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ABSTRACT 

 
 
This is a comparative study between two modern machine learning algorithms, the Support 

Vector Machine and Artificial neural network, and one traditional econometric model, the 

Logistic regression. The main objective is to compare their performance by classifying high-

growth companies. The study uses panel data from 156 manufacturing firms on the Swedish 

stock market between 2018 and 2021. The results show that in line with previous studies, the 

modern machine learning algorithms, Support Vector Machines and Artificial neural networks 

perform better in classification accuracy and misclassification rate compared to the logistic 

regression when classifying which manufacturing firms were high-growth during the four years 

studied. This study recommends adopting the Support Vector Machine algorithms for high-

growth classification modelling. 
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1 INTRODUCTION  

 

Entrepreneurs, policymakers, and investors are highly interested in anticipating which 

companies will experience high growth (Henrekson & Johansson, 2010; Mason & Brown, 

2013). High-growth firms have garnered much attention since David Birch’s pioneering 

statistical study in 1979 that sheds light on the vast impact these high-growth firms has on the 

economy, owing to their remarkable ability to generate employment, wealth, and significant 

contributions to innovation and productivity growth. A better capacity to forecast high-growth 

firms is essential for investors looking to direct investments towards promising firms, 

policymakers seeking to develop an effective framework to promote job creation, and 

entrepreneurs with aspirations for growth.  

 

However, as many previous researchers have concluded, the ability to forecast what firms will 

experience high growth is limited, “The most elementary ‘fact’ about corporate growth thrown 

up by econometric work on both large and small firms is that firm size follows a random walk” 

(Geroski, 2000: p. 169). If this statement holds, creating a model to classify these high-growth 

firms accurately should be challenging. 

 

There are numerous methods available to gauge the size and growth of firms. Assets, number 

of employees, value-added, profits, and revenue are all recognised approaches for assessing the 

size of an enterprise. Similarly, growth can be measured using various techniques, including 

relative and absolute growth, as well as unorthodox methods such as the “Birch index,” which 

is calculated by sorting a sample of businesses based on their annual employment growth rate 

over a specific period, typically one year. The firms are then ranked in descending order 

according to their growth rates. The index is created by summing up the cumulative percentage 

of employment growth contributed by each firm as one moves down the ranked list. (Delmar 

et al., 2003).  

 

This study aims to employ and compare the performances of three classification models: 

logistic regression, support vector machine (SVM), and artificial neural network (ANN). The 

object of the models will be classifying if a publicly traded Swedish manufacturing firm has 

experienced a high-growth rate, defined as a growth rate of 20% or above according to the 

OECED (2021), between 2018 and 2021. A panel of 156 manufacturing companies traded on 
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the Swedish stock market is considered. Dimension reduction is employed to combat 

overfitting due to noise and multicollinearity using Principal component analysis (PCA). The 

models are compared based on four measures, Accuracy, Misclassification rate, Specificity,  

Sensitivity and AUC-score, focusing on performance on test data. This study employs revenue 

and relative growth as firm size and growth measures.  

 

Numerous studies have been conducted to classify high-growth companies using logistic 

regression and artificial neural networks. For instance, Has et al. (2016) find that the more 

modern machine learning algorithms outperform the standard logistic regression regarding 

classification accuracy when analysing Croatian businesses over three years. They measure 

growth in terms of assets and use companies from various sectors to conduct the analysis. 

Similarly, Zhou & Gumbo (2021) conduct a similar study, incorporating another machine 

learning model, the support vector machine, to classify whether a firm had experienced growth 

during one year. They use small and medium-sized firms from the manufacturing industry in 

South Africa. The same conclusion is drawn, demonstrating that the classification abilities of 

the machine learning models (SVM and ANN) outperformed that of logistic regression.  

 

This study aims to classify whether a company is “high-growth” during a four-year period 

using revenue growth instead of asset growth, as used in Has et al. (2016). The reasoning for 

this choice instead of employment or asset growth is, as according to Hermelo & Vassolo 

(2007), there is a challenge when measuring growth in terms of employment because it tends 

to be biased against capital-intensive firms. On the other hand, using assets as a measure of 

growth rate discriminates against labour-intensive firms. 

 

The manufacturing industry in Sweden will be analysed, specifically publicly traded 

manufacturing companies on the Swedish stock market (NASDAQ). The choice of the 

manufacturing industry is justified for two reasons: First, revenue is a reliable measure of 

growth in the manufacturing industry since most companies primarily make money by selling 

products (Gebauer et al., 2006). Second, the Swedish manufacturing industry significantly 

contributes to the country’s economic growth, accounting for 20 percent of the country’s GDP 

and providing over one million employment opportunities. The manufacturing sector has 

traditionally been one of the mainstays of the Swedish economy, and it continues to be a 

significant contributor to the country’s economic growth accounting for 75% of Swedish 
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exports (Armelius, 2022). The Swedish manufacturing industry remains essential to the 

country’s economy and will likely continue to drive economic growth and employment 

opportunities (Administration, 2022). Therefore, classifying high-growth companies in this 

vital sector would be beneficial for investors and policymakers to make informed decisions 

about the prospects of manufacturing companies in Sweden. The study fills the gap in the 

literature by observing big publicly traded companies from one industry. Classifying publicly 

traded firms would be beneficial, especially to investors, since these companies are traded on 

another level compared to small and medium-sized enterprises. Previous studies, such as Zhou 

& Gumbo (2021), have looked at small to medium-sized manufacturing enterprises and found 

that modern machine learning algorithms, such as SVM and ANN, outperform logistic 

regression regarding classification accuracy and misclassification rate. Similarly, this study 

employs these algorithms to classify high-growth companies, contributing to the existing 

literature on the binary classifying 

power of classical statistical models compared to modern machine learning algorithms. 

 

This study differs from Has et al. (2016) as the variables employed for classification are 

selected based on the business and economic theory of firm growth and its determinants, along 

with some other financial measures and margins that have shown high importance in similar 

studies such as Witteloostuijn & Kolkman (2019). By selecting variables based on established 

theories and previous research, this study aims to improve the accuracy and relevance of the 

classifying models.  

 

The aim is not to investigate the causal effect of certain variables on firm growth or to test 

hypotheses about their marginal effects. However, some variables are included in this study 

due to displaying these effects in previous research. Instead, the focus is on comparing the 

classification accuracy as well as other measures of three models for classifying high-growth 

manufacturing companies on the Swedish stock market over four years 

 

The more advanced machine learning algorithms, such as the SVM and ANN, are usually 

deemed to have higher accuracy in classification problems, such as classifying high-growth 

companies, compared to the traditional logistic regression. This hypothesis is grounded in 

previous literature and also partly in the theory of firm growth, which indicates that multiple 

determinants can have positive or negative impacts on growth depending on many factors of 



 
6 

 

the firms analysed (size, country, sector, and their interactions can be complex) (Nassar et al., 

2014). Unlike logistic regression, SVM and ANN are semi-parametric models and do not 

impose a linear relationship between predictors and the target variable. This flexibility may 

allow them to capture these complex interactions more effectively (Charpentier et al., 2018). 

The result of this study further validates this. The SVM and the ANN has better accuracy and 

lower misclassification rate compared to the logistic regression on the test data, and the SVM 

could be argued as the best model for overall classification performance when classifying high-

growth manufacturing firms in Sweden, at least when observing the results from this study. 

 

The thesis is structured as follows: first, a section describing binary classification and 

prediction. Second, a literature review will be presented, comparing classical econometric 

models with machine learning algorithms, focusing on prediction and classification 

applications. Third, the theory of firm growth and its determinants will be discussed. Next, the 

data used in the study will be described, followed by a methodology section that outlines the 

three models (logistic regression, support vector machine, and artificial neural network), as 

well as the hyperparameter choices that have been made to build them. The results of the three 

models will then be presented, with interpretations provided. Finally, a discussion of the results 

and potential shortcomings in data, models and assumptions will conclude the thesis. 

 

2 BINARY CLASSIFICATION AND PREDICTION 

 

This section covers the basics of binary classification, prediction and evaluation measures of a 

binary classification model.  

 

Prediction and, in turn, forecasting start with binary classification, which involves classifying 

instances into one of two mutually exclusive groups. In this thesis case, this would be non-

high-growth firms and high-growth firms. The firms with high growth are coded as a 1, and 

those with non-high growth are coded as 0. 

 

The main goal of binary classification is to create a model that can correctly classify an 

observation class based on its properties. There are various essential ideas and methods 

involved in this process.  
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Linear classification is a common approach in binary classification. It assumes a linear 

relationship between the features and the class labels. The classifier aims to find a hyperplane 

defined by a weight vector w and a bias term b that separates instances of different classes in 

the feature space. The classification rule can be expressed as equation 1 below.  

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (1) 

 

Here, w^T denotes the transpose of the weight vector, and sign() assigns 1 for positive values 

and 0 for negative values. The decision boundary is defined as (𝑤𝑇𝑥 + 𝑏) = 0. 

 

In this thesis, one of the models employed is logistic regression, another prevalent technique 

for binary classification. Given its features, it models the probability of an instance belonging 

to class 1. The logistic function, or sigmoid function, is applied to the linear combination of 

features:  

 

𝑃(𝑦 = 1| x) = sigmoid(𝑤𝑇𝑥 + 𝑏) = 1/(1 + 𝑒−𝑤𝑇𝑥+𝑏) (2) 

 

The sigmoid function maps the linear combination (𝑤𝑇𝑥 + 𝑏)  to a value between 0 and 1, 

representing the probability of the instance belonging to class 1. The probability of an instance 

belonging to class 0 is 1- 𝑃(𝑦 = 1| x). The decision boundary is usually set at a probability 

threshold of 0.5. 

 

An important factor to consider is the feature selection for binary classification. Selecting or 

extracting features is crucial to obtain the relevant information from the data. Finding and 

selecting the traits that most significantly contribute to the difference between the two classes 

is required. Labelled data are used in the binary classification training phase. Observations 

containing class or category information are what constitute labelled data. 

 

The observations in the labelled dataset have known class labels and are used to train the model. 

During training, the model discovers the underlying patterns and connections between the input 

features and the related class labels. 

The model can be used to make classifications on unobserved data after training. In order to 

categorise the new observations into one of the two classes, the model analyses their feature 
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values and applies the learnt patterns. The projected class label indicates the observation’s 

membership in the specified class. 

 

Evaluation of binary classification models is essential to assess their performance and 

generalisation ability. Several evaluation metrics are commonly used (Hastie et al., 2009). 

The metrics used to evaluate the three models in this thesis are accuracy, misclassification rate, 

specificity, sensitivity and Area under the curve score (AUC). The mathematical interpretations 

for the measures are in Table 1. Accuracy describes the number of correctly specified instances 

out of the total number of instances. Misclassification refers to the incorrect assignment of an 

instance to a particular class in a classification task. It occurs when a model classifies the wrong 

class label. Sensitivity measures the proportion of actual positive instances correctly identified 

as positive by the model. It quantifies the ability of the model to detect positive instances or 

avoid false negatives. Sensitivity is the ratio of true positives to the sum of true positives and 

false negatives. Specificity measures the proportion of actual negative instances correctly 

identified by the model. It quantifies the ability of the model to avoid false positives. Specificity 

is the ratio of true negatives to the sum of true negatives and false positives. AUC is the Area 

under the curve in a plot with the True positive rate on the y-axis and the False positive rate on 

the X-axis. AUC is the probability that the model ranks a random positive instance more highly 

than a random negative instance over all possible thresholds. An AUC of 1 is the best possible 

model, and an AUC of 0,5 would mean the model is as good at classifying as a random coin 

toss (Lindholm et al., 2022). 

 

• True Positives (TP): The number of instances correctly classified as positive. 

• False Negatives (FN): The number of instances incorrectly classified as negative. 

• False Positives (FP): The number of instances incorrectly classified as positive. 

• True Negatives (TN): The number of instances correctly classified as negative. 
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Table 1: Mathematical interpretation of the performance measures 

Performance measure Ratio 

Accuracy (TP + TN) / (TP + FN + FP + TN) 

Misclassification rate (FP + FN) / (TP + FN + FP + TN) 

Sensitivity (True positive rate) TP / (TP + FN) 

Specificity (1-False positive rate) TN / (TN + FP) 

 

3 MACHINE LEARNING VS CLASSIC ECONOMETRICS 

 

This section explains the main distinction between classic econometric models, such as logistic 

regression, and modern machine learning algorithms, such as Support Vector Machines (SVM) 

and Artificial Neural Networks (ANN). After that, a review of relevant literature comparing 

these models will be presented. 

 

Econometric models are designed to estimate the parameters of a statistical model that best fit 

the data, while machine learning algorithms are first and foremost designed to learn a function 

that maps inputs to outputs. The main difference between classic econometric models, such as 

logistic regression and modern machine learning algorithms, such as SVM and ANN, is that 

econometric models are based on statistical inference. In contrast, machine learning algorithms 

are based on optimisation. In recent years, machine learning models have been found to be 

more effective than traditional econometric methods regarding predictions and classifications. 

What they gain in predictive and classification power, they, however, lose in explanatory 

power. They are also capable of handling much larger datasets. 

 

Economic theory has historically served as the foundation for econometric models, which are 

often parametric. Thus, conventional statistical inference techniques (such as maximum 

likelihood and the method of moments) are applied to estimate the values of a vector of 

parameters. Unbiased estimators are crucial because they allow for the creation of a lower 

bound on the variance (the Cramer-Rao bound), just like in statistics. Taylor expansions, the 

Law of large numbers, and the central limit theorem are all crucial components of asymptotic 

theory. Contrarily, non-parametric models in machine learning are frequently constructed using 
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nearly entirely data (i.e., no distribution hypothesis), and the hyperparameters (cost, penalty 

parameter, kernel function.) are improved via cross-validation. 

 

If a linear model can describe the connection between the variables, a well-described 

parametric model, such as logistic regression, should be able to make accurate classifications. 

In contrast, statistical methods derived from machine learning should perform better if the 

parametric model is incorrectly described because the connection between the variables and 

the class (in binary classification) is nonlinear and involves strong cross effects (Charpentier et 

al., 2018). 

 

In the article “A Machine Learning Approach to Forecast Economic Recessions—An Italian 

Case Study” (Giovanni et al., 2020), The authors attempt to predict the financial crisis of 2008 

in Italy by applying both classical econometric model such as the autoregressive model and 

standard ordinary least squares and compare it to several machine learning models. They found 

how the accuracy of the predictions is improved using the machine learning models in short-

term predictions. The same conclusion has also been shown when forecasting inflation, as in 

“Machine learning methods for inflation forecasting in Brazil: New contenders versus Classical 

Models where Araujo & Gaglianone (2023) concludes that no universal best model can be 

chosen, but with over 50 different models tested, the Machine learning models outperform the 

classic econometric models in terms of mean squared error. There has also been empirical 

evidence for long-term forecasting superiority. In Herrera et al., 2019 the comparison is made 

on prices for energy commodities coming to the same conclusion.  

 

Haselbeck et al. (2020) forecast consumer demand for horticultural products. They do this by 

predicting sales numbers. The results show that the nine machine learning algorithms, for 

example, the Lasso regression, Artificial neural net and Extreme Gradient Boosting, generally 

outperform the classical forecasting algorithms, such as the Exponential Smoothing and the 

Seasonal Autoregressive Integrated Moving Average, in terms of forecast accuracy, with a 

lower root mean squared error (RMSE) and mean absolute percentage error (MAPE). The 

article highlights the potential of machine learning models to provide more accurate and robust 

predictions for horticultural sales, which can help growers and suppliers to optimise their 

production and logistics planning.  
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Using demographic and financial performance Witteloostuijn & Kolkman (2019) compared a 

random forest analysis to a regular regression to compare the goodness of fit on firms 

originating from Belgium and the Netherlands. Their data had high variations in the growth 

rates, making the prediction challenging to capture with linear regression. They found that the 

random forest, a standard machine learning algorithm, fared three to four times better than the 

regular regression. The authors also concluded that their findings indicated that firm growth 

might not be as random as previously thought. 

4 FIRM GROWTH AND IT IS DETERMINANTS 

 

This section covers the literature and theory on firm growth and the possible determinants of 

firm growth and is the foundation for some of the variables used in the comparisons. 

 
 

4.1  Size 

 

Gibrat’s Law implies that firm growth is a random process, connoting that firm growth rate is 

similar for all enterprises in the market (Geroski, 2005; Stam, 2010). Put differently, Gibrat’s 

Law implies that a firm’s growth process is stochastic and not determined by internal or 

external drivers. However, subsequent studies have tested and largely rejected the validity of 

this theoretical model, as in Nassar, Almsafir, & Al-Mahrouq, (2014). It was found that in most 

of the manufacturing sector, Gibrat’s Law fails to hold, but for the service sector, Gibrat’s Law 

was valid. Furthermore, most empirical studies applied in developed countries rejected Gibrat’s 

Law. In the manufacturing sector in a developed country like Sweden, we would assume that 

the growth should be influenced by the size of the enterprise based on this information and 

should be a valid variable to classify high-growth firms. Building a model that can classify and 

predict firm growth should be challenging if it is a random process. 

 

4.2  Age 

 

The impact of firm age on growth rates is a topic of ongoing debate. Choi (2010) and Evans 

(1987) found evidence supporting the notion that younger firms have higher growth rates than 

older firms. This finding is consistent with the results obtained by Fizaine (1968), who 

conducted one of the earliest investigations into the relationship between firm age and growth. 
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Fizaine analysed the growth of establishments in the French region of Bouches-du-Rhone and 

observed a negative effect of age on growth. Furthermore, Fizaine found that the variance of 

growth rates tends to decrease with age. 

Numerous studies have also demonstrated a negative effect of age on growth at the firm level. 

For example, Variyam and Kraybill (1992) investigated US manufacturing firms and found that 

age negatively correlates with growth. Similarly, Geroski and Gugler (2004) examined large 

European companies, and Yasuda (2005) studied Japanese manufacturing firms, which also 

found that age negatively affects growth. These findings suggest that younger firms have higher 

growth rates than older firms across different countries and industries. 

 

4.3  Macroeconomic Factors 

 

The empirical literature on firm growth rates suggests that variation in firm growth is more 

significant across industries than across countries. Nonetheless, investigating the influence of 

macroeconomic factors on firm growth rates provides valuable insights. Researchers have 

examined the relationship between firm growth and the business cycle. Higson et al.  (2002, 

2004) analyses data on US and UK firms spanning over three decades and find that mean 

growth rates are sensitive to macroeconomic fluctuations. 

Cross-country differences in firm growth rates have also been explored. Beck et al. (2005) 

conducted a study analysing a size-stratified firm-level survey database encompassing over 

4,000 firms in 54 countries. They observe that firms in bigger, wealthier, and faster-growing 

countries tend to experience significantly higher growth rates. Additionally, they find a positive 

correlation between GDP growth rate and firm growth, indicating that firms tend to grow faster 

in economies with more significant growth opportunities. 

The impact of inflation on growth rates was also investigated in the study by Beck et al. (2005). 

The authors cautioned that their findings regarding a positive relationship between inflation 

and growth rates might reflect that firm sales growth is typically reported in nominal terms. 

 

4.4  Financial Performance  

 

Coad (2005) finds a statistically significant relationship between profit rate and sales growth 

for French manufacturing firms using OLS but no effect for the non-parametric analysis. 

Nevertheless, the magnitude of the coefficient is so tiny that he concludes that a firm’s profit 
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rate and growth rate are entirely independent. Bottazzi et al. (2006) find similar results in their 

analysis of Italian firms. However, in some empirical literature, these metrics have been shown 

to impact the prediction capabilities of the model used (Witteloostuijn & Kolkman, 2019). 

 

5 METHODOLOGY 

 
This section presents a theoretical foundation for the three models employed in this study, 

including an explanation of their fundamental principles. Additionally, it discusses the selection 

of hyperparameters associated with each model. 

 

All models are built and analysed in R, the packages used include: plm,glm,  

Caret, e1071, neuralnet.  

 

5.1  Logistic Regression 

 

Logistic regression is a binary classification model that predicts the class of instances using 

maximum likelihood estimation (Lussier, 1995). This model has been widely used in modelling 

firm growth, as Megaravalli (2017) demonstrated.  

 

log [
𝑃(𝑋)

1−𝑃(𝑋)
] = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝  (3) 

 

 

In the logistic regression model, p(X) represents the probability of the outcome (high-growth), 

β0 is the intercept, and β1, β2,…, βp are the model coefficients. X1,X2,…,Xp represent the 

drivers of growth performance (Equation 3). When applied to training and test datasets, the 

trained logistic regression model produces results ranging between 0 and 1, where 0 indicates 

non-high-growth, and 1 indicates high-growth. A cutoff point of 0.5 is used to determine 

whether a manufacturing firm in Sweden experienced a high-growth rate between 2018-2021. 

This means that a manufacturing firm with a p(X) value equal to or greater than 0.5 is classified 

as a high-growth firm, while those with a value below 0.5 are classified as non-high-growth 

firms. 
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5.2  Support Vector Machines 

 

Support Vector Machine is a popular machine learning algorithm commonly used in binary 

classification problems. It excels in handling high-dimensionalities in the data and works very 

well with non-linearly separable data (Cortes & Vapnik, 1995; Vapnik,  

1998). It aims to find a hyperplane that best separates the data points into two classes. The 

algorithm maximises the margin between the hyperplane and the closest data points of each 

class, known as the support vectors (Cortes & Vapnik, 1995).  

 

Selecting a kernel function is one of the essential choices while creating a Support Vector 

Machines model. According to Boser et al. (1992), the kernel function transforms the input 

space’s data points into a high-dimensional feature space where the data points are more likely 

to be linearly separable. Various kernel functions are available, including sigmoid, radial basis 

function (RBF), linear, and polynomial. The dataset and the issue being solved will determine 

which kernel function is used. The general kernel SVM is demonstrated by Awad and Khanna 

(2015) as per Equation 3:  

 

Κ(𝑥, 𝑢) = ∑ 𝜑𝑟(𝑥)𝑟 𝜑𝑟(𝑢)   (4) 

 

Κ(𝑥, 𝑢): This represents the kernel function, which takes two input instances, x and u, which 

are vectors and computes a similarity measure between them. 𝜑𝑟(𝑥)  and 𝜑𝑟(𝑢) term represents 

the mapping of instance x respectively u into the r-th dimension or feature in the feature space. 

r typically corresponds to the number of dimensions or features in the feature space. 

 

When the data can be separated linearly, the linear kernel function is frequently utilised since 

it generates the optimal hyperplane for separating the data points. Data that cannot be separated 

linearly can be handled using the polynomial kernel function by projecting the data points into 

a higher-dimensional space. 

 

The RBF kernel function is frequently used for non-linearly separable data because it supports 

intricate decision boundaries. Another alternative for non-linearly separable data is the sigmoid 

kernel function; however, it is less utilised than the other kernel functions (Boser et al., 1992; 

Cortes & Vapnik, 1995). 
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The cost parameter C (see Equation 6) determines the trade-off between maximising the margin 

and reducing the classification error. If C is greater, the margin will be less, but there will be 

fewer misclassifications, while if C is lower, the margin will be bigger, but there will be more 

misclassifications.  

 

The choice of kernel function and cost parameter will depend on the specific dataset and the 

problem being solved, and it may require some experimentation to find the optimal values. For 

this analysis, both the polynomial and the linear function were tested in the model. The linear 

function performed better and is used for the model comparison. Using cross-validation, the 

cost parameter chosen is 1.  

 

Κ(𝑥, 𝑢) = 𝑥𝑇 ∙ 𝑢 (5) 

𝐶 ∗ [∑(max (0,1 − 𝑦𝑖 ∗ (𝑤𝑇𝑥𝑖 + 𝑏))) +  𝜆 ∗ ||w||2] (6) 

 

The linear kernel (Equation 5) computes the dot product between the feature vectors x and u. 

Geometrically, the linear kernel measures the similarity or the degree of alignment between the 

two instances. It captures the notion of similarity based on the linear relationship between the 

features of the instances. Example: the vectors x and u represent the predictors for two 

manufacturing firms, Firm 1 and Firm 2. The dot product of these vectors will be large if the 

firms exhibit high similarity in their predictors, indicating common characteristics. 

Conversely, the dot product will be small if the firms are dissimilar, suggesting differences in 

their predictor patterns.  

 

The cost function (6) guides the training process to find the optimal hyperplane in the 

transformed feature space. C is the regularisation parameter, determining the trade-off between 

maximising the margin and minimising the classification errors.  

Σ represents the sum over all training instances. 

𝑦𝑖 is the class label of the i-th training instance(0 or 1). 

w and b are the hyperplane’s weight vector and bias term, respectively. 

𝑥𝑖 is the feature vector of the i-th training instance. 

λ is the regularisation parameter that controls the penalty for the magnitude of the weight vector 

w. It helps prevent overfitting by discouraging large weights. 
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Support Vector Machines (SVM) is an effective categorisation method for assessing business 

expansion (Zhou & Gumbo, 2021). It is desirable for predictive modelling jobs since it can 

handle non-linearly separable data and is resilient to noise. Based on this information, it should 

attain high levels of classification accuracy for firm growth (Awad & Khanna, 2015). 

 

5.3  Artificial Neural Networks 

 

Artificial neural networks (ANNs) are a machine learning technology that has gained 

popularity for resolving challenging classification issues like binary classification. ANNs, 

which can simulate nonlinear interactions between input and output variables, were inspired 

by the human brain and nervous system. This section will review some of the many decisions 

that must be made while creating an ANN for binary classification. The most important are 

network architecture, activation function and training algorithm (Goodfellow et al., 2016); 

LeCun et al.,2015); Shalev-Shwartz & Ben-David, 2014).  

 

Network architecture is the quantity and configuration of nodes or neurons within an ANN. 

Each layer of nodes in an ANN’s architecture can comprise one or more neurons. While the 

output layer generates the predictions for the network, the input layer receives the input 

variables. Intermediary layers, called hidden layers, take on the characteristics of the input 

variables. Given that 𝑥𝑖 is the ith input to the ANN node, 𝑤𝑖 the ith input weight, n the number 

of inputs, b the bias term and o the node output. Then to resolve a classification problem, 

Equation 7 is used and represents the Equation for one node in the network. 

 

 

𝑜 = 𝜎 ∑ (𝑤𝑖𝑥𝑖 + 𝑏)𝑛
𝑖=1 (7) 

 

Where; 𝜎(𝑥) =
1

1+𝑒−𝑥 (8) 

 

In this Equation, the sigmoid function (Equation 8) takes the weighted sum of inputs 

(represented as ∑ (𝑤𝑖𝑥𝑖 + 𝑏))𝑛
𝑖=1  as its argument and outputs a value between 0 and 1. The 

weighted sum is calculated by summing up the products of the input values (xi) and their 

corresponding weights (𝑤𝑖) and adding the bias term (b). 
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Equation (5) represents the basic computation performed by a single neuron in an ANN. In a 

neural network with multiple layers, the outputs of the neurons in one layer serve as inputs to 

the neurons in the next layer, and this process continues until reaching the output layer, where 

the final predictions or outputs of the network are obtained. 

 

A straightforward architecture with one or two hidden layers is frequently adequate for binary 

classification. Starting with a minimal number of hidden layers and gradually increasing them 

until the model performance stabilises or declines is advised by Goodfellow et al. (2016). The 

risk of overfitting the training data, which can result in subpar generalisation performance on 

new data, also rises with the number of layers. 

 

The network gains nonlinearity via activation functions, which enables it to describe intricate 

interactions between input and output variables. The data’s nature and the task’s difficulty 

influence the choice of the activation function. The ReLU (rectified linear unit) and sigmoid 

activation functions are frequently used. 

 

The sigmoid activation function is frequently employed in the output layer for binary 

classification since it generates a probability between 0 and 1, which may be thresholded to 

generate a binary prediction, ReLU or its variants are frequently chosen for the hidden layers 

since they are computationally effective and can avoid the vanishing gradient problem that 

might happen when using sigmoid or tanh. ReLU has been demonstrated to function effectively 

in reality and is a good default solution for many issues (LeCun et al., 2015). 

 

Based on the training data, optimisation algorithms are utilised to adjust the weights and biases 

of the network. ANNs frequently employ gradient-based methods like backpropagation. 

Concerning the network parameters, these methods compute the gradient of the loss function 

and update the network parameters accordingly. 

The binary cross-entropy loss function is a popular choice for binary classification since it is 

suitable for probabilistic predictions. The size of the dataset and the model’s complexity affect 

the optimisation algorithm that is selected. While Adam and RMSprop are chosen for larger 

datasets or more sophisticated models, stochastic gradient descent (SGD) is a common 
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approach for small to medium-sized datasets. A thorough description of optimisation 

techniques for machine learning is given by Shalev-Shwartz & Ben-David (2014). 

 

Several choices must be made regarding network architecture, activation functions, and 

training algorithms to build a practical ANN for binary classification. A simple architecture 

with two hidden layers, the sigmoid activation function in the output layer, ReLU in the hidden 

layers, and a gradient-based optimisation algorithm, such as SGD, can produce good results for 

many binary classification problems. Hence, these choices have been made in this analysis. 

There is also the concept of nodes in the layers of the neural network. The “Rule of thumb” 

(Bishop, 2011) was applied for this purpose, using two nodes per layer. 

 

6 DATA 

 

This section offers an overview of the data utilised in this thesis, including its collection 

process, pre-processing steps, and partitioning methodology. 

 

The data set consists of yearly financial and descriptive information for 163 publicly traded 

manufacturing companies in Sweden spanning nine years, from 2014 to 2022. The 163 

companies were isolated from the rest of the Swedish stock market by NACE code. NACE 

(Nomenclature statistique des activités économiques dans la Communauté européenne) is a 

statistical classification system used to categorise economic activities in the European Union 

(EU) and other countries that use the system. NACE classifies the companies that are in the 

dataset as manufacturing companies. 
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Table 2: Variable Description 

Variable 

(Predictors) 

Description 

Revenue  Total income generated by the manufacturing firm during a year. 

Number of 

employees  

Total number of individuals employed by the company that year. 

Age of 

Company 

Years that have elapsed since the company was founded (current year-year 

of foundation). 

Working 

Capital  

Difference between current assets and current liabilities 

Total Assets  Total value of the company’s assets, tangible and intangible assets. 

Total Equity  The total value of the company’s assets subtracting its liabilities. 

Current 

Ratio  

The ratio of the company’s current assets to current liabilities. 

GDP growth 

rate 

Percentage change in the value of goods and services produced by the 

Swedish economy. 

Inflation  The rate at which the general level of prices for goods and services is 

increasing, resulting in a decrease in the purchasing power of a currency. 

Interest rate The percentage charged by a lender to a borrower for the use of money 

(Styrräntan). 

Variable 

(Dependent) 

Description 

High-

growth-Yes-

No (HGYN) 

Firms with revenue growth of 20% or higher between 2018-2021 are coded 

as 1, while those below the 20% threshold are coded as 0. 

 

The choice of Revenue, Number of employees, and Age of the Company is due to these three 

variables’ presence in economic theory as described above. Working Capital Total Assets, Total 

Equity and Current Ratio are included due to their prediction importance in the study by 

Witteloostuijn & Kolkman (2019). GDP growth rate, Inflation and Interest rate were also 

included to cover the potential influence of macroeconomic factors on the firm’s growth. 
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The dataset was obtained from Bloomberg. The unedited panel was unbalanced, containing 

many missing observations for specific years and companies. Any missing or incomplete data 

was removed to ensure panel data completeness and balance. The resulting panel dataset used 

includes four years from 2018 to 2021. Both the time dimension and cross-sectional dimension 

of the panel align with previous studies (Zhou & Gumbo, 2021; Almsafir et al., 2015; Hermelo 

& Vassolo, 2007). A total of 10 predictors and one binary target variable are included in the 

data set (see Table 2). The sample size of the manufacturing firms is a total of 156 unique firms 

after removing missing values. 

 

6.1  Dimension Reduction 

 
Dimension reduction is performed via principal component analysis (PCA) to reduce the 

multicollinearity between the variables (see Table 5 in the appendix).  

 

PCA is a dimensionality reduction technique widely used in data analysis and machine 

learning. Its primary objective is to transform a high-dimensional dataset into a lower-

dimensional representation while retaining as much information as possible. PCA achieves this 

by identifying a new set of variables, called principal components, that are linear combinations 

of the original variables. 

 

The key idea behind PCA is to capture the maximum variance in the data with the first few 

principal components. The first principal component explains the largest variance, followed by 

the second component, and so on. Each principal component is orthogonal to the others, 

meaning they are uncorrelated. By selecting a subset of principal components, it is possible to 

reduce the dimensionality of the dataset while preserving most of its information. 

PCA is beneficial for several reasons. Firstly, it simplifies the analysis by reducing the number 

of variables, making it easier to visualise and interpret the data. Secondly, it can uncover the 

underlying structure or patterns in the data, revealing relationships between variables that may 

not be apparent initially. Additionally, PCA can remove redundant or irrelevant features, 

improving computational efficiency and reducing the risk of overfitting in subsequent analyses 

or models. One potential limitation of PCA is the decreased interpretability of individual 

variables meaning that it becomes challenging to draw specific inferences based on the 

principal components themselves (Jolliffe, 2002 ). However, interpretability is not an objective 
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in the context of this thesis. The main focus is on evaluating the classification performance of 

the models. 

 

Before PCA is performed, the variables are standardised to have a mean of zero and a variance 

of 1, as is the norm, due to the technique not being scale invariant (Jolliffe, 2002 ). 

Three principal components are chosen using the most common rule, the Kaiser rule (Kaiser, 

1960). These components are used for classification and performance assessment using 

Logistic regression, SVM, and ANN algorithms. 

 

6.2  Data Partitioning 

 
In machine learning, it is crucial to partition the dataset into two parts: the training (in-sample) 

and test (out-of-sample) data sets. The training data fits the model, while the test data is used 

for model validation or testing. This procedure ensures that the model performance on unseen 

labelled data is examined, preventing overfitting to the training data. For this study, a 70:30 

training: testing data split ratio is used, similar to a related study by Delen et al. (2013), to 

enable a more accurate comparison with the results of Zhou & Gumbo (2021), who also used 

this split. The three machine learning algorithms are fitted using the training data and then 

tested on the test set. The performance of each algorithm is evaluated based on their 

classification performance on the test data. 

 

7 RESULTS 

 

This section outlines the obtained results from comparing the three models using the 

abovementioned data. It begins by presenting the Confusion Matrix and subsequently discusses 

various performance measures. 

 

The confusion matrix presented in Table 1 illustrates the performance of three different 

classification algorithms, namely Logistic Regression, Support Vector Machine (SVM), and 

Artificial Neural Network (ANN), on both the train and test datasets. This matrix provides 

valuable insights into the effectiveness of these models in predicting the outcome classes. 
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Table 3: Confusion Matrix, Train and Test Dataset 

Output based on training data set     Output based on test data set 

    

Not-High 

Growth(0) 

High 

Growth(1)     

Not-High 

Growth(0) 

High 

Growth(1)     

Algorithm                   

Logistic 

Not-High 

Growth(0) 221 47 Correct 359 80 23 Correct 144 

  

High 

Growth(1) 31 138 Wrong 78 20 64 Wrong 43 

                    

SVM 

Not-High 

Growth(0) 231 48 Correct 368 90 23 Correct 154 

  

High 

Growth(1) 21 137 Wrong 69 10 64 Wrong 33 

                    

ANN 

Not-High 

Growth(0) 223 38 Correct 370 83 20 Correct 150 

  

High 

Growth(1) 29 147 Wrong 67 17 67 Wrong 37 

 

Observing the test data set which is the main focus. The Logistic Regression model correctly 

classifies 80 instances as Not-High-Growth (true negatives) and 20 instances as High-Growth 

(true positives) in the test dataset. However, it also misclassifies 23 instances as High-Growth 

when they were Not-High-Growth (false positives) and 64 instances as Not-High Growth when 

they were High-Growth (false negatives). 

The SVM model accurately classifies 90 instances as Not-High-Growth and 10 instances as 

High-Growth. Nevertheless, it had 23 false positive classifications and 64 false negative 

classifications. 

The ANN correctly classifies 83 instances as Not-High-Growth and 17 instances as High-

Growth. However, it did have 20 false positive classifications and 67 false negative 

classifications. Overall, all three models can make more correct class predictions than incorrect 

on both the train and test data, which is desirable. It is, however, difficult to compare the models 

based only on these numbers. 



 
23 

 

 

Table 4 below shows the performance of three different models (logistic regression, SVM, and 

ANN) on the training and test datasets.  

 
Table 4: Models Evaluation on Training and Testing Dataset 

  Evaluation based on train Data Evaluation based on test Data 

  Logistic SVM ANN Logistic SVM ANN 

Measure             

Accuracy 0,8215 0,8421 0,8467 0,7701 0,8235 0,8021 

Misclassification 0,36 0,16 0,1533 0,2299 0,1765 0,1979 

Specificity 0,7459 0,7405 0,7946 0,7356 0,7356 0,7701 

Sensitivity 0,877 0,9167 0,8849 0,8 0,9 0,83 

AUC    0,8285 0,8597 0,8502 

 

When considering the test data, the Logistic Regression model achieved an accuracy of 0.7701, 

indicating that it correctly classifies 77.01% of the instances. The SVM model performed 

slightly better, with 82.35% correctly classified instances. The ANN model correctly classified 

80.21% of the instances. 

 

The misclassification rate, representing the proportion of misclassified instances, was 0.2299 

for the Logistic Regression model, indicating that it misclassifies 22.99% of the instances. The 

SVM model had a lower misclassification rate of 17.65%. The ANN model performed slightly 

worse than the SVM, with a misclassification rate of 19.79%. 

 

In terms of specificity, which measures the ability to identify the negative class correctly, all 

models perform reasonably well. The specificities of the Logistic Regression, SVM, and ANN 

models are comparable, indicating their ability to correctly identify instances that do not belong 

to the high-growth category. 

 

When considering sensitivity, which measures the ability to identify the positive class correctly, 

the SVM model achieves the highest sensitivity, correctly identifying 90% of the high-growth 

instances. The ANN model has the highest specificity for test data (77.01%), implying it is the 

best model for classifying the negative class (non-high-Growth).  
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The SVM model has the highest AUC score (0,8597) among the three models, followed closely 

by the ANN model (0,8502). The AUC score suggests that the SVM model can better 

distinguish between positive and negative classes than the logistic regression and ANN models, 

regardless of the threshold. It is important to note that the difference in the AUC score between 

the models is relatively small. However, the results indicate that these models are arguably 

reliable at classifying high-growth firms from not-high-growth ones.  

 

The differences between the train and test performances of the models are not too significantly 

different to assume that the models highly overfit the data. However, this is not conclusive 

evidence alone for that to be the case. 

 

The conclusion could be that the best-performing model is the SVM having the best measures 

on both the train and test data set in all categories except for specificity, where the logistic 

regression slightly performs better.  

 

The results of these measures align with the findings of Zhou & Gumbo (2021), Who also 

found the SVM model to perform the best on the test data, followed by the ANN and the logistic 

regression.  

 

8 DISCUSSION 

 

This section discusses the result and their implications for growth theory and existing literature. 

Additionally, it includes a segment highlighting the practical applicability of the models for 

investors and policymakers. 

 

The findings from the model comparison align with previous literature. The two modern 

machine learning algorithms, SVM and ANN, outperform the logistic regression in classifying 

high-growth and non-high-growth companies when applied to new data. The SVM and ANN  

also exhibit lower misclassification rates, indicating fewer classification errors. However, it is 

essential to acknowledge that this classification power comes with inevitable trade-offs. 

Specifically, when employing dimension reduction techniques such as PCA and utilising semi-
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parametric models like ANN and SVM, it becomes challenging to measure the individual 

variable effects on the dependent variable (Jolliffe, 2002; Ribeiro et al., 2016). 

Consequently, we cannot determine the marginal effect of any of the original ten predictors on 

whether a manufacturing firm will exhibit high-growth. This limitation stems from the “black 

box” nature of modern machine learning algorithms, which lack transparency compared to 

logistic regression. As a result, the trustworthiness of the information derived from these 

predictions is diminished, reducing the value of the models for investors and policymakers 

(Ribeiro et al., 2016). We cannot draw firm conclusions regarding specific firm growth 

theories, such as Gibrat’s Law, due to the inability to determine the individual effects of 

variables like Revenue or Number of Employees on firm classification. However, the results 

indicate a higher than 50/50 likelihood of correctly classifying a company’s growth status for 

all models. This suggests that the random process theory of firm growth (Geroski, 2000) does 

not hold, at least for Swedish publicly traded manufacturing firms, from 2018 to 2021. In 

overall performance, the SVM model was the best for classifying high-growth manufacturing 

firms. 

 

9 SHORTCOMINGS 

 

This section discusses the limitations of the thesis and the reasons behind their non-addressal, 

and potential strategies that could have been employed in an ideal setting to mitigate these 

limitations. 

 

9.1 NANCE Code Drawbacks 

 

Using NANCE to identify manufacturing companies has its drawbacks. The ideal approach for 

selecting companies for the panel would involve examining all available companies 

individually and establishing a threshold for the proportion of revenue allowed from sources 

other than product sales. However, due to time constraints and the limitations of the available 

data, this was not feasible and carried its own limitations. Some of the companies included in 

the panel were initially manufacturing companies but have since transitioned into a more 

ambiguous area. For example, Ericsson AB is now considered a telecommunications company 

rather than a pure manufacturing company. Another issue with using NANCE is the wide 

variation in the types of products being manufactured. Manufacturing pharmaceutical 
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equipment, for instance, may differ significantly from manufacturing cars (such as Volvo and 

AstraZeneca), yet both fall under the same NANCE code. 

This variation in manufacturing sectors can lead to differences in resource requirements and 

might skew the results. However, it is essential to note that these limitations in data grouping 

do not apply to most companies in the panel and are likely to have a marginal impact on the 

study results. Nonetheless, it suggests the findings may be more generalisable to other 

industries and sectors. However, this conclusion is not definitive, and further testing on other 

datasets would be necessary to validate it. An improvement could be achieved by analysing 

each company individually and considering various types of manufacturing, such as on-

demand manufacturing or pharmaceuticals, and controlling for this variable in the models, 

similar to the approach used by Witteloostuijn and Kolkman (2019), who categorised firms 

based on the second-level NACE code. 

 

9.2  Data Limitations 

 

Overall, several limitations are associated with the data used in this study. Firstly, the sample 

of firms is relatively small as it only includes companies listed on the Swedish stock market. 

Although this is consistent with other studies (Zhou & Gumbo, 2021), it restricts the 

generalizability of the findings. Machine learning algorithms like SVM and ANN are designed 

to handle large datasets with thousands or even millions of observations, so the limited sample 

size is a drawback in this study. 

Furthermore, the sample of companies is skewed towards larger, more mature publicly traded 

firms. It would be beneficial to include information about smaller and medium-sized 

manufacturing firms in Sweden to provide more comprehensive models and better compare the 

results with previous studies like Zhou & Gumbo (2021). 

Another limitation is the relatively short time frame of four years. While this duration aligns 

with other studies (Zhou & Gumbo, 2021; Has et al., 2016), it restricts the ability to capture 

long-term trends and cyclical patterns. Panel data analysis can offer advantages such as 

generalizability and capturing temporal dynamics, but a longer period would enhance these 

aspects (Lu & Su, 2020). Ideally, the models should be tested on several observations spanning 

several years to obtain more robust results. 

In summary, the limitations of the data, including the small sample size, limited selection of 

firms, and short time frame, should be considered when interpreting this study’s results. 
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It is important to acknowledge that the data used in this study may contain various biases that 

could influence the results, with outliers being one potential concern. However, due to the 

already limited amount of data in the panel, the decision was made not to remove outliers. It 

should be noted that both the ANN and SVM models are generally considered less effective at 

handling outliers (Hastie et al., 2009), which could potentially impact the results negatively. 

 

Although PCA was employed to mitigate multicollinearity, it is not a definitive solution to the 

problem. If multicollinearity exists, the models may overfit the data, reducing generalizability 

and predictive performance (Jolliffe, 2002). Additionally, other biases, such as violations of the 

independence of errors, heteroscedasticity, and autocorrelation, which primarily affect the 

inferential aspects of the models, can also have implications for their classification 

ability(Verbeek, 2008). 

 

It is worth mentioning again that while this thesis focuses primarily on classification rather 

than inference, these biases can still affect the classification ability of the models. These biases 

can result in more misclassification and less accuracy, thereby diminishing the overall 

performance and trustworthiness of the models in making future classifications (Verbeek, 

2008). A comprehensive robustness check was not conducted, partly due to the primary 

negative impact of these biases on the inference of the model and partly due to time constraints 

and their absence in similar studies (Zhou & Gumbo, 2021; Has et al., 2016; Witteloostuijn & 

Kolkman, 2019).  

 

9.3  Model Tuning Limitations 

 

There are also limitations in the tuning of the models. While the methodology section explains 

the hyperparameters considered in the models, it is essential to note that these complex models 

have numerous other hyperparameters that can impact their performance. To achieve the best 

possible results, extensive time and effort would be required to thoroughly cross-validate and 

fine-tune each component of the models (Bishop, 2011). 

Due to time constraints and the scope of the research, a comprehensive tuning of all model 

hyperparameters was not conducted in this study. Therefore, it is possible that the results could 
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have been further improved if more time and resources were available for thorough 

hyperparameter optimisation. 

 

10 CONCLUSION 

 

In conclusion, the model comparison findings are consistent with existing literature, 

highlighting the superior classification capabilities of SVM and ANN over logistic regression 

in classifying high-growth and non-high-growth companies. However, it is essential to 

acknowledge the limitations associated with these models. Dimension reduction techniques 

like PCA and adopting semi-parametric models introduce challenges in quantifying the 

individual effects of predictors on the dependent variable, hampering our understanding of their 

marginal impact. The “black box” nature of modern machine learning algorithms makes them 

untrustworthy, diminishing their value for investors and policymakers. While firm growth 

theories such as Gibrat’s Law cannot be conclusively validated due to the inability to determine 

variable effects, the study indicates a non-random nature in classifying firm growth, 

challenging the notion of random process theory at least for Swedish publicly traded 

manufacturing firms from 2018 to 2021. Future research should explore these findings on more 

types of firms, time spans and countries. 
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12     APPENDIX  

 

12.1  Correlation Matrix 

 

* indicates significance at 5% level 
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12.2  Model Evaluation without dimension reduction 

 

Table 6: Models Evaluation on training and testing data, all ten predictors (no 

dimension reduction) 

  Evaluation based on train data Evaluation based on test data 

  Logistic SVM ANN Logistic SVM ANN 

Measure             

Accuracy 0,625 0,634 0,508 0,572 0,599 0,492 

Misclassification 0,375 0,366 0,492 0,428 0,401 0,508 

Specificity 0,692 0,930 0,508 0,655 0,920 0,483 

Sensitivity 0,575 0,417 0,508 0,500 0,320 0,500 

 

 

 


