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Abstract 

This paper aims to compare and evaluate the performance of inflation forecasting 

performance for benchmark time series models and machine learning models. The process is 

performed for both a developed economy, the US, and an emerging economy, Mexico. The 

study examines how forecast performance compares between benchmark time series models 

and machine learning models, as well as how forecast performance overall compares between 

an emerging economy and a developed economy. To conduct the study, two separate datasets 

for the US and Mexico are gathered and to perform the forecasts, a rolling window with a 

fixed window size is used across a total of 12 horizons. 

The study finds that the benchmark time series models outperform the machine learning 

models in forecasting inflation for the US dataset, but not for the Mexican dataset. 

Additionally, the study finds that the inflation forecast performance shows smaller forecast 

errors across all horizons for the developed economy compared to the emerging economy. 

These results are mainly attributed to the characteristics of each specific dataset. The US 

dataset with its higher dimension and more potential predictors is concluded to better suit 

machine learning models and perform better inflation forecasts. In conclusion, the study 

provides evidence that machine learning can be a useful tool for macroeconomic 

policymakers when sufficient data is available.  

 Keywords: Inflation Forecast, Machine Learning, Rolling Window, Time Series  
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1. Introduction 
One of the more vital elements for economic policymakers is to control inflation, and to 

achieve this, accurate inflation forecasts are of great interest for policymakers. Groen et al. 

(2013) argues that other agents in the economy take great interest in accurate inflation 

forecasts, either to be able to assess how policymakers will make decisions in the future, or to 

form their inflation expectations when making decisions related to wage negotiations, 

consuming behavior, and investments. Many central banks have in recent years conducted 

inflation-forecast targeting, typically with a quantitative inflation target such as 2 percent per 

year (Woodford, 2007). Inflation targeting has some direct advantages, namely focusing 

monetary policymaking to achieving low and stable inflation, and inflation targeting provides 

a measure of credibility of monetary policy. However, implementing and monitoring inflation 

has some limitations as well and Svensson (1997) concludes that the central bank’s inflation 

forecasts serve best as an intermediate target for efficient and accurate monetary 

policymaking. Overall, performing accurate and reliable inflation forecasts is of high 

significance for economic policymakers and other agents in the economy.   

The main theoretical framework used in early inflation forecasting studies was the Phillips 

Curve, presented by Phillips (1958), which was used in one of the original papers on 

forecasting inflation by Stock and Watson (1999). After that, many other methodological 

frameworks have been implemented when forecasting inflation. Heeren (2021) states that 

univariate time series models such as the autoregressive model or autoregressive integrated 

moving average model have been widely used to forecast inflation. However, according to 

Hall (2018), forecasting inflation with traditional time series methods presents two main 

limitations; first, there are many potential predictors, and second, there is a limited number of 

available time series. These limitations can lead to the “curse of dimensionality” which can 

lead to a problem of overfitting the models. One way to deal with the dimensionality problem 

is to incorporate factor models, and benefit from a large potential of predictor variables in 

inflation forecasting by extracting common factors from the potential predictors. Another set 

of models that can be beneficial are machine learning models, which are better suited to 

handle many predictors efficiently according to Zhoua et al. (2017). 

Varian (2014) concludes with increased data availability, so called “big data”, the 

implementation of machine learning methods has seen an increased use within the field of 

economics. Charpentier et al. (2018) states that both econometrics and machine learning have 

a common goal, which is to build a predictive model for a specific variable of interest by 
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using feature variables. However, both fields have evolved in parallel to each other, where 

econometrics is set to capture probabilistic models built to describe economic events, whereas 

machine learning uses algorithms capable of learning from their mistakes. Charpentier et al 

(2018) continues by stating that machine learning methods in economics are particularly 

useful when the numbers of potential predictors are large and can improve the forecast 

performance compared to traditional econometrics methods.  

Traditional econometric models often assume that the relationship between the explanatory 

variable and the predictors are linear, even though this assumption is not always appropriate. 

Many machine learning methods do not make this assumption and can handle the non-

linearity of the models, and therefore improve upon traditional econometric models, Moshiri 

and Cameron (2000). Forecasting inflation using potential predictors is a complex analysis 

where the assumption between the predictors and the target variable inflation is not 

necessarily appropriate to assume linear. Hence, incorporating machine learning as 

methodology to forecast inflation using many predictors can be a valuable instrument for 

economic policymakers to include into the analysis.  

Athey and Imbens, (2019) states that machine learning can be divided into two categories: 

unsupervised and supervised machine learning. Supervised machine learning focus primarily 

on prediction problems, with an outcome variable, 𝑦, and a set of predictors, 𝑥 = (𝑥1, … , 𝑥𝑛)
′, 

where x is a vector of potential predictors.  The main application of supervised machine 

learning is to estimate a model on a subset of the data from the values of the predictors, called 

the training set, and then use the remaining data, the test set, for predictions. Unsupervised 

machine learning on the other hand does not use a specific prediction task with an explanatory 

variable and predictors, instead the unsupervised machine learning models use methods that 

recognize patterns in the data, such as clustering images into groups. Econometrics is 

intersected mainly by the supervised machine learning field, however, according to Athey and 

Imbens (2019), one of the main differences between econometrics and supervised machine 

learning is inference. Supervised machine learning methods rely on data-driven model 

selection, such as cross-validation, and the goal is prediction performance without regards to 

implications of inference. Econometrics on the other hand relies on predictive performance on 

dependent and explanatory variables where the goal is to draw inferences about potential 

outcomes.  
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The purpose of this essay is to examine the forecast performance of inflation using a variety 

of models. Classic econometric time series models, factor models, and supervised machine 

learning models are evaluated and compared for an emerging economy, Mexico, and a 

developed economy, the United States (US). The inflation forecasts for both countries are 

compared and evaluated on two different datasets consisting of monthly macroeconomic 

variables, and attempts to answer the following questions: 

• Do machine learning models outperform benchmark time series models? 

• How does the performance of benchmark time series models and machine learning 

models compare for an emerging economy and a developed economy?  

The main contribution of this essay to the existing literature is the use of more potential 

predictors when forecasting inflation for an emerging economy. Emerging economies are 

underrepresented in forecast studies with many predictors due to the limited amount of data 

available for these countries compared to developed countries. This study aims to collect 

more potential predictors than are usually included in the existing literature when forecasting 

inflation for an emerging economy, hence the choice of Mexico as the emerging economy to 

examine since Mexico has sufficient monthly data easily available to collect compared to 

most emerging economies. Mexico is also interesting to study because it is one of the largest 

economies in the world globally and is therefore of high significance in many macroeconomic 

aspects. This study also examines the comparison of forecast performance for an emerging 

and a developed economy to gain further knowledge of the comparison performance between 

benchmark models and machine learning models under different dataset structures. The US 

have been widely used in inflation forecasting, and will mostly serve as a reference point 

regarding a contribution to the literature and be compared to the Mexican forecasts. 

This essay is divided into the following sections: Section 2 presents some of the previous 

literature on inflation forecasting and some of the methods that have been used in inflation 

forecasting studies. Section 3 gives an overview of the datasets chosen for the study. Section 4 

presents the theoretical framework in which the study is performed under. Section 5 presents 

the main results of the study. Section 6 discusses the study and its main results, and concludes 

where it places among the existing literature on the subject.  
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2. Literature review 

There have been several studies with different methodological frameworks for forecasting 

inflation in both emerging and developed economies, although most of the research has been 

focused on developed economies and mainly on the US because of the superior amount of 

available macroeconomic data. The following section presents some notable studies done with 

some different methodological frameworks. 

The Phillips curve was the main method used in early papers. Stock and Watson (1999) 

forecasts US inflation at the 12-month horizon for data covering the time period 1970-1996 

using the Phillips curve. They find that the Phillips curve produced the most accurate short 

run forecasts of US inflation, and outperformed the univariate forecasting models. 

Conversely, Atkeson and Ohanian (2001) use a similar methodology to forecast inflation for 

the US using models based on non-accelerating inflation rate of unemployment (the NAIRU) 

for the period 1984-1996. They conclude in their study that the Phillips Curve does not even 

outperform a naïve model that presumes inflation over the next four months will be equal to 

inflation over the past four months. 

Pichler (2008) implements a Dynamic Stochastic General Equilibrium (DSGE) model on US 

data between 1979 and 2007. They incorporate both a linear and nonlinear approximation to 

the data, where they find that the nonlinear specification of the data slightly outperforms the 

linear specification in predictive power. Iversen et al. (2016) evaluated and compared inflation 

forecast performances for both a DSGE model and a Bayesian VAR model for Sweden from 

2007 to 2013. They conclude that the Bayesian VAR model outperformed the DSGE model to 

forecast inflation in Sweden.  

Another common way of methodology is the use of factor models to forecast inflation. Stock 

and Watson (2002) show in their paper how the usage of factor models can improve 

forecasting performance with a principal component analysis for a large set of predictors. 

They conclude using a principal component analysis for 215 monthly US macroeconomic 

time series from 1970-1998 that a principal component analysis outperforms univariate 

regressions, vector autoregressions, and leading indicator models. Forni et al. (2003) utilized 

the factor model approach on the Euro area when they studied how financial variables can 

forecast inflation. For a monthly dataset of 447 predictors between 1987-2001, they find that 

the multivariate factor models perform better than the univariate autoregressive models. Artis 

et al. (2001) uses a dynamic factor modeling on a large monthly macroeconomic dataset for 

the UK between 1970-1998 and finds that the factor-based forecast approach is an 
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improvement upon standard benchmark models. This holds true for variables such as prices, 

real aggregates, and financial variables. 

In recent years, with the availability of large datasets, the use of machine learning techniques 

in macroeconomic forecasting studies have increased. Medeiros et al. (2021) forecasts 

inflation for the US between 1960 and 2015 with benchmark models, factor models, shrinkage 

models, ensemble models, random forests, and hybrid linear-random forest models. They 

conclude that the machine learning models such as the LASSO and Random Forest produce 

more accurate forecasts than the standard benchmark models and highlight the need for 

machine learning methods and big data for macroeconomic forecasting. Garcia et al. (2017) 

uses a similar approach to forecast inflation in an emerging economy, Brazil, and they 

concluded that the machine learning techniques outperformed the AR model and Random 

Walk model, although they suggest that the predictive power of the machine learning methods 

are different depending on the forecast horizons. Özgur and Akkoc (2021) forecasts inflation 

on an emerging economy, Turkey, using machine learning algorithms combined with 

benchmark models. They find that the shrinkage methods perform better than conventional 

econometric methods in the case of Turkish inflation.  

To summarize the literature review, factor models and machine learning methods have been 

seen to improve the performance of forecasts compared to benchmark time series models.  

3. Data 

The study will consist of two datasets, one for an emerging economy, Mexico, and one for a 

developed economy, the US. The following sections provide some details about respective 

datasets.  

3.1. The US dataset 

The first dataset of the study contains 122 monthly macroeconomic indicators, including the 

inflation variable, for the US between 1960-2020, and common for all the variables included 

are that there are no missing values for the specific sample period. The variables are gathered 

from the Federal Reserve database, and the dataset is the FRED-MD dataset, which is a high-

dimensional dataset of monthly macroeconomic variables designed to be a convenient starting 

point for macroeconomic analysis using “big data”. For more details about the dataset and the 

specific transformations used for all the variables to achieve stationarity, see McCracken and 

Ng (2015).  

The forecast evaluation for the models is done using a rolling window approach with a fixed 



9 
 

window size where the test sample is divided into a training set and a test set, and then for the 

first date from the sample period, all previous data is used to train the model, and then 

evaluated with the test set. After the forecast is made for one horizon, then for every next 

forecast horizon, the window is shifted one month ahead in time. A total of 12 months ahead 

will be forecasted in this study and evaluated between the different models. In this study, the 

training sample consists of data from January 1960 to December 2005, and the test data is 

from January 2006 to December 2020. Hence, there will be 45 years of training data for each 

model and 15 years of test data for each model in the US dataset. That gives a total of 540 

observations for the training set, and of these, the 120 latest observations will be used as the 

window size, which then will be updated for every month ahead by including the previous 

forecast in the window sample and excluding the last observation in the window sample, 

therefore keeping the rolling window fixed and updated with the most relevant observations to 

use for forecasting.  

The motivation for splitting the data into training and test into the given proportions are due to 

common practice in previous literature. According to Joseph (2022), there is no optimal way 

of splitting the data, and the optimal training and test split ratio depends on the specific data 

characteristics. Joseph continues by stating that ratio with 20-30% of the data as test set are 

commonly used in practice, although this is mostly a split done by rule of thumb without any 

specific underlying theory. Hence, in this study, the split of 75% training data, and 25% test 

data is chosen. The size of the window of 10 years is chosen, motivated by an attempt to 

include the most relevant observations for each forecast, to make the forecast performance 

better, but to also include as many observations as possible to forecast with. The choice of the 

window size is also optimal without any specific theoretical way of choosing the window size, 

but is of high significance to optimize forecast performance (Inoue et al. 2016).  

The variable of interest in this study is inflation, and to measure inflation, the Consumer Price 

Index (CPI) is used. The inflation can be computed for a certain month by taking the 

following formula: 𝜋𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1)  where 𝑃𝑡 is the value for the CPI at month t, 

and 𝜋𝑡 is the inflation. Figure 1 shows the movement of the CPI variable for the US data 

across the sample size. 
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Figure 1: Monthly US CPI movements from 1960-2020 

 

3.2. The Mexican dataset 

The Mexican dataset consists of monthly macroeconomic variables that are collected from the 

Banco de Mexico database, and from the Federal Reserve database, totaling up to 38 

variables, including the inflation variable. The monthly Mexican variables span the period 

January 1997 to December 2017, which is the chosen period for this study, since many 

monthly macroeconomic variables relevant to include are either not tracked before 1997, or 

suffer from inconsistent tracking with missing variables in the sample. The goal with choosing 

variables for the Mexican dataset is to include as many potential macroeconomic variables as 

possible to forecast inflation, using variables from as many macroeconomic sectors as 

possible. All variables chosen does not have any missing variables for the sample period, and 

the variables are also chosen to resemble the US dataset as much as possible for as much 

consistency as possible. A complete list of variables used in the study is presented in the 

Appendix.  

The main difference between the Mexican and the US dataset is the number of potential 

predictors and the sample period for both datasets. However, performing the models on two 

distinct datasets can also be seen as a way to contribute to the existing literature by comparing 

machine learning models on a dataset with high-dimension, and a dataset with lower 

dimension. The same forecast approach is made on the Mexican dataset, where a rolling 

window will be applied, and the forecasts will be made for 12 different horizons with a fixed 

window size. The dataset will be divided into a training sample, which will be from January 

1997 to December 2011, and data from January 2012 to December 2017 will consist of the 

test sample. The number of training observations total up to 168 observations, where the 50 

latest observations will be used as the rolling window, and then for every additional forecast 
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step be updated by removing the last observation in the rolling window, and adding the 

previous forecast value, therefore keeping the window size fixed and updated for more 

accurate and reliable forecasts. The motivation for the split ratio between training and test set, 

and the size of the window, is done by using the same principles as for the US dataset. The 

split is done to closely resemble the US dataset in proportions for consistency. 

To work with the Mexican dataset optimally, the monthly macroeconomic variables need to 

achieve stationarity. To evaluate whether the data is stationary, an Augmented Dickey Fuller 

(ADF) test, introduced by Dickey and Fuller (1997), is performed on each variable in the 

dataset, and variables that are non-stationary are transformed in one of the following ways: 

(1) Taking the first difference of the variable, which means that the transformation for a  

variable x at a given month t, is computed as: ∆𝑥𝑡 

(2) Taking the first log difference of the non-stationary variable, which means the variable 

x at month t is computed as: ∆log(𝑥𝑡) 

(3) Taking the second log difference of the non-stationary variable. The non-stationary  

variable x at a month t is computed as: ∆2log(𝑥𝑡) 

The transformations for the variables are done in a way to resemble the FRED-MD dataset as 

much as possible, and after performing the transformations on the non-stationary variables, 

the p-values obtained from the ADF test are all less than 0.05, which is a good indicator that 

the data is stationary. The complete list of transformations used on each variable is described 

in the Appendix.  

Just as with the US dataset, the forecasted variable is inflation, and the measurement used is 

the Consumer Price Index (CPI), which is obtained from the Federal Reserve Database. 

Inflation is computed by using the same formula as for the US: 

𝜋𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1)  where 𝑃𝑡 is the value for the CPI at month t. Figure 2 shows the 

Mexican CPI  movements for the sample period. 
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Figure 2: Monthly Mexican CPI movements from 1996-2017 

 

4. Methodology  

In this study, the forecasts are based on a rolling window approach of a fixed length. A rolling 

window approach means that the forecast is revised each period. By using the rolling window 

framework, it updates the forecasts for 𝑇 − 1 of the periods in the horizon and computes a 

forecast for the new period 𝑇. In this study, the notation of the models will closely follow the 

structure of Medeiros et al. (2021) which means that the general specification of a model can 

be written as: 

𝜋𝑡+ℎ = 𝐺ℎ(𝑥𝑡) + 𝑢𝑡+ℎ,  

4. 1 

where ℎ = 1,… ,𝐻 is the forecast horizon and  𝑡 = 1,… , 𝑇. The dependent variable, 𝜋𝑡+ℎ is 

inflation at month 𝑡 + ℎ and 𝑥𝑡 = (𝑥1𝑡, … , 𝑥𝑛𝑡)
′ is a vector consisting of the n dependent 

variables and predictors used in a specific model. 𝐺ℎ(𝑥𝑡)is a general target function 

depending on the specific model used to forecast where 𝐺ℎ(∙) is the mapping between the 

predictors and future inflation, where the mapping depends on the specific forecast horizon. 

Additionally, the direct forecast equation can be written as:  

�̂�𝑡+ℎ|𝑡 = �̂�ℎ,𝑡−𝑅ℎ+1:𝑡(𝑥𝑡) 

4. 2 
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where  �̂�ℎ,𝑡−𝑅ℎ+1:𝑡 is the estimated target function based on data from time 𝑡 − 𝑅ℎ + 1 up to 𝑡, 

and where 𝑅ℎ is the window size. �̂�𝑡+ℎ|𝑡 is the forecasted inflation at time 𝑡 + ℎ given the 

information available up to time t.  

4.1. Benchmark Models 

The accuracy of the machine learning models is evaluated and compared to some benchmark 

models. The most basic benchmark model that is included is the Random Walk (RW) model, 

which will be the reference model when comparing the results. The RW is a naïve forecast 

model and can be modeled as:  

�̂�𝑡+ℎ|𝑡 = 𝜋𝑡 for ℎ = 1,… , 12 

4. 3 

which means that the forecasted value of inflation at 𝑡 + 1 is the value of inflation at time 𝑡 

for every horizon. The second benchmark model included in the study is the Autoregressive 

(AR) model of order p. The AR(p) model can be modeled as:  

�̂�𝑡+ℎ|𝑡 = �̂�0,ℎ + �̂�1,ℎ𝜋𝑡 +⋯+ �̂�𝑝,ℎ𝜋𝑡−𝑝+1 

4. 4 

where the model is different depending on the specific forecast horizon. The hyperparameter p 

determines how many lags are used in the forecast for inflation. �̂�𝑝,ℎ represents the estimated 

AR parameters, where each �̂�𝑝,ℎ corresponds to a weight assigned to the lagged value of 

inflation, 𝜋𝑡−𝑝+1 in the forecasted value. 

The third benchmark model used in the study is the Autoregressive Moving Average model 

(ARMA), which is a leverage of a general autoregression AR(p) and a general Moving 

Average model MA(q). The ARMA model has two components denoted as p and q, where p is 

the lag order, and q is the order of the moving average. The ARMA model of order (𝑝, 𝑞) can 

be formulated as:  

�̂�𝑡+ℎ|𝑡 = ∑�̂�𝑝,ℎ𝜋𝑡−𝑝+1

𝑝

ℎ=1

+∑𝜃𝑝,ℎ

𝑞

ℎ=1

휀𝑡−𝑝+1 

4. 5 

Where ∑ 𝜃𝑝,ℎ
𝑞
ℎ=1 휀𝑡−𝑝+1 is the MA(q) part of the model and ∑ �̂�𝑝,ℎ𝜋𝑡−𝑝+1

𝑝
ℎ=1 is the AR(p) 

part of the model.𝜃𝑝,ℎaretheestimatedcoefficientsoftheMA(q)modeland휀𝑡−𝑝+1
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representstheerrorterm,whichisthedifferencebetweentheobservedandpredicted

valuesinthemodelattime𝑡 − 𝑝 + 1. 

The fourth benchmark model is the Seasonal Autoregressive Integrated Moving Average with 

Exogenous variables (SARIMAX). This model considers the seasonal components of the time 

series forecast as well as external factors. This model captures the seasonal components of the 

analysis and is of order (𝑝, 𝑞, 𝑑) × (𝑃, 𝑄, 𝐷), where p stands for the lag order, d stands for the 

degree of differencing but since the data is already stationary, we have d=0, and q denotes the 

order of the moving average. Additionally, the SARIMAX requires another set of components 

denoted as (𝑃, 𝑄, 𝐷) that account for the seasonality aspect, and also includes a parameter s, 

which is the periodicity of the seasonal cycle of the time series data set, Lazzeri (2020). P 

stands for the seasonal autoregressive lag order, and Q stands for the seasonal moving average 

model. D stands for the seasonal differencing order, but since the data is already stationary, 

we have D=0 and does not need to be accounted for. This model adds to the forecasting 

analysis by capturing the seasonal patterns of the data. 

When incorporating exogenous variables into the model under the current framework with 

inflation forecasting, the SARIMAX model can be formulated by modifying the previous 

equations as the following: 

�̂�𝑡+ℎ|𝑡 = 𝑐 +∑ �̂�𝑝,ℎ𝜋𝑡−𝑝+1

𝑝

ℎ=1

+∑𝜃𝑞,ℎ

𝑞

ℎ=1

휀𝑡−𝑝+1 +∑�̂�𝑃,ℎ𝜋𝑡−𝑠𝑝+1

𝑃

ℎ=1

+∑ �̂�𝑄,ℎ

𝑄

ℎ=1

휀𝑡−𝑠𝑝+1

+∑𝛽ℎ

𝑟

ℎ=1

𝑥𝑡 

4. 6 

Where �̂�𝑡+ℎ|𝑡 is the forecasted inflation for a specific horizon, and ∑ 𝛽ℎ
𝑟
ℎ=1 𝑥𝑡is the matrix of 

predictors multiplied by a vector with the regression coefficients corresponding to the 

predictors, with a regression model intercept, c. The forecasted value of inflation for a specific 

horizon now depends on both the ARMA components; ∑ �̂�𝑝,ℎ𝜋𝑡−𝑝+1
𝑝
ℎ=1 + ∑ 𝜃𝑞,ℎ

𝑞
ℎ=1 휀𝑡−𝑝+1, 

the seasonal components of the ARMA model; ∑ �̂�𝑃,ℎ𝜋𝑡−𝑠𝑝+1
𝑃
ℎ=1 + ∑ �̂�𝑄,ℎ

𝑄
ℎ=1 휀𝑡−𝑠𝑝+1, and 

the exogenous variables plus a constant; 𝑐 + ∑ 𝛽ℎ
𝑟
ℎ=1 𝑥𝑡. In the SARIMAX equation, 

∑ �̂�𝑃,ℎ𝜋𝑡−𝑠𝑝+1
𝑃
ℎ=1 is the seasonal autoregressive components of the model with P as the 

seasonal lag order across all horizons, and ∑ �̂�𝑄,ℎ
𝑄
ℎ=1 휀𝑡−𝑠𝑝+1 is the seasonal moving average 

components of the model with Q as the seasonal moving average order across all horizons. 
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4.2. Shrinkage Models 

For the shrinkage models used in this study, the general notation can be represented as in 

Medeiros et al. (2021): 

𝐺ℎ(𝑥𝑡) = 𝛽ℎ
′𝑥𝑡, 

4. 7 

where: 

�̂�ℎ = 𝑎𝑟𝑔min
𝛽ℎ

[∑ (𝑦𝑡+ℎ − 𝛽ℎ
′𝑥𝑡)

2 + ∑ 𝑝(𝛽ℎ,𝑖; 𝜆, 𝜔𝑖)
𝑛
𝑖=1

𝑇−ℎ
𝑡=1 ], 

4. 8 

and 𝑝(𝛽ℎ,𝑖; 𝜆, 𝜔𝑖) is the general penalty function that depends on the penalty parameter 𝜆and 

on a specific weight 𝜔𝑖, where 𝜔𝑖 > 0. In this paper, three shrinkage models are used to 

forecast inflation: The Ridge Regression (RR), the Least Absolute Shrinkage and Selection 

Operator (LASSO), and the Elastic Net regression (ENet). 

4.2.1. Ridge Regression 

The RR was first introduced by Hoerl and Kennard (1970) and the RR shrinks the coefficients 

towards zero for less relevant predictors. The parameter 𝜆controls the size of the shrinkage 

and the penalty function for the RR can be written as: 

∑𝑝

𝑛

𝑖=1

(𝛽ℎ,𝑖; 𝜆, 𝜔𝑖) = 𝜆∑𝛽ℎ,𝑖
2

𝑛

𝑖=1
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Medeiros et al. (2021) points out that RR gives the advantage of providing an analytical 

solution that can easily be computed, and variables that are less relevant shrink towards zero. 

This kind of regularization is referred to as 𝜄2 regularization.  

4.2.2. Lasso Regression 

The LASSO regression was first proposed by Tibshirani (1996), and its penalty function can 

be defined as: 

∑𝑝

𝑛

𝑖=1

(𝛽ℎ,𝑖; 𝜆, 𝜔𝑖) = 𝜆∑|𝛽ℎ,𝑖|

𝑛

𝑖=1
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The main difference from the RR is that the LASSO shrinks the irrelevant variables to zero. 

The constraint given by the LASSO makes the solutions nonlinear in the 𝜋𝑡+ℎ, and unlike the 

RR, gives no closed form expression. This kind of regularization is referred to as 𝜄1 

regularization. 

4.2.3. Elastic Net Regression 

The Elastic Net (ENet) is a generalization method that includes both the RR and LASSO as 

special cases.  The ENet shrinkage method is a convex combination of the 𝜄1and 𝜄2 norms 

(Zou and Hastie, 2005). The elastic net penalty function under the current framework can be 

defined as: 

∑𝑝

𝑛

𝑖=1

(𝛽ℎ,𝑖; 𝜆, 𝜔𝑖) = 𝛼𝜆∑𝛽ℎ,𝑖
2

𝑛

𝑖=1

+ (1 − 𝛼)𝜆∑|𝛽ℎ,𝑖|

𝑛

𝑖=1

, 
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Where 𝛼 ∈ [0,1] is the ratio between the 𝜄1and 𝜄2 regularization. The ENet estimator selects 

variables the same way as the LASSO and shrinks together the coefficients of correlated 

predictors the same way as the RR (Hastie et al. 2001). 

4.3. Target Factors 

The concept of target factors is a methodology that attempts to reduce the dimensionality of 

the potential predictors by extracting common components from the predictors, 𝑥𝑡, to forecast 

inflation. To use target factors, a Principal Component Analysis (PCA) of the predictors will 

be used to extract common factors, and then it will use the optimal number of principal 

components as the dependent variable to forecast inflation using an OLS regression. Medeiros 

et al. (2021) describes that the idea behind target factors is that many variables are irrelevant 

predictors of the targeted inflation 𝜋𝑡+ℎ, and by computing the principal components of the 

variables with high predictive power, a more accurate forecast can be performed. The formal 

description behind how factor models work and how the principal component estimator works 

can be found in Bai and Ng (2003).  

4.4. Random Forest Regression 

The Random Forest (RF) model was first presented by Breiman (2001) with the main goal to 

reduce the variance of regression trees that are non-parametric models that can approximate 

an unknown nonlinear function. It uses bootstrap aggregation (bagging) of the regression trees 

to achieve a lower variance (Breiman, 1996). The regression trees used in the RF model 
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works by splitting the dependent variables into regions, denoted by 𝑅𝑘 such as each region 

corresponds to a terminal node (K). Given the dependent variable inflation, 𝜋𝑡+ℎ, a set of 

predictors, 𝑥𝑡 and a given number of terminal nodes, K, all the splits are chosen to a 

regression model with the goal to minimize the sum of squared errors in the following way: 

𝜋𝑡+ℎ = ∑𝑐𝑘𝐼𝑘(𝑥𝑡; 𝜃𝑘),

𝐾

𝑘=1

 

4. 12 

where 𝐼𝑘(𝑥𝑡; 𝜃𝑘) is an indicator function such as: 

𝐼𝑘(𝑥𝑡; 𝜃𝑘) = {
1𝑖𝑓𝑥𝑡  ∈ 𝑅𝑘(𝜃𝑘)
0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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,where 𝑅𝑘(𝜃𝑘) is the k:th region. The collection of regression trees in the RF is specified in a 

bootstrap sample of the data, where for each sample 𝑏 = 1, … , 𝐵 a tree with 𝐾𝐵 regions are 

estimated for a selected subset of the original regressors. The forecast regression applied to 

the data can be written as: 

�̂�𝑡+ℎ|𝑡 =
1

𝐵
∑[∑ �̂�𝑘,𝑏𝐼𝑘,𝑏(𝑥𝑡; 𝜃𝑘,𝑏)

𝐾𝐵

𝑘=1

]

𝐵

𝑏=1
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4.5. K-Nearest Neighbor Regression  

The K-Nearest Neighbor (KNN), first introduced by Fix and Hodges (1951) is a form of 

nonparametric method that uses dependent variables to predict according to the closest 

training examples. This method looks at the K points, or neighbors, in the training set that are 

nearest to the test input, 𝑥𝑡, and counts how many members of each class are in the set and 

then returns an estimate (Murphy, 2012). The idea behind the KNN can be described by a 

distance measure such as the Euclidean distance between the predictors and the inflation 

variable:   

𝑑(𝜋𝑡+ℎ, 𝑥𝑡) = √∑(𝜋𝑡+ℎ −

𝑛

𝑡=1

𝑥𝑡)
2 

4. 15 
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4.6. Support Vector Regression 

Support Vector Regression (SVR) is a machine learning algorithm based on the classification 

paradigm Support Vector Machines that transforms a nonlinear regression into a linear one by 

using kernel functions to map the original input into a new feature space with higher 

dimensions and finding a hyperplane that maximizes the margin while also minimizing 

prediction errors, and then perform a linear regression (Murphy, 2012). To formalize the SVR, 

the corresponding objective function can be written as:  

𝐽 = 𝐶∑𝐿𝜖(

𝑁

𝑡=1

𝜋𝑡+ℎ, �̂�𝑡+ℎ) +
1

2
||𝑤||2 

4. 16 

where C is a regularization constant and �̂�𝑡+ℎ = 𝑓ℎ(𝑥𝑡). The term 𝐿𝜖(𝜋𝑡+ℎ, �̂�𝑡+ℎ) is called the 

epsilon insensitive loss function which measures the tolerance, 𝜖, around the predicted values 

that are negligible. However, this is a convex and unconstrained objective function, but not 

differentiable because of the absolute value of the loss term, 
1

2
||𝑤||2. To account for this and 

make it a constrained optimization problem, a possible approach is to introduce slack 

variables. The slack variables represent the degree to which each point lies outside the 

tolerance region which makes the optimization problem of finding the hyperplane more 

relaxed (Murphy, 2012): 

𝜋𝑡+ℎ ≤  𝑓ℎ(𝑥𝑡) + 𝜖 + 𝛿𝑡+ℎ
+  
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 𝜋𝑡+ℎ ≤𝑓ℎ(𝑥𝑡) + 𝜖 + 𝛿𝑡+ℎ
−  
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We can now rewrite our original objective function by using the slack variables to: 

𝐽 = 𝐶∑(

𝑁

𝑡=1

𝛿𝑡+ℎ
+ + 𝛿𝑡+ℎ

− ) +
1

2
||𝑤||2 
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where 𝛿𝑡+ℎ
+ and 𝛿𝑡+ℎ

−  are the slack variables.  

4.7. Python Packages and Tuning Parameters  

To conduct the inflation forecasts for all the models, the Python software is used in this study 

using the statsmodels library for the traditional time series models, and the sklearn library is 
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used for the machine learning models. Then from these libraries, the specific packages 

relevant for each model are imported and used to forecast inflation using a rolling window 

approach with a fixed window size. All variables are normalized by importing the 

StandardScaler package from the sklearn library for optimal performance across all models.  

With machine learning algorithms, an important feature is to optimally choose the 

hyperparameters to optimize the performance from the models. For the shrinkage models, 

consisting of the RR, LASSO and ENet, a cross-validation test is performed in Python to 

optimally choose the penalty parameter 𝜆 using the K-Fold cross-validation with K=5. Using 

a K-Fold cross-validation with K=5 means that the training set is split into 5 distinct subsets 

called folds, and then trains and make predictions on each model 5 times, picking a different 

fold for evaluation each time and training on the other 4 folds (Geron, 2017). Using  K-Fold 

cross-validation with K=5 is common in practice because of its advantages from a 

computational standpoint when the dataset is large (Fushiki, 2009), and will be used in this 

study. The optimal penalty parameter for each shrinkage model is determined by importing 

the following packages from the sklearn library: LassoCV, RidgeCV and ElasticNetCV. After 

finding the optimal 𝜆 for each model, this value is then maintained across all forecast 

horizons. Additionally, for the ENet, the optimal ratio 𝛼between the 𝜄1and 𝜄2 regularization is 

also determined using cross-validation with K-Fold in the same hyperparameter selection as 

the penalty parameter. 

In this paper, to extract the optimal numbers of factors for the target factor model, a scree-test 

with eigenvalues will be performed. According to Yong and Pearce (2013), the optimal 

number of factors to extract can be performed by plotting a scree-test of the eigenvalues of the 

factors against the corresponding number of principal components. They continue by stating 

that the optimal number of factors to extract can be found by applying Kaiser’s criterion, 

which is a criterion that suggests retaining all the factors with an eigenvalue of 1. After 

importing the PCA package and plotting the scree-tests for both datasets, the optimal number 

of factors to extract based on Kaiser’s criterion from each dataset is 4 factors for the US 

dataset, and 5 factors for the Mexican dataset. The plots of the scree-tests for both datasets 

can be found in the Appendix.  

For the SVR, RF and KNN, the optimal hyperparameters are determined by using the 

GridSearchCV package, which evaluates and test different values of the hyperparameters for 

each model, and then determines which hyperparameters are the best to use for optimal 
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performance. After the optimal hyperparameters have been determined, these will then be 

maintained for each forecast horizon.  

The optimal lag order for the AR(p) model is determined by plotting the Partial 

Autocorrelation Function from the plot_pacf package, which gives the partial correlation of a 

stationary time series with its lagged values after removing the effect on any correlations due 

to the terms of shorter lags, (Lazzeri, 2020). The optimal components for the ARMA model 

and the SARIMAX model can be determined by importing the auto_arima package, which 

tests out different combinations of the components and automatically selects the most optimal 

components for both models. The components for the time series models are then kept 

constant throughout all forecasting windows. The PACF plot for the inflation variable can be 

found in the Appendix for both datasets.  

4.8. Evaluation Metrics 

To evaluate and compare the different modeling frameworks, the Root Mean Squared Error 

(RMSE) is used to measure the average magnitude of the forecast errors. The formula for the 

RMSE can be written as: 

𝑅𝑀𝑆𝐸𝑚,ℎ = √
1

𝑇 − 𝑇0 + 1
∑ �̂�𝑡,𝑚,ℎ

2

𝑇

𝑡=𝑇0

, 
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where�̂�𝑡,𝑚,ℎ
2  is the error of the forecast at a given time t, with a specific model m and with 

information up to time 𝑡 − ℎ. 𝑇0 is the initial time at the beginning in the sample period. For 

all models used, it holds that a lower value of the RMSE statistics is better for forecast 

performance. 

Additionally, the Mean Absolute Error (MAE) is reported for both the samples. The MAE can 

be formulated as: 

𝑀𝐴𝐸𝑚,ℎ =
1

𝑇 − 𝑇0 + 1
∑ |�̂�𝑡,𝑚,ℎ|

𝑇

𝑡=𝑇0

, 

4. 21 
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Which instead captures the average absolute difference between the actual and predicted 

values for each model. Just as for the RMSE, it holds that a lower value equates to a better 

forecast performance for each model.  

5. Results 

This section provides the results of the study by first providing and discussing the RMSE 

values obtained for the US dataset. Next, the Mexican RMSE values are presented and 

discussed. Finally, the test-results are compared and discussed for both datasets.  

5.1. US Data Results 

First, the US dataset is presented. The RMSE and MAE test results across every forecast 

horizon are presented in Table 1 and Table 2. We can see that the machine learning methods 

consistently outperform the benchmark models across all forecasting horizons. All the 

machine learning algorithms perform similar forecasting errors in relation to the RW model 

and the errors are consistent throughout all horizons. The best performing model for all 

horizons is the RF model, which has been seen to have been the case in some previous 

research using data for the US (see: Medeiros et al. (2021) and Heeren (2021)). The 

performance of the RF could be due to its benefits in handling nonlinearities and the 

underlying variables, which holds true for the SVR and KNN as well. For the shrinkage 

model, the RR performs worse than both the LASSO and ENet, who produces similar results 

due to similar feature variable selection for optimal results. The ENet and LASSO can handle 

irrelevant coefficients by shrinking them to zero, unlike the RR who only shrinks irrelevant 

variables towards zero. The results therefore reflect that there are some variables in the dataset 

who are irrelevant variables for predicting inflation. 
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Table 1: The ratio for the RMSE test statistics for different forecast horizons relative to the 

RW model for the sample 1960-2020. The best performing model for each horizon is 

highlighted in grey. The average RMSE ratio across all horizons is calculated in the last 

column (Ave). 

Forecasting horizon 

Model 1 2 3 4 5 6 7 8 9 10 11 12 Ave. 

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AR 0.51 0.51 0.68 0.46 0.65 0.59 0.39 0.46 0.43 0.46 0.67 0.78 0.55 

ARMA 0.50 0.51 0.68 0.48 0.64 0.62 0.43 0.44 0.46 0.47 0.65 0.78 0.55 

SARIMAX 0.50 0.54 0.62 0.45 0.69 0.61 0.40 0.44 0.44 0.49 0.65 0.74 0.55 

Factor 

Model 

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

LASSO 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

RR 0.43 0.43 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.44 0.43 

ENet 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

RF 0.31 0.30 0.30 0.29 0.29 0.29 0.28 0.27 0.27 0.26 0.27 0.26 0.28 

KNN 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

SVR 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

 

The benchmark models perform similar results on average in forecasting inflation, but give 

different forecast errors across the horizons. Overall, the results for the US dataset are 

expected, since the high-dimension of predictors in the dataset makes the use of machine 

learning algorithms more beneficial because the machine learning models included can use 

regularization and variable selection techniques to extract relevant predictors. Therefore, since 

there are many potential predictors to forecast inflation and the sample period is large 

consisting of many total observations, it is expected that the machine learning models can 

produce well-performing forecast results for the US dataset.  
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Table 2: The ratio for the MAE test statistics for different forecast horizons relative to the RW 

model for the sample 1960-2020. The best performing model for each horizon is highlighted 

in grey. The average MAE ratio across all horizons is calculated in the last column (Ave). 

Forecasting horizon 

Model 1 2 3 4 5 6 7 8 9 10 11 12 Ave. 

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AR 0.70 0.70 0.91 0.63 0.88 0.79 0.54 0.62 0.58 0.62 0.90 1.05 0.74 

ARMA 0.68 0.68 0.91 0.64 0.87 0.84 0.58 0.60 0.62 0.64 0.87 1.06 0.75 

SARIMAX 0.68 0.73 0.84 0.61 0.93 0.82 0.54 0.60 0.59 0.66 0.88 1.00 0.74 

Factor 

Model 

0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

LASSO 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

RR 0.46 0.47 0.48 0.47 0.47 0.47 0.46 0.47 0.46 0.47 0.46 0.47 0.47 

ENet 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

RF 0.30 0.29 0.29 0.29 0.28 0.28 0.27 0.26 0.25 0.24 0.25 0.24 0.27 

SVR 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

KNN 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

 

5.2. Mexican Data Results 

Secondly, the Mexican dataset is presented. The RMSE values relative to the RW are 

presented in Table 3 and the MAE relative to the RW are presented in Table 4. The forecasts 

for the Mexican dataset produce higher forecast errors across all models, and the benchmark 

models outperforms the machine learning algorithms across all horizons. The AR model 

performs best overall with the lowest average RMSE and MAE across all horizons. The 

benchmark models give more inconsistent forecast errors across the different horizons where 

they hold both the highest reported forecast error and the lowest reported forecast error. This 

may be due to seasonality patterns in the data for the inflation variable. Overall, the forecast 

errors are inconsistent for most models across the horizons, which could also be an indication 

that the sample size is too small for the model to be trained on, which can be an indicator that 

the models do not capture the relationship between the predictors and the inflation variable, 

producing worse results.  
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Table 3: The ratio for the RMSE test statistics for different forecast horizons relative to the 

RW model for the sample 1997-2017 using the Mexican dataset. The best performing model 

for each horizon is highlighted in grey. The average RMSE ratio across all horizons is 

calculated in the last column (Ave). 

Forecasting horizon 

Model 1 2 3 4 5 6 7 8 9 10 11 12 Ave. 

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AR 0.32 0.04 0.27 0.47 0.42 0.66 0.93 0.26 0.45 0.43 0.13 0.16 0.38 

ARMA 0.17 0.21 0.70 0.76 1.11 0.89 1.47 0.23 0.40 0.61 0.08 0.04 0.56 

SARIMAX 0.09 0.29 0.81 0.08 0.75 1.38 1.56 0.34 0.67 0.46 0.43 0.35 0.60 

Factor 

Model 

0.65 0.65 0.65 0.65 0.66 0.65 0.66 0.66 0.67 0.65 0.65 0.65 0.65 

LASSO 0.92 0.93 0.97 0.91 0.87 0.84 0.84 0.83 0.83 0.83 0.80 0.78 0.86 

RR 0.84 0.85 0.85 0.84 0.84 0.80 0.80 0.80 0.83 0.83 0.82 0.80 0.83 

ENet 0.66 0.66 0.66 0.67 0.67 0.67 0.68 0.68 0.67 0.66 0.66 0.65 0.67 

SVR 0.89 0.92 0.88 0.82 0.85 0.86 0.82 0.82 0.83 0.82 0.85 0.79 0.85 

RF 0.82 0.80 0.80 0.80 0.79 0.85 0.78 0.75 0.80 0.71 0.73 0.72 0.78 

KNN 0.68 0.68 0.68 0.69 0.70 0.71 0.73 0.73 0.73 0.72 0.72 0.72 0.71 

 

All machine learning algorithms outperform the naïve RW model across all horizons but do 

not outperform the benchmark models. The best performing machine learning algorithm for 

all horizons is the ENet, who can combine the LASSO and RR regularization terms, which 

can produce a more flexible approach to variable selection in order to select the best variables 

in forecasting inflation. The ENet gives the best MAE value for a 6-months ahead forecast. 

The weaker performance of the machine learning algorithms for the Mexican variables can be 

due to the lower dimension of the dataset, which makes the use of machine learning 

algorithms less beneficial. The Factor Model does not perform better than the benchmark 

models, but outperforms the machine learning models. The Factor Model works in a similar 

way to the machine learning models in the sense that it reduces the dimensionality of the 

dataset by extracting common factors from the feature variables.  

 



25 
 

Table 4: The ratio for the MAE test statistics for different forecast horizons relative to the RW 

model for the sample 1997-2017 using the Mexican dataset. The best performing model for 

each horizon is highlighted in grey. The average MAE ratio across all horizons is calculated in 

the last column (Ave). 

Forecasting horizon 

Model 1 2 3 4 5 6 7 8 9 10 11 12 Ave. 

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AR 0.39 0.04 0.32 0.57 0.51 0.80 1.13 0.32 0.55 0.52 0.15 0.19 0.49 

ARMA 0.20 0.26 0.85 0.92 1.34 1.08 1.78 0.28 0.48 0.73 0.10 0.04 0.67 

SARIMAX 0.11 0.25 0.98 0.10 0.90 1.67 1.89 0.41 0.81 0.55 0.52 0.43 0.72 

Factor 

Model 

0.58 0.59 0.59 0.60 0.61 0.61 0.61 0.61 0.62 0.60 0.59 0.59 0.60 

LASSO 0.87 0.89 0.93 0.88 0.84 0.81 0.81 0.79 0.81 0.81 0.76 0.74 0.83 

RR 0.81 0.82 0.82 0.81 0.82 0.78 0.79 0.79 0.82 0.82 0.82 0.79 0.77 

ENet 0.58 0.58 0.59 0.59 0.60 0.60 0.61 0.61 0.60 0.60 0.59 0.59 0.60 

SVR 0.84 0.88 0.86 0.81 0.85 0.86 0.82 0.81 0.82 0.80 0.81 0.75 0.83 

RF 0.78 0.74 0.74 0.75 0.74 0.78 0.73 0.71 0.73 0.65 0.65 0.63 0.72 

KNN 0.60 0.63 0.60 0.62 0.64 0.64 0.65 0.65 0.65 0.64 0.64 0.64 0.63 

 

5.3. Results comparison  

Finally, the results for both the US dataset and the Mexican dataset are compared. For both 

datasets, all models across all horizons outperform the naïve RW model. However, the extent 

to that varies across the datasets. The US dataset is performing better and showing less 

forecast error both in terms of RMSE and MAE values compared to the Mexican dataset. 

Additionally, all the machine learning models perform much better for the US dataset, where 

the dimensionality is higher with more potential predictors to forecast inflation. The higher 

dimensionality of the US dataset makes the benefits of machine learning algorithms more 

relevant. Another aspect to why the machine learning algorithms is better suited than the 

benchmark models for forecasting inflation using the US dataset can be attributed to the 

multicollinearity aspect of the dataset. The US dataset consists of a lot of predictors which are 

similar to each other, hence highly correlated to each other, which can be mitigated by 

applying machine learning techniques (Chan et al. 2022). Chan et al. continues by stating that 
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machine learning algorithms tend to perform better with datasets consisting of high degrees of 

multicollinearity due to the effectiveness of machine learning techniques and its built-in 

features in handling multicollinearity by variable selection and dimensionality reduction. The 

machine learning models also seem to benefit from the increased complexity of the dataset, 

where machine learning models better can identify these patterns, such as nonlinearity 

between the inflation variable and the predictors to produce more accurate forecasts compared 

to the benchmark models.  

For the Mexican dataset, the machine learning algorithms does not outperform the benchmark 

models in forecasting inflation. One possible explanation as previously mentioned is the 

variable selection, where the potential predictors of forecasting inflation are significantly less 

than the US dataset. The sample period is also significantly smaller, which affects the model 

in terms of the training and test size aspect of the forecasting. With less historical data to work 

with, the models may not be able to capture the underlying factors for forecasting inflation as 

optimally as possible, and the forecast results suffer from it. Additionally, forecasting inflation 

in an emerging market can be more challenging in general, and Duncan & Garcia (2019) point 

out several factors that make forecasting inflation harder for emerging markets. They point 

out that emerging economies have experienced changes in their macroeconomic dependencies 

attributed to changes in polices and globalization. They also point out that emerging 

economies are more exposed to external shocks, and changes in global factors such as 

commodity prices and exchange rates have a larger impact on domestic inflation. These 

aspects make the variables more volatile over time. These factors can influence inflation 

forecasting and make it harder overall to produce good forecast results.  

To summarize the results for the two datasets, all models outperform the naïve RW model 

across every horizon. For the US dataset, the machine learning models outperforms the 

benchmark time series models and produces lower forecast errors on average compared to the 

Mexican dataset, in which the machine learning models do not outperform the benchmark 

models on average in forecasting inflation. Additionally, the forecast errors are similar on 

average for most models on average across all horizons, which can be attributed to the 

robustness imposed by using a fixed window across all horizons.  
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6. Discussion 

This paper investigates and compare the performance of forecasting inflation for an emerging 

economy, Mexico, and a developed economy, the US. The inflation forecast was made using a 

rolling window approach for 1-12 months ahead in the future, using a fixed window size for 

traditional benchmark models, a target factor model, and machine learning models. The 

forecast evaluation was made by comparing the RMSE values and the MAE values across all 

forecast horizons. To conduct optimal results for the forecast, hyperparameter selection is 

made by applying cross-validation tests for the machine learning models, and a scree-test with 

Kaiser’s criterion for the target factor model. The optimal components of the benchmark 

models are determined by plotting the PACF, and by using an automized Python package for 

optimal model component selection.  

The methodology described above are applied on two datasets, the FRED-MD dataset for the 

US, which is a high-dimensional dataset consisting of monthly macroeconomic variables, and 

a dataset of monthly Mexican macroeconomic variables, gathered from the Federal Reserve 

database and from the Banco de Mexico database. Both these datasets also contain the 

inflation variable, measured as the logarithm-difference of the Consumer Price Index (CPI). 

Additionally, the study was attempted to answer the following two questions: 

• Do machine learning methods outperform traditional time series models? 

• How does the evaluation of time series models and machine learning methods 

compare for an emerging economy and a developed economy?  

To answer the first question, machine learning methods was seen to outperform the traditional 

benchmark time series models for the high-dimensional US dataset, but not for the Mexican 

dataset. The intuitive reason behind these results can be attributed to the difference in 

dimensionality for the datasets. The US dataset contain both more potential predictors in 

forecasting inflation, and the dataset contain more total monthly observations for each 

variable, which suits the machine learning models better, since these models are better suited 

when applied to a more complex dataset, where variable selection and regularization can be a 

useful tool in extracting relevant features to optimize forecast performance. For the Mexican 

dataset, the potential predictors and monthly observations are fewer in total, which creates  

less complexity of the data and therefore less benefits of using machine learning models, and 

as a result, the machine learning models does not outperform the benchmark models. To 

answer the second question, it is seen that the performance of forecasting inflation is better for 
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the developed economy compared to the emerging economy. The reported RMSE and MAE 

values for the US dataset are lower across all forecast horizons and models. This can also be 

attributed to the characteristics of the dataset, where a larger sample size and more potential 

predictors compared to the Mexican dataset makes the forecast errors smaller for the models. 

Additionally, forecasting inflation is generally harder for emerging economies due to more 

volatile movements of the predictors across the sample period, which makes it harder to 

identify patterns in the data for forecasting performance. Overall, the results are in line with 

the existing literature that machine learning models was seen to outperform benchmark time 

series models for the US dataset, but machine learning models did not outperform the 

benchmark models for the Mexican dataset, going against the existing literature.  

The best machine learning model overall in this study was seen to be the RF model, mainly 

due to its ability to identify complex patterns such as nonlinearities in the data, and its ability 

to reduce importance of less significant variables in forecasting inflation, putting more weight 

on variables that have more impact on inflation. As for macroeconomic policymakers, based 

on the results from this study, machine learning models can be useful tool for policymakers in 

forecasting, due to its abilities to work in a complex environment, in which forecasting 

inflation using potential predictors are. However, as seen in this study, to optimally use the 

machine learning models, sufficient macroeconomic data needs to be available, which is more 

applicable to developed economies. 

There are several ways in which further research can be extended for inflation forecasting. 

First, a different set of machine learning models could be examined. Machine learning 

algorithms such as Neural Networks, Complete Subset Regressions, and Deep Learning 

models such as Long-Short-Term-Memory can all be used to forecast inflation and would 

provide some valuable extensions on the subject. With more time at hand, more variables can 

be extracted for an emerging economy to increase the dimensionality of the dataset to 

improve performance. Another interesting extension of the study would be to forecast with 

another window approach. By changing from a rolling window to an expanding window, the 

forecast results could be different. The size of the window and the split of the training and test 

data could also be examined in more detail to improve the forecast performance. Other 

emerging economies could also be examined and be compared with to the case of Mexico, to 

see if the forecast results for this study holds for other emerging economies. 
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8. Appendix 

Table 5: Variable names and corresponding transformations for the Mexican dataset. The 

transformation codes represent (1) no transformation, (2) first difference of the variable, (3) 

first difference of the log of the variable, (4) second difference of the log of the variable.  

 Description of variable Transformation 

Code 

Source Series ID 

1 Monthly inflation   FRED CPALCY01MXM661N 

2 Mexican Stock Market 

Index, General Index 

3 Banco de 

Mexico 

CF57 

3 Monetary Base 3 Banco de 

Mexico 

CF2 

4 Currency in Circulation 3 Banco de 

Mexico 

SF1 

5 Cash in vault 3 Banco de 

Mexico 

SF5 

6 CLI: Trend 2 FRED MEXLOLITOTRSTSAM 

7 International Reserves 3 Banco de 

Mexico 

SF7 

8 Financial sources 

(Total) 

3 Banco de 

Mexico 

SF321170 

9 Assets and Liabilities, 

Credit 

3 Banco de 

Mexico 

SF337 

10 Credit to Banks 3 Banco de 

Mexico 

SF343 

11 Net International Assets 3 Banco de 

Mexico 

SF29654 

12 91-day Cetes 3 Banco de 

Mexico 

SF17801 

12 Weighted average 

government funding 

rate 

3 Banco de 

Mexico 

SF17864 
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13 Real Exchange Rate 

Index 

2 Banco de 

Mexico 

SR28 

14 External Price Index 2 Banco de 

Mexico 

SR464 

15 INPC, Core, 

Merchandise 

4 Banco de 

Mexico 

SP74626 

16 INPC, Core, Services 4 Banco de 

Mexico 

SP74628 

17 INPC, Non-Core 4 Banco de 

Mexico 

SP74630 

18 Public Sector 

Budgetary 

Expenditures 

4 Banco de 

Mexico 

SG1 

19 Total Debt of the Public 

Sector 

3 Banco de 

Mexico 

SG193 

20 Internal Debt of Public 

Sector 

3 Banco de 

Mexico 

SG194 

21 External Debt of Public 

Sector 

3 Banco de 

Mexico 

SG195 

22 Total Exports 3 FRED XTEXVA01MXM664S 

23 Total Imports 3 FRED XTIMVA01MXM664S 

24 M1 for Mexico 3 FRED MANMM101MXM189S 

25 Current Account 

Deposits in Resident 

Banks 

3 Banco de 

Mexico 

SF12721 

26 Pension Funds 3 Banco de 

Mexico 

SF10478 

27 Financial Savings 

including Public Sector 

Savings 

3 Banco de 

Mexico 

SF221973 

28 Monetary Aggregates 

including public sector 

3 Banco de 

Mexico 

SF13724 
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29 Federal Government 

securities 

3 Banco de 

Mexico 

SF13764 

30 Domestic Private 

Consumption, Total 

3 Banco de 

Mexico 

SR16558 

31 Production: Total 

Energy 

2 FRED MEXPRENTO01IXOBSAM 

32 Production: Total 

Industry excluding 

construction 

2 FRED MEXPRINTO01GPSAM 

33 Production: Total 

Industry including 

construction 

2 FRED MEXPRINTO02IXOBSAM 

34 Production: Total 

Manufacturing 

1 FRED MEXPROMANMISMEI 

35 Labor Compensation: 

Earnings 

2 FRED MEXLCEAMN01GPSAM 

36 Total Retail Trade 2 FRED MEXSARTMISMEI 

37 Sales: Wholesale Trade 2 FRED MEXSLWHTO01IXOBSAM 

38 Harmonized 

Unemployment Rate 

2 FRED LRHUTTTTMXM156S 
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Figure1: The PACF plot of the inflation variable for the Mexican dataset with a maximum of 

20 lags. 

 

Figure 2: The PACF plot of the inflation variable for the US dataset with a maximum of 20 

lags. 
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Figure 3: The Scree plot for the Mexican predictors to determine the optimal number of 

factors to extract for the target factor model. 

 

Figure 4: The Scree plot for the US predictors to determine the optimal number of factors to 

extract for the target factor model. 
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