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Abstract

In light of the revised 2019 proposals constituting the Fundamental Review
of the Trading Book, which amend the third Basel Accord, expected shortfall
is set to replace value at risk as the risk measure dictating banks’ capital re-
serving requirements for exposure to market risk. This paper examines how
best to accurately estimate expected shortfall from a regulatory perspective by
carrying out an array of non-parametric as well as parametric methods over
the recent years of financial instability. While previous research has predomi-
nantly made use of stock indexes to proxy bank’s trading books, we not only
employ the S&P500 Index, but also real profit-and-loss data of three large Eu-
ropean banks. Through backtesting we identify a GARCH-Generalized Pareto
distribution model (rooted in the peaks-over-threshold model) as yielding the
most satisfactory ES forecasts for both the index and bank data sets, with the
age-weighted historical simulation method also showcasing an all-around strong
performance.

Keywords: Expected shortfall; Trading book; Historical simulation; Paramet-
ric estimation; Backtesting
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1 Introduction

Risk management is crucial to ensure the stability of financial institutions. For
the past three decades, Value at Risk (VaR) was the predominant risk measure
for estimating market risk. After the financial crisis in 2008, however, VaR re-
ceived a lot of criticism, mainly due to its inability to capture tail risk (Hull,
2018). VaR does not take the size of losses beyond a certain confidence level into
account, which means that it is completely insensitive to losses which happen
with a very small probability. For example, if the size of the losses, which occur
with a probability of less than 1% increases, VaR at a 99% confidence interval
will nevertheless remain the same, as it does not consider the losses beyond the
confidence level. Furthermore, VaR is no coherent risk measure since it violates
the assumption of subadditivity. Practically speaking, subadditivity means that
a risk measure should never discourage diversification, which makes sense from
an intuitive point of view. VaR, however, only fulfills this property under certain
conditions (e.g., if the losses are normally distributed) (Hull, 2018).

Due to the mentioned shortcomings of VaR, the Basel committee proposed
the Fundamental Review of the Trading Book (FRTB) in 2012 as a new frame-
work for market risk and capital standards, which introduced Expected Shortfall
(ES) as a new risk measure (BIS, 2012). ES considers all losses beyond VaR and
computes the average of those losses. Therefore, ES takes losses which occur
with a very low probability into account and is better suited to capture tail risk
(Yamai & Yoshiba, 2005). Furthermore, ES has superior properties compared to
VaR, as it always acknowledges the advantages of diversification (Hull, 2018).
Initially, the shift to ES was planned to be implemented in 2019, but it got
delayed several times and finally became active in January 2023 (BIS, 2023).
Regarding the new standards, banks are required to use a 10-day horizon, a
97.5th percentile and a one-tailed confidence interval in order to compute ES,
which will subsequently determine their capital requirements (BIS, 2023). How-
ever, there is no strict guideline which models should be used for calculating
ES. Therefore, the question which methods deliver the best results regarding
the estimation of ES remains a pivotal topic of discourse. Academics most
commonly use stock indexes as a proxy for a bank’s trading book in order to
conduct empirical analyses contributing to this discussion. Yet, it is unclear
whether the same estimation methods that work for stock indexes, commodities
or exchange rates are also delivering the best results for an actual bank’s trading



book. Thus, we will use real-world profit-and-loss (P/L) data of banks’ trading
books as well as the returns of the S&P500 in order to investigate if the same
methodical approaches for estimating ES hold strong for both a stock index and
a bank’s trading book.

1.1 Purpose

The aim of this thesis is to contribute to the empirical literature on estimating
ES by applying both parametric and non-parametric approaches on the returns
of the S&P500 as well as on P/L data of banks’ trading books. First, this anal-
ysis will evaluate which methods are best suited for estimating ES. Identifying a
model that generates precise ES forecasts is highly relevant since ES is a recently
implemented risk measure that determines banks’ capital requirements. Second,
this paper will also critically reconsider the relevance of previous empirical stud-
ies within this area. Previous research has mainly used stock indexes as a proxy
for a bank’s trading book, while this study uses real P/L data of banks’ trading
books. Banks typically do not provide their P/L data for research; however,
they include plots comparing their P/L data with their VaR estimates within
their pillar 3 disclosures under the rubric MR4. Those plots include data points
of their daily P/L, which we manually extracted. Thus, we are able to use real
bank data to assess which methodical approach is best suited for estimating ES.
Furthermore, by comparing the results for the banks’ P/L data with the ones
for the S&P500, we can evaluate whether a common stock index is a suitable
proxy for a bank’s trading book. If we would be to find out that the results are
very different, this would imply that the results of previous research using stock
indexes are only limitedly applicable to real-world banks’ trading books.

1.2 Literature Overview

One of the most wide-ranging empirical study comparing different ES estima-
tion models was conducted by Righi and Ceretta in 2015. Not only examined
the study 17 different ES estimation models, but it also used multiple data sets
from different financial asset classes (equity, fixed income, exchange rates and
commodities). Further the authors investigated different sizes of rolling win-
dows and significance levels. Their results suggest that conditional models de-
liver the best results, particularly the GARCH methods and Filtered Historical
Simulation methods. Furthermore, they found that incorporating leptokurtic
asymmetry, by using the skewed Student’s t distribution, leads to better esti-
mation results. These two findings indicate that the consideration of stylized
facts of financial returns, mainly volatility clusters, heavy tails and asymmetry,
are critical for a correct estimation of ES. Asymmetry was especially prevalent
for the equity and commodity market, whereas the fixed income and exchange
rate market seemed to be relatively symmetric. Regarding the length of the es-



timation windows, large rolling windows generally delivered better results than
smaller windows, which might miss relevant information.

An example for a recent empirical paper on estimating ES is given by So-
breira and Louro (2020). They used Historical Simulation, several parametric
volatility models of different GARCH classes as well as the Extreme Value The-
ory approach (EVT) with Peak-over-Threshold (POT). They performed their
analysis on the stock returns of large Portuguese companies individually, instead
of using an index as a proxy. The results show that the EVT approach deliv-
ered the best estimates overall. The best performing model was the asymmetric
GARCH with EVT. However, in contrast to Righi and Ceretta (2015), they
found that skewed distributions generally do not outperform their symmetric
counterparts. The paper applied different backtests and concludes that the re-
sults were relatively similar across most backtests. Regarding the size the of
the rolling window, their analysis was ambiguous. The authors generally found
modest advantage for larger sample sizes, but smaller sample sizes performed
better when a low confidence level was chosen.

One of the earlier studies on estimating ES was carried out by McNeil and
Frey (2000), who used different GARCH approaches and EVT to model return
data. After comparing their results to those of several other estimation methods,
they conclude that taking leptokurtosis into account is of major importance and
suggest using a fat-tailed distribution and an EVT approach. A very similar
analysis was done by Bah, Munga’tu and Waititu (2016), who fitted GARCH
models to return data of the Nairobi 20 Share Index and showed how EVT can
be used in order to model tail risk.

Harmantzis, Miao and Chien (2006) empirically evaluated different models
for estimating VaR and ES by using returns of six major stock indexes as well
as different exchange rates. Their analysis suggests that the historical method
as well as the EVT and POT approach lead to the most accurate estimations.
Further, the Gaussian approach was found to underestimate ES whereas the
Stable Paretian approach resulted in an overestimation of ES.

1.3 Outline

The thesis is structured in the following manner: Section 2 covers the definition
of ES and the backtesting approach. In section 3 the utilized data and the
estimation methods are discussed. Section 4 presents the empirical results and
section 5 concludes.



2 Expected Shortfall

In this part, the concept of expected shortfall is briefly touched upon, lay-
ing the foundation for estimation in the methodology section by starting out
with some necessary definitions before introducing the process of backtesting
and reviewing the test chosen to perform this function within this essay.

2.1 Definition

For some loss distribution Ff, expected shortfall (ES) is a risk measure defined

in the following manner by McNeil, Frey and Embrechts (2015), encompassing

both discrete and continuous cases:

E(L-1r-var,) + VaRa(l —a —P(L > VaR,))
11—«

ES, = (1)
with « € (0, 1) denoting an arbitrary confidence level.

Expected shortfall itself rests on another risk measure, which it is a function
of - value at risk (VaR). Both measures reflect loss tail risk, the latter defined in
its general form as the minimum possible loss realization such that the likelihood
of a loss being superior to said value is no greater than 1 — a:

VaR, = min(l : P(L >1) <1—«a). (2)

When Fp, is continuous, one is able to derive the relevant nested definition in
Equation 2:
VaRy =min(l: P(L>1)=1—«) (3)
or, equivalently:
P(L>VaR,)=1—-« (4)

that is, the a-quantile of the loss distribution (taking the c.d.f.’s inverse):
VaR, = F; (). (5)

In light of Equation 4, Equation 1 can consequently be simplified for contin-

uous distributions: E(L - 1
ESa _ ( : L>VaRa) ) (6)
1l -«



In order to rewrite Equation 6 differently, first denote random variables L and
1 by X and Y respectively. Under this setting, the joint distribution for two
such random variables can be decomposed into one’s conditional and the other’s
marginal distributions:

Ixy(@,y) = fxyy(zly) - fr(y) (7)

which can in turn be used to evaluate the expectation of X conditional on Y:
E(X|Y =) = | = frv(ely)ds
R

= x~fX’Y(m’y)x: L T - x z
- o Bt g e pereae ®

making use of Equation 7 for the second equality. Given the indicator function

1 L>VaR,
1:{0 L<VaR, )

the RHS of Equation 6 can be separated into two parts based on cases where L
is and is not greater than value at risk:

E(L-(1r>var, = 1)) N E(L- (1r>vaer, =0))

ES, =
5 l—«a l—«

_ ]E(L ) (ﬂllziV;Ra = 1)) (10)

the last equality holding due to the indicator function’s state rendering the
expectation in the second term null.

In Equation 9, 1 is 1 with probability P(L > VaR,) = 1 — «. This cor-
responds to the denominator in Equation 10, which can be associated with
fy(y) =P(Y = y) in Equation 8 if y = 1. For this value of y alone, the integral
equates to E(XY) = E(X -1), the expression found in Equation 10’s numerator.
As such, Equation 6 can finally be re-expressed as E(X|Y =y) = E(X|Y = 1):

= E(L|]1 = 1)\ =E(L|L > VaR,) \ (11)

the expected value of all possible losses realizations larger than value at risk,
thus offering better clarity as to why expected shortfall is sometimes referred to
as expected tail loss (ETL).

Expected shortfall may alternatively be presented as:

1 1
ES, — —— ; 12
S, 1_aLVaRdac (12)

and is commonly termed conditional value at risk (CVaR), the acronym of which
should not be confused with component value at risk (a VaR disaggregation
measure pertaining to individual sub-portfolios/portfolio constituents).



Given the definition in Equation 11, it is natural to deduce that expected
shortfall is always at least as large as its associated value at risk.

To illustrate this graphically, assume that losses within a given time frame
follow a standard normal distribution. Using Equation 5 and Equation 12, VaR
and ES at a chosen confidence level of 95% have been computed. As shown in
Figure 1 below, ES is located farther out in the right tail of the distribution,
where more extreme losses might occur, giving a more prudent assessment of
the risk exposure faced.

L~N(0,1)
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Figure 1: 95% value at risk and expected shortfall for standard normal losses.

2.2 Backtesting ES Severity

In order to assess the adequacy of daily ES estimates obtained via methods
described further into this essay from a regulatory perspective (placing sole em-
phasis on avoiding grossly underestimating ES - from which minimum capital
provisions needing to be set aside to account for market risk are to be derived),
backtesting results is, in addition to thorough risk factor identification, of the
utmost importance in the validation process, not to mention when it comes to
gauging proper incentive alignment /lack of negligence. As the Basel Committee
on Banking Supervision (BCBS) puts it, a bank trading desk using an internal
model as opposed to the standardised approach is required to ensure its quantifi-
cation of risk is ”sufficiently conservative” (Bank for International Settlements
(2019, p.6)).

Within the context of the latest proposals constituting the imminent Fun-
damental Review of the Trading Book (FRTB) reform which will amend the
third Basel Accord - with a staggered implementation across countries over the



coming years - a shift from VaR to ES (the latter more apt at capturing tail
risk, as is particularly flagrant in heavy-tailed distributions) is imposed, albeit
the confidence level lowered from 99% to 97.5% generally making this change
practically immaterial according to the BCBS. While still performed on VaR as
of to date, backtesting is done on ES in this essay. In keeping with occurrences
but not the timing of VaR exceptions (or violations) being the crux of current
regulation, their severity (and not independence) is focused on here.

Before proceeding, let B denote a given evaluation period (the set of consec-
utive time periods over which an ES estimate-generating model is considered)
with cardinality |B| = b ~ 250 (trading days in a calendar year) under the Basel
framework. This is the standard interval subject to backtesting.

2.2.1 Acerbi and Szekely (2014)

One such way of testing the adequacy of an ES model (or estimation method) is
by executing Acerbi and Szekely’s (2014) so-called unconditional (based on the
unconditional expectation: Equation 6) second test, a one-sided test wherein
whether the model in question underestimates ES too often is sought after.
This test, in contrast to their so-called conditional (based on the conditional
expectation: Equation 11) first test, does not call for a preliminary VaR test such
as the Kupiec frequency test to support it (the first test’s alternative hypothesis
keeps predicted and true VaRs strictly equal to ensure Equation 17 in the case
of its test statistic Z; (not covered here)).
Its null hypothesis is formulated as follows:

Hy :Vt. ESy = ESa,

. (13)
Vt. VaRa,t = VaRoéyt

effectively postulating that the ES model pending validation always perfectly
estimates (or predicts) ES. More specifically, the formulation above is implied
from stating that the (upper) tail of the predictive (given the information set
Q;—1) loss distribution for any time ¢ is correctly specified, as in equal to that
of the inherently unknown data generating process (DGP):

Vt. Fr (1) = Fr (1) VI >VaRa,
The alternative hypothesis, given the preamble to this section, is:

Hy :3t. ESa; < ESay (V. ESe < ESay)

. (14)
Vt. VaRa, < VaRa,

The authors then define the test statistic (here in sample counterpart repre-
sentation) as:

Zy = — +1. (15)

i [y - ILzt>v[zzza,t/(1 —a)
t=1 E?Sa,t




This random variable is able to take a maximum value of 1 when there are no
VaR exceptions within a given year. As the authors mention and as is noticeable
in Z5, the magnitude of VaR violations contributes positively in lowering the
test statistic’s value. Additionally, by taking 1 —« out of the sum, we effectively
divide said sum by the fixed b(1 — «), the expected number of VaR violations
under Hy.

The test statistic applicable to Acerbi and Szekely’s (2014) first test, Z,
differs from Z5 exclusively in that this aforementioned b(1 — «) term dividing
the sum is replaced by the actual number of VaR violations in B: let this number
be denoted by v. While the number of non-zero terms in the sums in both Z;
and Zs is always v, Z; does not reward low vs (< b(1 — «)), nor does it punish
high vs (> b(1 — «)), and instead renders the negative term in itself essentially
nothing but an average violation over predicted ES quotient. Z5 on the other
hand, is sensitive to the frequency of VaR violations - which also positively
contributes in lowering the test statistic’s value - and always defined.

Under Hy, Z5 has has expectation:

s ESau

1 Ly - ]]-Lt>¥""(IVHa,/,/(1 B a)
= g 2 (IEHU <_ Esa,f +1

1y E(Ly - 11,>var,)/(1 — @)
) (

b b
1 L syar, /A—a) 1
Eg, (Z2) = Eg, (-b ) >VoRa, 301
t=1

ES. + 1> =0. (16)
The penultimate equality is explained by the fact that the true (unknown) dis-
tribution’s VaR/ES are time-invariant, whereas the last equality simply follows
from the definition of ES in Equation 6 (subtracting the RHS from both sides
before dividing them by the initial LHS).

Naturally, the denominator in the final sum above under H; would be
Eg, (E?Sa’t) (< ES, as for some t: EASa,t < ES, ), and the indicator function
in the numerator 1y var., (= 1n,>var, as Vt. V&Rayt < VaR,,:), inducing
Ep, (Lt - 1, ~var. t) > IEH;(Lt -11,>var, ) since we are working with portfolio
losses (assumed to be positive beyond sufficiently extreme VaRs) as opposed to
payoffs. As a result:

Ey, (Z3) < 0. (17)

What precedes goes to show that a model that is subject to few VaR viola-
tions within an evaluation period and/or whose violations are not egregious, and
this on a consistent basis (across evaluation periods) is pivotal in it performing
well.



2.2.2 Simulating Test 2 Critical Values

To determine the appropriate significance thresholds (or critical values) below
which one might reject the null hypothesis (in this case when Z5 is sufficiently
negative), a Monte Carlo (MC) simulation is performed.

By generating a sequence of 250-1,000,000 pseudo-random draws from a
N(0,1) distribution - assuming that this is the theoretical distribution char-
acterizing the underlying DGP for losses - and computing Z, in concordance
with Equation 15 (note that in this designed setting we implicitly now have
deterministic EAS(M = ES(QV(O’”, YVt and V&Ra,t = VaRéV(O’l), Vt) for each of
the 1,000,000 sets, we arrive at Zs’s simulated distribution under this specific
theoretical loss distribution. In general:

ESu.:=ESP vt
VaRa, = VaR?, Vvt
with D = F ih'. This can be done numerically with Equation 12 and Equation 5.
Next, critical values are approximated by extracting the o/-quantile of interest
(o for this test coincidentally corresponding to the arbitrary significance level
of interest since we probe the left-tail). Note that here we denote the signifi-
cance level by o’ so as to avoid confusion with the predefined confidence level
« (relating to VaR/ES) while maintaining conventional notation.

To clarify notation, let these quantiles be denoted by:
P = F oo (o), D=Ff"
2

with th. shorthand for ’theoretical’. That is, approximately,

s—1
2a(s) + (Z2(s41) — 22(s)) (a' - 1) (n—1), s= Z Licio,

— n—1
n i=1

with zy(4) the st order statistic of the simulated sample 29,15 -, Z2,n (dropping
"M C, D’ notation superscripts for convenience). Linear interpolation intervenes
merely when the s** order statistic and its successor are non-identical, and o/
is neither 0 nor a multiple of ﬁ Note that for n » 1:

/

s—1 1
<
n—1 n—1

MC MO S s—1 s s—1
P (ZQUC‘D < ZM(.])) _

= 7200

This difference is negligible here.

In Acerbi and Szekely (2014), a table (#4 in the paper) is provided to this



effect, detailing said values when losses follow (not limited to) standardized
Student’s t-distributions of varying degrees of freedom (including the Gaussian
case). For instance, for the N(0,1), the authors report values of —0.70 (5%
significance level) and —1.80 (0.01% significance level).

MC,N(0,1)

Running this experiment ourselves, we get 2, 5o/ = —0.702 ~ —0.70
MC,N(0,1)

s001% = —1.798 ~ —1.80 (rounded to 3 d.p.). Note that these results
are derived from choosing a VaR/ES confidence level of 97.5%. From this we
deduce that n =1,000,000 sets is likely large enough to yield satisfactory results
when extrapolated to other theoretical loss distributions.

When simulating a Zs distribution, all n realizations zéw D stem from the
theoretical distribution, and hence the probability of committing a type I error
(falsely rejecting Hy) is o/, the proportion of simulated test statistics < zé\?a,’D

and z

Hj, rejection: critical value criterion

Hy is rejected in favor of H; at the o' level when the observed test
statistic is inferior to the critical value of interest: z9 < zéw e,D

s
o

Quantile-quantile (QQ) plots (Figure 5/Figure 6) for two of the loss data sets
tackled in this essay (’S&P500’: Section 3.1.1/’Bank’: Section 3.1.2) suggest a
fitted Normal distribution may not constitute an appropriate choice for a theo-
retical distribution when observing what in this essay is termed the 'test period’
(the period of time spanning all (successive) evaluation periods considered) ex-
post, as the sample quantiles at the extremes are much farther out than their
theoretical counterparts (what would be expected of said fitted distribution).

This is affirmed when carrying out the (one-sample) Kolmogorov-Smirnov
(KS) goodness-of-fit test, where the largest absolute discrepancy between empir-
ical and theoretical quantile pairs (the test statistic) by far exceeds the relevant
KS critical value at the 10% significance level in both data sets. As such, the
null hypothesis entailing that the empirical distribution may be assimilated to
the theoretical one is rejected in both cases.

While these results are reversed for fitted Student’s t-distributions (bor-
derline for the S&P500 data), which provide superior mappings onto the test
period samples, the simulated Z critical values at low significance levels result-
ing from these fitted t-distributions (the degrees of freedom of which are < 3 in
both cases) were deemed too lenient (low) for practical usage.

Therefore, fitting a normal-inverse Gaussian (NIG(«,3,d,1)) distribution to
each data set was favored, and in doing so enabled to generally better encom-
pass data, the matching undoubtedly aided to some extent by a supplementary
asymmetry parameter in S as compared to the Student’s t. Parameter estimates
obtained from maximum likelihood estimation optimization along with the KS
p-values for NIG fits when pitted against the various data sets are shown in
Appendix 7.4.

To illustrate what precedes, we take the S&P500 data set, for which Figure

10



2 portrays the simulated critical values at some of the common statistical sig-
nificance levels. Said values at the first and last of these levels are, following
the Basel traffic light system logic, equated in this essay to the amber and red
zone thresholds, as is urged in Acerbi and Szekely (2014).

11



S&P500 Data: Acerbi & Szekely (2014) Test 2, Simulated Test Statistic Histogram

20000
)

a'=0.01% «'=0.1%

a'=1% o' =5%

15000
L

Frequency
10000
|

5000
1

200
J
]

o'=0.01% o'=01%

150
L

Frequency
100
|

3.0 25 2.0 15
ZHoNIG

Figure 2: S&P500. Histogram (with bin widths of 0.02) of 1,000,000 realiza-
tions of the Zs test statistic obtained through a Monte Carlo simulation (full
distribution (top), zoom of left-tail (bottom)). Max = 1.00, min ~ —2.97, mean
~ —0.055%. More detail are supplied in Appendix 7.4. The theoretical loss
distribution is assumed to be NIG*, the asterisk signifying its parameters were
chosen as those yielded by maximum likelihood estimation ex-post on the test
period.
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3 Data and Methodology

The intent behind this portion of this text is twofold.

Firstly, the various data sets examined are described together with the ways
in which they are envisaged to be employed. Broadly, we classify these data
sets linked with financial losses into two distinct categories: those (here one)
originating from an equity index’s movements, and those of trading book profit
and loss (P/L) provenance with more concrete implications for the banking
sector.

Secondly, the backbone of this work is laid out by clarifying the ES estima-
tion methods that are retroactively applied to these data sets under the lens of
the upcoming FRTB regulation.

3.1 Loss Data

In the sub-chapters that follow, the sources of data are revealed, and the specifics
of the index data set and one bank data set investigated.

3.1.1 S&P500 Data

To commence with, daily data of the value of the Standard and Poor’s 500
(S&P500) index was procured from the S&P Capital IQ database, from which
one-period holding returns since the turn of the 21%¢ century (2000 through
2022) were calculated. These returns (Figure 3) served as an initial proxy for a
bank’s trading book, the index’s constituents being established firms with deep
investor bases by virtue of their elevated market capitalizations (their relatively
risk-free features attractive to institutional investors).

In addition to the S&P500 representing a well-diversified portfolio of US
equities, its longstanding use as a common investment benchmark, along with
its precedent in the finance literature, make it a fine choice for this very purpose.

For this data set, the test period (ensemble of all evaluation periods/the
concatenation of all chronological Bs) consists of its last 21 years.

13



Min Q1 Median Q3 Max

—0.116 —0.577% 0.066% 0.452% 0.120
N. Obs Mean Std Skew (g1) Ex. Kurt (g2)
5287 0.031% 1.24% 0.177 11.2

Table 1: Descriptive statistics for S&P500 daily losses (negative returns) across
the test period of the data set.

3.1.2 Bank Data

To cross-check certain conclusions ascertained from the initial testing performed
on the S&P500 data (namely whether results on said stock index that is preva-
lent in this area of research may reasonably be extended to a more practical
context), realized (actual) gains/losses together with their hypothetical coun-
terparts (Figure 4) relating to trading book positions of a large Danish bank
(Danske Bank) were made use of. This bank is given the plain denomination
"Bank’ in the methodology portion of this essay, where it acts as exemplar (steps
described are analogous for other banks considered later down the line). For
said bank, raw data points were made publicly available in its (Basel) Pillar
3 disclosure reports under the EU MR4 rubric, enabling the retrieval of pre-
cise values spanning the most recent five years (2018 through 2022) and the
portrayal of a real-world financial institution’s exposure to market risk factors.

Note that for the Bank data, VaR/ES measures derived later in this section
are estimated off of the hypothetical (sometimes referred to as 'clean’/’net’) P /L
values (were assets held until the close of day without trading adjustments).
Actual (sometimes referred to as ’dirty’/’gross’) P/L is thus not required for
the non-test (beginning) period.

Importantly, seeing as asset managers have the ability to mitigate losses and
accentuate profits through intervention, hypothetical losses present the critical
case as far as backtesting is concerned. Comparing actual and hypothetical
losses in the test period is enough to showcase this generalization, where one
notices that [P > [%°t in 544 of 764 instances. Therefore, despite both actual
and hypothetical P/L values needing to be used to validate a VaR/ES model in
practice through backtesting, ES backtesting in this essay is limited to the hypo-
thetical (without intervention) set of values, with underestimation (as opposed
to overestimation) of lower (as opposed to upper) VaR/ES being the primary
legislative concern.

Min Q1 Median Q3 Max
—322 —19.3 2.94 23.8 444
N. Obs Mean Std Skew (g1) Ex. Kurt (g2)
764 4.71 49.6 1.33 17.0

Table 2: Descriptive statistics for Bank daily hypothetical losses (negative prof-
its, in M DKK) across the test period of the data set.
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The lessened data availability for this type of information has induced our
analysis to be restricted to 2019 onward, effectively placing a particular emphasis
on the COVID-19 recession.

The test period for this data set thus consists of the last 3 years.

3.1.3 Other Banks

In addition to Danske Bank A/S (DK), Nykredit A/S (DK) and Commerzbank
AG (DE) were also studied. These financial institutions all place among the
top 50 largest European banks by total assets as of April 14" 2023: rankings
24, 39 and 25 respectively (Mones and Taqi (2023)). Granted handpicked, this
subset may be viewed as a random sample from said larger category of 50 banks,
as no predispositions were tangled up in what was an extensive search process.
Rather, factors pertaining to data availability, including:

e banks not using the standardized approach;
e lack of missing or corrupt data;
and presentation quality, not limited to:

e graph type (scatter/bar plots are favored over line plots), resolution (higher
is preferable) and degree of clutter (lower is preferable);

e scale fragmentation (higher is preferable) and compression (lower is prefer-
able);

dictated considerations.

As should come as no surprise given the mildly lax disclosure requirements
constituting the EU MR4, the task of getting ahold of worthy P/L data is a
tedious one, demanding - on top of making certain the aforementioned prereq-
uisites are met - painstaking work be done to ensure data published in graphical
form is accurately extracted.

3.2 Non-parametric Estimation of ES

To estimate value at risk and expected shortfall for the data at hand, three
non-parametric approaches were initially employed, the first of which being ba-
sic historical simulation (henceforth BHS). For such methods, estimates are
derived from empirical loss distributions obtained through samples of historical
losses on an iterative basis. More precisely, a one-period-ahead (periods here
corresponding to trading days) forecast is obtained for the coming period ¢ given
the n portfolio losses in successive preceding periods, this for each period in the
test period. Put differently, the ensemble of observed losses in periods t — i:

lt,i, 1= 1,...,n
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S&P500 Return Data
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Figure 3: Time series of 5787 observations of the Standard and Poor’s 500 index
(SPX) daily returns, for trading days from 3"¢ January 2000 to 30" December
2022. Values are closing values. The period between red dotted lines constitutes
the first training set used for estimation.

Bank Profit/Loss Data
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Figure 4: Time series of 1264 observations of a large Danish bank’s hypothetical
daily profit and losses (764 actual - provided for illustrative purposes), for trad-
ing days from 5" January 2018 to 30" December 2022. The period between
red dotted lines constitutes the first training set used for estimation.
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S&P500 Data: MLE Normal Q-Q Plot

S&P500 Data: MLE Student's t Q-Q Plot
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Figure 5: QQ plots for S&P500 daily losses in the test period (5287 observations,
2002-2023) against fitted Normal (left chart)/Student’s t (right chart) distribu-
tions. KS test p-value: 1.55- 1046 (MLE Normal: Hj rejected at o/ = 0.10);
0.099 (MLE Student’s t: Hy rejected at o = 0.10). Note: 2.45 degrees of free-
dom for the Student’s t output from the fit (useful for Section 2.2.2).
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Bank Data: MLE Normal Q-Q Plot

Bank Data: MLE Student's t Q-Q Plot
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Figure 6: QQ plots for Bank daily hypothetical losses in the test period (764
observations, 2020-2023) against fitted Normal (left chart)/Student’s t (right
chart) distributions. KS test p-value: 4.58-10~? (MLE Normal: H, rejected at
o/ =0.10); 0.949 (MLE Student’s t: Hy not rejected at o’ = 0.10). Note: 2.75
degrees of freedom for the Student’s t output from the fit (useful for Section
2.2.2).

Graph lines run through 25" and 75" theoretical-sample percentile pairs.
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constitutes the available conditioning information up to time ¢ —1 (end of period
t — 1) that is relied upon to forecast both VaR, , and ES, in period ¢; this
procedure is repeated V¢ € [2002,2022] for S&P500 data (Vt € [2020,2022] for
Bank data): the test period. Hence, predictions under this specification call for
the implementation of a rolling window for training sets (in-sample data sets)
of size n. Consequently, forecasting and backtesting are not executed for the
period coinciding with the first rolling window.

For the S&P500 data, n was set as 500, corresponding to the number of
trading days in 2000 and 2001 combined. Regarding Bank data, n so too was
fixed at 500 for consistency’s sake. However due to the bank’s limited divulging
pre-2020, data points prior to Q4 2019 (for which exact values - which gener-
ally are seldom made available - were not published) were estimated by visual
inspection to the nearest 5M (concerns the first 185 observations in the data
set).

Additionally, in-line with the latest regulatory changes imposed under the
soon-to-be-enacted FRTB, an « of 0.975 was chosen for running all experiments.

3.2.1 BHS

To conduct BHS, each sample of portfolio losses (training set) is ordered by
magnitude in descending fashion to get sorted losses

5, j=1,..n

B>..>10

with /7 denoting the jth largest observed loss. From this resulting discrete
distribution, VaR is consequently:

VaRa7t = lf(lfa)-nJrlJ (18)

as the proportion of observations larger than this one is 1 —a. The floor function
applied to the index in the aforementioned formula ensures the inequality in
Equation 2 is adhered to when the index is not an integer.

ES, ¢ is finally calculated based on Equation 11, underpinned by the implicit
assumption that the observations in question are a realization of a random
sample from some underlying continuous distribution.

3.2.2 AWHS

The second method - age-weighted historical simulation (henceforth AWHS)
- differs from the first in that it takes into consideration how recent historical
losses are in relation to the estimation period ¢, attributing them distinctive
weights, starting with the latest one, which is given weight

1-A

T 0<A<1 (19)

We—1 =
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and decreasing exponentially with age beyond that such that in general we have:
Wi =N oweq, i=1,...,n (20)

with A the decay factor. It is worth noting that w;ll is by construction equal
to the n'* partial sum of the geometric series specified by coefficient a = 1
and common ratio 7 = A, i.e. w; ] = s, = >, A7 (valid provided 7 # 1).
The reasoning for such a choice is that summing over all weights in the sample
yields w;_1 - $p, which reduces to 1 under this parametrization and enables the
interpretation of said weights as probabilities. It is thus clear that this method
places less likelihood on observations having occurred longer ago.

Only once weights have been tied to their respective losses is the sample
sorted. VaR stemming from AWHS is then:

VaRy: =13, k=min (j P wi <1 a> (21)

the sorted weights evidently also being arranged according to loss magnitude.
Contrary to BHS, weights in AWHS are no longer equal to one another and of
value %

ES, ¢ is subsequently also obtained using Equation 11.

3.2.3 VWHS

The ultimate non-parametric method applied was volatility-weighted his-
torical simulation (henceforth VWHS), whereby historical losses are re-scaled
prior to being sorted to account for volatility clustering in financial markets, an
empirical phenomena affecting asset returns which has been documented exten-
sively in the finance literature and has led to the advent of time-varying volatil-
ity models such as the generalized auto-regressive conditional heteroskedasticity
model (dealt with in Section 3.3.1).

Ding and Clive (1996) compute the sample auto-correlation function py
pertaining to the time series of S&P500 daily returns from 03/01/1928 to
30/08/1991 at different lags k, and find that return magnitudes appear to be
persistent, in-line with swings between periods with varying degrees of financial
turmoil. As a matter of fact, they report k = 2705 as the first lag at which
pr < 0 for |ry| (a similar observation is noted for r2), while for r; this number
is already k = 2. The SACF for |r{| is also characterized by the authors as not
exhibiting exponential decay insofar as statistical significance is concerned.

Given what precedes, the logic behind this approach is to adjust loss observa-
tions in the training set in such a manner that their sizes become representative
of the estimation period t’s volatility, and hence reflect current market condi-
tions. A way one could contemplate this is as though the observed losses were
to have occurred during the (future) period succeeding the last observation.

Re-scaled losses are in this context defined as:

Ot

r .

i, =— L, i=1.,n
Ot—i
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Once the re-scaling completed, the remaining procedure follows that used in
BHS, beginning with the sorting process to end up with the I7"s.

3.2.4 EWDMA Conditional Volatility Model

In order to implement VWHS in practice, a volatility model is needed to output
volatilities for each period in the loss sample and forecast next period’s volatility.
For this essay, the exponentially-weighted moving average (henceforth
EWMA) model was chosen for this purpose.

As for the initial setup, a constant mean model was assumed:

ly=p+e, tel (22)

with p estimated as Z;, the sample mean of the observed losses.

In the same vein as AWHS, the EWMA model makes use of the exponentially
decreasing weights in Equation 20, here to improve upon simple historical vari-
ance by defining the one-period-ahead conditional variance as the age-weighted
average of the past n squared deviations from the mean:

O'tz = Z wt—ief—i (23)
=1

which can be shown to be approximated as:
o2~ (1=N -, + 02, (24)
provided n » 1:

of —A-of =
I-X 5 2 n—1_2 2 2 2 n_ 2
m[et,1+)\-et,2+...+)\ e, — (A g+ AT e g+ AN e, )]
1=
S 1-An
2

Equation 24 is used recursively to arrive at o?_,,,...,07 successively, with
€—n—1 = 0 and 07, | = s? (sample variance of the observed losses) having
been selected to begin the recursion. Said recursion was started anew for every
forecast in the test period (performed on the same rolling window used for each
VaR/ES forecast pair), meaning 1 and o7, _; were repeatedly updated.

Equation 23 is the exponentially-weighted variance estimator by virtue of
the error variance in Equation 22 being equivalent to the loss variance, and
€;—; = 0 by construction.

Based on RiskMetrics (Longerstaey & Spencer (1996)), a value of A ~ 0.9908
was chosen in this essay ((see Appendix 7.1)).

[ = A" el ~ (1 =X) ey

The ES estimates derived from the three methods are presented graphically
on the following page in Figure 7.
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S&P500 - Non-parametric Estimation Methods
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Figure 7: FRTB. S&P500 negative returns, 97.5% expected shortfall one-
period-ahead forecasts spanning over the test period for non-parametric esti-
mation methods - based on a rolling window comprising of 500 trading days.
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Figure 8: Basel 2.5. S&P500 negative returns, 99% wvalue at risk one-period-
ahead forecasts spanning over the test period for non-parametric estimation
methods - based on a rolling window comprising of 500 trading days. Figure for
comparative purposes.
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3.2.5 VIX Conditional Volatility Model

Implied volatility models may of course be used in lieu of historical ones such as
EWMA, and the (inherently latent) volatility backed out from the Black-Scholes
option pricing model by setting a given option’s current market price as the
Black-Scholes price. An example of one such relative measure that is commonly
used would be the value of the CBOE Volatility Index (VIX), serving as a proxy
for stock market participants’ anticipation of volatility based on S&P500 index
options.

To implement the model in a manner akin to that proposed in the context
of VWHS by Nossman and Vilhelmsson (2014), we define (estimation period)
volatility forecasts for re-scaling losses in a training set as

oy = VIXEW te[2002,2022]
and past volatilities as
o1 = VIXZP™ e [2002,2022], i = 1,...,n.

More precisely, some calculation (e.g. assuming independence so as not to have
to deal with any covariance terms) to get from Index value to annualized volatil-

ity to daily volatility such as
VIX/100

V250

would constitute a given o; needless to say these computations are rendered
trivial considering they cancel out in the re-scaling ratio that is applied to losses
in VWHS.

Opening values are thus required from the first trading day of 2000 to the
penultimate trading day of 2022, while closing values (Figure 9) are needed from
the ultimate trading day of 2001 to the penultimate trading day of 2022.

In 32 instances for the Bank data (0 for the S&P500 data) did a Bank
trading day t not have a VIX counterpart. In these limited cases, the last
available VIXC%¢ was used for both VIXZP" and VIXClose,

ES estimates generated with this alternative to an EWMA model are illus-
trated with Figure 10.

3.3 Parametric Estimation of ES

To complement the non-parametric methods, a selection of parametric ones are
elaborated upon in what follows, all of which are made sensitive to volatility
clustering by infusing them with a Gaussian-GARCH(1,1) model, the summary
of which we preface the methods with.
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Figure 9: The Chicago Board Option Exchange’s CBOE Volatility Index (VIX)
closing values used as next-day forecasts, 315 December 2001 - 29t December
2022. Data source: Yahoo Finance.
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Figure 10: FRTB. S&P500 negative returns, 97.5% expected shortfall one-
period-ahead forecasts spanning over the test period for the VIX-VWHS esti-
mation method - based on a rolling window comprising of 500 trading days.
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S&P500 - Non-parametric Estimation Methods II
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Figure 11: Basel 2.5. S&P500 negative returns, 99% value at risk one-period-
ahead forecasts spanning over the test period for the VIX-VWHS estimation
method - based on a rolling window comprising of 500 trading days. Figure for
comparative purposes.

3.3.1 Gaussian-GARCH(1,1) Conditional Volatility Model

Before covering the parametric methods that were undertaken, we briefly circle
back to the generalized auto-regressive conditional heteroskedasticity
(henceforth GARCH) model, which was used to refine certain methods in order
to capture the volatility clustering effect touched upon in Section 3.2.3. This
model of changing volatility, put forth by Bollerslev (1986) as a natural extension
of Engle’s 1982 ARCH model, is utilized in this essay in its uni-variate constant
mean form, where the linear regression model for losses is (note that GARCH
is estimated by maximum likelihood):

Yyr=p+e, teL (25)
with a GARCH(1,1) process characterizing Gaussian innovations:

|1 ~ N(0,02)

) 26)
iid (
€ =0t M, e~ N(0,1)
0’,52 = oo +Qq - 6?,1 + B - Ut2—1 (27)
with
st. ag>0, 1,8, =0 (28)

needed to ensure positive variance and €;—; the information set (the training
sets to estimate the model in this essay). The error (or innovation) variance
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in GARCH is thus written as an ARMA model instead of Engle’s original AR
specification. Further, Bollerslev (1986) highlights GARCH’s pragmatic utility:
notably its less restrictive lag quantity requirement (lower orders being feasi-
ble) as well as increased preservation of historical information through its MA
component.

The conditional variance is found as:

JtQ = var(e|Q—1) = Et_l(ef) — ]Et_l(et)z = Et_l(e?) (29)

and exploiting the expectation operator’s distributive property given that all
components of o7 are known at time ¢ — 1, and the resulting expectation of the
stochastic part IE(n?) dropping out by reducing to 1.

Substituting the unconditional expectation in place of its conditional coun-
terpart in Equation 29, one arrives at:

0% = E(e}) = cov(of,17) + E(o7)E(n}) = E(07) (30)

which if performed on Equation 27 yields the process’ unconditional (V lags)
variance

2 Qo
cf = ——m——. 31
l—a1 =5 (81)

As Bollerslev (1986) states, making certain coefficients
st a;+ 01 <1 (32)

suffices in guaranteeing ¢; be stationary with E(e;), cov(es, €5) = 0 < 00, Vit # s.
Equation 31 can be seen tending to infinity as this sum approaches 1, violating
the necessary finite constant variance condition.

Analogously to the manner in which the EWMA model was conducted in Section
3.2.4, GARCH parameters were updated daily in rolling window-style estima-
tion to obtain one-period-ahead analytical forecasts of error variances (in the
constant mean model equating to return variances) for the entirety of the test
period. The different ¢;_,,_1,02 ,,_; too were set as they had been before to
start the manual recursions of Equation 27.

In 405 of 5287 instances in the test period for the S&P500 data (0 of 764
instances for the Bank data), the model fit output did not respect Equation 28
and/or Equation 32. In these cases, said fit was discarded, and the variance fore-
cast made into a j-day-ahead one on the basis of the last available satisfactory
fit from j training sets ago (with a maximum j of 28 recorded):

Ei—1(07y;) = (a1 + B1) (0] —0®) + 0* ——0® je L (33)

j—0
which when j = 0 is simply the one-period-ahead forecast:

Et71<at2) = 0’?. (34)
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Equation 33 can be derived by recognizing that Et,l(atzﬂ_l) = Et,l(efﬂ»_l)
(from Equation 30) and iterating backward the resulting f(E;—1(07,;_;)) until
one is left with f(IE;—1(c?)) after that:

Ei_1(07y;) = a0 + (o1 + B1)Ee1(07 ;1) = -

N - : 1— (a1 +B1)!
_ 1—1 Jj 2 .

(e} ;(al + 61) + (Oq + ﬁl) Oy o 11— (al n ﬂl)
before spotting Equation 30 and rearranging. As mentioned when applying
AWHS in Section 3.2.2, the final transition above re-expresses the j** partial
sum of the geometric series specified by a =1 and r = a1 + 81 < 1.

Variance forecast outputs from both the GARCH and EWMA model for
S&P500 data (only) are displayed in Figure 12.

+ (041 + 51)j0't2
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Figure 12: S&P500. Squared returns (provided for appreciation of return mag-
nitude - irrespective of sign - over time), (one)-period-ahead variance forecasts
spanning over the test period for GARCH(1,1) (Gaussian-n; model) and EWMA
models - based on a rolling window comprising of 500 trading days.

To close the discussion on GARCH, we overview the estimation procedure
for it, namely maximum likelihood estimation (henceforth MLE), which
optimizes distributional parameters maximizing the probability of a set of ob-
servations x;, ¢ = 1,...,n having been what they were. The so-called likelihood
function (objective function) is given as

L(z;0) = Hf(wi; 0) (35)

with f the p.d.f. (p.m.f. if discrete) of the underlying random variable X and
0 its vector of parameters. In practice, the log-likelihood function is of interest:

I(;0) = In L(x;0) = ) In f(:;0) (36)
i=1
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this due to the natural logarithm’s product, quotient and power properties
(while the point at which the optimum is attained remains unaltered due to

In being strictly increasing). 6 is thus obtained numerically by

max l(x;0). (37)

Given the error ¢; (here demeaned dependant variable) specification in Equa-
tion 26 (or equivalently y;|Q;_1 ~ N(u,0?)), we have that

2

n n 2
(€ 0) = Z In (2762) ™9 exp (—222> =-0.5 Z In27o? — Z St (38)
t t=1

2
t=1 t=1 O

0= (M7O[0,Oé1,ﬂ1>/, €t = f(,l,t), U? = f(a07a1751) vt.

Importantly, ¢; = oy - n; (Equation 26) by definition in the model, with the 7,
(here standardized dependant variable) being IID. The entire GARCH proce-
dure is repeated from scratch for each training set to get the one-day-ahead
volatilities (standard deviations) 6y, V¢ € [2002, 2022].

1; being the standardized dependant variable is rooted in the following prop-
erty of a Normal random variable’s X ~ N(u,c?) linear transformation ((see
Appendix 7.2)):

Y =a+bX ~N(a+b-pb* o).

Finally, it is worth noting that the forecasted mean for each training set is
effectively [i since constant mean is presumed (although this estimate is updated
with each new fit, hence the fi; notation in VaR/ES formulae below).

3.3.2 GARCH-N, GARCH-ST Models

Outputs from the GARCH (with Gaussian standardized errors: N(0,1)) volatil-
ity model and the associated mean model it is nested in produced above for each
training set served as scale and location parameters respectively to enhance ordi-
nary VaR/ES estimates from both the Normal distribution (shorthand notation
N(p,02)) and the Student’s t-distribution (shorthand notation ST(u,0%2,v)),
the latter despite being symmetric like the former allowing for increased tail
heaviness through its degrees of freedom parameter v, undoubtedly more apt
here given sample excess kurtosis (ex-post) results in Table 1/Table 2.
For the Normal distribution, from Equation 5 we have:

VaRe: = i + 61 - 71 (a) (39)

with ®~!(a) denoting z,, the a-quantile of the standardized N. Developing
Equation 10, ES is found to be (through integration by substitution):

$(@~" (o))

ESoyt = ju + 6
1—«

(40)
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with ¢ the p.d.f. of N(0,1).
Similarly, for the Student’s t-distribution:

VaRe: = fir + 67 - tas (41)
2 L fRasr(tas) Pt
ESat = [t + 63 - P (42)
with
o = ﬁf2-@.
124

This follows from the fact that the standardized ST has variance %5 (for v > 2)
and not 1.
v (not given by a Gaussian-GARCH model) was estimated as:

6
U=+ 4’ T = maX(keza 10_4)
€T

with kep. = go the training set’s sample excess kurtosis. A minimum threshold
for excess kurtosis (here a very small arbitrary number) was thus imposed on
this measure for all training sets to ensure a positive degrees of freedom (here
> 4), and in-line with the stylized empirical fact of returns tending to be lep-
tokurtic. Such a constraint does not prove to be too stringent for the S&P500
data, where realized k... € [—0.21,23.02] (211 of 5287 non-positive values), and
inconsequential for the Bank data, where k... € [2.06, 34.59].

Had a GARCH model with Student’s t standardized errors (ST(0, 1,v)) been
implemented instead, this supplementary parameter could have been directly
estimated along with o*, however this alternative was not deemed suitable (and
was consequently not used for this essay) given that for at least the S&P500 data,
the number of training sets where the fit did not satisfy stationarity requirements
increased, approximately doubling vis-a-vis the Gaussian version (total: 405 to
812, longest streak: 28 to 52).

3.3.3 GARCH-GPD Model (POT)

To contrast previous models, the Generalized Pareto distribution (shorthand
notation GPD(¢,5)), used in the context of the peaks-over-threshold (hence-
forth POT) method, was also opted for, not least for its polished reputation
in the field. POT does not require making an explicit assumption as to which
distribution losses L ~ F' follow, nor is it overly data-intensive, and holds for
a plethora of underlying distributions including the aforementioned N and ST
(McNeil and Frey, 2000). Rather, it hinges on the unspecified distribution’s
extreme values through the conditional excess distribution function,

Flu+y)— F(u)

Fu(y)=P(L—u<y|lL>u)= S() ’ (43)

0 <y <supdom(f)—u
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which characterizes losses exceeding some high threshold (or I quantile) u » [
(S being the survival function of F, i.e. S(z) = 1 — F(z) = P(L > z)).
The last equality above follows from the conditional probability equating to the
probability of the intersection of the two events over the conditioning event’s
likelihood. For this essay, u was set to the 95" percentile of each training
set/loss sample.

Leaning on the Pickands-Balkema-De Haan theorem, F,(y) is approximated
by the GPD’s c.d.f. with the same evaluation, said distribution commonly being
used in modeling an underlying distribution’s right-tail:

1

€

Fuly) ~ Geply) =1 - (1 " 5;) . (44)

F(u) is estimated from the random sample at hand as 1— 5, the proportion
of observed losses below (not exceeding) the threshold, with N =30 01, sy
and N = n.

The p.df. gep= g Gf 3 is subjected to MLE (Equation 37) to get parameter

estimates f A, but critically only over the N, large loss observations and not
N since the approximation in Equation 44 pertains to F, and not F. Along
with excesses over the threshold being y = [ — u, we now effectively have after
rewriting Equation 43:

F(l)y—1+ 2
Ny

N

GE,B(Z — u) = (45)

From Equation 4, it is clear that F(I) = P(L <) = o when | = VaR,.
Thus, rearranging Equation 45 under these conditions yields the VaR estimator:

V&Ra=u+§<<1]\>i(1—a))_é—l>. (46)

Applying Equation 12, the corresponding ES is (see Appendix 7.3):

Es, — VaRa—FBA—f-u.
1-¢

To arrive at dynamic VaR/ES estimates, the procedure proposed by McNeil
and Frey (2000) within the conditional EVT framework was implemented.
What this entails in this work is taking the Gaussian-GARCH(1,1) model
from Section 3.3.1 ("Gaussian’ signifying that the IID standardized error n term
follows a standard N) which was used to generate unconditional mean and con-
ditional variance forecasts, and assuming the (white noise) standardized resid-
uals themselves to be GPD-distributed beyond some u. From Equation 25 and
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Equation 26 we can express the standardized residuals after the fit as

Nt—i = %7 (A la R L4 (48)
Ot—i
with y as usual the portfolio loss. The final step involves re-scaling Equation 46
and Equation 47 (each of which being applied to the standardized residuals) as
follows:

VR, = ju +6.-VaRe " (i) (49)
N ~ GPD
ESai=[w+0,-ES, (7). (50)

As a closing remark, the ¢ parameter caused some inconveniences when it
came to the denominator of Equation 47, this in 4 instances bunched in the first
half of March 2022 for the Bank data (0 instances for the S&P500 data). In
two cases, parameter values slightly greater than 1 resulted in very large (not
to mention negative) ES estimates, while in the two others values slightly less
than 1 led to aberrant spikes in ES.

To remedy this minor issue, any f > (0.8 was therefore ignored, and the last
appropriate fit’s value used in place of it.

Figure 13 depicts the evolution of dynamic ES over the course of the test pe-
riod, together with previous parametric results. In general, it is noticeable that
the most conservative estimates are those from the GPD, while the least so are
obtained using the N.

Figures for Bank data are not provided here, but all VaR and ES estimates
were inspected to ensure no computational abnormalities were inadvertently en-
countered.
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S&P500 - Parametric Estimation Methods
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Figure 13: FRTB. S&P500 negative returns, 97.5% expected shortfall one-
period-ahead forecasts spanning over the test period for parametric estimation
methods - based on a rolling window comprising of 500 trading days.
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Figure 14: Basel 2.5. S&P500 negative returns, 99% value at risk one-period-
ahead forecasts spanning over the test period for parametric estimation methods
- based on a rolling window comprising of 500 trading days. Figure for compar-
ative purposes.
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4 Results

In this section, ES backtesting results across VaR/ES estimation models (or
methods) and years are presented, this for the stock index and multiple banks
referenced previously.

In order to facilitate the interpretation of these backtesting results, we define
a given estimation model m’s relative score as follows:

Score,,, =

. 22,m . Sd(ZZ,m,)
0.5]1—min (max (NICJ\HG*,O> ,1> + 1 — min W’l
%2,0.01% %2,0.01%

€ [0,1]

placing equal emphasis on both the test statistic realizations’ mean not straying
too far below zero - the expectation of Zs ,,, under Hy (fully penalized once be-
yond the relevant simulated critical value at the 0.01% significance level and not
whatsoever if = 0), and low propensity for underestimation as captured by the
sample’s semi-deviation (fully penalized once as large as the arbitrary distance
from 0 to the relevant critical value at the 0.01% level), thus incorporating both
a measure of centrality and dispersion.

Needless to say, the higher the score, the better performing and the more
desirable the model. Despite the critical value specified in the score formula
varying between data sets here, these variations are slight. Moreover, their use
in defining proportions (relative) in our estimation make scores comparable be-
tween data sets.

Starting with the S&P500 data set, Table 3 regroups the values of the Acerbi
and Szekely (2014) Test 2 test statistic (cells tagged in pink do not relate to ES
backtesting and are explained in Section 4.1). From these a key hallmark of any
'good’ model revolves around avoiding very strong statistical significance (here
in terms of underestimation). More specifically, this involves not ending up in
the dreaded ’red zone’ (as defined in the Basel traffic light test), something that
would carry the most severe minimum capital requirement adjustment (imposed
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1.B 2. AW 3.E-VW 4 V-VW 5.G-N 6.G-S 7.G-GP

2002 0.81%  —0.47 —0.45 —0.29 —0.01 0.08 0.05
2003 0.71 0.84 0.86 0.35 0.27 0.32 0.28
2004 1.00 0.66 0.29 0.10 —0.29 -0.17 0.07
2005 0.52 0.09 0.05 —0.52 0.22 0.24 0.40
2006 ~0.01 —0.05 —0.18 —0.25 —0.07 —0.05 —0.06
2007 [-2.38%***_1.30%* ] 50%* _—1.40%* _—2.29%kkE_1 gtk 1 g1 Nk
2008 [—4.24%F*E_q Q7EEE _086*  —0.99% —1.36%* —-1.11* —-0.67
2009 0.76 1.00 1.00 1.00 —0.35 —0.05 0.42
2010 1.00 0.54 0.31 0.45 —1.03*  —0.75 0.22
2011 0.77*  —0.61 —0.53 —0.85%  —1.42%* —1.02* —0.12
2012 1.00 0.86 0.76 0.40 —-0.19 —0.03 0.27
2013 0.89 0.47 0.55 —0.11 —0.34 —0.17 0.12
2014 +0.49 —0.45 —-0.71 —0.47 —1.20%* —0.89* 0.00
2015 -0.85*  —0.56 —0.24 —0.44 —1.82%#* _1.58%* —0.21
2016 0.17 0.33 0.49 0.19 —0.14 —0.02 0.44
2017 1.00 0.47 0.40 0.30 0.16 0.27 0.39
2018 |-2.52%***_1,00*  —1.14%% —1.42%% _209%***_151%* —0.77*
2019 0.26 0.40 0.47 0.20 —0.62 —0.39 0.38
2020 —2.25%***_0.88*  —0.93* —0.40 —2.10%##*_1 51** —0.51
2021 1.00 0.73 0.56 0.74 —0.75 —0.45 0.18
2022 |-1.10* —0.80* —0.97* —1.59%* —1.29%* —(0.91* 0.12
Green | 0.62 0.76 0.76 0.76 0.57 0.62 0.90
Amber | 0.19 0.24 0.24 0.24 0.29 0.38 0.10
Red 0.19 0.00 0.00 0.00 0.14 0.00 0.00

Z2 —0.34 —0.08 —0.08 —0.24 —0.80 —0.56 —0.03
sd(z2) | 1.80 0.93 0.77 0.72 0.93 0.79 0.73
Score |(0.47) 0.75 0.79 0.76 (0.57) 0.66 0.81

Table 3: S&P500. 2002-2022. ES severity backtesting. Ex-post test period
MLE NIG loss fit yields, 5%, 1%, 0.1%, 0.01% - critical values (simulated Zs
distribution quantiles): —0.75, —1.13, —1.60, —2.01 respectively (see Appendix
7.4).

Table contains Z5 test statistic realizations across estimation methods and eval-
uation periods, with its sample mean and semi-deviation for BHS, AWHS,
EWMS/VIX-VWHS, GARCH-N/ST/GPD. Note concerning statistical signif-
icance: (¥),(**),(¥*¥*),(****) denote p-values p < 5%, p < 1%, p < 0.1%,
p < 0.01% respectively. Invalidated models have scores shown in parentheses.
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1B 2AW  3E-VW 4V-VW 5GN 6G-S 7.G-GP
2019 | 0.26 0.40 0.47 020 —0.62 —0.39 0.38
2020 2.25%*F*_088%  —0.93% 040 = —2.10%¥***_151%* —0.51
2021 | 1.00 0.73 0.56 074  —0.75  —0.45 0.18
2022 |1.10%  —0.80% —0.97% —1.59%* —1.29%* —0.91%* = 0.12
Green | 0.50 0.50 0.50 0.75 0.50 0.50 1.00
Amber | 0.25 0.50 0.50 0.25 0.25 0.50 0.00
Red | 0.25 0.00 0.00 0.00 0.25 0.00 0.00
zZ (052 —014 —022 026 —1.19  —0.81 0.05
sd(z2) | 1.29 0.71 0.73 0.94 0.65 0.50 0.55
Score [(0.55) OO 0.76 0.70 (0.54) 0.67 [086

Table 4: S&P500. 2019-2022. ES severity backtesting. Equivalent to Table 3
but on a restricted sample.

upscaling), while simultaneously putting the model’s authorization in jeopardy
(potential forced discontinuation).

Two models are found to effectively fail backtesting on the S&P500 sample:
BHS (4 red zone occurrences) and GARCH-N (3 red zone occurrences), both
of which grossly underestimated ES repeatedly. This is reflected in the com-
paratively low scores that they exhibit. As for the remaining models, those of
non-parametric nature stack up relatively evenly, all superior to GARCH-ST
but inferior to GARCH-GPD. However, two of said remaining models (AWHS,
GARCH-ST) pose a potential liability when considering different threshold lev-
els: this caveat is expanded upon in Section 4.1.

It is worthwhile noting that conclusions with regard to which models are
deemed unfit for use and (approximate) rankings by score do not alter drastically
when focusing on the most recent four (turbulent) years, as seen from Table 4.

4.1 Short Aside on VaR Severity Backtesting

The number of 97.5% VaR violations for models in Table 3 were 1)164,
2)141, 3)142, 4)157, 5)209, 6)203, 7)132. For comparative purposes (be-
yond the scope of this essay), had 99% VaR been backtested instead of 97.5%
ES, as is required under current regulation for internal model approval, 99%
VaR violations would have been of interest, amounting to 1)87, 2)70, 3)68,
4)90, 5)115, 6)82, 7)59 for the same data, with too many violations reflecting
systematic VaR underestimation.

To this effect, some cells in Table 3 are highlighted in magenta (= 10 99%
VaR exceptions recorded within year). This corresponds to the red zone, which
begins at min(z : F(z) > 0.9999), = € Z7, with F the c.d.f. of a Bin(n=250,
p=0.01). These color labels demonstrates that for the S&P500 data, two addi-
tional models (AWHS, GARCH-ST) are effectively invalidated when performing
a standard VaR backtest. Yet despite this glaring difference, the two backtesting
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approaches are largely congruent with one another, particularly when consider-
ing that Acerbi and Szekely (2014) state that using critical values z5 50, = —0.7
and 22 9.01% = —1.8 (which are more stringent than the ones identified through
simulation in this essay) "would perfectly do in all occasions”, owing to the
apparent threshold levels’ stability across distributions. Employing said more
general/’safe’ values as thresholds would also result in AWHS and GARCH-ST
models failing the 97.5% ES backtest in 2008 and 2007 respectively. Note that
GARCH-N would also fail in 2015.

Critically, one may notice that under these "all purpose’ critical values 23 59, =
—0.7and 23 g g1 = —1.8, a certain mismatch manifests itself between the Acerbi
and Szekely (2014) Test 2 (on 97.5% ES) and the Basel traffic light test (on 99%
VaR) for BHS (2018) and GARCH-N (2015), the latter not assigning the red
zone designation to the models (less stringent). The reverse is not observed
under this setting.

As a final comment, a compelling observation from the 99% VaR. backtest
lies in the maximum number of violations within a given year across the board
being 11, ignoring one egregious exception suffered by the grossly inappropriate
BHS model in 2008: 21 violations.

4.2 Results Pertaining to Trading Books

Next, results relating to individual banks are gathered after the processing of
data having been performed. A minor modification was nonetheless made: In
addition to what was asserted in Section 3.1.2 for Danske Bank, data for 2017
was also able to be collected, albeit needing to be estimated on the basis of
a graph contrary to subsequent years (dates were set to those of VIX trading
days for the year, seeing as the number of trading days in 2017 between the two
matched - something that was not the norm for the following years), enabling
the extension of the test period by one supplementary year (data farther back
in time was not available). Thus, 2019 was able to be appended (Table 5).

1.B 2.AW 3.E-VW 4 V-VW 5.G-N 6.G-S 7.G-GP

2019 [—1.47** —0.72 —0.47 —0.85* —0.92* —0.63 —0.77*
2020 1.19%* —0.29 —0.08 0.50 —0.02 0.15 0.02
2021 0.82 0.39 0.19 0.43 0.06 0.22 0.11

2022 [—-2.04****—0.70 —1.12%* —1.87*** —1.68%** —1.34** —0.82*
Green | 0.25 1.00 0.75 0.50 0.50 0.75 0.50
Amber | 0.50 0.00 0.25 0.50 0.50 0.25 0.50
Red 0.25 0.00 0.00 0.00 0.00 0.00 0.00
Z2 —0.97 -0.33 —0.37 —0.45 —0.64 —0.40 —0.37
sd(z2) | 0.69 0.38 0.53 1.05 0.76 0.68 0.43
Score |(0.58) 0.82 0.77 0.62 0.64 0.72 0.80

Table 5: Danske Bank A/S (DK). 2019-2022. ES severity backtesting. 5%,
1%, 0.1%, 0.01% - thresholds used: —0.74, —1.12, —1.57, —1.96 respectively.
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1.B 2.AW 3.E-VW 4 V-VW 5.G-N 6.G-S 7.G-GP

2019 0.75 0.70 0.74 0.77 0.85 0.86 0.73

2020 [-2.94%F**_1 5RFE 1 53%* (.55 —1.17** —0.87* —0.95*
2021 0.92 0.84 0.40 0.38 0.16 0.52 0.33
2022 [-3.38****_(0.96*  —1.23** _3.94**** (.32 0.42 0.15
Green | 0.50 0.50 0.50 0.75 0.75 0.75 0.75
Amber | 0.00 0.50 0.50 0.00 0.25 0.25 0.25
Red 0.50 0.00 0.00 0.25 0.00 0.00 0.00
z2  —1.16 —-0.25 —0.40 —0.84 0.04 0.23 0.07
sd(z2) | 2.01 1.07 0.99 3.11 1.21 1.11 1.01
Score |(0.24) 0.68 0.67 (0.30) 0.71 0.73 0.76

Table 6: Nykredit A/S (DK). 2019-2022. ES severity backtesting. 5%, 1%,
0.1%, 0.01% - thresholds used: —0.77, —1.16, —1.66, —2.08 respectively.

1.B 2.AW 3.E-VW 4. V-VW 5.G-N 6.G-S 7.G-GP

2019 1.00 0.75 0.86 1.00 0.23 0.28 0.85

2020 [-2.44%F**_1 30%*  _1.78%**  0.06 —1.63%** —1.19%* —1.19%*
2021 0.91 0.47 0.38 0.51 —0.12 0.18 0.15
2022 —1.09* 0.21 —0.16 —1.15%* 0.30 0.52 0.65
Green | 0.50 0.75 0.75 0.75 0.75 0.75 0.75
Amber | 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Red 0.25 0.00 0.00 0.00 0.00 0.00 0.00
Z2 —0.40 0.03 -0.17 0.11 —0.30 —0.05 0.12
sd(z2) | 1.52 1.34 1.61 0.89 1.32 1.14 1.31
Score |(0.50) 0.65 0.54 0.77 0.58 0.69 0.66

Table 7: Commerzbank AG (DE). 2019-2022. ES severity backtesting. 5%,
1%, 0.1%, 0.01% - thresholds used: —0.74, —1.11, —1.56, —1.93 respectively.

Results for the two remaining banks are exhibited in Table 6/Table 7. Note
that for Nykredit, a rolling window of size 488 (as opposed to 500) was used due
to early data availability restrictions - the exponential decay factor was adjusted
accordingly. In general, dates having had to be estimated were done so with
software and some manual adjustments to ensure no repetitions. The accuracy
of these could only affect the VIX-VWHS model, which is dependent on dates;
however the extent of this impact should not be overwhelming.

For all three of these data sets, BHS is esteemed to be invalid once more,
evidently not overly reactive/adaptable, swaying back and forth between un-
derestimation and overestimation-ridden years. It also consistently posts the
worst scores of the bunch. The only other model to fail is VIX-VWHS (yet
paradoxically being the best-performing model on the Commerzbank data set),
this on the Nykredit data set (although under the aforementioned ’all purpose’
critical values it would not be satisfactory in 2022 for Danske Bank either).

Of the non-parametric models left, AWHS appears to edge out EWMA-
VWHS and be quite a strong model overall. For parametric models, GARCH-
GPD is generally found to be superior to GARCH-ST (first noted in the In-
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dex case, this result follows suit here, though the discrepancy between these
two models is less marked here). However, contrary to the S&P500 data set,
GARCH-ST tends to stand its ground score-wise against the two viable non-
paramertic alternatives, perhaps not as poor as initially painted out to be.
While GARCH-N holds for all bank data sets, it remains on the weaker end of
the spectrum. The results for bank data can be summarized as done in Table
8:

B AW E-VW  V-VW G-N G-S G-GP

Avg.
G| (0.44) - 0.66 (0.56) 0.64 0.71 -

Table 8: Average scores posted by models across bank data sets, illustrating
that G-GP, G-S and AW (on these samples) are a step above the rest.

Lastly, we remark that once again, the backtest on 99% VaR looks less harsh
than Test 2 (BHS in 2020 for Nykredit not classified as belonging to the red
zone, likewise for VIX-VWHS in 2022 for Danske Bank if ’all purpose’ critical
values are used for Test 2).
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5 Conclusion

This essay has delved into the question of which ES estimation method is most
apt at producing results in recent years that invariably do not underestimate
97.5% ES, thereby fully concentrating on regulatory concerns.

An initial observation stemming from this research is BHS’s frequent failure
to properly model risk (as characterized by not ending up in the Basel red zone),
be it for the S&P500 Index or the trading books considered - a major cause for
concern that calls into question its feasibility. This model should therefore
not be deemed appropriate for any usage of serious practical intent, nor do we
suggest it be focused on in potential future extensions to this research.

Interestingly, despite the GARCH-N model failing over the S&P500 sample
much like BHS, it proves tenable for each bank data set, albeit lackluster and by
and large being the weakest of valid models. The reverse is true of VIX-VWHS,
which sees greater difficulty in adapting to some banks’ losses (its underlying
volatility model perhaps not entirely generalizable), yet still performing very
well on one of them, this dichotomy making for somewhat inconclusive results.

EWMA-VWHS perceives a noticeable drop in performance when transferred
from index to bank data, while the only other viable non-parametric model on
both index and bank data - AWHS - does not, remaining high-scoring through-
out.

It is however a parametric model that appears to be the safest alternative
across the board: GARCH-GPD, although the difference between it and com-
peting models is less marked on the bank data. As for the GARCH-ST, an
increase in terms of performance and ranking is observed when applied to the
bank data.

In short, generally speaking, GARCH-GPD and AWHS were found to be
the most reliable models across sampled data sets for the time period that was
examined (2019-2022).

Lastly, we note that results regarding the VaR backtest (based solely on the
number of 99% VaR violations) suggest it is less inclined toward rejecting esti-
mation models (and thus more forgiving) than Acerbi and Szekely’s (2014) Test
2, something that is exacerbated when a stricter ’all purpose’ 0.01% significance
level critical value is used in Test 2 when backtesting (97.5%) ES.
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One exception to this rule (for the S&P500 full sample (2002-2022)) nonethe-
less stands: AWHS and GARCH-ST being rejected by the VaR test but not the
ES test (the ES test under the aforementioned ’all purpose’ critical values how-
ever also rejects these models).

Yet while AWHS and GARCH-ST present a tangible concern under these
conditions given their failure during the 2007-2008 financial crisis for the S&P500
data, one bad year amongst twenty-one each is nowhere near as worrying as the
four suffered by both BHS and GARCH-N (Table 3). Furthermore, the severity
of the backtesting 'breaches’ are less pronounced for the former pair. This
exception does not factor into the final analysis of this conclusion.

5.1 Limitations and Possible Extensions

To conclude this essay, we recap the principal delimitations this work was con-
ducted under and provide some potential ideas and pointers as to how it could
be expanded upon. Note that we recommend any effort to do so be focused on
a subset of the following suggestions, as the implementation of any one specific
extension can be time-consuming. These can be grouped into distinct buckets:

Data: For the Danish banks selected, data did not extend back farther than
2017, such a limited supply not anything out of the ordinary. From a time allo-
cation perspective, a trade-off exists between obtaining bank data sets spanning
longer time horizons and obtaining a greater number of data sets, with both
of these variables aiding in generating more representative backtesting results.
Having restricted our analysis to encapsulate a period of high uncertainty -
where models tend to be shakier in general - we believe our results offer insight
regardless.

Methods: As far as estimation is concerned, a relatively wide and balanced
assortment of relevant methods was explored here. Still, it does not remotely
come close to exhausting the options proposed in the literature. For instance,
a range of more sophisticated variants of volatility/mean models could even
constitute a focal point.

Backtests: This research piece only calls upon one backtest to evaluate ES
predictions, the second test of Acerbi and Szekely (2014). Additional backtests
may be run in order to assess whether different backtests produce similar out-
comes. Alternatively, backtesting independence to complement severity testing
and push already decent models (from an underestimation point of view) would
be impactful (e.g. Du and Escanciano’s (2017) conditional test, requiring the
storage of daily predictive distributions).

Parameters: One example that immediately comes to mind is rolling win-
dow sizes, although plenty more could be tweaked. If model-related, the model
in question should ideally be a solid one to begin with (one having cleared back-
testing for underestimation).
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7 Appendix

7.1 Choice of Exponential Decay Factor (AWHS, VWHS)

RiskMetrics approximate

n 1—\ n .
;wt_izl_)\n;)\ 1:1

in Equation 23 as
n

1=N)> A t~1

i=1
but since in actuality

0 0 1

(1—A)Z)\i‘1:(1—A)Z)\i:(1—)\)m:1

i=1 i=0
they define a tolerance level « (i.e. approximation error)

0 n

v=(1-2) [ZA“ZA“] =(1-2)

i=1 i=1

A= (1= A) A" YA = A,

s
3

=0

Taking In on both sides and solving for A leaves one with

1
A = exp (?)

Finally, v was set to 1% (n being 500).

7.2 Linear Transformation of a Gaussian Random Vari-
able

Let X be a random variable and g : R — IR a monotonic function with ¥ =
9(X). For g monotone increasing (¢'(x) = 0, Yz € dom(g)):

Fy(y) = Fx (g~ ()
fr(y) = dinyw) — fx(o' W) j—yg—%w
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by applying the chain rule, whereas for g monotone decreasing (¢'(z) < 0, Vx €
dom(g)) we get the corresponding survival function due to the reversal in in-
equality sign in the c.d.f.’s probability representation P(Y < y):
Fy(y)=1-Fx(9~'(y))
d

fry) =—fx(g ') @9’1(y)

and in general

fr(w) = fx(g™ () (;gg_l(y)‘ :

From this result, for linear transformation Y = a+bX, b # 0, X ~ N(u,0?):

-1 _y—a
9 ="

y—a _  \2
fY(y) = i : (2770’2)_0'5 exp <_(b)>

5] 202

= 2r0%0) P exp (_(y—(a+bu))2>

20202

7.3 Derivation of ES for POT

1

1
ES, = T o VaR,dx

«

e e ) [ ]
a[ o]

J‘m\m>

<)
-4

_ g R e
AT AR ¢
o 1-¢ B|(N *5. P e 4
! 5+ 3 l(\) 1 z(1-) 15]
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7.4 Backtesting Addendum

5% level 1% level 0.1% level 0.01% level
S&P500 —0.75 —1.13 —1.60 —-2.01
Danske Bank —0.74 —1.12 —1.57 —1.96
Nykredit —0.77 —1.16 —1.66 —2.08
Commerzbank —0.74 —1.11 —1.56 —1.93
Acerbi &

Selially —0.74 - - —2.00
MLE period Dist. KS test p
NIG(0.335, 0.034,

[2002, 2022] 0.007, —.001) 0.46

NIG(0.418, 0.043,

[2019, 2022] 28864, 0.307) 0.91
NIG(0.181, —0.017,

[2019, 2022] 5285, 0.025) 0.29
NIG(0.481, 0.032,

[2019, 2022] 2,716, —0.004) 0.97

N/A ~ST(0, 1, 5) N/A

Note on result replication: A seed value of 1 was set in R for each data set in
simulations. The 'fBasics’ package was used for NIG implementation.
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