
Individual Layer
Scaling and
Redundancy Reduction
of Singleshot
Multiplane Images for
View Synthesis

Max Bergfelt
Master’s thesis
2023:E19

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

T
RU

M
SC

IEN
T

IA
RU

M
M

AT
H

EM
AT

IC
A

RU
M

Abstract

Image-based rendering for view synthesis is a field within computer vision that has seen
a growing number of research activity within the past few years, much due to deep
learning techniques emerging, allowing researchers to re-format view synthesis as a
learning problem. The multiplane image (MPI) is a recently proposed learning-based
layered 3D representation, created from one or a few input images for the purpose
of rendering novel views. When rendering with an MPI created from a single image,
scaling becomes an inherent problem due to the lack of a distance reference point. The
scaling issue prohibits smooth view transitions between different MPI and combining
this with the inherently large file size of the representation makes multi-image scene
applications difficult with single shot multiplane images.

In this thesis, a method is proposed to individually scale the layers of an MPI to im-
prove view synthesis results and view transitions between different MPI in multi-image
scenes. The method consists of an optimization algorithm which adjusts the individual
layers of an MPI using their alpha values together with extrinsic depth information in
the form of a sparse or a dense depth map. For testing, an MPI viewer program was
created allowing viewing of multi-MPI scenes as well as free transitioning and blending
between different MPI. Evaluations of the algorithm were performed on images from
both a synthetic and a real-life SLAM dataset, resulting in higher than baseline scores
for the method across the three most commonly used image similarity evaluation met-
rics. Additionally, the constructed method allows for removal of redundant layers in
each MPI, reducing file size by over 73 % for the synthetic dataset and 78 % for the
SLAM dataset.

I

II

Contents

Abstract I

Table of Contents IV

1 Introduction 1
1.1 Aim . 1
1.2 Research Questions . 2
1.3 Contributions . 2
1.4 Thesis Outline . 3

2 Background 5
2.1 Image Based Rendering and View Synthesis 5
2.2 Multiplane Images . 6

2.2.1 Multi-Layered Scene Representation 6
2.2.2 Layer Positioning . 6
2.2.3 Rendering . 8

2.3 Related Work . 10
2.3.1 Stereo Magnification: Learning View Synthesis using Multiplane

Images . 10
2.3.2 Single-View View Synthesis With Multiplane Images 11
2.3.3 Local Light Field Fusion . 11
2.3.4 COLMAP . 12
2.3.5 Neural Radiance Fields . 12

2.4 Evaluation Metrics . 12
2.4.1 Peak Signal-to-Noise Ratio . 13
2.4.2 Structural Similarity Index Measure 13
2.4.3 LPIPS . 14

2.5 Unity Engine . 14

3 Method 17
3.1 Pipeline Overview . 17
3.2 Data Gathering . 18

3.2.1 Synthetic Image Generation . 18
3.2.2 Real Image Dataset . 20

3.3 Generation of Multiplane Images . 22
3.4 Multi Plane Image Scaling . 23

3.4.1 Optimization Algorithm . 23
3.4.2 Linear Solver . 24
3.4.3 Layer Merging . 25

3.5 Viewer Application . 25

III

3.5.1 Overview . 26
3.5.2 Unity Scene . 27
3.5.3 Scripts . 27
3.5.4 Shaders . 29
3.5.5 MPI Blending . 29

3.6 Evaluation . 30
3.6.1 Blending . 30
3.6.2 View Synthesis . 30
3.6.3 Procedure . 31

4 Results 33
4.1 Similarity Metric Scores . 33

4.1.1 Overall Comparison . 33
4.2 Qualitative Examples . 34

4.2.1 Depth Renderings . 35
4.2.2 Image Renderings . 36

4.3 Image and Depth Renderings . 36
4.3.1 Synthetic Data Depth Renderings 37
4.3.2 Synthetic Data Image Renderings 39
4.3.3 SLAM Data Depth Renderings 40
4.3.4 SLAM Data Image Renderings 41

4.4 Layer Reduction . 42

5 Discussion 43
5.1 Quantitative Overview . 43
5.2 Representative Examples . 44
5.3 Single View MPI Generator . 45
5.4 View Transitioning and Blending . 46
5.5 Algorithm Run Time . 46
5.6 Layer Reduction . 46

6 Conclusion 49
6.1 Research Questions . 49
6.2 Future Work . 50

Bibliography 51

A Layer Reduction Results 53

IV

Chapter 1

Introduction

The multiplane image (MPI) is a layered 3D representation, consisting of several semi-
transparent image planes. A visual example of an MPI can be seen in figure 1.1.
Creating an MPI requires a 2D image which the MPI will use as its base, and some
kind of accompanying external information on scene depth. However, the recent rise
in popularity of neural networks has led to methods being created that allows depth
information to be inferred from the geometry of a scene, allowing creation of multi-
plane images without any input other than a single image[1]. While the simplicity of
3D generation using this method opens up for new possibilities such as 3D viewing
of images captured with a regular smartphone camera, inferring scene depths from
geometry has its limitations. With single-view input there is no way to determine
the absolute scale of the scene, leading to errors being introduced in the synthesized
views. This limitation puts a stop to the usage of single-view generated MPI in any
situation where scale accuracy matters. To circumvent the scaling issue while keeping
the simplicity of single-view generated MPI, we have posed the question of whether it
is possible and effective to correct for scale after the MPI has been generated.

1.1 Aim

The research is conducted to investigate the possibility of scaling single-view gener-
ated MPI and whether this allows for multiple MPI to be combined into a larger
scene representation that utilizes blending between multiple MPI views. All previ-
ous usages of MPI have spaced each layers by a fixed value in disparity in order to
maximize resolution in the depth space, but we believe that optimal layer placement is
highly scene-dependent. As depth information is becoming easier to access, with many
smartphone cameras having software or hardware solutions for measuring depth, we
can rely on these tools to individually scale the layers of an MPI. In addition, much
like every other 3D representation MPI have both advantages and limitations, one

1

Figure 1.1: Visual example of a multi-plane image.

being the file size of the representation. We therefore also aim to find out whether
re-scaling individual layers allows for redundant layers to be excluded without major
quality reduction.

1.2 Research Questions

RQ1 Can layers of single-image generated multiplane images be scaled as a way to
tackle the scale ambiguity problem?

RQ2 Are scaled single-image generated multiplane images a viable option for multi-
image input view synthesis with MPI blending?

RQ3 If the estimated depths of two or more layers are close, can they be merged to
reduce redundancy and compress the file size of the MPI representation without
major loss of quality?

1.3 Contributions

The research conducted for this thesis contributes to the field of view synthesis in
computer vision by investigating the following topics.

C1 Individual layer MPI scaling

C2 Consistent view transitions over multiple single shot MPI

C3 Compression of the MPI scene representation.

2

1.4 Thesis Outline

In chapter 2 of the report, all relevant background will be given needed to understand
the content of this thesis, including what experiments have been done, how and what
results they have given. A background will be given on what multiplane images are
and what they are used, an introduction to relevant previous research will be given and
the software and models used in this research will be explained. Chapter 3 contains an
explanation of the work that has been done for this thesis with separate sections for
each part of the pipeline. In chapter 4 of the report, the results given by the procedure
explained in section 3 are presented, followed by chapter 5 containing a discussion in
which the finished work of this thesis is analyzed by looking comparing the results
with the method applied in this report and previous work.

3

4

Chapter 2

Background

2.1 Image Based Rendering and View Synthesis

Ever since it emerged, image based rendering has become a very popular application
of computer vision. Unlike traditional computer graphics which utilize 3D meshed to
render images, image based rendering techniques use 2D image captures of a single
scene in order synthesize and render the scene from additional views. A practical ex-
ample of an image-based rendering that many people may have used is Google map’s
street view navigation function. Some classic applications of image-based rendering
include light fields [2], which are mathematical representations of a collection of light
rays traveling through a scene and are used to generate realistic images from differ-
ent viewpoints, or view interpolation [3] which allows interpolated image rendering
between image pairs using precomputed depth maps.[4]

Recently, the rising popularity of technologies which could benefit from applications
of image-based rendering such as virtual and artificial reality has increased the incent-
ive for image based rendering. In addition, the rise of deep learning methods have
brought new possibilities on how to perform view synthesis for image-based rendering,
yielding impressive results. These two advancements have helped in revitalizing the
field, which is now a hot topic within computer vision research. One recent technology
for performing view synthesis which have benefited from such technological advance-
ments is the multiplane image (MPI) representation [5]. Because of its simplicity and
apparent potential for various applications, it has become popular and many research
papers have been published on the topic during recent years.

5

2.2 Multiplane Images

Multiplane images were first introduced by Zhou et al. [5] as a way of tackling stereo
magnification, the problem of extrapolating views from images captured by narrow
baseline cameras. By representing scenes as a pair of fronto-parallel planes the au-
thors managed to create a new image representation that outperformed many previous
methods of synthesizing novel views from input images. Advantages with multiplane
images over many other methods for view synthesis is that the scene representation can
be predicted once and then used to generate novel views with minimal computation,
instead of each separate view having to be predicted on its own. Another advantage
with layered scene representations is the ability to model occluded content. This ef-
fectively allows ”peeking behind corners” when rendering new images. View synthesis
using MPIs has since it was first introduced been continued in several different works,
such as Tucker and Snavely [1] and Srinivasan et al. [6].

2.2.1 Multi-Layered Scene Representation

An MPI is a three-dimensional image consisting of a fixed number of ordered two-
dimensional RBGA images, referred to as layers or planes. Given a RGB image of an
arbitrary scene with accompanying pixel-wise scene depth information, an MPI can
be generated. Each plane in an MPI is close to a copy of the original image and one
another with regards to the RGB-components, but has an alpha component that varies
over the different layers. A specific layer in an MPI can therefore be referred to by its
color and alpha components Ci and αi, each with a resolution W ×H matching that
of the input image as well as 3 and 1 channels respectively.

An MPI is generated by first assigning each prospective plane to a depth value in the
original image, d1, ..., dD, ranging between the minimum and maximum depth value
of the scene so that d1 = dfar and dD = dnear. The alpha value for every pixel in
each plane is decided by the difference between the depth assigned to the plane and
the relative depth value for the pixel, extracted from the accompanying pixel-wise
scene depth information. As a result, planes assigned to a lower depth value will be
less transparent at pixels depicting objects that are closer to the camera and planes
assigned to higher depth values will be less transparent at objects further from the
camera. For each pixel in each layer, the transparency is decided by the difference
between the layer depth and the actual depth of the object depicted by the pixels. A
visual example of a multiplane image can be seen in figure 2.1.

2.2.2 Layer Positioning

Previous research on multiplane images, Zhou et al. [5], Tucker and Snavely [1], Mild-
enhall et al. [7] and Flynn et al. [8] have all utilized the same strategy for determining
the layer depths of the MPI. The strategy used is to space the individual back-to-front
ordered layers of each MPI equally in disparity, which is defined as the distance in
image location of an object viewed from two different positions. Given a scene such
as the one shown in 2.2 containing two cameras with focal length f and baseline b, as

6

Figure 2.1: Drawing of an MPI being viewed from a reference camera position.

well as an object placed at a position (x, z), the disparity can be written as (xl − xr),
defined as the difference between the projected position of the object in the left-hand
camera image plane, xl, and the right-hand camera image plane, xr. On inspection
of the scene, it can be noted that for each camera, the right-angled triangle between
the camera, the object and the point at a distance z in front of the camera is similar
to the triangle between the camera, the projected object position and the point at a
distance f in front of the camera. This gives results in the following relations

x

z
=

xl

f
,

x− b

z
=

xr

f
(2.1)

Using these two equations, the relation between xl and xr can be derived as

xl

f
=

xr

f
+

b

z
. (2.2)

Finally, we can rewrite this expression, giving the relation between depth and disparity.

xl − xr =
1

z
fb (2.3)

This shows that disparity is inversely proportional to depth and that the perspective
effects between two views decrease inversely when the distance of the objects in the
scene increases. Spacing the layers of an MPI linearly in disparity works as a general
way to maximize view synthesis performance by covering as much of the disparity
spectrum as possible. Likewise, an increase of the number of layers can be seen as
increasing the disparity space resolution of the MPI.

However, this does not take into consideration the actual structure of most scenes and
the typical depth value ranges of objects in most images. Spacing MPI layers equally
in disparity places many of the layers at a small distance in front of the camera.

7

Figure 2.2: Setup of a scene with a single object seen through two cameras. f denotes
the focal length of the cameras and xl and xr the position of the object in the
image planes of the left and right camera respectively.

While this allows for correct rendering of potential textures at these distances in the
scene, most data that the MPI models were trained on does not contain any textured
objects at the distances of these layers. This leads the deeper layers having to do a lot
more of the ”heavy lifting” while many of the more shallow layers are left almost fully
transparent, something that can be seen for most MPI generation methods, especially
the ones creating more accurate MPI using more data such as DeepView[8]. The result
is a waste of both disparity space resolution and file size of the representation.

2.2.3 Rendering

Novel images can be rendered from MPI’s at arbitrary viewpoint positions. Given a
source viewpoint Ts and a target viewpoint Tt, this is done by transforming each layer
of the MPI, {Ci, αi}, from Ts to Tt with a homography H, giving transformed layers

C ′
i = HTs→Tt(Ci, di), α′

i = HTs→Tt(αi, di). (2.4)

In practice, this is equivalent to placing each layer at their corresponding depth di in
front of the source image camera position in 3D space and re-scaling each plane so
that it covers an equal amount of the field of view from the source viewpoint. An
example of an MPI placed in 3D space is shown in figure 2.3.

After each layer has been transformed to the target viewing position, the image is
rendered using the over operation as seen in equation (2.5).

Î t =
D∑
i=1

(C ′
iα

′
i

D∏
j=i+1

(1− α′
j)) (2.5)

8

Figure 2.3: Multiplane image placed in a three-dimensional space.

Figure 2.4: Example of the ”stack-of-cards effect” caused by rendering from a baseline
that is too large.

This way of rendering is also referred to as alpha-compositing and takes a weighted
average of the foreground and background colors, with the weight being determined by
the alpha value. The equation reflects the intention of mixing the colors based on the
degree of transparency in the foreground and allows creation an illusion of overlapping
3D behaviour in a 2D image.

Due to a limit to the amount of visual data that can be extrapolated from a single MPI,
the baseline between Ts and Tt cannot be too large, while still retaining visual quality
with minimal artifacts. Rendering an image with a baseline that is too large will
result in visual artifacts, often through a ”stack-of-cards effect” arising from a visial
duplication of the layers edges that are not being correctly aligned. A example of a
scene rendering using an MPI from the original camera position and from a baseline
that is too large can be seen in figure 2.4.

Mildenhall et al. [7] proposed a guideline for sampling distance aimed at local light
fields. Multiplane images can be seen as encodings of local light fields and these
guidelines therefore allow direct application to multiplane images as well. The upper
sampling distance limit ∆u from Mildenhall et al. [7] for multiplane images is thus after
slight modification giving by equation (2.6). In the equation, zmin and zmax denotes

9

the minimum and maximum scene depths, f the focal length, D the number of layers
and ∆x the camera spatial resolution (pixel size, mm/px). In summary, an MPI is
rendered in two steps, layer positioning and alpha compositing.

∆u ≤ D∆x

f(1/zmin − 1/zmax)
(2.6)

2.3 Related Work

In the following section, previous research on multiplane images is presented, which
has either been used directly in the work for this thesis through public code libraries
or indirectly by following the procedures described in their academic papers.

2.3.1 Stereo Magnification: Learning View Synthesis using
Multiplane Images

The first model trained to generate multiplane image representations presented in the
original paper by Zhou et al. [5] used a fully convolutional encoder-decoder neural
network. As input, the network took two images taken with a narrow baseline, I1
and I2 together with their camera parameters c1 and c2, consisting of position and
orientation such that ci = (pi, ki). The network predicted the alpha components of the
layers, αi directly and the RGB image of the layers, Ci indirectly. The authors found
that directly predicting Ci for every layer resulted in an over-parameterized output
and instead opted to predict a background image Îbg as well as pixel-wise blending
weights wi for each layer. For the output of the predicted background image of the
MPI Îbg and layer weights and alpha components wi and αi, the RGB image of each
layer was found according to equation (2.7)

Ci = wi ⊙ I1 + (1− wi)⊙ Îbg (2.7)

Training data In order to gather training data with accompanying ground truth,
the authors built a pipeline capable of mining frames from Youtube videos, generating
a dataset named RealEstate10K. The videos used came from a number of manually
selected Youtube channels uploading real estate videos. The authors used the pipeline
to identify videos with a moving camera and a static scene and to find favorable clips
(low motion blur, distortion, editing effects, etc) within the videos. The resulting
dataset generated consisted of over 7000 clips between 1 and 10 seconds length. A
SLAM method, more specifically ORB-SLAM2 by Mur-Artal et al. [9] was used for
generating the poses for the frames.

From the generated data, the authors extracted frame triplets ⟨I1, I2, It, c1, c2, ct⟩ for
training. The triplets were assigned randomly from sequences of 10 frames. This
meant that depending on how the frames in the sequence were assigned, the network
would have to either interpolate or extrapolate between the two source images for a

10

varying distance of frames. In addition, the variations in camera movement between
scenes and sequences resulted in the baseline distance in both input and output to
vary greatly between different training data points.

2.3.2 Single-View View Synthesis With Multiplane Images

In the work presented by Tucker and Snavely [1], which has been used as a basis for this
thesis, the authors presented a way of generating MPI from single image input. The
model created by the authors was a DispNet-style convolutional network [10] taking a
single source image, Is as input and outputting an MPI, {(C1, α1), ..., (CD, αD)}. The
RealEstate10K dataset generated by Zhou et al. [5] was used for training with similar
procedures. Video frames together with poses from SLAM was used, with the addition
of a point set P = {(x, y, d), ...}. Similarly, the output of the model were layer alpha
values αi and a predicted background image Îbg. The RGB value of the layers, Ci was

retrieved in the same way, by blending the source image Is with Îbg according to (2.7).
However, since the network did not output any blend weight wi, they were given by
the level of occlusion of the pixel in the corresponding layer, derived from the alpha
values αi according to equation (2.8) below.

wi =
∏
j>1

(1− αj) (2.8)

This effectively allows the network to predict the background layer Îbg so that occluded
pixels in certain layers are used for inpainting.

Scaling Ambiguity When working with single images and no external inform-
ation, scaling becomes ambiguous. The network will learn a scale appropriate for the
data it is trained on, but as the scale of any single set of input data is arbitrary, correct
scaling of any new input cannot be guaranteed. During training, this problem prohib-
its correct evaluation and since the generated MPI is not to scale with the scene it is
generated from and rendering from the MPI at the pose of the ground truth will most
likely not minimize the loss. To combat this problem, the authors introduced what
they chose to call scale-invariant view synthesis. What this implies is the introduction
of a scaling factor σ which is calculated from the point set P s and a disparity map gen-
erated from the MPI. Including this scaling factor during rendering to scale the whole
MPI up and down allowed the authors to bypass the scaling ambiguity. However,
it should be noted that when generating images using MPI created by a pre-trained
model, there is no way to avoid the scaling ambiguity without any additional external
depth data to calculate the scaling factor σ.

2.3.3 Local Light Field Fusion

In the paper Local Light Field Fusion: Practical View Synthesis with Prescriptive
Sampling Guidelines by Mildenhall et al. [7], the authors present a method for per-
forming view synthesis using a set of images irregularly sampled from a grid. Each

11

image in the grid is promoted to a multiplane image, acting as local light field rep-
resentation, using the 4 most adjacent images in the grid. With a resulting grid
consisting of several MPI, view synthesis is performed by a weighted blend between
views individually rendered from a set of multiplane images with a reference position
close to the current view position. This allows the scene to be rendered from with
photorealistic results from any interpolated position within the grid. These results
shows that multi-MPI scene representations are a viable option for performing view
synthesis with excellent quality and that blending between views from multiple MPI
can be used to increase the maximum baseline of the reference view at which the scene
can be rendered with good quality.

2.3.4 COLMAP

COLMAP[11], is a general-purpose software tool for performing Structure from motion
and reconstructing 3D datasets from images. COLMAP can be used to create sparse
and dense scene reconstructions, generate depthmaps and more. COLMAP can be
used either from its graphical user interface or from the terminal using its command-
line interface. COLMAP offers several methods for feature extraction and mapping
as well as different preset settings for camera parameters depending on the degree of
information the user has about the scene.

2.3.5 Neural Radiance Fields

Another 3D representation for view synthesis that has gained a lot of popularity re-
cently are neural radiance fields (NeRF) first introduced by [12]. The original NeRF
consist of a neural network that has been trained on a couple of dozen input images
taken of the same scene at different viewing positions. The input to the network is a
single 5D coordinate consisting of camera position and rotation, and the output of the
network is the volume density and the emitted radiance at the corresponding position
which can be projected to a RGB image using classic volume rendering techniques.
The NeRF model is therefore trained on a single scene and the scene itself is therefore
stored in the weights of the network. An advantage of NeRF to MPI is very good
rendering quality from a larger baseline with relatively few input images. However,
the classical NeRF method takes a long time to train and has difficulties rendering
images in real-time. Since it also utilizes a neural representation of the scene, it is not
as visual of a representation as MPI and it is not user-editable in the same way.

2.4 Evaluation Metrics

When evaluating the similarity between two images, a common and simple strategy is
to evaluate the difference between each pixel in the two images, one by one. However,
in many scenarios we ideally want to use a metric which evaluates images similarly
to how the human visual system does, which quickly becomes a more difficult task.
For per pixel evaluation, the L1 norm has been shown to be preferable over the L2

12

norm[13], but these metrics are often deemed insufficient. The human visual system
is highly capable of identifying structural patterns in images and evaluation metrics
that can mimic this behaviour are preferable. In this chapter, a few common metrics
for image similarity that have been used for evaluating the work in this thesis are
introduced.

2.4.1 Peak Signal-to-Noise Ratio

Peak signal-to-noise ration (PSNR) is a metric for evaluating the noise between two
images. PSNR is most simply defined using mean squared error and for 8-bit images
with peak pixel values 28 = 256, the formula is given as

PSNR(f, g) = 10 log10(255
2/MSE(f, g)). (2.9)

.

As seen from the equation, PSNR is simply a logarithmic measure of inverse MSE.
Since PSNR is a logarithmic quantity, it is defined in dB and a low MSE gives a higher
PSNR score, meaning less noise between the images evaluated.

2.4.2 Structural Similarity Index Measure

Developed by Wang et al. [14], the structural similarity index measure (SSIM) is a
measure of image similarity on a scale from 0 to 1, designed for comparing structural
differences in images. It is given by the product of three factors being loss of correl-
ation, luminance distortion and contrast distortion. Given a reference image f and a
test image g, the SSIM with each of the three factors weighted evenly is given as

SSIM(f, g) = l(f, g)c(f, g)s(f, g). (2.10)

Each of these factors are defined using the mean pixel values µf and µg, the standard
deviances σf and σg as well as the covariance σfg as

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

(2.11)

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2

(2.12)

s(f, g) =
σfg + C3

σfσg + C3

(2.13)

where the constants C1, C2, C3 ≪ 1 are included to avoid instability for denominator
values close to zero.

13

2.4.3 LPIPS

One of the most recent metrics for evaluating image similarity was introduced Zhang
et al. [15] and is called Learned Perceptual Image Patch Similarity (LPIPS). Unlike
PSNR and SSIM, which are rather simple algorithms, LPIPS computes similarity by
comparing the activations of two images for some predefined deep neural network. It
was found that utilizing these deep features of a neural network resulted in a metric
that might be more similar to the complex way humans evaluate similarity between
images. The implementation released by the authors include implementations for the
SqueezeNet, AlexNet, and VGG networks, with AlexNet being recommended. Since
it was introduced, LPIPS has become a very popular metric for evaluation in image
based rendering research, especially related to view synthesis.

2.5 Unity Engine

Unity Engine [16] by Unity Technologies is a cross-platform 3D engine used to create
content such as simulations, visualizations or games. The Unity Engine is a useful
platform in development of applications built on image-based rendering as it provides
a number of features and tools that are specifically designed for working with 3D
graphics and image data. Some of these features include

• A highly customizable rendering pipeline

• Integration with external libaries (OpenCV, Tensorflow, etc)

• Support for scripting and image processing tools

To give a basic understanding on how Unity works, some of the core features of its
architecture are explained below.

Scene The Unity scene is an essential part of an application hosting content. Every
application contains at least one scene which might contain part of or the whole
application.

Game Object Each object in a Unity scene is a Game Object. They can be seen as
containers that do nothing on their own but fulfill different functions depending
on what components they have.

Component Component are functional elements that can be attached to Game Ob-
jects. The component attached to a Game Object define its behaviour and each
component might contain a number of editable properties.

Transform Standard component attached to all Game Objects. The Transform com-
ponents contains properties corresponding to position, rotation and scale.

Script A script is custom user-created component whose behaviour is defined by C#
code. Scripts can be used to modify an application in various ways such as
interacting with Game Objects, components and user input.

Camera A camera is a Game Object with a Camera component attached to it. Cam-
eras are used for capturing the state of the world and displaying it to the player.
A scene can contain one or several cameras.

14

Shader Shaders in Unity are pieces of code containing instructions on how to render
objects. Scripts interact with objects through a Material component.

Compute Shader Compute Shaders is a type of shader containing arbitrary code
written to be ran on the GPU.

Scene Hierarchy In the Unity Editor, a list of all Game Objects existing in the
scene. Game Objects are organized through parent-child hierarchies where a
child Game Object transform can be defined relative to its parents transform.

Texture A 2D image file used for giving a game object a visual effect during rendering.
Textures can be assigned as properties to certain components.

RenderTexture A texture that can be rendered to by cameras during runtime or
through code. Useful for applying image-based rendering effects.

15

16

Chapter 3

Method

3.1 Pipeline Overview

To evaluate a scaling algorithm for single view generated multiplane images, a reliable
way of generating and viewing MPI is required. In addition, since scaling requires
depth information, a method of extracting this information is needed for any dataset
used. For this purpose, a pipeline was constructed consisting of the following steps

0. (Synthetic image generation)

1. Depth information extraction

2. Single-view MPI generation

3. MPI Scale Correction Algorithm

4. Unity MPI Viewer application

Since many of the trials for this thesis has been done with synthetically generated
data, the step for generating said data is included in the pipeline as an optional step
0. If data is instead imported, the first step is extracting depth information for use in
the scaling algorithm. After the images have been scaled using the depth information
extracted in the previous step, the multi-MPI scene can be viewed in the MPI viewer
application. The viewer allows blending between several MPI and exporting rendered
images that can then be evaluated. A visual overview of the pipeline can be seen in
figure 3.1. In the following part of this section, each part of the pipeline and how they
were constructed is explained in more detail.

17

Figure 3.1: Overview of the pipeline for scale correction and viewing of multiplane
images.

3.2 Data Gathering

For testing and evaluating the scaling algorithm, two separate datasets were used. To
prove that the developed model has potential real world application, a dataset of real
images, with corresponding SLAM-mapped camera positions was used. However, in
order to test in an environment where errors introduced by the actual capture and
mapping of a real image dataset can be avoided, an additional dataset consisting of
synthetically generated images was introduced.

3.2.1 Synthetic Image Generation

A disadvantage with using real data taken by a handheld camera is that many testing
parameters, such as distance intervals between images, camera positions and camera
angles cannot be controlled accurately. Since our algorithm requires depth information,
another disadvantage is that this depth information may not be estimated accurately
enough. All of these factors can potentially contribute to errors in the evaluation
of the scaling algorithm. This makes it difficult to evaluate any error to a specific
part of the pipeline. Since capturing a large scale dataset while controlling these
parameters would require extensive equipment such as depth cameras and a capturing
setup, utilizing synthetically generated images provides a good compromise, given
that the single-view MPI generation model performs similarly well on these images.
Generating images synthetically allows for great flexibility and precise control over
all image and camera parameters as well as accurate and dense depth information.
For this reason, much of the experiments in this research has been performed with
synthetically generated images.

Camera parameters To ensure that generated synthetic images would work
well with model by Tucker and Snavely [1] for multiplane image generation, the camera
parameters were set up to mimic the training data for the model, the youtube videos in
RealEstate10K. Upon the camera intrinsics given in RealEstate10K dataset, most clips
seemed to use a resolution corresponding to a 16:9 aspect ratio, such as 1920× 1080,

18

Figure 3.2: Examples of images from the synthetic dataset.

1280×720 or 640×360, which is consistent with the standard aspect ratio for Youtube
videos. Combining this with the focal lengths in the dataset showed that the typical
field of view for the cameras was 90◦ horizontally and around 59◦ vertically. The
synthetic images were generated with a 512×512 resolution and to make this consistent
with the training data, both the horizontal and vertical field of view was set to 59◦.
Doing this allows the resulting images to be identical to images generated with a 16:9
aspect ratio at a 90◦ horizontal and 59◦ vertical field of view that are then cropped to a
1 : 1 aspect ratio. This exact resolution was chosen since it resulted in a good balance
between high image quality, low computation times for pixel-wise operations and total
dataset file size. In addition, setting both the horizontal and vertical resolution to a
multiple of 128 allowed the model to be used with the MPI generator without any
padding or cropping.

BlenderProc For generation of synthetic images, BlenderProc2 by Denninger et
al. [17] was used. BlenderProc2 is a pipeline for the open source computer graphics
software Blender [18]. It allows photorealistic rendering of Blender scenes for the sake
of training convolutional neural networks. Using Blender and BlenderProc2, images
can be rendered from various dataset of synthetic scenes and be exported together
with exact pose information and depthmaps.

Dataset The scenes used to generate the synthetic dataset was gathered from the
synthetic indoor scene repository 3D-FRONT (3D Furnished Rooms with layOuts and
semaNTics) by Fu et al. [19]. The scenes in the 3D-Front repository consist of various
fully furnished high-quality texture indoor environments. The dataset was chosen
because of its similarities to the RealEstate10K dataset [5] which the single-view MPI
generator was trained on. Every scene from the 3D-Front repository used to generate
the dataset was individually selected and the camera trajectories for each scene were
chosen manually. A few example renderings from the 3D front dataset can be seen in
figure 3.2.

The synthetic dataset generated from 3D-Front consists of 17 different camera tra-
jectories selected from different scenes. The camera trajectories follow a straight line
perpendicular to the forward axis of each camera. Along each trajectory, images were
generated with a strict distance interval of 5 cm resulting in a total of 615 MPI. More
detailed information on the dataset as well as description on the views along each

19

Table 3.1: Information on MPI dataset generated from 3D-Front using BlenderProc

.

Scene
number

Number
of MPI

Scene description

1 24 Transition from a bedroom view to a living room view.

2 38 Bedroom view with bedside table and bed.

3 26 View of a reflective texture dinner table and its scenery.

4 31 View of a living room table, its contents and scenery.

5 43 Living room view from a hallway.

6 20 Bedroom view from the edge of the room.

7 36 Living and dining room view from a hallway.

8 37 Living and dining room view from the living room.

9 37 Hallway and living room view from the living room.

10 32 Living room view from the edge of the room.

11 37 Low living room view from the edge of the room.

12 49 View of furniture from a slight distance away.

13 48 Child’s bedroom view from the middle of the room.

14 34 Dining/Living room view from the middle of the room.

15 38 Open floor plan apartment view.

16 55 Dining table view from a slight distance away.

17 30 Kitching and dining table view from the hallway.

Total 615

trajectory can be seen in table 3.1.

3.2.2 Real Image Dataset

For real image data, part of the RealEstate10K dataset[5] was used. The reason that
this dataset was used, rather than capturing and mapping a new dataset with SLAM,
or utilizing any other pre-existing SLAM dataset, is that this was the dataset was used
for creating the single-view MPI generator[1]. Because the authors used the dataset
both for training and evaluation of the model, we know that the single-view MPI
generator is adapted to input from this dataset and that it will be able to generate
good output. Using a different dataset will introduce more uncertainty regarding if
the model used for generating the MPI is well adapted to the input data or not.

The RealEstate10K dataset does not contain images directly and consists of a collection

20

Figure 3.3: Examples of images from the real image dataset, RealEstate10K.

of text files, each containing a youtube video url together with a number of mapped
camera poses and corresponding timestamps in the video. For each text file and video
url, the mapped poses form a single camera trajectory chosen from the video. The
camera trajectories varied between different clips resulting in a lot of variation in
camera distances between adjacent frames of the video as well as relation between the
rotation of the camera and the direction of the trajectory. Likewise, the trajectories
in the RealEstate10K dataset did not necessarily follow a straight line, as they do for
the synthetic dataset.

Data Extraction and Formatting To extract data for MPI generation, the
text files in the dataset were processed and the corresponding frames were downloaded
from the youtube videos. As mentioned in 2.3.1, the pipeline created by the authors
of the dataset was designed to select sequences of each video favorable for training and
evaluating the MPI model. This meant that a lot of blurry and distorted sequences,
as well as some clips containing editing effects were sorted out. However, some of
the downloaded frames still contained large font descriptive texts, and frames towards
the end of the sequence often contained transition editing effects. These frames were
therefore manually sorted out from the data. For each processed text file, every 5th
frame was downloaded, resulting in between 10 and 25 images per sequence. The
reason for this was to mimic the test data that Tucker and Snavely [1] used to test
their model, which consisted of images extracted from every 5 and 10 frames in the
video sequences. The resulting subset of RealEstate10K that was extracted consisted
of 667 MPI over 38 scenes. The exact length of the sequences in each scene can be
seen in table 3.2 and a few example images can be seen in figure 3.3

External Depth Extraction Using the camera poses for the images extracted
from the RealEstate10K dataset, text data files for camera parameters and image
poses were created in a format readable by COLMAP[11]. The created data files
were then imported together with the corresponding images into COLMAP through
the command-line interface and used to perform a sparse reconstruction of the scene,
preserving the imported camera poses for each image. For every image, the sparse
reconstruction yielded number of extracted features, many of which had been matched
between several images and had a corresponding triangulated 3D position estimation.
Information regarding these 3D mapped feature points, as well as the 2D positions in
the images in which they were matched was then exported to be processed externally.
The external processing finding the distance between the 3D position of the points
and the corresponding image plane. This allowed a sparse depth map to be created,

21

Table 3.2: Information on the subset of RealEstate10K used as the SLAM dataset

.

Scene
number

Number of
MPI

Scene
number

Number of
MPI

Scene
number

Number of
MPI

1 12 14 21 27 16

2 21 15 17 28 12

3 24 16 22 29 15

4 17 17 22 30 23

5 17 18 16 31 20

6 16 19 23 32 22

7 15 20 17 33 15

8 12 21 14 34 19

9 23 22 21 35 19

10 15 23 21 36 16

11 11 24 12 37 20

12 16 25 23 38 16

13 14 26 12

Total 667

with a width and height resolution consistent with that of the input images.

3.3 Generation of Multiplane Images

For generation of single-view multiplane images, the method presented by [1] was used.
The tensorflow libraries released with the paper to Google’s Google Research reposit-
ory was used together with their model trained on the RealEstate10K dataset. As the
model release by Google only is compatible with images that have a width and height
dimension that is a multiple of 128, the real-life data images were padded to match this
resolution following the procedure used by Tucker and Snavely [1]. Since the synthetic
images were generated with a 512× 512 resolution, they already fulfilled this require-
ment and no resizing was needed. After the MPI had been generated, the padded
part of the MPI’s was cropped out, returning the images to their original resolution.
Another limitation of the model is that it is only capable of generating multiplane
images consisting of 32 layers, which is the number of layers for all multiplane images
used in the experiments presented in this report.

22

3.4 Multi Plane Image Scaling

Using the external depth information extracted from the scene using tools such as
COLMAP or SLAM, or ground truth depth maps in the case of synthetic images, the
layer depths of each MPI were readjusted. As shown by Tucker and Snavely [1], an
MPI can be used to generate generate both depth and disparity maps, using the over
operation in equation (2.5) for non transformed layers and replacing the color value of
each pixel color value Ci by the corresponding layer depth value di or inverse depth
value d−1

i , respectively. Doing so to estimate depth map D̂ for an MPI with 32 layers,
yields the following expression/

D̂ =
32∑
i=1

(
diαi

32∏
j=i+1

(1− αj)

)
(3.1)

The strategy for scaling MPI depth values applied in this work utilizes this equation
in conjunction with a externally generated depth map D, used as a ground truth to
minimize the error between the estimated depth map and the ground truth, ∥D̂−D∥

3.4.1 Optimization Algorithm

By analyzing (3.1) we see that each element of the sum yields an expression consisting
of the current index depth value multiplied by a element-wise product of matrices.
However, since the alpha values αi of each layers are known, we can simply replace the
matrix product in each element of the sum by a constant matrix ci. Doing so results
in the expression being simplified to

D̂ =
32∑
i=1

dici (3.2)

Each matrix can now be flattened into its own vector of dimension W×H = N . These
vectors can then be further combined into a single matrix A of dimensions N × 32.
Now, gathering the depth values di into a column vector x allows the equation to be
re-written as a compact matrix-vector product,

flatten(D̂)T =
[
flatten(c0)

T , flatten(c1)
T , ..., flatten(c32)

T
]
x = Ax. (3.3)

Flattening the ground truth depthmap into a vector flatten(D)T = b allows the ex-
pression ∥D̂−D∥ to be written as ∥Ax− b∥. Since this is a linear expression, it can
be solved for 32 known values of D̂ and always has an exact optimal solution. Given
any missing values in the depth map, the corresponding pixel values in b and A can
be set to 0 or masked to avoid any of these values to contribute to the final solution.

Linear Constraints Optimizing the depth of any MPI using the method dis-
cussed above without any constraints might result in MPI depth values taking on

23

negative values or reordering of the MPI layers. While the optimal solution contain-
ing layer depths placed at 0 might be a good indicator that the corresponding layers
are redundant, layers placed at negative depths do contribute to the loss while not
contributing to any visual change in the rendering of the MPI and should thus be
avoided. Reordering of layers might result in a better solution, but due to the scaling
algorithm operating on the assumption of a fixed rendering order, reordering of the
layers without recreating A with the new rendering order will cause a non-optimal
solution to be found. The discussed constraints are therefore included in the optimiz-
ation problem which then takes on the form

min
x

∥Ax− b∥

s.t. xi ≥ 0

xi ≥ xi+1.

(3.4)

The strict inequality is not used for the zero constraint to allow redundant layers to
be removed from rendering. Likewise, strict inequalities are not used for the ordering
constraint either. As long as the rendering order of the layers is preserved, layers
placed at the same depth do not cause a problem. It should also be noted that an
upper limit constraint for the depths would be excessive. Since all rows of A sum to 1,
any layer depth value is naturally constrained to the maximum value of b, the highest
value of the ground truth depth map.

Sparse Depth Information When optimization using sparse depth inform-
ation, the overall procedure had very few changes. The sparse depth information,
extracted from the data as explained in section 3.2.2, was stored using the exact same
representation as the dense depth map using a W ×H matrix where each position of
the grid corresponds to a certain pixel. Each sparse depth point value was stored in
the most adjacent pixel position on the grid after projecting the point into the image
camera. All remaining values in the matrix were set to 0. Running the optimization
algorithm with these sparse depth maps caused all zero-values to be masked out, leav-
ing only the sparse depth points to be used. While this method caused the algorithm
to rely on much fewer alpha values in the MPI, the lower number of points allowed
optimization to be performed much faster.

Depthmap Preprocessing Some values in the dense depth maps generated
using blenderproc had values at infinity. In the images, these corresponding pixel
values depicted windows and other areas where the background of the environment
could be seen. Since these values would disturb the optimization process, all values
over a certain threshold in the depthmaps were set to 0.

3.4.2 Linear Solver

For solving the constrained least squares problem, an implementation of the Alternat-
ing Direction Method of Multipliers (ADMM), first introduced by Boyd et al. [20] was

24

utilized. The ADMM optimizes one variable at a time while keeping the others fixed
and uses dual variables to enforce constraints. The implementation used proximal
operators and a solver was constructed using the python package proxop by Chierchia
et al. [21]. For more information regarding proximal operators, please refer to the cited
user guide.

3.4.3 Layer Merging

Due to the design of the linear optimization problem shown in (3.3) and in particular
the ordering constraint, optimization often resulted in adjacent layer depths taking on
the same values. Each time an optimal solution lies close enough to the edge of this
constraint, the optimal solution within the constrained set will lie right on the edge,
placing the layers at the same depth.

Each time this happens, all layers placed at the same depth can be merged into a single
image, thus reducing the total layers of the MPI. This was done simply by rendering
the new layer the same way the MPI would be rendered, using equation (2.5). For two
images {C1, α1} and {C2, α2}, the resulting new image would become

{C1,2, α1,2} =
{C1α1(1− α2) + C2α2

α2

, α2 + α1(1− α2)
}
. (3.5)

Performing this algorithm iteratively on all layers placed at the same depth in a front-
to-back manner allows an arbitrary number of images to be merged. Since this merging
step can be seen as a pre-rendering for the layers of the MPI that contribute with the
same perspective effects, it will result in no loss of image quality or visual effects in
the MPI. Any image rendered from the MPI will be the same regardless if the layers
are merged in advanced, or rendered at the same position during run-time.

The advantage of layer merging however, is that it potentially allows compression
of the MPI file size. A scene with 10 multiplane images each consisting of 32 layers
results in a scene representation consisting of 10 ·32 = 320 images. For large resolution
scenes consisting of many MPI, the file size might quickly become an issue and a more
compact MPI scene representation is beneficial.

3.5 Viewer Application

In order to allow displaying of the scaled MPI, blending between multiple MPI and
exporting rendered images for evaluation, a MPI viewer was constructed using the
Unity Engine. The application was developed using version 2021.3.4f1 LTS of Unity
and the rendering pipeline used was the built-in RP. In this section, the application,
what it is capable of and how it works will be explained in greater detail.

25

3.5.1 Overview

When the application is run, it loads all MPI images for a certain scene from a specified
resources folder on disk. In the folder containing the MPI, each MPI has its own
subfolder containing the PNG images for each layer, ordered by their filename. An
example of how the file structure needs to be set up can be seen in the directory tree
below.

/

Resources

scene00

img00

img00 layer00

img00 layer01

...

img01

...

...

scene01

...

...

...

After the images have been loaded from disk, the reference camera poses for all MPI
as well as the layer depths are read from three separate text files. In the three text
files, each line contains the blank space separated floating point values for the x, y, z
camera positions, w, x, y, z camera quaternion rotations or the d1, d2, ... camera depth
values, corresponding to the MPI given by the line number. It is important that each
row contains the correct number of values and the number of lines corresponds to the
number of MPI in the dataset.

Interface Using the loaded images and the corresponding positions, rotations and
layer depths, each MPI is placed at its reference camera position in the Unity scene.
A user interface is loaded consisting of two separate windows as the main camera is
initially placed at the reference camera position of the first MPI. One of the windows
displays the final image rendered from all the MPI in the scene, while the other window
displays a 2D user interface showing each MPI reference camera position as well as
the current camera position. An image of the user interface can be seen in figure 3.4.

Navigation Both windows are intractable and by pressing a reference MPI posi-
tion in the 2D user interface, the camera moves from the current position to the selec-
ted position, rendering views by blending between different MPI during the transition.
Hovering over the window with the MPI rendering, the camera position is changed loc-
ally around the camera reference position of the current MPI. This works the similarly
to the interactive example presented on the project pages of the research by Tucker
and Snavely [1] and Flynn et al. [8], the difference being that rotational movement is
not included. Likewise, hovering over the window and scrolling will move the camera
forward or backward, zooming in or out on the scene.

26

Figure 3.4: Image showing the user interface of the MPI viewer application.

3.5.2 Unity Scene

The scene hierarchy of the application contains four parent Game Objects responsible
for all content in the scene, each hosting a number of child Game Objects. The
functions of each of these game objects are

Main Camera The main camera which the final blended rendering of all MPI is
output to. The camera is rendered into a rendertexture displayed by the leftmost
window in the interface shown in 3.4. On runtime, is assigned a number of MPI
Camera child game objects corresponding to the total number of multiplane
images in the scene.

- MPI Camera Camera used to render an image from a single MPI which
the camera is assigned to.

Multiplane Image Renderer Game object containing logic for loading MPI layers,
depth and spacial information, as well as placing every MPI correctly in the
scene. At runtime, generates a MPI game object as a child for each MPI in the
scene.

- MPI Empty game object placed at the reference camera position of the
corresponding MPI. Holds a child game objects for each layer in the MPI
placed at its corresponding depth in front of the parent object.

User Interface Empty game object hosting child components responsible for gen-
erating the user interface. This includes everything that can be seen in figure
3.4.

Navigation Map Camera Camera responsible for rendering a 2D display of the
MPI positions into the the rendertexture displayed in the rightmost window in
the user interface in figure 3.4.

3.5.3 Scripts

To manage the images, allow interaction with the user interface and handle camera
movement a number of custom scripts and shaders are used. The scripts are all
attached to either the Multiplane Image Renderer or the Main Camera game

27

object. Since these scripts and shaders make up the main part of the application, an
explanation of the features of the most important scripts are given below.

Multiplane Image Renderer The Multiplane Image Renderer game object
has one single script attached to it named MpiLoader that is responsible for loading
images, creating game objects and positioning the multiplane images in the scene. The
sole purpose of the script is to set up the scene and its functions are called only once
on the start of the application. After the script has been ran it has fulfilled its purpose
and detaches itself from the game object. On the start of the application the script

– Parse the text files containing position and quaternion values

– Create all MPI game objects at their reference camera position using the parsed
values

– Read all layer depths values by parsing the corresponding text file

– Loop through all MPI game objects and create layers at the corresponding depth
positions using the parsed values.

Main Camera The main camera of the scene has three scripts attached related
to rendering, scene navigation and image capturing. The names and functions of these
scripts are as follows.

MpiBlend On starting the application creates child camera game objects for render-
ing each MPI. In addition, contains code that is ran each frame for rendering
images from each created camera and blending them to a final output image.

MpiSelector Contains code for managing the camera rendering the image seen in
the right window of the interface in figure 3.4. After all MPI have been created,
calculate the optimal way to display every MPI on the grid and attach icons to
every MPI, making them visible to the Navigation Map Camera. In addition,
contains code for detecting when the user has clicked a new MPI camera reference
position in the UI as well as code for moving the main camera to said new camera
reference position.

CaptureEvalImgs Contains code for automated image capturing and exporting. Its
functions can be ran through the editor in order to capture and save images for
evaluation of all MPI in the current scene.

Additional Scripts The following are smaller yet essential scripts attached to
various game objects

NavigationControls Attached to the UI element window on the right hand side of
the interface shown in figure 3.4. Contains code that allows the user to zoom in
and out on the grid as well as click and drag to change the viewing position.

28

MpiLocalMove Attached to the UI element window on the left hand side of the
interface shown in figure 3.4. Locally changes the main camera position when
the user hovers the mouse over the window. Zooms the camera in and out when
scrolling the mouse wheel over the window.

WindowDrag Attached to both UI element windows shown in figure 3.4. Allows
each window to be dragged to change its position on the UI.

3.5.4 Shaders

The shaders in the application consist of one regular shader for rendering the image
planes of each MPI as well as one compute shader for calculating the blending of
multiple MPI. The function of each shader is as follows.

MPI Shader The MPI Shader is applied to every layer of each MPI in the scene.
Since the Unity rendering pipeline takes care of alpha compositing for rendering, this
shader does not do anything other than output the pixel value of the texture applied
to the object. The reason a custom shader is written for the MPI is to ensure that
redundant rendering effects used by the standard shader are not applied.

Blend Compute Shader The blend compute shader contains code ran om the
GPU using several threads for blending between multiple images. As input, it takes
images rendered from a fixed number of multiplane images with a camera reference
position close to the current camera position together with corresponding blending
weights. It outputs a single image, retrieved by blending the input images using the
input weights. Finally, it normalizes the alpha value for each pixel in the output image
so that the final image has no transparent pixels. For input multiplane images {Ci, αi}
and wi, this corresponds to

Cout =

∑N Ciαiwi∑N αi

αout =

∑N αiwi∑N αi

= 1.

(3.6)

3.5.5 MPI Blending

The algorithm for blending between images follows the procedure of Mildenhall et
al. [7]. As mentioned in section 2.3.3 their method constructs interpolated views
by combining separately rendered images from multiple MPI positioned close to the
current camera position. These rendered images are the input images mentioned in the
description of the compute shader responsible for handling the blending, mentioned in
chapter 3.5.4.

Blending between multiple renderings of MPI, contrary to simply relying on the over

29

operation to render the final image correctly given a scene of multiple MPI is favorable
for two reasons. First, each MPI is created with alpha values adapted for rendering
images using only that MPI, containing its specific number of layers. This likely results
in deeper layers not being used at all during rendering, since they are occluded by a
large number of shallowly placed layers. Similarly, while the current camera position
might be very far from the reference camera position of a certain MPI, its layers might
still lie very close to the camera and cause occlusion of other MPI that would be
favorable to use for rendering.

3.6 Evaluation

The standard way of evaluating view synthesis for a single multiplane image is to
render an image of a nearby camera position for which we already have a ground truth
image. Doing this allows the image rendered from the MPI to be compared directly
to the ground truth using evaluation metrics such as those introduced in section 2.4.
This method is utilized by most previous research using multiplane images including
Zhou et al. [5], Tucker and Snavely [1] and Flynn et al. [8]. This is also the method
for evaluation applied in this research.

3.6.1 Blending

The evaluation of the scaled MPI is used to find an answer to RQ1 and RQ2 in section
1.1. To paraphrase, evaluation should be useful for deciding whether individual layers
of an MPI can be scaled to combat the scaling ambiguity and allow smooth transitions
between different MPI in a scene environment consisting of multiple MPI. For this
purpose, evaluation can be done using either images rendered fromMPI individually, or
blended images of renderings from multiple MPI. For the sake of simplicity, the former
option was chosen. Using renderings from multiple blended MPI would introduce
additional ambiguity regarding the impact of the blending algorithm. In addition, the
blending algorithm does not need to be evaluated as Mildenhall et al. [7] has already
proven its effectiveness through comparisons of renderings between single and multiple
MPI. Scale correction will directly translate to smooth transitions between MPI during
blending and there is therefore no need to evaluate blended images directly.

3.6.2 View Synthesis

Unlike data generated by capturing real scenes and generating poses with SLAM,
generation of synthetic images allows strict control of camera parameters, positioning
and ground truth. The synthetic dataset described in section 3.2.1, contained images
generated from various scenes along trajectories with a strict 5 cm distance interval.
To allow for more variation during testing, each MPI was evaluated with the ground
truth at two separate distances. In addition to only evaluating each MPI with its
closest neighbours, views were also synthesised at a 10 cm baseline from the reference
camera position of each MPI. This compares synthesizing new views for each MPI both

30

at the reference camera positions of its closest neighbours and at camera positions two
images apart.

The evaluation images for the RealEstate10K dataset were also synthesized in a similar
manner. As discussed in 3.2.2, the images used to generate the MPI in this dataset
were spaced 5 frames apart in each clip. This allowed the same method to be used as
for synthetic images, generating images for evaluation generated from MPI spaced 5
frames and 10 frames apart. This follows the evaluation procedure utilized by Tucker
and Snavely [1] when evaluating the single-view MPI generator model.

3.6.3 Procedure

The CaptureEvalImgs script described in 3.5.4 was ran for every scene in the dataset,
generating and exporting ground truth images and renderings from nearby MPI for all
reference camera positions in the scene. The image estimated image at each camera
location was then evaluated against its corresponding ground truth, given by the
original image at the camera position for which the estimated image was rendered.
The metrics used for evaluation were PSNR, LPIPS and SSIM as described in section
2.4.

Cropping As discussed in section 2.2.3, rendering an MPI from a position other
than its reference camera position corresponds to transforming the image with a ho-
mography. Since this homography is projective in nature, the resulting image will
be warped and not strictly rectangular. When capturing the evaluation images, the
rendering from the transformed planes don’t fit perfectly into the strictly rectangular
image, potentially leaving gap at the edges of the image, as can be seen in figure 3.5.
For some evaluation metrics, such as LPIPS which is based on pixel-by-pixel MSE,
this will introduce a large error. Since the layer depth values determines the extent
of the warping, this will cause certain layer depths to be favored regardless of image
quality. To combat this problem, we follow the procedure of evaluation in the original
single-view MPI paper [1], cropping 5 % of the image at each side, guaranteeing that
the resulting image does not have any empty pixel values.

Comparisons To evaluate the performance of the depth scaling algorithm, the
depths values were compared against inversely spaced depths, placed at equidistant
values in disparity between a far plane and a near plane. The values chosen for the
near and the far plane was 1 m and 100 m. These two values were chosen as they
during trials seemed to give good view transitions between MPI compared to other
values and were also the standard distances used in the implementation of the original
MPI paper[5]. In order to also include comparisons against some other type of scaled
depths, the depths were also additionally compared against inverse depths where the
position of the depth and far plane were customized for each MPI, effectively scaling
the whole MPI up and down. The strategy used to generate these were to place the
near place and the far plane at the minimum and maximum value from the depth
information (sparse or dense depth map) for the corresponding image.

31

Figure 3.5: Image showing an example of plane warping during rendering.

32

Chapter 4

Results

Results are presented first as quantitative comparisons between the three different
depths values described in section 3.6.3. In the second part of the chapter, qualitative
comparisons are made in order to provide more insight into how the results vary
depending on data-dependent factors. In the final part, results are presented on layer
reduction of the main method. In all plots and tables, the depth values using the
method presented in this thesis are refereed to as ”Optimized depths” while the depth
values used for comparisons, consisting of depths inversely spaced between 1 and 100
as well as the minimum and maximum value in depth information are refereed to as
”Inv fixed” and ”Inv custom” respectively.

4.1 Similarity Metric Scores

The PSNR, SSIM and LPIPS evaluations are presented for the images rendered from
the corresponding multiplane images as explained in 3.6.3, using the three different
sets of depth values. More similar images have higher PSNR and SSIM scores as well
as lower LPIPS loss.

4.1.1 Overall Comparison

Each of the MPI renderings were evaluated against the neighbouring ground truth
image in the trajectory with an identical camera pose. The similarity metric scores
of all individual image pairs over all scenes were then averaged, giving one similarity
score for each evaluation metric and each dataset (synthetic and slam). The scores
are presented below.

33

Synthetic Data Table 4.1 below contain the summary of the results of the eval-
uation on the synthetic dataset. On average, the optimized depths outperformed the
fixed inverse depths and the customized inverse depths over all evaluation metrics,
regardless of baseline. Unsurprisingly, doubling the baseline lowered the scores for
all metrics regardless of which depth values were used. On average, the unscaled
depth values inversely spaced between 1 and 100 perform better than the depth values
utilizing the depth information.

MPI Depths Baseline PSNR SSIM LPIPS
Optimized 5 cm 28.9 0.919 0.085

10 cm 25.9 0.880 0.115
Inv Fixed 5 cm 26.1 0.877 0.103

10 cm 23.4 0.833 0.164
Inv Custom 5 cm 27.1 0.890 0.095

10 cm 24.2 0.848 0.144

Table 4.1: Table displaying average evaluation metric scores for the synthetic data

.

SLAM Data Table 4.2 below contain the summary of the results of the evaluation
on the SLAM dataset. Similarly to the results of the tests on the synthetic dataset,
the images rendered using the optimized depths have better scores over all evaluation
metrics. Also consistent with the synthetic dataset, images rendered using inverse
depths with far and near planes at 1 and 100 gave higher similarity scores than those
using external depth information for the position of the near and the far plane.

MPI Depths Baseline PSNR SSIM LPIPS
Optimized 5 frames 23.7 0.763 0.133

10 frames 21.1 0.687 0.188
Inv Fixed 5 frames 22.6 0.727 0.162

10 frames 20.0 0.649 0.237
Inv Custom 5 frames 20.6 0.664 0.209

10 frames 18.2 0.585 0.293

Table 4.2: Table displaying evaluation metric scores for the SLAM data

.

4.2 Qualitative Examples

In the following section, a number renderings are presented that can be used as rep-
resentative examples. Figures depicting renderings presented in this section can be
found in section 4.3.

34

(a) Optimized depth rendering. (b) Inverse depth rendering. (c) Ground truth.

Figure 4.1: Example of a well optimized rendering with corresponding ground truth from
the synthetic dataset.

4.2.1 Depth Renderings

Using the method to generate depth from an MPI from which the depth scaling al-
gorithm was derived as explained in section 3.4, the layers of an MPI can be used
together with the corresponding layer depths in order to render depths and disparity
maps. For an MPI together with a set of depth values, the depth map can is es-
timated using the over operation in equation (3.1). These depth renderings provide a
visualization of the layers of an MPI and their corresponding depths. Comparing these
estimated depth maps to the ground truth allows comparisons of the depth detail of
the MPI.

Fixed Inverse Depths To be able to compare the depth renderings side-by-
side, the plots of the estimated depth maps were set to use the same color scale as
the ground truth depth map. This worked well for the optimized depths and the
customized inverse depths. However, not being created using the ground truth or
external depth information, the fixed inverse depth values, all ranging between 1 and
100, most often fell outside of the color range of the ground truth resulting in a single-
colored depth map. Because of this, the depth renderings from the fixed inverse depth
values were excluded from the results.

Synthetic Data For the depth renderings from the synthetic data, the ground
truth depth map is the same as the dense depth map which was generated and exported
using BlenderProc as described in 3.2.1. This is also the same depth information which
was used for scaling the optimized depths. An example of depth map renderings from
an MPI using optimized and inverse depths together with the ground truth can be
seen in figure 4.1. More renderings used as representative examples in the discussion
can be found in section 4.3.

SLAM Data For the SLAM dataset, there is no ground truth dense depth map
and the depth renderings from each MPI using different depths can therefore not be
compared side-by-side to the ground truth as for the synthetic dataset. However, the
sparse depth information can still be used to set the color scale of the depth renderings

35

for the optimized and customized inverse depths. Plotting these two depth renderings
together with the base image and corresponding point matches used to scale the MPI
allows for visualization of the MPI, the two set of layer depths and the points used
for optimization. An example of an image with overlaid point matches can be seen
in figure 4.2. Additional depth renderings and point match visualizations from the
SLAM dataset referred to in the discussion can be found in section 4.3.

Figure 4.2: Example image from the SLAM dataset with corresponding sparse depth
points. Image number 8 in scene 32.

4.2.2 Image Renderings

Rendered images from several MPI are included in the results of this report as ex-
amples. These rendered images are the same images used for evaluation with the
image similarity metrics. Studying representative examples, especially along with cor-
responding depth renderings and depth information visualizations can allow insight
into the performance of the depth scaling. All depth rendering examples referred to
in the discussion can be found in section 4.3.

4.3 Image and Depth Renderings

In this section, a number of figures containing depth and image renderings are included.
The renderings were selected as representative examples and are further commented
in the discussion. The renderings are grouped by the type (depth or image rendering)
and by the dataset (synthetic or SLAM).

36

4.3.1 Synthetic Data Depth Renderings

(a) Optimized depths depth rendering. (d) Optimized depths depth rendering.

(b) Inverse depths depth rendering. (e) Inverse depths depth rendering.

(c) Ground truth depth map. (f) Ground truth depth map.

Figure 4.3: Ground truth depth map and depth renderings. The left images (a-c) show
an example of how a poorly generated MPI results in bad results even after
optimization. The right images (d-f) show an example of how a contrasted
depth area (top right corner) can disturb the optimization algorithm.

37

(a) Optimized depths depth rendering. (d) Optimized depths depth rendering.

(b) Inverse depths depth rendering. (e) Inverse depths depth rendering.

(c) Ground truth depth map. (f) Ground truth depth map.

Figure 4.4: Ground truth depth map and depth renderings for two images in synthetic
scene 9 and 8. The depth optimized depth renderings are examples of
non-major adjustments being made by the scaling algorithm to improve
results for a well generated MPI.

38

4.3.2 Synthetic Data Image Renderings

(a) Ground truth to the MPI rendering. Image
12 in synthetic scene 1.

(b) Rendering of image 12 using MPI number 10
in synthetic scene 1.

Figure 4.5: Image rendered using the same MPI as in figure 4.3 (a-c) with corresponding
ground truth. Example of how poorly generated MPI results in bad rendering
results after optimization.

(a) Rendering of image 13 using optimized
depths.

(b) Rendering of image 13 using scaled inverse
depths.

Figure 4.6: Comparisons of the same image rendered using MPI number 1 in scene 13
with optimized and inverse depths. The left image shows an example of
artifacts that can sometimes appear after optimization.

39

4.3.3 SLAM Data Depth Renderings

(a) Optimized depths depth rendering. (d) Optimized depths depth rendering.

(b) Inverse depths depth rendering. (e) Inverse depths depth rendering.

(c) Sparse depth points. (f) Sparse depth points.

Figure 4.7: Comparisons of depth renderings using the optimized depths for two SLAM
dataset scenes. The left images (a-c) show how certain well textured areas
end up having more mapped points and become prioritized during
optimization. The right images (d-f), show a poorly generated MPI with a
great number of evenly distributed sparse depth points.

40

4.3.4 SLAM Data Image Renderings

(a) Ground truth to the MPI rendering. Image
11 in SLAM scene 20.

(b) Rendering of image 11 using MPI number 13
in SLAM scene 20 using optimized depths.

Figure 4.8: Image rendering using optimized depths and corresponding ground truth for
the MPI shown in figure 4.7 to the right (d-f). Shows an example of how the
rather poorly generated MPI leads to bad rendering results despite a great
number of well dsitributed sparse depth points.

(a) Rendering of image 12 using optimized
depths.

(b) Rendering of image 12 using scaled inverse
depths.

Figure 4.9: Image rendering using optimized and inverse depths for the MPI shown in
figure 4.7 to the left (a-c). Example of how the an sparse depth points
unevenly distributed across the image lead variance in rendering quality
across the image.

41

4.4 Layer Reduction

In table 4.3 below, a summary of the layer reduction results is shown. The full results
showing the reduction of layers in each individual scene for both the synthetic and
SLAM data can be found in appendix A.

Dataset Total
layers

Layer
mean

Std Reduction Std

Synthetic Reduced 5245 8.5 2.2 73.3 % 6.8 %

Unreduced 19648 32 0 0% 0%

SLAM Reduced 4300 6.4 2.6 78.7 % 8.8 %

Unreduced 21504 32 0 0 % 0 %

Table 4.3: Table displaying summarized layer reduction results for both datasets.

.

Overall, more layer depths were placed at the same values for the SLAM data than
for the synthetic data and the variance was also greater. The maximum average size
reduction for a single scene in the SLAM data was 91.7% compared to 80.1% in the
synthetic data. The minimum average reduction in a scene however was found in the
synthetic dataset at 63.9% compared to the minimum of 65.6% in the SLAM data.
In the SLAM dataset 3.9% of all MPI were reduced to 2 layers or less while the same
number in the synthetic dataset was 0.16%. The same numbers for 3 layers or less
were 12.4% and 1.0% respectively. The minimum amount of layers in any MPI after
reduction in the synthetic dataset was 15 and in the SLAM dataset, 14. The overall
distribution of the layers reduced can be seen in figure 4.10.

Figure 4.10: Histogram of the distribution of layer reduction in each dataset.

42

Chapter 5

Discussion

5.1 Quantitative Overview

As presented in the results section, evaluations on the renderings from multiplane im-
ages using the three set of depth values resulted in higher PSNR, SSIM and LPIPS
scores overall for the optimized depths. What this shows is that scaling MPI layers
individually using the algorithm presented in this work is a viable way of solving the
scaling problem and improving smooth view transitions between multiple MPI. How-
ever, to determine how well the algorithm performs and to what extent it can be used
in various applications, further analysis is needed.

For the SLAM dataset, the fixed inverse depths performed better than the custom
inverse depths over all metrics and for the Synthetic data, the custom inverse depths
only performed slightly better. This inconclusive result make it hard to determine
whether placing the near and far planes for inversely scaled depths between the min-
imum and maximum value in the depth information actually reduces scaling ambiguity
compared to placing the planes at suitable fixed values. This would leave the scaling
algorithm which uses external depth information to be compared against a method
without any access to any external depth data.

To give further insight, the results from the evaluation on the RealEstate10K SLAM
dataset can be compared to the ablation study using the same evaluation metrics in
the paper of the single-view MPI generator used to generate the all MPI in this re-
search [1]. Since the authors of this paper used a scaling factor σ calculated from a
sparse point cloud to scale the whole MPI up and down as mentioned in section 2.3.2,
this could work as an alternative comparison to the custom inverse depths. The op-
timized depths in this work evaluate at lower scores over all metrics compared to their
full model for the 5 frame and 10 frame baseline. However, it should be noted that
their noscale model, which is the same as the fixed inverse depths in this work, also

43

scored higher than the inverse depth method evaluated for this work. The difference
could be explained by the variation in the data used for testing. Since only a subset
of the RealEstate10K dataset was used for testing in this thesis, it is likely that the
selected scenes either had larger baselines or and/or more difficult camera trajectories
on average. To draw further conclusions, additional testing is therefore required.

5.2 Representative Examples

The goal of the individual layer scaling algorithm is to adjust the position of the layers
to reduce scaling error, increase rendering accuracy and reduce view transition errors
between multiple MPI. As the singe-view MPI generator is trained to create MPI with
inversely spaced layer depths and because inversely spacing the depths maximized the
disparity-space resolution as explained in section 2.2.2, the layers of the MPI should
theoretically only need minor adjustment in most cases. We can see two examples
where this is the case by comparing the ground truth to the MPI depth renderings of
synthetic scene 8 and 9 seen in figure 4.4. However, by looking at a few examples, we
can see how that is not always the case.

Nonoptimal Layer Placements One of the main issues seem to be when
MPI layers containing a lot of detail (low transparency) are placed at depths drastically
different from the depths they were created to model. As an example, looking at the
difference between the ground truth depth in figure 4.3c and the depth rendering in
figure 4.3b, we can see that not only is there great total variance in depth, but there
is also variance in depth over areas that should have the same depth when comparing
with the ground truth. For this case, the MPI can be said to be incompatible with the
ground truth, meaning that the MPI has layers that have low transparency for pixel
values that have a high depth contrast in the ground truth depth map. This results
in layers being placed at depths where they try to model multiple depth spaces of the
image. For the extreme case where a layer has low transparency for very deep and
very shallow depth values, the optimization will place the layer in the middle, where
it is unable to model either of the depth spaces accurately. While this is not always
visible from viewing the depth renderings, it is likely the cause of renderings from
certain MPI with optimized depths having artifacts not visible in their non-optimized
counterparts, as seen in figure 4.6.

Optimization Constraints Although the optimization constraints drives many
layers to be placed at the same depths, it can also become a limitation for certain cases.
Since the constraints enforce layer ordering and each layer depth value works as the
upper and lower limit for the layers in front and behind, one layer placed at a nonop-
timal depth can cause other layers to also be forced to nonoptimal depth values. This
might be the reason that although the depths are optimized, some MPI does not seem
to be able to render images with good results.

44

Sparse Depth Data A problem with using sparse depth maps created from
feature extraction and mapping is that the distribution of points in the images might
be uneven and areas with a lot of texture might be favored. This causes the resulting
sparse depth map to have more depth values in certain areas causing these areas to be
favored during optimization. This can be seen in figure 4.7 for the images on the left
hand side. In figure 4.7c, we see that the left part of the image depicting the railing
has a higher density of depth points compared to the other parts of the image. This
in turn causes the depth rendering from the optimized depths seen in figure 4.7a to be
very detailed around the same area, while the depth in other parts of the image are
less detailed. The steps of the staircase, as an example, loses a lot of detail compared
to the depth rendering using the inverse depths seen in figure 4.7b.

5.3 Single View MPI Generator

The main limiting factor of achieving good results with the layer optimization al-
gorithm seems to be the quality of the multiplane images themselves. An example
of this is synthetic scene 1 as seen in figure 4.5a, which contained camera trajectory
between the entrance to two different rooms. In between the two rooms, there was
a large wall relatively close to the camera which seemed to interfere with accurately
creating the MPI. This resulted in the the MPI visualized with inverse depths in fig-
ure 4.3b. Even though the layer values are optimized, as seen in figure 4.3a, since the
underlying MPI was not created accurately, the images rendered from the MPI are
not accurate, as seen in figure 4.5b.

Network Scene Incompatibility Another example where the generated
MPI was not created well, seemingly because single-view MPI generator does not
work well with the scene, is scene 20 from the SLAM dataset. The image shown in
figure 4.8 depicts a house surrounded by a forest-like environment. Since the MPI
generator was trained on real estate footage consisting mainly of lower texture in-
door environments, it was not able to generate an MPI accurately for this scene. The
high-textured environment allowed a relatively large number of depth points to be
distributed fairly equally across the whole image as seen in 4.7f. This in turn allowed
for the layers to be adjusted seemingly well as can be seen by examining the difference
between figure 4.7e and 4.7d, but the rendering using the optimized depths shown in
4.8b still ends up with artifacts in large parts of the image.

MPI Detail Another incompatibility between the single-view MPI generator and
the scaling algorithm is the lack of detail in the generated MPI. Since the single-view
MPI generator has infer depth from scenes without any intrinsic information, it lacks
detail and depth variations over smaller areas of the images seem to be ignored. If
some of these small areas of the image are in large contrast to the surrounding area,
they can still have a great impact on the placement of the layers. For example, in
synthetic scene 2, comparing the ground truth depth rendering seen in figure 4.3f to
the MPI depth rendering using inverse depths in figure 4.3e, we see that the depth

45

detail in the top right corner of the ground truth is missed by the MPI. Since these
depth values are in great contrast to the rest of the image and no layer of the MPI was
created specifically depict these pixels at the correct depth, the optimization algorithm
tries to model the depth for these pixels by using other layers that were created for
more shallow depths as discussed under Nonoptimal layer placements in 5.2.

5.4 View Transitioning and Blending

Blending between multiple MPI resulted in seamless view transitions for [7], something
that was not oberved to the same degree with the method for this thesis, although
the same blending method was utilized. The reason for this might not only lie in the
greater baseline between the MPI but also in how the network was trained. When
blending, accumulated alpha values are considered from each MPI rendering. Our
method might not draw full benefit of this compared to the method presented in
LLFF [7], due to how their network was trained throughout the blending procedure.
This way of training the network throughout blending encourages it to give low alpha
values to pixels that it is unsure about, so that they can be filled in by pixels from
other MPI during the blending procedure. Since our network was trained for single-
views, each MPI will instead have pixels that accumulate to non-transparency over all
layers, which is not optimal for blending.

5.5 Algorithm Run Time

Another point to discuss is the time difference required for running the optimization
algorithm. The run time of the algorithm varied significantly depending on the size
of the matrix A in (3.4), which grows as the dimensions of the image increases. A
also grows larger the more depth points are used, which resulted in optimization for
the synthetic dataset taking considerably longer than for the SLAM dataset. When
running the algorithm, parameters of the linear solver needed to be adjusted manu-
ally in order to ensure that an optimal solution was found and quality did not vary
significantly between various MPI. To avoid this problem all together, a fixed number
of iterations was used, which was high enough to guarantee an optimal solution was
reached for all MPI used. This makes it impossible to give accurate optimization times
for the algorithm. However, hyper parameter engineering and its automation for linear
optimization is out of the scope of this thesis and is therefore left as future work.

5.6 Layer Reduction

In table 4.3, we see that the algorithm managed to reduce the size of the synthetic
and SLAM data by an average of over 70 %. While more layers were merged for the
SLAM dataset than for the synthetic data, a considerable amount of MPI ended up
with 2 or 3 layers after optimization which was not the case for the synthetic data.

46

When the number of layers are too low, even though their placement is optimized, the
low disparity resolution will limit the accuracy of the images rendered from the MPI.
Looking at figure 4.10, we see that the distribution of layer numbers in the optimized
MPI was on average higher and much more evenly spaced around the mean value for
the synthetic data. This can be explained by the synthetic using the actual ground
truth depth for optimization instead of a limited sparse point set, but the actual input
images themselves might have also had an impact. Although the layer numbers are
low for certain MPI, it is important to note that the layer merging itself has no impact
on quality once two layers are already placed at the same depth, and the evaluation
results in section 4.1 still holds true whether layers merged or used as separate images.

47

48

Chapter 6

Conclusion

The algorithm developed in this research works as an effective method to individually
scale layers of an multiplane images generated from single images, increasing rendering
accuracy compared to fixed inversely spaced layers for the three of the most common
image similarity evaluation metrics. The performance of the scaling algorithm and
the rendering results are highly dependent on the quality of the multiplane images
themselves which varies from scene to scene. However, the single-shot MPI generator
has the benefit of being a light-weight and simple way to generate multiplane images
and the MPI created from it can therefore not be expected to have the same quality as
other algorithms utilizing a much great amount of input images to maximize quality,
such as DeepView[8]. Further, the algorithm allows for reduction of redundant layers,
by placing adjacent layers to equal depths which allows layer merging, reducing the
size of the MPI representation by over 70 %.

6.1 Research Questions

RQ1 Can layers of single-image generated multiplane images be scaled as a way to
tackle the scale ambiguity problem?

As shown by the results presented in, in section 4.1.1, re-scaling the layers of single
image generated MPI improves image similarity to the ground truth over all similarity
metrics used. This strongly shows improved render quality and in turn a reduction of
scaling-ambiguity induced errors. In conclusion, individual layer scaling can be scaled
as a way to tackle the scaling ambiguity problem with good results.

Answer

RQ2 Are scaled single-image generated multiplane images a viable option for multi-

49

image input view synthesis with MPI blending?

While scaling layers of single-image generated MPI reduces scaling ambiguity and
improves results, the results are inconclusive regarding the possibility of using the re-
scaled MPI for multi-image input with blending. Many images in the results showed
visual artifacts and the results seemed to be heavily based on the quality of the under-
lying MPI. If the quality of the MPI is low, the quality of the rendered images will be
low regardless of re-scaling. As of now, single-image generated multiplane images does
not seem to be a equally efficient method to previously presented methods utilizing
many images to render MPI such as Mildenhall et al. [7] and Flynn et al. [8].

RQ3 If the estimated depths of two or more layers are close, can they be merged to
reduce redundancy and compress the file size of the MPI representation without
major loss of quality?

The presented method resulted in an average size reduction of over 70 % for both
datasets. Since layer merging is done for layers placed at the same position after
optimization, it does not result in any loss of quality. Based on the results of the
experiments conducted in this research, layer merging seems to be a viable way to
size-reduce MPI with good results.

6.2 Future Work

To continue on this research, more alternative optimization algorithms could be ex-
plored. One method that could be tested is allowing layer reordering. This would
require the A matrix to be recreated for each alternative layer order combination as
explained in 3.4.1 and would likely lead to a more optimized depth rendering, but
a lower rate of layer merging. A way of layer optimization could also be explored in
which the layers are optimized to maximize RGB consistency between rendered images
and ground truth, instead of optimizing the depth rendering as was done in this work.
Finally, for further and more accurate evaluation of the work, comparisons could be
included with the same depth scaling factor σ that was used in the original single-view
MPI generator[1].

50

Bibliography

[1] Richard Tucker and Noah Snavely. “Single-view View Synthesis with Multiplane
Images”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2020.

[2] Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In: Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’96. New York, NY, USA: Association for Computing Machinery,
1996, 31–42. isbn: 0897917464. doi: 10.1145/237170.237199. url: https:
//doi.org/10.1145/237170.237199.

[3] Shenchang Eric Chen and Lance Williams. “View Interpolation for Image Syn-
thesis”. In: Proceedings of the 20th Annual Conference on Computer Graph-
ics and Interactive Techniques. SIGGRAPH ’93. Anaheim, CA: Association for
Computing Machinery, 1993, 279–288. isbn: 0897916018. doi: 10.1145/166117.
166153. url: https://doi.org/10.1145/166117.166153.

[4] Richard Szeliski. Computer Vision - Algorithms and Applications, Second Edi-
tion. Texts in Computer Science. Springer, 2022.

[5] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe and Noah Snavely.
“Stereo Magnification: Learning view synthesis using multiplane images”. In:
ACM Trans, SIGGRAPH. 2018.

[6] Pratul Srinivasan, Richard Tucker, Jonathan Barron, Ravi Ramamoorthi, Ren
Ng and Noah Snavely. “Pushing the Boundaries of View Extrapolation With
Multiplane Images”. In: June 2019, pp. 175–184. doi: 10.1109/CVPR.2019.
00026.

[7] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi
Kalantari, Ravi Ramamoorthi, Ren Ng and Abhishek Kar. “Local Light Field
Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines”. In:
ACM Transactions on Graphics (TOG) (2019).

[8] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck, N. Snavely
and R. Tucker. “DeepView: View Synthesis With Learned Gradient Descent”.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, 2019, pp. 2362–2371.

51

https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1145/166117.166153
https://doi.org/10.1109/CVPR.2019.00026
https://doi.org/10.1109/CVPR.2019.00026

doi: 10.1109/CVPR.2019.00247. url: https://doi.ieeecomputersociety.
org/10.1109/CVPR.2019.00247.

[9] Raul Mur-Artal, J. Montiel and Juan Tardos. “ORB-SLAM: a versatile and
accurate monocular SLAM system”. In: IEEE Transactions on Robotics 31 (Oct.
2015), pp. 1147 –1163. doi: 10.1109/TRO.2015.2463671.

[10] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy and Thomas Brox. “A Large Dataset to Train Convolutional
Networks for Disparity, Optical Flow, and Scene Flow Estimation”. In: June
2016, pp. 4040–4048. doi: 10.1109/CVPR.2016.438.

[11] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion
Revisited”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[12] In.

[13] Pawan Sinha and Richard Russell. “Perceptually-based Comparison of Image
Similarity Metrics”. In: Perception 40 (Nov. 2011), pp. 1269–81. doi: 10.1068/
p7063.

[14] Zhou Wang, Alan Bovik and Hamid Sheikh. “Structural Similarity Based Image
Quality Assessment”. In: Digital Video Image Quality and Perceptual Coding,
Ser. Series in Signal Processing and Communications (Nov. 2005). doi: 10.
1201/9781420027822.ch7.

[15] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman and Oliver Wang.
“The Unreasonable Effectiveness of Deep Features as a Perceptual Metric”. In:
CVPR. 2018.

[16] Unity Technologies. Unity Engine. https://unity.com/. 2022.

[17] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, Youssef
Zidan, Dmitry Olefir, Mohamad Elbadrawy, Ahsan Lodhi and Harinandan Katam.
“BlenderProc”. In: arXiv preprint arXiv:1911.01911 (2019).

[18] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation. Stichting Blender Foundation, Amsterdam, 2018. url: http:
//www.blender.org.

[19] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun
Zeng, Chengyue Sun, Rongfei Jia, Binqiang Zhao et al. “3d-front: 3d furnished
rooms with layouts and semantics”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2021, pp. 10933–10942.

[20] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan Eckstein.
“Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers”. In: Foundations and Trends in Machine Learning 3 (Jan.
2011), pp. 1–122. doi: 10.1561/2200000016.

[21] Giovanni Chierchia, Emilie Chouzenoux, Patrick L Combettes and Jean-Christophe
Pesquet. The proximity operator repository. user’s guide, 2020.

52

https://doi.org/10.1109/CVPR.2019.00247
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00247
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00247
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1068/p7063
https://doi.org/10.1068/p7063
https://doi.org/10.1201/9781420027822.ch7
https://doi.org/10.1201/9781420027822.ch7
https://unity.com/
http://www.blender.org
http://www.blender.org
https://doi.org/10.1561/2200000016

Appendix A

Layer Reduction Results

53

Table A.1: Table displaying layer reduction results of the synthetic dataset.

.

Scene
number

Total
layers
before
reduc-
tion

Total
layers

Layer
number
mean

Layer
number
standard
devi-
ation

Size re-
duction
mean

Size re-
duction
standard
devi-
ation

1 768 153 6.4 2.6 80.1 % 8.1 %

2 1216 298 7.8 2.9 75.5 % 9.2 %

3 832 184 7.1 1.7 77.9 % 5.3 %

4 992 306 9.9 2.4 69.2 % 7.4 %

5 1376 344 8.0 1.5 75 % 4.8 %

6 640 183 9.2 1.6 71.4 % 4.9 %

7 1152 321 8.9 1.4 72.1 % 4.3 %

8 1184 379 10.2 1.4 68.0 % 4.4 %

9 1184 308 8.3 1.7 74.0 % 5.2 %

10 1024 244 7.6 1.6 76.2 % 4.9 %

11 1184 392 10.6 1.4 66.9 % 4.4 %

12 1568 421 8.6 1.7 73.2 % 5.4 %

13 1536 401 8.4 1.5 73.9 % 4.5 %

14 1088 256 7.5 1.6 76.5 % 4.9 %

15 1216 439 11.6 1.8 63.9 % 5.5 %

16 1760 378 6.9 1.5 78.5 % 4.6 %

17 928 238 8.2 1.2 74.4 % 3.8%

All scenes 19648 5245 8.5 2.2 73.3 % 6.8 %

54

Table A.2: Table displaying layer reduction results of the SLAM dataset for scenes 1 to
19.

.

Scene
number

Total
layers
before
reduc-
tion

Total
layers

Layer
number
mean

Layer
number
standard
devi-
ation

Size re-
duction
mean

Size re-
duction
standard
devi-
ation

1 384 32 2.7 1.1 91.7 % 3.4 %

2 672 147 7.0 1.2 78.1 % 3.8 %

3 768 110 4.6 1.9 85.5 % 6.1 %

4 544 116 6.8 1.4 78.7 % 4.5 %

5 544 104 6.1 1.2 80.9 % 3.6 %

6 512 78 4.9 1.5 84.8 % 4.8 %

7 480 96 6.4 2.4 80.0 % 7.5 %

8 384 55 4.6 2.9 85.7 % 9.1 %

9 736 216 9.4 1.3 70.7 % 4.2 %

10 480 84 5.6 1.3 82.5 % 4.1 %

11 352 75 6.8 1.9 78.7 % 5.9 %

12 512 120 7.5 1.9 76.6 % 5.8 %

13 448 129 9.2 1.5 71.2 % 4.6 %

14 672 86 4.1 1.7 87.2 % 5.2 %

15 544 97 5.7 1.8 82.2 % 5.7 %

16 704 129 5.9 1.5 81.7 % 4.8 %

17 704 179 8.1 2.5 74.6 % 7.9 %

18 512 46 2.9 0.8 91.0 % 2.5 %

19 736 96 4.2 1.6 87.0 % 5.0 %

...

55

Table A.3: Table displaying layer reduction results of the SLAM dataset for scenes 20 to
38.

.

Scene
number

Total
layers
before
reduc-
tion

Total
layers

Layer
number
mean

Layer
number
standard
devi-
ation

Size re-
duction
mean

Size re-
duction
standard
devi-
ation

20 544 105 6.2 1.2 80.7 % 3.7 %

21 448 105 7.5 1.0 76.6 % 3.2 %

22 672 132 6.3 0.8 80.4 % 2.6 %

23 672 110 5.2 1.6 83.6 % 4.9 %

24 384 39 3.3 0.5 89.8 % 1.4 %

25 736 125 5.4 2.3 83.0 % 7.0 %

26 384 66 5.5 1.2 82.8 % 3.6 %

27 512 135 8.4 2.4 73.6 % 7.7 %

28 480 63 4.2 1.1 86.9 % 3.6 %

29 736 121 5.3 0.9 83.6 % 2.7 %

30 640 139 7.0 1.3 78.3 % 4.1 %

31 544 74 4.4 1.1 86.4 % 3.3 %

32 704 215 9.8 3.0 69.5 % 9.2 %

33 480 153 10.2 1.7 68.1 % 5.3 %

34 608 128 6.7 2.4 78.9 % 7.6 %

35 608 127 6.7 1.9 79.1 % 5.9 %

36 512 176 11.0 2.2 65.6 % 6.8 %

37 640 116 5.8 1.0 81.9 % 3.1 %

38 512 176 11.0 1.3 65.6 % 4.0 %

All scenes 21504 4300 6.4 2.6 78.7 % 8.8 %

56

Master’s Theses in Mathematical Sciences 2023:E19
ISSN 1404-6342

LUTFMA-3500-2023
Mathematics

Centre for Mathematical Sciences
Lund University

Box 118, SE-221 00 Lund, Sweden
http://www.maths.lth.se/

	Abstract
	Table of Contents
	Introduction
	Aim
	Research Questions
	Contributions
	Thesis Outline

	Background
	Image Based Rendering and View Synthesis
	Multiplane Images
	Multi-Layered Scene Representation
	Layer Positioning
	Rendering

	Related Work
	Stereo Magnification: Learning View Synthesis using Multiplane Images
	Single-View View Synthesis With Multiplane Images
	Local Light Field Fusion
	COLMAP
	Neural Radiance Fields

	Evaluation Metrics
	Peak Signal-to-Noise Ratio
	Structural Similarity Index Measure
	LPIPS

	Unity Engine

	Method
	Pipeline Overview
	Data Gathering
	Synthetic Image Generation
	Real Image Dataset

	Generation of Multiplane Images
	Multi Plane Image Scaling
	Optimization Algorithm
	Linear Solver
	Layer Merging

	Viewer Application
	Overview
	Unity Scene
	Scripts
	Shaders
	MPI Blending

	Evaluation
	Blending
	View Synthesis
	Procedure

	Results
	Similarity Metric Scores
	Overall Comparison

	Qualitative Examples
	Depth Renderings
	Image Renderings

	Image and Depth Renderings
	Synthetic Data Depth Renderings
	Synthetic Data Image Renderings
	SLAM Data Depth Renderings
	SLAM Data Image Renderings

	Layer Reduction

	Discussion
	Quantitative Overview
	Representative Examples
	Single View MPI Generator
	View Transitioning and Blending
	Algorithm Run Time
	Layer Reduction

	Conclusion
	Research Questions
	Future Work

	Bibliography
	Layer Reduction Results

