processes,
coherence, and entanglement will all be introduced. After that, we will first introduce
the fluctuation protocol and calculate the experimentally verified single-qubit case as an
example. This example, as discussed before, shows the quantum effect of coherence on the
fluctuation-dissipation relation. After that, we will generalize the protocol and explain
the necessity of the generalization. Then a simple case is calculated as an example.
Finally, we divide all two-qubit unitary operations into parts and show that the part that
brings entanglement to the systems will introduce a larger correction to the fluctuation-
dissipation relation. This final result shows the effect of entanglement on the relation as
a quantum signature.
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2 Theory and concepts

2.1 Density matrices
Suppose that a probability mixture of quantum state s is prepared [6]:

s= {pi; |ψi⟩}n
i=1 (2)

Then we can write the quantum state as a Hermitian, positive semi-definite matrix ρ with
Tr(ρ) = 1:

ρ=
n∑

i=1
pi |ψi⟩⟨ψi| (3)

Suppose that a collection of generalized measurement operators {Mm} is given, then the
probability of getting m from the measurement is:

p(m|ρ) = Tr(M †
mMmρ) (4)

Density operators are an alternative description of the quantum state in comparison to
normalized vectors in the Hilbert space. It is used to describe an ensemble of pure quantum
states.
Now we give an example of measurement operators. Consider a HamiltonianH =∑

iEi|Ei⟩⟨Ei|,
the probability of getting eigenenergy Ei is Tr((|Ei⟩⟨Ei|)†(|Ei⟩⟨Ei|)ρ) and one should no-
tice that Tr((|Ei⟩⟨Ei|)†(|Ei⟩⟨Ei|)ρ) = Tr(|Ei⟩⟨Ei|ρth) = ⟨Ei|ρ|Ei⟩. In that case |Ei⟩⟨Ei|
is the measurement operator. This is called projective measurement.

2.1.1 Gibbs state

Suppose that the Hamiltonian of a system is H. The Gibbs state or thermal state is:

ρth = 1
Z
e−βH (5)

where Z is a partition function, β is the inverse temperature. The thermal state ρth is
the state with the largest entropy in a system with constant average energy.

2.2 Two-point measurement (TPM) scheme
In quantum thermodynamics, work has to be carefully defined [16]. In the following,
the two projective measurement scheme (TPM) will be used. In the TPM scheme, two
projective measurements of energy are performed at the end and the beginning of the
process, and the work is defined as the difference between the two measurement outcomes
[17]. Detailed discussion will be shown later. Classically the energy can be determined
by the Hamiltonian of the system. We can write the Hamiltonian as H(z,λ) where z is
the point of the phase space and λ is the parameter of the protocol. The protocol λ alters
the energy and hence work will be applied to or taken from the system. One convenient
way to define work is to choose the inclusive definition of work. That is, the work is given
by the energy difference at the end and the beginning of the force protocol. The TPM
scheme is an adaptation of this definition to quantum systems. Further discussion can be
seen in [16]. We will use this inclusive definition of work.
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2.3 Work Fluctuation-Dissipation-Relation (FDR)
In a small system, we have to consider thermal and quantum fluctuations. One im-
portant method to describe the thermodynamics of a small system is to use stochastic
thermodynamics[14]. In the framework of stochastic thermodynamics, physical quantity
such as work is described by a random variable with a probability distribution. One
important result from the field of stochastic thermodynamics is the work Fluctuation-
Dissipation-Relation (FDR):

β

2 Var(W ) = ⟨W ⟩−∆F (6)

where W is the work, F is the free energy and β denotes the inverse temperature. This
relation is valid for isothermal processes that are close to equilibrium[4, 8, 15]. The topic
of our project is to explore possible violations of this relation for systems with quantum
fluctuations.

2.4 Thermodynamics of discrete quantum processes
The discrete quantum process is a key concept in the project. It has been shown that
a continuous quantum thermal process can be approximated using a combination of dis-
crete quantum processes[1]. There are two kinds of discrete transformations, the process
that is close to equilibrium considered in this article is built up by these two discrete
transformations.

2.4.1 Discrete Unitary Transformations (DUTs)

Suppose that the quantum system we are interested in is described by the quantum state
ρ and Hamiltonian H, we then write the configuration of the system to be (ρ,H). The
discrete unitary transformation is defined to be:

(ρi,Hi) DUT−→ (ρf ,Hf ) (7)

Here (ρi,Hi) denotes the initial configuration and (ρf ,Hf ) denotes the final configuration.
Notice that the change of the Hamiltonian is rather arbitrary and it is not necessarily in
the same form as the unitary evolution of the state. For example, it can be a non-unitary
quench [13].

2.4.2 Discrete Unitary Quenches (DUQs)

Discrete Unitary Quenches are a special case of DUTs. The quench is a process to change
the Hamiltonian. The change is so fast that the system density matrix does not change.
That is:

(ρi,Hi)
DUQ−→ (ρi,Hf ) (8)

2.4.3 Discrete Thermalising Transformations (DTTs)

Thermalization is a transformation of the quantum state:

(ρi,Hi) DT T−→ (ρth,Hf ) (9)
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Here ρth = 1
Z e

−βH as defined in eq.5.

2.5 Coherence and entanglement
Coherence and entanglement are quantum properties to study in this project. In this
section, we briefly introduce these concepts.

2.5.1 Coherence

A classical state ρ has no off-diagonal terms, it just represents a classical probability
mixture. However, a quantum state ρ can have off-diagonal terms. We expand a pure
state as:

|ψk⟩ =
n∑

i=1
c

(k)
i |i⟩ (10)

Then probability mixture of pure states is:

ρ=
l∑

l=1
pk |ψk⟩⟨ψk| (11)

Then the off-diagonal term ρij is:

ρij = ⟨i|ρ|j⟩ =
l∑

k=1
pk⟨i|ψk⟩⟨ψk|j⟩ =

l∑
k=1

pk

n∑
l,m=1

c
(k)
l c(k)⋆

m ⟨i|l⟩⟨m|j⟩

=
l∑

k=1
pkc

(k)
i c

(k)⋆
j .

(12)

From the equation above, we can find that off-diagonal terms of the density matrix come
from the superposition of quantum states, which is a quantum effect.

2.5.2 Entanglement

Given a quantum state ρ, if Tr(ρ2) < 1, the state is called a mixed state, otherwise it is
a pure state. The quantum entanglement of pure states is simpler to analyze than mixed
states. We will mainly deal with the mixed-state case. Suppose that there is a bipartite
system HA ⊗HB, if a density operator ρAB of the total system can be written as:

ρAB =
∑

i

piρ
A
i ⊗ρB

i (13)

where pi is a positive probability, then ρAB is called separable, otherwise it is an entangled
state. It is a difficult problem to say whether a state is entangled or not. However, in
2×2 dimensional systems, this has been solved [11].

2.5.3 Negativity and partial transpose

In this section two important concepts are introduced: negativity and partial transpose.
Given a bipartite systemHA ⊗HB, a basis of the system can be written as |ij⟩ = |i⟩A ⊗|j⟩B

where |i⟩A and |i⟩B are orthonormal basis vector of HA and HB respectively. Then the
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operation of taking partial transpose can be written as:

ρij,kl → ρil,kj (14)

where ρij,kl = ⟨ij|ρ|kl⟩. Given a density operator ρ, we write ρpt as its partial transpose
The negativity of a quantum state is defined as:

N (ρ) =
∑

i(|λi|−λi)
2 (15)

where λi is a eigenvalue of ρpt. The negativity is an entanglement monotone, meaning it
will not be changed under local operations.

2.5.4 Peres–Horodecki criterion

Given a 2×2 quantum system, it has been shown that N(ρ)> 0 is a necessary and suffi-
cient condition for the existence of entanglement [11]. This is called the Peres–Horodecki
criterion.

2.5.5 Two-qubit entanglers

It is known that any two-qubit unitary operator O ∈ SU(4) can be written as [12]:

Ô =
(
Â1 ⊗ B̂1

)
e−i(c1σ̂1⊗σ̂1+c2σ̂2⊗σ̂2+c3σ̂3⊗σ̂3)

(
Â2 ⊗ B̂2

)
(16)

where σi’s are Pauli matrices and Ai, Bi are single qubit operations. Notice that Ai and Bi

are just local single-qubit unitary operations and they can not change the entanglement,
thus we can define a new operator:

O = e−i(c1σ̂1⊗σ̂1+c2σ̂2⊗σ̂2+c3σ̂3⊗σ̂3) (17)

Other operators O are just local equivalents of this operator. In the computational basis,
we can write the matrix form of O and Ai, Bi as [12, 7]:

O =


e−ic3c− −ie−ic3s−

eic3c+ −ieic3s+

−ieic3s+ eic3c+

−ie−ic3s− e−ic3c−

 (18)

where c± = cos(c1 ± c2), s± = sin(c1 ± c2).

Âi =
 cos

(
θ
2

)
−eiλsin

(
θ
2

)
eiϕsin

(
θ
2

)
ei(ϕ+λ)cos

(
θ
2

)  (19)

where θ, λ, ϕ are parameters of Ai. Bi can be parametrized in the same way.
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3 Systems
The goal of our project is to find the possible correction of the work fluctuation-dissipation-
relation. We want to explore the effects of quantum fluctuation on this relation. To see
this, we define a new function:

Q= β

2 Var(W )− (⟨W ⟩−∆F ) (20)

This is just the correction function of Eq. (6). We want to explore what will this func-
tion be like when there is entanglement and/or coherence. Our goal is to find a clear
relationship between Q and entanglement and coherence. If there is a larger correction
function Q when there is quantum entanglement or coherence, it can be concluded that
there is a genuine quantum signature. To study this, it is needed to carefully choose a
thermodynamical protocol and a quantum system. In the protocol, coherence, and en-
tanglement should be generated. For the coherence case, there are already theoretical
and experimental results[9, 13]. In the first part of this section, we will briefly review the
work-fluctuation protocol proposed by Scandi et al. (2020)[13]. We will also calculate
Q in the single-qubit case of the protocol which has been experimentally verified [9]. In
the second section, we will propose a generalized work-fluctuation protocol to study the
correction of FDR caused by entanglement. Then we will calculate the Q in a two-qubit
case to show the quantum signature of entanglement.

3.1 Coherence and work fluctuation protocol
In this section, we reproduce the main result from the article [9] theoretically. The
coherence work fluctuation protocol consists of N steps and there are two procedures in
each steps [13]:
1. Quench on the Hamiltonian (DUQs and also DUTs): The process is so fast that the
Hamiltonian H is changed while the quantum state is unchanged.
The quench, as discussed before, is an instantaneous change of the Hamiltonian that
leaves the quantum state unchanged. The quench can have a different form for example:

Hi −→ Û †
i HiÛi =Hi+1 (21)

This is the case we will consider. There can also be a classical quench, which will just
change the energy. There is an example:

Hi = 1+ i∆
4 σ̂z −→Hi+1 = 1+(i+1)∆

4 σ̂z (22)

Notice that this is not in the form of Eq. (21) and can not give us any correction to the
FDR since we can not generate coherence from this [13]. We will not consider this kind
of quench.
2. The thermalization procedure (DTTs): The quantum state is thermalized to the Gibbs
state:

ρth = 1
Z
e−βH (23)

The work is defined by the TPM scheme as before. There is a projective measurement
after the thermalization and before the quench. Then the second measurement happens
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after the quench. Notice that our measurement is always a projective measurement of the
Hamiltonian and the Hamiltonian Hi at the beginning and Hi+1 at the end are different.
Then the two measurement operators are different. Suppose that at the beginning of the
i-th step Hi =∑

jE
i
j |Ei

j⟩⟨Ei
j |. We can easily find that:

Hi+1 =
∑

j

Ei+1
j |Ei+1

j ⟩⟨Ei+1
j | =

∑
j

Ei
jÛ

†
i |Ei

j⟩⟨Ei
j |Ûi = Û †

i HiÛi (24)

One important observation from the equation above is that the projective measurement
operator of Hi+1 can be written in the form:

P̂ i+1
j = Û †

i |Ei
j⟩⟨Ei

j |Ûi (25)

We can also explicitly write the probability of getting the work ω in the i-th step for an
arbitrary kind of quench: (At the beginning we have a Gibbs state ρth

i )

Pi(ω) =
∑

Ei+1
l −Ei

k=ω

⟨Ei
k|ρth

i |Ei
k⟩|⟨Ei

k|Ei+1
l ⟩|2 (26)

Notice that since |Ei+1
l ⟩ is a eigenbasis of Hi+1, we can write |⟨Ei

k|Ei+1
l ⟩|2 = |⟨Ei

k|U †
i |Ei

l ⟩|2
from eq. (25). Now we can rewrite Eq. (26) as:

Pi(ω) =
∑

Ei+1
l −Ei

k=ω

⟨Ei
k|ρth

i |Ei
k⟩|⟨Ei

k|Û †
i |Ei

l ⟩|2 (27)

In the experimental work of Onishchenko et al. (2022) [9], a single qubit case is considered.
In that case, the energy can be 0 or 1. The operator of the quench is:

Û †
i = exp(−i(∆θ/2)σ̂x) =

(
cos ∆θ

2 −i sin ∆θ
22

−i sin ∆θ
2 cos ∆θ

2

)
(28)

We can regard the quench as an operation to change the basis. After each step i, we
can set the new basis of the Hilbert space as |Ei+1

k ⟩ = U †
i |Ei

k⟩. From this, all steps are
identical and can be understood as a quantum circuit which is shown in Fig. 1 [9].
Thus the protocol can be regarded as repeating the circuit N steps with the thermal state:

ρth = 1
Z

(
1 0
0 e−β

)
(29)

where Z = 1
1+e−β . Notice that the average work of each step is:

⟨Wi⟩ =
∑
w
ωPi(ω) (30)

ρth exp(−i(∆θ/2)σ̂x)

Figure 1: The equivalent quantum circuit corresponding to one step
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And it is obvious that:
⟨W 2

i ⟩ =
∑
w
ω2Pi(ω) (31)

Since each step is identical, we can write the total work as:

⟨W ⟩ =N⟨Wi⟩ (32)

where N is the number of steps.

3.1.1 Results

Notice that the free energy change ∆F = 0 since the quench is just a rotation of the
basis [9]. From all discussion above we can get the correction function Q under the given
quench operator exp(−i(∆θ/2)σ̂x) with the initial Hamiltonian H0 = |1⟩⟨1|:

Q=N sin2
(

∆θ
2

)[
β

2

(
1− sin2

(
∆θ
2

)
(1−2p)2

)
− (1−2p)

]
(33)

where p is given by:
1−2p= tanh(β/2) (34)

Suppose that there are N steps and the Hamiltonian changes from H0(0) to Hf (θ), where
Hf is the final Hamiltonian after all steps. Then ∆θ = θ

N . If the process is slow and close
to equilibrium, then N is large, and ∆θ is small. From this, we can use the small angle
approximation sin(∆θ) ∼ ∆θ. Then we can rewrite the correction function as:

Q=N
(∆θ)2

4

[
β

2 − tanh(β/2)
]

+O((∆θ)2) =N
(∆θ)2

4 f(β)+O((∆θ)2) (35)

where f(β) = β
2 − tanh(β/2). This is the same as what Onishchenko et al. (2022)[9] get.

Figure 2: Plot of f(β). β is the inverse temperature. Given a final θ parameter and a
number of steps N , the correction Q is determined by f(β).
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3.2 Entanglement protocol
In this section, we first generalize the protocol used before. After that, we set up a two-
qubit system to study the correction function Q when there is entanglement and compare
the new result with the result found in the last section.

3.2.1 An explanation of the protocol

Here we briefly explain the reason why a new protocol is needed to consider the effect of
entanglement. To consider entanglement, there should be at least two systems SA and
SB. Initially, the Hamiltonian of each system is HA and HB respectively. Suppose that
|EA⟩ and |EB⟩ are eigenbasis of HA and HB, then |EA⟩ ⊗ |EB⟩ is the eigenbasis of the
total Hamiltonian HAB = HA ⊗ I + I ⊗HB. If there is a global quench operator Û , as
before: HAB −→ Û †HABÛ =H ′. In that case, the new eigenbasis is: Û †(|EA⟩⊗|EB⟩). If
Û is an entangler that transforms |EA⟩ ⊗ |EB⟩ into a entangled state, then the measure-
ment operator P̂ = U †(|EA⟩ ⊗ |EB⟩)(⟨EA| ⊗ ⟨EB)Û of the second measurement in TPM
becomes inseparable. And the system becomes completely inseparable, we can not write
the total Hamiltonian as HAB =HA ⊗ I+ I⊗HB anymore. There is only a total system
SAB. In that case, if we run the protocol for N times, there is not any difference between
this process and the process we have calculated before except that the dimension of the
new system is larger. The new equivalent quantum circuit is the same as in Figure.1.
Thus to introduce entanglement to the protocol, there should be two conditions:
1. The protocol should make the total system a bipartite system. That is, the measure-
ment operator P̂AB should be in the form of P̂AB = P̂A ⊗ P̂B. Otherwise, there is still
only a single larger system and it is meaningless to consider the "entanglement" of a single
closed system.
2. The protocol should be able to generate entanglement. Given an initial separable
thermal state ρth

AB, there should be an operation that makes ρth
AB becomes an entangled

state.
All these two conditions are to guarantee that there is entanglement in the system because
our goal is to explore the entanglement signature of the FDR relation in the system. It
has to be guaranteed that there is entanglement and the entanglement case should be
compared with the separable case. Also, we want to consider the problem only under the
TPM scheme. That is, the two measurements should be the projective measurement of
the system Hamiltonian. Under all conditions above, we slightly generalized the protocol
as:
1. The thermalization procedure (DTTs): this step is the same as before.
2. A unitary evolution of the state (DUTs): The quantum state evolute and becomes
an entangled state. This is a new procedure to generate entanglement. Suppose that
the Hamiltonian of systems SA and SB are HA and HB respectively. Then the total
Hamiltonian is HA ⊗I+I⊗HB +Hint. There is a small interaction term Hint and in this
procedure that makes the thermal state ρth evolute to an entangled state.
3. Local quenches (DUQs and also DUTs): locally everything is the same as before:
HA −→ Û †HAÛ =H ′

A and HB −→ Û †HBÛ =H ′
B

Comparing the new protocol with the one before, there is one new step added. Obviously,
the new protocol satisfies our two conditions and is still under the scheme of thermody-
namics of discrete quantum processes[1]. This protocol is nothing but a generalization of
the prior protocol proposed by Scandi et al (2020) [13]. With this protocol, it is possible
to include entanglement in the process.
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3.2.2 Detailed system set up

To simplify the calculation, we assume that the Hamiltonian of the two subsystems HA =
HB = H where H is the same Hamiltonian as the single qubit case of the coherence
protocol and the same quench happens locally. That is, in the quench step:

HA −→ Û †HAÛ =H ′
A

HB −→ Û †HBÛ =H ′
B

(36)

Here the operator of the unitary quench is:

Û † = exp(−i(∆θ/2)σ̂x) =
(

cos ∆θ
2 −i sin ∆θ

2
−i sin ∆θ

2 cos ∆θ
2

)
(37)

as before. The evolution operator in the second procedure is:

R̂ = R̂xx(∆t) = exp(−i(∆t/2)σ̂x ⊗ σ̂x) (38)

The operator has a new parameter ∆t. This is to describe the evolution in the second
procedure. We can write the matrix form of the operator as:

R̂xx(∆t) =


cos

(
∆t
2

)
0 0 −i sin

(
∆t
2

)
0 cos

(
∆t
2

)
−i sin

(
∆t
2

)
0

0 −i sin
(

∆t
2

)
cos

(
∆t
2

)
0

−i sin
(

∆t
2

)
0 0 cos

(
∆t
2

)

 (39)

Again as before, the quench can be understood as a change of the basis. From this, each
step is the same and can be understood as a circuit shown in Fig. 3. In the circuit model,
ρth

A and ρth
B are just local thermal states and their matrix form are shown in Eq. (40).

ρth
A = ρth

B = e−βH = 1
Z

(
1 0
0 e−β

)
(40)

In the new protocol, the probability of getting work ω in each step is:

P (ω) =
∑

E′
l−Ei

k=ω

⟨Ek|ρth
i |Ek⟩|⟨Ek|R̂(Û † ⊗ Û †)|El⟩|2 (41)

In the two-qubit system, the set of eigenstates {|El⟩} = {|00⟩, |01⟩, |10⟩, |11⟩} with eigenen-
ergies 0,1,1,2 respectively. R and U † are already given before. With the probability

HA U †HAU

HB U †HBU

ρth
A

R̂xx(∆t)

ρth
B

Figure 3: The equivalent quantum circuit corresponding to one step: the entanglement
case.
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distribution P (ω) we can again calculate the correction function Q as before.

3.2.3 Results

Before showing the result, we have to show that there is indeed entanglement generated.
That is, we have to show that the negativity N (R(ρth

A ⊗ρth
B )R†)> 0. The negativity is:

N (R(ρth
A ⊗ρth

B )R†) =
|4eb −2

√(
e2b −1

)2
sin2(∆t)|−4eb +2

√(
e2b −1

)2
sin2(∆t)

8
(
eb +1

)2 (42)

We can find that there is entanglement when the temperature is not too high. If ∆t= 0,
there is no entanglement.
Then we can calculate the correction function QAB. Notice that the correction function
Q= β

2 Var(W )− (⟨W ⟩−∆F ) can be decomposed as:

Q= β

2 (⟨W 2⟩−⟨W ⟩2)−⟨W ⟩ (43)

since ∆F = 0 as discussed before. We have already written the distribution of work in
Eq. (41), then we can write ⟨W 2⟩ = N

∑
ω2P (ω) and ⟨W ⟩ = N

∑
ωP (ω) since each step

is identical.
To simplify the expression we use the small angle approximation and neglect the high-
order term:

QAB =N

{
(∆θ)2

2

[
β

2 − tanh(β/2)
]

+ (∆t)2

2

[
β

1+ e−2β

1+2e−β + e−2β
− tanh(β/2)

]}
(44)

If we define a function g(β) = β 1+e−2β

1+2e−β+e−2β − tanh(β/2) and use the function f(β) as

2 4 6 8 10

0.01

0.02

0.03

0.04

0.05

The negativity

Figure 4: Plot of the negativity. β is the inverse temperature. ∆t is setted to be 0.1.
When the negativity is larger than 0 there is entanglement. There is a transition of
negativity. One possible reason is, at very high temperatures (low β), the mixedness of
the state is too high to generate entanglement [2].
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before we can rewrite QAB as:

QAB =N

[
(∆θ)2

2 f(β)+ (∆t)2

2 g(β)
]

(45)

Notice that when ∆t= 0, we have:

QAB = 2Q=N
(∆θ)2

2 f(β) (46)

where Q is the single qubit correction we get before. We can now easily find that when
there is an entanglement operation R, there is an extra term g(β) with parameter ∆t in
the correction function QAB.

3.3 FDR with Generalized two-qubit entangler
Our goal is to find the relation between entanglement and the correction Q of the FDR.
In the last section, a unitary operator Rxx is chosen and we have found that Rxx is able
to generate entanglement from the initial state ρth

A ⊗ ρth
B . At the same time, if there is

a unitary evolution Rxx, the correction QAB becomes larger. However, till now there is
no direct connection found between the entanglement and the larger correction. In this
section, we will try to reveal the connection. The approach is as follows: given an initial
thermal state ρth

A ⊗ ρth
B , we try to find all two-qubit unitary operators that transform

the state into an entangled state. Then we can classify the set of all two-qubit unitary
operators into two subsets, one can generate entanglement while the other can not. We
choose different operators from these two subsets in the FDR protocol and compare the
correction QAB. If it is found that operators from the entanglement subset are able to
introduce more correction in the FDR protocol, a connection between entanglement and
the FDR is discovered. Finally, we can conclude that there is a quantum signature caused
by entanglement.

Theorem 1. The negativity N (O(ρth
A ⊗ρth

B )O†) = 0 if c1 − c2 = 0 where O is defined in
Eq. (17) and ρth

A , ρth
B are defined in Eq. (40).

Figure 5: The plot of the correction function QAB when N = 10, ∆θ= 0.1. The parameter
∆t is setted to be ∆t= 0.1 or ∆t= 0 for entangled and non-entangled case.
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Proof. The negativity N (O(ρth
A ⊗ρth

B )O†) is:

max

0,
−2eb +

√(
e2b −1

)2
sin2(2c1 −2c2)

2
(
eb +1

)2

 (47)

Obviously, the negativity is zero when c1 = c2

From the theorem above, we find two subsets of the two-qubit operators set A, B, and
C. B is the subset of all two-qubit unitary operators that satisfies c1, c2, c3 ̸= 0 when
decomposing the operator into the form in Eq. (16). C is the subset of operators satisfies
c1 = c2. Obviously, C ∈ B ∈ A.

Figure 6: This graph shows the relationship between different two-qubit unitary operators.
Region A represents all two-qubit unitary operators, B represents all ono-local two-qubit
operators (c1, c2, c3 ̸= 0). Region C represents operators that can generate entanglement
from ρth

A ⊗ρth
B (c1 ̸= c2), which is the starting thermal state in the protocol.

Now we replace the Rxx gate in the original entanglement protocol with a general two-
qubit unitary operator and then observe if the unitary operators in subset A compared to
those outside of A will have different effects on the correction function QAB. If operators
that are able to bring entanglement to the system produce more correction to the FDR,
we can conclude that we find a relation between entanglement and the correction of QAB.
This is a quantum signature from entanglement.
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3.3.1 Results

Due to the complexity of general two-qubit operators, we give a simplified analytical result
here.
To simplify the problem, we only consider O = e−i(c1σ1⊗σ1+c2σ2⊗σ2+c3σ3⊗σ3) here since
other two-qubit operators are just its local equivalents. Again we use Eq. (41) where R
is replaced by O here. Under the small angle approximation, we get:

QAB =N

[
(∆θ)2

2 f(β)+2(c1 − c2)2g(β)
]

(48)

This can be derived simply the same way as the derivation of Eq. (44). The only difference
is that we replace R̂ in the Eq. (41) by O = e−i(c1σ1⊗σ1+c2σ2⊗σ2+c3σ3⊗σ3).
Obviously when c1 ̸= c2, there is entanglement and there is an extra term in the correction
functionQAB. Numerical results comparing the c1 = c2 operators with the c1 ̸= c2 operator
are also shown.

Figure 7: The plot of the correction function QAB when N = 10. To describe general
two-qubit unitary operators, 15 parameters are needed. All parameters are set to be 0.1
except c1. In the separable c1 = c2 case, c1 is also set to be 0.1. In the entanglement
c1 ̸= c2 case, c1 = 0.2. It can be found that the correction function QAB is larger in the
entanglement case.
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4 Conclusions

4.1 Discussion
Our results which are shown in Eq. (48) and Fig. 7 reveal the relation between entangle-
ment and the correction of the FDR. As discussed before, when the entanglement operator
is applied, an extra term appears in the correction function QAB. As a result, the correc-
tion QAB is larger when there is entanglement. From this, theoretically entanglement as
a quantum signature is observed in the fluctuation-dissipation relation. It is interesting
to discuss Eq. (48). This equation is the analytical result to show the correction function
QAB in a two-qubit case. One should notice that when deriving the equation, we assume
that the unitary evolution is O = e−i(c1σ1⊗σ1+c2σ2⊗σ2+c3σ3⊗σ3) However, this is not the
most general two-qubit unitary operator. The most general two-qubit operator is:

Ô =
(
Â1 ⊗ B̂1

)
e−i(c1σ1⊗σ1+c2σ2⊗σ2+c3σ3⊗σ3)

(
Â2 ⊗ B̂2

)
This special choice is to simplify the expression of QAB. A general level of generality has
been maintained in the choice since the interaction unitary operator O = e−i(c1σ1⊗σ1+c2σ2⊗σ2+c3σ3⊗σ3)

describe all interaction content of a two-qubit unitary operator and two-qubit unitary op-
erators are locally equivalent when they have the same parameters c1, c2, c3 as proposed
in [5]. Our goal is to study the effect of entanglement in the FDR. Thus we are only
interested in the interaction of the two subsystems. That is an argument to discuss the
validity of only choosing O to calculate the analytical result of QAB.
There is also a further discussion on the analytical result of QAB. One can easily find
that when there is no entanglement (c1 = c2), the correction function QAB is:

QAB =N

[
(∆θ)2

2 f(β)
]

(49)

This is just two times the single-qubit correction of the FDR in the coherence protocol
as shown in Eq. (35). Also one should notice that if we delete the interaction evolu-
tion of the two subsystems, the system is just two copies of the single-qubit coherence
system. In conclusion, if there is no entanglement, we can not find any detail of the
interaction of the two subsystems from the fluctuation-dissipation relation. This observa-
tion emphasizes our conclusion that the quantum signature of entanglement is observed
from the FDR. Suppose that we apply a non-entanglement interaction unitary operator:
O = e−i(c(σ1⊗σ1+σ2⊗σ2)+c3σ3⊗σ3) where c is an real number. In that case, we can not ob-
serve any extra correction of the FDR. The reason is that this interaction operation is
not an entanglement operation. This kind of operation will not violate the FDR.
To reach the final result, we have developed a general method to study entanglement in
the work FDR. First, we generalize the protocol to include a unitary evolution. This is to
entangle the quantum state. Then to compare with the separable system we prove that
in our case, all two-qubit unitary evolution can be divided into two sets: entanglement
evolution and non-entanglement evolution. Then we find that there is an extra correction
of the FDR only if an entanglement evolution is applied.
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4.2 Outlook
In this work, we have only studied a two-qubit system. However, as discussed above, the
method developed in the thesis can be used to analyze arbitrary systems. However, due to
the limitation of our knowledge of mixed-state entanglement, it is not easy to generalize
our results to arbitrary bipartite quantum systems. First, to generalize the result, we need
a criterion to determine whether a mixed quantum state is separable or not. However,
the Peres–Horodecki criterion we have used is only valid for 2×2 or 2×3 systems. Also,
it is not easy to find the decomposition of the unitary operator as proposed in Eq.(16) in
larger systems. Generally, it is still an open question to find entanglers in larger systems
[3].
Throughout the discussion, we are always under the scheme of the two-point measurement
scheme as discussed in [17]. This measurement scheme could also be changed to study
the fluctuation of work [10].
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