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Abstract

The present study discusses and evaluates a novel continuous-time approach to network cen-
trality, a fundamental concept in network analysis. Static methods based on discrete snapshots
or time slices for measuring node interaction in networks that change over time do not fully
capture the dynamical nature of network evolution. To address this issue, a dynamical sys-
tem model driven by the continuous-time adjacency matrix of the network is derived from a
continuous version of Katz centrality, one of the most widely used centrality measures. Using
this approach, numerical experiments are conducted on various networks, synthetic and real,
showing that this continuous-time framework performs better than traditional static or aggre-
gate measures and that it is able to capture dynamic effects of communication between nodes
or even changes in the network structure over time.

The most significant conclusions of this work are that the new ODE-based framework offers
major improvements in accuracy and efficiency over static methods for network simulations.
By using advanced numerical ODE solvers, time discretization is performed automatically ”un-
der the hood” in an optimal and efficient manner, allowing the system to adapt to sudden and
significant changes in network behavior. The ODE system’s property of downweighting infor-
mation over time also enables real-time monitoring of centrality rankings without the need to
store or account for all previous node interaction history. Moreover, it is shown why tracking
good receivers of information in a dynamic network is cheaper than tracking good broadcasters
from a computational cost perspective.

Overall, this dynamical systems approach to network centrality can lead to new insights into
the behavior of complex networks and has implications for a wide range of applications, from
social networks to fluid mechanics, where network dynamics play a crucial role.
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CHAPTERChapter 1
Introduction

Networks are fundamental in many fields of science as they provide a powerful way to model
complex systems and relationships between entities at different scales. By representing entities as
nodes and connections between them as edges, networks can help researchers understand how
information, energy, materials, and other resources flow through a system, identify patterns
and structures within the data, and make predictions about system behavior. Many real life
problems can be modeled as graphs or discretized as networks and that is why they are widely
used in many fields such as physics, biology, sociology, statistics, or computer science among
others. Network analysis in all these areas have led to significant advances in our understanding
of the world around us [1], [2], [3, Part I].

1.1 Mathematical notation

This section introduces a brief review of the definitions and notation pertaining to graphs, as
well as some of their matrix representations, that will be used later in this study.

A network in the mathematical literature is, in its simplest form, a collection of interconnected
nodes or vertices that represent entities, and the connections or edges between these nodes that
represent relationships or interactions between the entities [4].

Definition 1.1.1 A weighted network, or graph, is an ordered triple of sets G = (V,E,W), where
V is the set of nodes, E ⊂ V × V is the set of edges among the nodes and W is a map that assigns
to each edge a weight or cost, usually a positive real number. When all these weights are given the
same relevance or weight (by convention, ω = 1), then the graph, represented only by G = (V,E),
is called unweighted.

The following two definitions that are central for this work are the concept of walk and the
adjacency matrix of a graph.
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Chapter 1. Introduction 1.1 Mathematical notation

Definition 1.1.2 A walk of length w is a sequence of w edges (e1, e2, . . . , ew) such that the target
of eℓ coincides with the source of eℓ+1 for all ℓ = 1, 2, ..., w−1.

Definition 1.1.3 Let G = (V,E,W) be a weighted graph with N nodes. Its adjacency matrix
A ∈ RN×N is entry-wise defined as

Aij =

{∑
eij

ωij if there is an edge eij between nodes i and j with cost ωij ,

0 otherwise,
(1.1)

for all i, j = 1, 2, . . . , N .

Unless otherwise stated, all graphs analyzed in this study will be considered simple networks.

Definition 1.1.4 A simple network is a type of network where each edge connects only two distinct
nodes, i.e., there are no self-loops or multiple edges between the same pair of nodes.

As a particular case, the adjacency matrix for simple unweighted graphs will have all their non-
zero entries set to Aij = 1, indicating a link between nodes i and j.

Additionally, graphs are usually represented visually using a diagram (e.g., Fig. 1.1), where
nodes are represented as points and edges are represented as lines connecting the points. The
direction of the edges allows us to divide graphs into directed and undirected. As a consequence
of this, undirected graphs are represented by symmetric adjacency matrices, i.e., Aij = Aji and,
on the contrary, directed graphs by asymmetric matrices, Aij ̸= Aji. The presence of loops, i.e.,
edges connecting a node to itself can also be indicated in this visual representation, Aii = 1, in
terms of the adjacency matrix.

Undirected Directed Cyclic Acyclic

Weighted Unweighted Sparse Dense
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Figure 1.1: Examples of different network properties.

It is also worth mentioning other relevant network properties of graph theory for this work as:
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Chapter 1. Introduction 1.2 Centrality measures

• Cyclic/Acyclic networks: Cyclic networks are networks where there is at least one path from
a node to itself. In other words, they contain cycles or loops. Examples of cyclic networks
include recurrent neural networks (RNNs) and feedback loops in control systems. On the
other hand, acyclic networks are networks that do not contain any cycles so there is no
path from any node back to itself. Examples of these networks are directed acyclic graphs
(DAGs) as directed binary trees.

• Sparse/Dense networks: respectively, a sparse/dense network is a type of network where
the number of edges (or connections) between nodes is/is not much smaller than the
maximum possible number of edges in the network, resulting in a relatively low/high
density of connections. Although there is a widespread agreement that most empirical
networks are sparse, there is no formal definition of sparsity for any finite network, being
the notion of ”much smaller” purely colloquial.

• Static/Dynamic networks: A static network is a network that does not change over time.
The relationships and connections between nodes are fixed and remain constant. On
the contrary, a dynamic network is a network that changes over time. The relationships
and connections between nodes can evolve and alter, resulting in a continually changing
network structure.

Linear algebra will play a significant role in network analysis as graphs are represented by ma-
trices. The analysis of networks often involves solving linear systems, determining eigenvalues
and eigenvectors, and evaluating matrix functions. Moreover, the examination of dynamic
processes on graphs will create systems of differential equations based on their structure. The
behavior of the solution over time is expected to be highly impacted by the graph’s structure
(network topology), which is reflected in the spectral properties of the matrices related to the
graph. This turns out to be one of the most basic questions about the network’s structure; the
identification of most relevant nodes within a network. This leads us to the concept of centrality.

1.2 Centrality measures

Centrality measures are metrics that are used to quantify the relative importance/influence/po-
sition of a node in a network. Indicators of centrality assign numbers or rankings, usually the
higher the more important, to nodes within a graph corresponding to their network position
based on different criteria. This gives rise to several types of centrality measures [3, Ch. 7]:
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Chapter 1. Introduction 1.2 Centrality measures

Degree centrality

The Degree centrality measures the number of connections a node i has to other nodes in the
network. This is called the degree of a node (k). Let A ∈ RN×N be the adjacency matrix of
a graph with N nodes. If we define x = (x1, x2, . . . , xN ) as the centrality vector of the graph,
then we can express the Degree centrality for each node as

x
(deg)
i = ki =

N∑
j=1

Aij , i = 1, . . . , N. (1.2)

This measure is usually normalized by the maximal possible degree, N−1, to obtain a number
between 0 and 1. For certain networks, Degree centrality can be very illuminating as it provides
a straightforward and simple indication of a node’s connectedness or level of popularity, but
fails to consider other crucial elements of the network structure such as the importance of a
node or its place within the network.

Closeness centrality

In order to extend the basic measure of degree and take into account the position of the nodes
in the network, closeness and betweennessmeasures are defined. For its part, Closeness centrality
measures the average distance,

∑
j d(i, j), between a node and all other nodes in the network,

where d(i, j) is defined as the shortest path between nodes i and j, i.e, the minimum sum of
the weights along the path between them. In its normalized version it can be expressed as

x
(clos)
i =

N − 1∑
j ̸=i d(i, j)

. (1.3)

An alternative measure of Closeness centrality is the Harmonic centrality which aggregates dis-
tances differently as the sum of all inverses of distances,

∑
j 1/d(i, j). This avoids having a few

nodes for which there is a large or infinite distance,

x
(har)
i =

1

N − 1

∑
j ̸=i

1

d(i, j)
. (1.4)

Betweenness centrality

Betweenness centrality measures the number of times a node acts as a bridge along the shortest
path between two other nodes in the network. Formally, if we redefine gijk to be the number
of shortest paths from j to k that pass through i and we define gjk to be the total number of
shortest paths from j to k, then the Betweenness centrality of node i on a general network is
defined as
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Chapter 1. Introduction 1.2 Centrality measures

x
(bet)
i =

∑
j<k

gijk
gjk

. (1.5)

Eigenvector centrality

The Eigenvector centrality measures the influence of a node based on the influence of its neigh-
bors. Unlike Degree centrality which assigns one point for each network connection, Eigen-
vector centrality assigns points based on the centrality scores of a node’s neighbors, resulting
in a more nuanced understanding of a node’s centrality. If we denote the centrality of node i
by xi where x is the centrality vector and A the adjacency matrix of the graph, then making
use of the adjacency matrix and making xi proportional to the average of the centralities of i’s
network neighbours we have

xi = κ

N∑
j=1

Aijxj , (1.6)

where κ is a constant. We can rewrite this equation in matrix form considering κ = 1/λ as

λx = Ax. (1.7)

Hence, x is the eigenvector of the adjacency matrix corresponding to the eigenvalue λ. By the
Perron–Frobenius theorem [5, Ch. 8], a real square matrix with all elements non-negative, like
an adjacency matrix, has only one eigenvector with all elements with the same sign and that is
precisely the leading eigenvector. Therefore, assuming that we wish the centralities to be non-
negative, it is shown that λ corresponds the spectral radius of A, i.e., the largest absolute value
of its eigenvalues, (κ = (|λ1|−1) and the centrality vector, x, to its corresponding eigenvector.

1

2

3

4

5

6

Figure 1.2: Acyclic graph.

Drawbacks of this type of measure are that it does not scale well for directed networks (asym-
metric adjacency matrices) where it is not always possible to compute a unique, real leading
eigenvector. Or, even worse, it is not applicable in acyclic networks. Fig. 1.2 illustrates how
node 1 in that network has only in-going edges and hence will have eigenvector zero centrality,
according to (1.6). Node 3 has an out-going edge and two in-going edges, but the in-going one
is incident on node 1, and hence node 3 will also have zero centrality. Following this argument
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Chapter 1. Introduction 1.2 Centrality measures

for the remainder nodes, the result is a zero centrality for the whole network. To address these
problems, variants based on Eigenvector Centrality such as PageRank and Katz centrality were
developed.

PageRank and Katz centrality

In the task of finding the most important nodes in a network, two of the most widely used
methods are PageRank and Katz centrality. To solve Eigenvector centrality problems in net-
works that do not have strongly connected components of more than one node resulting in a
zero centrality vector, the main idea of these two methods is to give each node a small amount
of centrality for free.

Let A ∈ RN×N be the adjacency matrix for an unweighted (Aij = 1), directed (with possible
undirected links, Aij = Aji), static network of N nodes. We need the networks to be un-
weighted since, as we will see later, the (ij)th entry of the matrix Ak gives us a combinatorial
way of counting paths of length k from i to j which will be essential to define the concept of
centrality based on counting all possible paths from a node to all its neighbors in the network.
For weighted graphs, this interpretation of the (ij)th entry of the matrix Ak has to be modified.
Then, from (1.6) PageRank centrality is defined as

xi = α

N∑
j=1

Aij
xj
koutj

+ β, (1.8)

where α, β are positive parameters and koutj denotes the out-degree of node j, i.e., the number
of out-going links from that node. The first term correspond to the Eigenvector centrality
and the second term is the “free” part, the constant extra amount that all nodes receive. By
including this additional component, we make sure that nodes with no incoming connections
still receive centrality, and once they have a non-zero centrality score, they can distribute it to
the other nodes they are linked to. This results in nodes that are connected to many others
having a high centrality, regardless of whether they are part of a strongly connected component
or an out-component.

The difference between PageRank and Katz centrality resides precisely in the way they spread
the centrality over the network. In mathematical terms, Katz centrality is obtained from (1.8)
when koutj = 1 for each j,

xi = α

N∑
j=1

Aijxj + β. (1.9)

If a node with a high Katz score has links to many other nodes, then all of those linked nodes
will also receive a high centrality score. PageRank, instead, is a variant in which the centrality
derived from network neighbors is proportional to their centrality divided by their out-degree.
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Chapter 1. Introduction 1.2 Centrality measures

Therefore, nodes that point to many others pass only a small amount of centrality on to each
of those others, even if their own centrality is high.

By convenience, we set koutj = 1 in (1.8) to avoid zero-division for nodes with no outgoing
edges. Thus, we can express PageRank centrality in matrix form as

x = αAD−1x+ β1, (1.10)

with 1 being the vector of ones (1, . . . , 1) andD being the diagonal matrix with elementsDii =
max(kouti , 1). Rearranging for x and setting the conventional value of β = 1, the PageRank
centrality yields

x = (I− αAD−1)−11. (1.11)

Again, a similar expression for Katz centrality is obtained if we considerD−1 = I, for I denoting
the identity matrix of order N .

We seek α such that I−αAD−1 is non-singular, i.e. det(I−αAD−1) ̸= 0, or what is the same,
det(AD−1 − α−1I) ̸= 0. This it is simply the characteristic equation of AD−1 whose roots
are equal to the eigenvalues of the matrix AD−1, λ = α−1. This suggests a good value for α
bounded by 0 < α < 1/ρ(AD−1), denoting ρ(·) the spectral radius (e.g. Google uses α = 0.85
[6]).

In the choice of α we must take into account that the closer we are to the spectral radius, the
maximum amount of weight on the eigenvector term will be place and the smallest amount on
the constant term. If we let instead α → 0, then only the constant term will survive in (1.9)
resulting in all nodes with equal centrality.

PageRank was developed by Google co-founders Larry Page and Sergey Brin as a way to rank
websites in their search engine results. The basic idea behind PageRank is that a node is consid-
ered important if it is linked to by many other important nodes. The PageRank score of a node
is determined by the sum of the PageRank scores of the nodes that link to it, with a damping
factor applied to reduce the influence of nodes with many outbound links.

PageRank and Katz centrality are widely used in the field of network analysis and has been ap-
plied to a wide range of networks, including theWorldWideWeb, social networks, or biological
networks [6], [7],[8, Ch. 5]. Overall, each centrality measure provides a different perspective
on the importance of a node in a network (see Fig. 1.3) and can be useful in various applica-
tions, such as network analysis, recommendation systems, or identifying key players in complex
systems. The most appropriate centrality measure will require a more detailed analysis of the
specific characteristics of the network in question.

Katz centrality is discussed further in the next section 1.3 as it is the central topic of this thesis.
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A) Degree Centrality B) Bet eenness Centrality C) Closeness Centrality

D) Eigenvector Centrality E) Katz Centrality F) PageRank
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Figure 1.3: Examples of A) Degree centrality, B) Betweenness centrality, C) Closeness centrality, D) Eigenvector centrality, E)
Katz centrality and F) PageRank from Zachary’s Karate Club graph dataset [9].

1.3 Background on Katz centrality in static networks

Katz centrality was first introduced by Leo Katz [2] in 1953 as a way to measure the relative
importance of nodes in a network based on the number of paths that pass through them. This
measure is obtained by assigning a score to each node in the network based on the sum of the
scores of all nodes that are one step away from it, plus a fraction of the scores of all nodes that
are two steps away, and so on, up to an arbitrary limit or threshold.

Expression (1.11) provides a way to compute Katz centrality based on the resolvent of the adja-
cency matrix.

Definition 1.3.1 Given a square matrix A its resolvent is the matrix-valued function RA(α) =
(I−αA)−1, defined for all α−1 ∈ C \ σ(A).

Katz centrality can be elegantly reformulated using the Neumann series as an extension of the
geometric series. It can be expressed as follows

x = (I− αA)−11 =

( ∞∑
k=0

αkAk

)
1. (1.12)

This formulation provides a practical approach for computing the resolvent of the adjacency
matrix

(I− αA)−1 = I+ αA+ α2A2 + · · ·+ αkAk + · · · . (1.13)
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Chapter 1. Introduction 1.3 Background on Katz centrality in static networks

The convergence of this expansion is ensured when α < 1/ρ(A), where ρ(·) represents the
spectral radius.

This series is in fact the original form of centrality conceived by Leo Katz, who considered for
each node i the influence of all the nodes connected by a k-length walk to iwith no restriction in
reuse of nodes and edges. Thus, α can be considered an attenuation parameter as the probability
that an edge is successfully traversed, penalizing those nodes furthest away from i.

Considering messages being passed along the directed edges, one important consequence of the
above expansion is that elements of the resolvent matrix can be considered as a measure of the
ability for a node i to pass information to j taking into account all possible routes, with longer
ones given less importance. In that sense, if we consider row sums in the resolvent matrix as a
linear combination of powers of A, we can talk about the broadcast centrality vector (b) as the
ability to send information for each node in the network

b = (I− αA)−11. (1.14)

Similarly, the column sums of the resolvent matrix give a notion of the ability to receive infor-
mation which is defined as the receive centrality vector (r) of the network

r = (I− αA)−T1. (1.15)

Broadly speaking, a node with a high Katz broadcast centrality will be an effective starting point
for spreading a rumor, and a node with high Katz receive centrality will be an ideal location to
receive the latest rumor.

In summary, Katz Centrality is a very useful centrality measure, for both directed and undi-
rected networks, because it provides a nuanced and flexible way to assess the importance of
nodes in a network based not only on their position but also on the indirect influence of a
node’s neighbors, which can be important in many real-world networks.
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Chapter 1. Introduction 1.4 Motivation of the study

1.4 Motivation of the study

Dynamic networks, or what is the same, systems involving transient interactions are commonly
found in real problems across various fields. Currently, the most popular approach is to examine
network activity over discrete time frames or snapshots and analyze network status at these
time slices. This method presents a number of challenges when it comes to modeling and
computing, as it fails to account for the time-sensitive nature of network connections. If the
time frame is too large, the ability to reproduce high-frequency transient behaviour, where an
edge switches on and off multiple times in the space of a single window, is lost. On the other
hand, if it is too narrow, it could result in a large number of empty time frames that can lead
to redundant processes, wasting computational effort. Additionally, when time windows are
too finely spaced, a static model may give a false impression of accuracy since it is not able to
reflect altogether the time at which instantaneous information is sent, then received and later
processed in time, as happens in many human communication media, with the subsequent loss
of information in the network.

Therefore, to address these limitations the present work analyzes a continuous-time frame-
work developed in [10] that can directly extract centrality information from a network’s time-
dependent adjacencymatrix. This new centrality system expands the concept of the well-known
Katz measure and allows us to identify and monitor the most influential nodes in dynamic net-
works over time at any level of detail in a natural and efficient way.
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CHAPTERChapter 2
Continuous-time analysis of dynamical systems

When analyzing the importance of nodes within a network, it is significant to consider the
order in which node interactions occur in time. It happens that if person A meets person B
today and then person B meets person C tomorrow, a message or idea could pass from A to C,
but not the other way around. If we only look at individual moments in time (static snapshots)
or a summary of all the interactions, we may miss this type of influence, making it difficult
to identify key players in the network. It is reasonable to assume that influential nodes will
introduce information that is then passed around the network by others. Our main motivation
is therefore to introduce a framework that can efficiently measure this kind of dynamic effects
in a continuous-time setting.

2.1 Dynamical system equations

Consider a time-ordered sequence t0 < t1 < · · · < tM and its associated sequence of un-
weighted graphs defined over a set of N nodes, {G[k]} for k = 0, 1, . . . ,M . Each graph reflects
the state of the network at time tk represented by its corresponding adjacency matrix A(tk),
with A(tk)ij = 1 if there is a link from i to j at time tk, and 0 otherwise. We further assume the
existence of directed links, A(tk)ij ̸= A(tk)ji but no presence of self loops, A(tk)ii ≡ 0. We let
∆ti := ti− ti−1 denote the spacing between successive time points, not assuming that the time
points are equally spaced. Then, in order to address the previously described follow-on effect
derived from the time ordering, the static graph concept of walk is generalized as follows [11]:

Definition 2.1.1 A dynamic walk of length w from node i1 to node iw+1 consists of a sequence of
edges (i1, i2, . . . , iw+1) and a non-decreasing sequence of times tr1 ≤ tr2 ≤ · · · ≤ trw such that
A(trm)im,im+1 ̸= 0 for m = 1, 2, . . . , w. The lifetime of a dynamic walk is defined by trw − tr1 .

Note that more than one edge can share a time slot and that time slots must be ordered to
respect the arrow of time but they do not need to be consecutive, i.e. some times may have not
been used during the walk.
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Chapter 2. Continuous-time analysis of dynamical systems 2.1 Dynamical system equations

A key observation that generalizes the static walk mentioned in (1.13) is that the matrix product
A = A(tr1)A(tr2) · · ·A(trw) has elements Aij that count the number of dynamic walks of length
w from node i to node j on which them’th step of the walk takes place at time trm . In this new
dynamic environment, we can utilize the same reasoning that was employed to calculate the
Katz centrality metric. Our aim is to measure how likely it is for node i to engage in communi-
cation or interactions with node j. To achieve this, we can count the number of dynamic walks
that go from node i to node j for each length w, reducing its significance by multiplying them
with a downweighting factor αw. This leads to the matrix product αwA(tr1)A(tr2) · · ·A(trw)
for tr1 ≤ tr2 ≤ · · · ≤ trw which motivates the definition of the dynamic communicability matrix

Q(tM ) := (I− αA(t0))−1(I− αA(t1))−1 · · · (I− αA(tM ))−1, (2.1)

or equivalently expressed by iteration,

Q(tk) = Q(tk−1)(I− αA(tk))−1, k = 0, 1, . . . ,M (2.2)

with Q(t−1) = I.

To assure convergence of each resolvent matrix, as in the static network case, the parameter α
is assumed to satisfy 0 < α < 1/ρ∗ where ρ∗ = max

k=0:M
{ρ(A(tk))} is the largest spectral radius

among the spectral radii of the matrices {A(tk)}. Here α plays the same role as in classical Katz
centrality, i.e. the probability that a message successfully traverses an edge. In fact, the static
Katz centrality is a particular case of (2.1) for k = 0.

The requirement of α < 1/ρ∗ ensures that resolvents in (2.1) exist and can be expanded as
(I − αA(tk))−1 =

∑∞
w=0(αA(tk))

w. It follows that the entries Q(tk)ij represent a weighted
sum of the number of dynamic walks from i to j using the ordered sequence of matrices
{A(t0),A(t1), . . . ,A(tk)} penalizing walks of length w by a factor of αw. Hence, Q(tk)ij pro-
vides an overall measure of the ability of node i to send messages to node j with longer walks
having less influence than shorter ones.

It is important to note that the use of Q(tk) is closely linked to the concept of a starting
point t0 and an ending point tM , that is, any walk that occurred within the time frame of
t0 to tM holds the same level of influence in terms of time. In other words, all the factors
in αwA(t0)A(t1) · · ·A(tM ) have the same consideration of relevance regardless of the time in
which they occur. There is no time damping or temporal downweighting of any kind as previ-
ously introduced for walk lengths. This feature is appropriate for certain applications, but many
other prioritize current and recent activity, disregarding activity from a distant past, as messages
can become outdated, rumors lose relevance, or certain viruses become less contagious.

Similar to the concept of the walk-downweighting parameter α, Grindrod & Higham [12]
considered the use of age-downweighting in the construction of the communicability matrix
to further account for the decay of the relevance of the information. In their study, the re-
searchers adopted a perspective focused on determining whether node i has recently been able
to communicate with node j through short walks. They explored two contrasting extremes
to capture this information. Firstly, matrix A(tk) in (2.2) provides a localized snapshot, re-
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Chapter 2. Continuous-time analysis of dynamical systems 2.1 Dynamical system equations

vealing the possibilities achievable through single steps based on the current day’s connectivity.
Conversely, matrix Q(tk−1) offers a historical outlook, encompassing all walks across all past
connections leading up to the present time. This idea gives rise to a new a matrix iteration that
bridges the gap between these two extremes.

In search of a time-varying ”running summary” of communicability between pairs of nodes at
each moment in time, our goal is to measure the ability of a node i to transfer messages to node
j considering two conditions:

(i) Shorter walks are more relevant than longer walks.

(ii) Walks that commenced recently are more relevant than those that began a while ago.

These conditions motivate the concept of a running dynamic communicability matrix, S(t) ∈
RN×N that generalize (2.2), such that S(t)ij quantifies the ability of node i to communicate
with node j up to time t [12],

S(tk) =
(
I+ e−β∆tkS(tk−1)

)
(I− αA(tk))

−1 − I, k = 0, 1, 2, . . . (2.3)

starting for convenience with S(t−1) = 0, where, α ∈ (0, 1) and β > 0. Here, α is used to
downweight walks of length w by the factor αw and β is employed to reduce the weight of
the activity, which is age-dependent by the factor e−βt if we consider the current age, t, of a
dynamic walk as the time that has elapsed since the walk began. This factor e−β∆tk in (2.3) may
be interpreted as the probability that a message does not become ”irrelevant” over a time length
∆tk. It is worthmentioning that by taking∆tk = 1 for all k and β = 0 (no down-scaling in time
i.e. infinitely-long memory) the communicability matrix in (2.3) recovers the original iteration
product form in (2.2) with S(tk) = Q(tk) − I. On the other hand, for ∆tk = 1 and β → ∞,
that is, e−β∆tk → 0 (complete downscaling in time or zero memory), the communicability
matrix yields S(tk) = (I− αA(tk))−1 reducing to static Katz centrality.

So far, we have considered an environment where a fixed grid of time points are chosen but our
aim, as previously stated, is to develop a new continuous-time framework. On that basis, S(t)
is proposed to be updated over a small time interval δt, using the scaling (I−αA(kδt))−δt [10].
Then, (2.3) can be rewritten as

S(t+ δt) =
(
I+ e−βδtS(t)

)
(I− αA(t+ δt))−δt − I (2.4)

with S(0) = 0.

To ensure the meaningfulness of the δt → 0 limit, a crucial aspect of formulating this new
iteration (2.4) involved developing such an appropriate scaling approach. The key idea for
employing a δt-dependent power in the matrix products becomes evident when examining the
β = 0 case within a short-time interval where downscaling in time is meaningless. By refining
the original single interval [t, t + δt] into a pair of intervals [t, t + δt/2] and [t + δt/2, t +
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δt], and assuming A(t) remains constant during this interval, we can observe the following
straightforward relationship

(I− αA(t))−
δt
2 (I− αA(t))−

δt
2 = (I− αA(t))−δt.

This identity serves to demonstrate the consistency of our chosen scaling approach, thereby
producing reliable and coherent results with (2.1).

Now, for practical purposes we define the principal logarithm of a matrix [13, Ch. 11].

Definition 2.1.2 A logarithm of A ∈ CN×N is any matrix X ∈ CN×N such that eX = A where
eX = I+X+ X2

2! +
X3

3! + · · · . The matrix logarithm is not unique, since eX+2kπiI = A for any integer
k. If A has no negative real eigenvalues, then we call this the principal logarithm of A, which is the
unique logarithm whose spectrum lies in the strip {z : −π < Im(z) < π}.

From this point on, we will assume the principal logarithm when referring to the logarithm of
a matrix.

For convenience, we take the identity matrix to the left hand side from (2.4), and define the
communicability matrix U(t) = I+S(t). Applying thematrix exponential andmatrix logarithm
with the identities [13, Ch. 11]

H = elogH and logHα = α logH for − 1 ≤ α ≤ 1,

we obtain the following identity from (2.4):

U(t+ δt) =
(
I+ e−βδt(U(t)− I)

)
exp (−δt log(I− αA(t+ δt))) . (2.5)

Expanding in a Taylor series the right-hand side of (2.5) to the first order

f(δt) =
(
I+ e−βδt(U(t)− I)

)
exp (−δt log(I− αA(t+ δt)))

f(0) = U(t)

f ′(δt) = −β(U(t)− I)e−βδt exp (−δt log(I− αA(t+ δt)))+

+ (I+ e−βδt(U(t)− I))(− log(I− αA(t+ δt))) exp(−δt log(I− αA(t+ δt)))

f ′(0) = −β(U(t)− I)−U(t) log(I− αA(t)),

and rearranging the terms, (2.5) can be rewritten as

U(t+ δt) = U(t) + (−β(U(t)− I)−U(t) log(I− αA(t))) δt+O(δt2)

U(t+ δt)−U(t)

δt
= −β(U(t)− I)−U(t) log(I− αA(t)) +O(δt)
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By taking the limit δt → 0, we finally arrive at the matrix ODE proposed by Grindrod and
Higham [10], {

U′(t) = −β(U(t)− I)−U(t) log(I− αA(t)), t > 0

U(0) = I.
(2.6)

This matrix ODE (2.6) provides us with a continuous-time framework for a dynamic system
driven by its adjacency matrix, A(t) with U(t)ij for i ̸= j quantifying the current ability of
node i to pass information to node j, so that longer and older walks are less important.

In the same way as we did with Katz centrality for static networks in (1.14–1.15), we define
two dynamic vectors, namely the broadcast vector b(t) and the receive vector r(t),

b(t) = U(t)1 and r(t) = U(t)T1. (2.7)

These vectors enable us to measure, respectively, the current inclination of each node to broad-
cast or receive information across a dynamic network, under the assumptions of less significance
to longer and older walks.

2.2 Remarks on the new framework

Real-time updating of the receive centrality is approximately a factor N simpler than real-time
updating of broadcast centrality for sparse networks.

Simulating the dynamic broadcast centrality vector, b(t), is computationally much more ex-
pensive than the dynamic receive vector. In (2.6), b(t) requires to work with the full matrix
U(t) which implies to deal with orders of O(N2) for storage and an O(N2) cost per unit time.
One possible approach to address this problem is to develop approximation techniques, such
as sparsifying U(t) or reducing its dimension.

On the other hand, we note that the receive centrality vector, r(t), satisfies its own vector-valued
ODE. If we transpose both sides of the equality in (2.6) and multiply on the right by the vector
of ones, we obtain

r′(t) = −β(r(t)− 1)− (log(I− αA(t)))T r(t) (2.8)

with r(0) = 1. This implies a considerable reduction of order O(N) with respect to equation
(2.6) if we assume that A represents the adjacency matrix for a sparse network with a compu-
tational cost that grows linearly with the number of nonzero entries.

Unfortunately, it is not possible to derive a vector-valued ODE for the dynamic broadcast
vector using the same method. This dissimilarity comes from the fact that the receive vector
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r(t) monitors the total amount of information that flows into each node, so this information
can be carried forward in time as new links emerge. In contrast, the broadcast vector b(t)
tracks the information that has left each node but it does not indicate the current location of
the information because this has not been recorded, and therefore, we cannot update it based
solely on b(t).

The total dynamic broadcast centrality and the aggregate network centrality can be computed
via the dynamic receive vector r(t) for large, sparsely connected networks at a reasonable com-
putational cost.

The total broadcast centrality of the network, which is represented by
∑N

i=1 b(t)i, and the ag-
gregate network centrality,

∑N
i=1

∑N
j=1U(t)ij can be computed using equation (2.8). This is

because in any matrix, the sum of row sums is equal to the sum of column sums. In our case∑N
i=1 b(t)i =

∑N
i=1 r(t)i =

∑N
i=1

∑N
j=1U(t)ij . Therefore, by running a simulation of an

ODE system that is N times smaller than the one needed for nodal broadcast information, we
can keep track of the current broadcast capability of the entire network by computing r(t)T1.
The storage requirement for r(t) scales like the number of nodes in the system, O(N), and the
primary computation involved in evaluating the right-hand side of (2.8) can be accomplished
by performing only a few products of a sparse matrix with a full vector. This results in a cost
of O(N) per unit time for a network with O(1) edges per node.

While total broadcast centrality or aggregate centrality are useful measures for gaining different
perspectives on a network at a general level, this study will focus specifically on determining
centrality at a node level.

The choice of downweighting parameters, α and β, plays an important role in (2.6) and it is
strongly connected to the nature of the interactions represented by A(t).

On one side, the value of the β parameter, which downweights temporal information, can be
interpreted as the rate at which information becomes less relevant over time. In our model, this
means that walks starting t time units ago are downweighted by e−βt. The question that now
arises is how we can calibrate this β parameter.

A recent study [14] by Bit.ly, the URL shortening service, reveals that the average lifespan of
a link online is surprisingly short. The research found that most links, regardless of genre,
experience a brief burst of attention followed by a rapid decline in engagement. The study
measured a link’s longevity by calculating its half life, i.e., the point at which it receives half of
its total clicks.
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According to the study, links shared on various platforms have different lifespans. On Twitter,
a link reaches its half life in an average of 2.8 hours, while on Facebook it lasts slightly longer
at 3.2 hours. Links shared through email and messenger services have the longest lifespan of
3.4 hours. Notably, YouTube links have a significantly longer half life of 7.4 hours, indicating
sustained interest from users.

Therefore, by examining the typical half-life of network links, it becomes feasible to determine
an appropriate value for β, representing the rate at which information becomes outdated.

On the other hand, the value of the edge-attenuation parameter α, which penalizes longer walks
in the network, is determined in the discrete case as we saw in (2.1) by the reciprocal of the
largest spectral radius among the matrices {A(tk)}. Similarly, for the continuous-time ODE
system (2.6), the principal matrix logarithm function log(I− αA(t)) is well-defined when [13,
Ch. 11]

1− αρ(A(t)) > 0 ⇐⇒ α < ρ(A(t))−1 for all t > 0.

This implies that, much like in the discrete case, the full temporal evolution of the network
represented by A(t) has to be known for every t before deriving U(t).

As a particular example of the choice of α, let us consider the context of undirected one-to-
one communication, such as voice calls with no teleconferences, i.e., no more than one active
connection per node at a given time. It is observed that the the adjacency matrix A(t) for this
kind of network can always be permuted into a block diagonal structure, with non-trivial blocks
of the form

[
0 1
1 0

]
where λ1 = 1.

Consequently, the constraint on α is reduced to α < 1. This condition will be applied for the
choice of the α parameter when dealing with the second and third numerical experiments of
this thesis, both of which simulate this type of communication network.
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Alternative approaches to resolvent based centrality measures arise by replacing the resolvent
function with an opportune matrix function.

The initial assumption in (1.13) relies on the concept of counting dynamic walks in a broad
sense, encompassing any path that utilizes zero, one, or multiple edges per time step. Alterna-
tively, we could adopt a different approach in which we count other types of dynamic walks or
matrix functions. One possible way to begin this alternative approach is by using the following
iteration technique

S(t+ δt) = (I+ e−βδtS(t))(H(A(t))−δt − I (2.9)

where H(A(t)) is some matrix function. One suitable option for this matrix function is to use
truncated power series such as I+αA(t)+α2A(t)2+· · ·+αpA(t)p, which only consider dynamic
walks that involve a maximum of p edges per time step. When employing this approach, the
ODE system (2.6) takes on a more general form

U′(t) = −β(U(t)− I) +U(t) log(H(A(t))) (2.10)

Truncated power series for the resolvent matrix of the adjacency matrix A(t) will be used later
in this work to approximate the computation of the matrix logarithm in networks involving a
large number of nodes.
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CHAPTERChapter 3
Numerical experiments

From the point of view of computational cost, it is convenient to make a brief analysis of the
relevant new continuous-time framework obtained in (2.6). The main problem when dealing
with large networks (matrices) resides in the computation of the matrix logarithm, which can
be computationally expensive.

The matrix logarithm can be approximated by its Taylor series expansion. The Taylor series
expansion of the matrix logarithm of I− αA can be expressed as:

log(I− αA) ≈
n∑

k=1

(−1)k+1α
k

k
Ak

where I is the identity matrix of size N . The accuracy of the approximation depends on the
value of k, which determines how many terms in the series are included. The higher the value
of k, the more accurate the approximation, but also the more computationally expensive it is
to compute.

It is worth noting that for certain matrices, the Taylor series expansion does not converge or
converges too slowly to be practical for approximating the matrix logarithm. In such cases,
other approximation methods like the Padé approximation or Schur decomposition may be
more effective [13, Ch. 11].

In Python, the scipy.linalg.logm module from the SciPy library computes the logarithm
of a matrix using a inverse scaling and squaring method together with a Schur decomposition
with a computational cost ofO(N3) for anN×N matrix. However, the Schur decomposition is
not always the most efficient way to compute the matrix logarithm, especially for large matrices
with special properties such as sparsity or symmetry. In these cases, specialized algorithms, based
on Krylov methods, rational approximations or iterative methods with preconditioning, may
be used to approximate the matrix logarithm to reduce its computational cost.
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In this section, we consider first the two synthetic experiments from [10] in order to demon-
strate how our new matrix ODE approach works and provide a better understanding of the
α, β parameters. The synthetic concept in these two experiments refers to the fact that they are
based on artificially created networks with a simple and well-known structure of nodes. By
comparing expected results with the actual ones obtained in the experiments, we will be able
to test, validate and refine the new dynamic framework. The relatively small size of these ex-
amples, N = 31 and N = 17 nodes respectively, will facilitate the process of visualizing, and it
will also allow us to employ a highly precise Runge-Kutta iteration to solve the corresponding
ODE systems (2.6) with accuracy.

The new model is also examined in a third experiment based on real voice call data from the
IEEE VAST 2008 Challenge [15]. Here, we try to find out if the new dynamic measures of
centrality are able to identify hubs of influence in a large communication network (N = 400),
and if they offer a better perspective of the network evolution than static or aggregate measures.

For the initial two experiments, where there are only a few nodes, the Schur decomposition-
based scipy.linalg.logm Python function is used to compute the matrix logarithm. How-
ever, when dealing with a larger number of nodes, as in the voice call experiment, a Taylor
series approximation is considered to be a more effective approach to enhance computational
efficiency.

The Python code used for the three experiments is provided in the appendix A of this thesis.
Each experiment involves the definition and analysis of the adjacency matrices generated for
the different time intervals. Subsequently, the α and β parameters are established to implement
the matrix ODE function (2.6). Such a system of differential equations is then solved using
the Scipy’s function solve_ivp, employing Runge-Kutta methods. Furthermore, the thesis
includes a comparative analysis of the computational costs associated with the computation of
b(t) and r(t).

3.1 First synthetic experiment

The first synthetic experiment models a cascade of information through the directed binary
tree structure with N = 31 nodes illustrated in Fig. 3.1. On a time interval t ∈ [0, 20], the
adjacency matrix A(t) of such network switches ten times between two constant values Aeven

and Aodd on each sub-interval [i, i+ 1) for i = 0, 1, 2, . . . , specifically

A(t) :=

{
Aeven, if mod (⌊t⌋, 2) = 0

Aodd, otherwise

where ⌊t⌋ denotes the floor function, Aeven the adjacency matrix relative to the subgraph with
solid edges in Fig. 3.1, and Aodd the one relative to the subgraph with dashed edges. During
the time an edge from node i to node j is active the respective entry of the adjacency matrix is
set to A(t)ij = 1, and zero otherwise. As we are dealing with directed links, A(t)ij ̸= A(t)ji.
This results in asymmetric matrices A(t) ∈ R31×31 where most of their elements are zero and
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only a few entries belonging to the active nodes are set to one. More specifically, the non-zero
entries of each adjacency matrix are given by Ai,2i = Ai,2i+1 = 1 for i ∈ S(t), where

S(t) =

{
{1, 4, 5, 6, 7} if mod (⌊t⌋, 2) = 0,

{2, 3, 8, 9, 10, 11, 12, 13, 14, 15} otherwise

Some noise is added to this structure by including extra directed edges that are chosen uniformly
at random for each subinterval, with an average of five edges added each time (see Appendix A
- Python code, l.28).
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Figure 3.1: Network structure (binary tree) for the first synthetic experiment. The active links of A(t) alternate between the
solid and dashed edges, with extra noise added at each time step, over a period of 10 cycles.

With this experiment, two main objectives are sought. First, to have a better understanding of
what role α and β parameters play. And second, to confirm that our model captures the cascade
effect in the network along a hierarchy of influence that is hidden from a static or aggregate
view.

For that purpose, four experiments were run to compute the dynamic broadcast centrality at
t = 20 for each node through (2.6)–(2.7), varying only the values of α and β as shown in Table
3.1. Note that the last experimental run does not consider any parameter as it is based on the
computation of aggregate measures, in this case, the aggregate out degree represented by row
sums of the aggregate adjacency matrix for the whole interval t ∈ [0, 20]. By analyzing the
eigenvalues of all generated Aeven and Aodd it is seen that the maximum of the spectral radii of
these matrices is 1, and therefore the solution to (2.6) is well defined for α ∈ (0, 1). The SciPy’s
solve_ivp method was used to numerically solve the matrix ODE, which uses an explicit
Runge-Kutta method of order 5(4). Relative and absolute tolerances were left to their default
values, atol = 10−6 and rtol = 10−3.

Parameter #1 #2 #3 #4
α 0.7 0.7 0.1 -
β 0.1 0.01 0.1 -

Table 3.1: First synthetic experiment: Choice of the α, β parameters for the different experimental runs.
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Fig. 3.2a displays the dynamic broadcast centrality from (2.7), at time t = 20 for each of the
31 nodes for α = 0.7 and β = 0.1. We observe that node 1 has a strong advantage in terms of
centrality, and that centrality tends to decrease as the index increases. Nodes 2 and 5 are ranked
higher than node 3, indicating that the additional noise has affected this part of the network.

Fig. 3.2b depicts the same results with a lower β = 0.01 value, which increases the contribution
of older walks. As a reminder, if we consider a walk starting at time zero, then the downweight-
ing factor becomes e−20×0.01 ≈ 0.8 rather than e−20×0.1 ≈ 0.1. This change of the β parameter
has a negligible effect on the node rankings which makes sense considering that the network
dynamics have an underlying periodic pattern, but it can be observed that it generates larger
absolute values.

In Fig. 3.2c, we return to the original β = 0.1 value and set α = 0.1, resulting in less marked
differences in the node rankings. Even though node 1 continues to be the most central, the
differences are less pronounced as its capability to initiate numerous dynamic walks of length
4 to nodes at the bottom of the hierarchy has less influence or weight.

Fig. 3.2d illustrates the aggregate out degree of each node, that is, the sum of out degrees over
time for each node. For nodes 1 to 15 in the binary tree structure, this value is 20 (2 active
edges × 10 cycles), which fluctuates due to the introduced noise.

Overall, this experiment allows us to clearly visualize the dynamic effect arising from the time-
ordering of the node interactions. Due to the hierarchy and timing of the edges, information
appears to flow from lower indices to higher. The binary structure of the tree makes node
1 particularly efficient at transmitting information through the network, although this is not
immediately apparent in a single snapshot. The last plot highlights that the overall bandwidth in
terms of the aggregate out degree of a node can be a misleading network metric for determining
node influence.

3.2 Second synthetic experiment

We now consider the second synthetic experiment from [10]. The experiment simulates multi-
ple rounds of voice calls that occur along an undirected binary tree structure. Each node in the
tree has at most one active edge at any given time, meaning that there are no ”conference” calls.
Fig. 3.3 shows the network of N = 17 nodes with labels assigned to the edges indicating when
they are active. The adjacency matrix, A(t), for this experiment is defined based on the ordered
and non-overlapping time intervals such that ti := [(i−1)τ, (i−1 + 0.9)τ), for i = 0, 1, . . . , 7,
and τ = 0.1.

The dynamic network is constructed in a way that node A (node 1) is designed to be a more ef-
fective influencer compared to node B (node 2). This can be attributed to several factors such as
a higher social/business status or access to more current and relevant information. Connections
are built in such a way that node A talks to node C (node 3) in t1, initiating a cascade of phone
calls in the network. On the other hand, node B communicates with node D (node 17) at t1
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(b) Broadcast for each of the 31 nodes, α = 0.7, β = 0.01
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(c) Broadcast for each of the 31 nodes, α = 0.1, β = 0.1
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Figure 3.2: First synthetic experiment: results from the dynamic network in Fig. 3.1.

and waits until t4 to contact node C, which does not trigger any new cascades. The experiment
is repeated over five cycles, during which nodes A and B send out a total of 10 messages.

What we expect from this experiment, and makes it different from the previous one, is to
verify that our continuous-time framework is capable of revealing the differences in terms of
dynamic broadcast centrality between the node A that enjoys a cascade effect of information in
the network and node B that does not. Even if these nodes have an apparent identical behaviour
from an overall perspective, both contacting nodes C and D for the same length of time.

As pointed out in the remark on the role of the α and β parameters, in the scenario of undirected
one-to-one communication, such as voice calls with no teleconferences, all the symmetric ad-
jacency matrices turn out to have unitary spectral radius for each time interval. A complete
definition of these matrices can be seen in Appendix A - Second synthetic experiment, l.22.
Values of α = 0.7 and α = 0.9 were chosen to compare centrality results keeping fixed the value
of β = 0.1 which does not play an important role in this experiment due to the underlying
periodic pattern in the network dynamics (similar results were obtained for different values of
β).

Implementing (2.6)–(2.7) in Python, b(t) was computed for the interval t ∈ [0, 3.5] for nodes
A and B, using the solve_ivp function with default parameters: method = ”RK45”, atol =
10−6 and rtol = 10−3.
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Figure 3.3: Network structure for the second synthetic experiment. Links of A(t) are active over non-overlapping time
intervals such that ti := [(i−1)τ, (i−1 + 0.9)τ), for i = 0, 1, . . . , 7, and τ = 0.1, repeated periodically over five cycles.

The results in Fig. 3.4 (for α = 0.7, β = 0.1 and α = 0.9, β = 0.1 respectively) show that the
dynamic broadcast centrality measure is able to capture the cascade effect enjoyed by node A
(solid line) with respect to node B (dashed line). This difference in broadcast centrality is much
more pronounced for values of α close to one (see Fig. 3.4b), where longer walks are more
strongly penalized.

The iterative way in which the dynamic communicability matrix (2.2) is defined as a product
of non-negative matrices based on the computation of the previous steps, ensures that nodes
do not become less communicative over time. This characteristic is reflected in the increasing
curves for both plots. This can also be interpreted from the fact that as time goes on, more
nodes in the network will have received the message. Then, as more nodes receive the message,
the number of nodes that can be reached in a single step will increase, and so will the broadcast
centrality of the original node. Moreover, if we divide the plots into the five cycles that net-
work communication is repeated by vertical lines, the particular staircase shape of the curves
is explained by the fact that nodes A and B are active during t1 and t4 which causes a notable
increase in broadcast centrality after these points.

As a curiosity, other nodes in this network, such as nodes 3, 4 and 5, offer greater centrality than
nodes 1 (node A) and node 2 (node B). In fact, node 3 is the one with the highest centrality in
the entire network. However, the main objective of this experiment was not to highlight this
feature but to verify that our continuous-time ODE framework was capable of establishing a
remarkable difference in the dynamic behavior between nodes A and B.
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Figure 3.4: Second synthetic experiment: dynamic broadcast centrality over time for node A (solid) and node B (dashed) in
the network of Fig. 3.3.

3.3 Voice call experiment

The next experiment applies the new modelling framework (2.6) to a set of voice call inter-
actions, in order to analyze the dynamic behavior of a fictitious, controversial socio-political
movement. The data used for the experiment, supplied as part of the IEEE VAST 2008 Chal-
lenge [15], consists of a complete set of 9834 time-stamped calls across 400 cell phone users
over a 10 day period, with information on IDs for the send and receive nodes, start time in
hours/minutes, and duration in seconds.

Additional information is provided by the designers of the above mentioned competition indi-
cating that node 200 is the leader of an important community who controls a closely connected
subnetwork or inner circle consisting of nodes 1, 2, 3, and 5. However, starting from day 7,
these individuals seem to switch their phone IDs: node 200 becomes 300, and the others be-
come 306, 309, 360, and 392.

The aim of the experiment is to show the usefulness of the new matrix ODE in dealing with
this type of dynamic network, comparing dynamical measures against aggregated. To that end,
the bandwidth of a node is defined as the aggregate number of seconds for which the node ID
is active as a sender or receiver. This will allow us to compare the effective activation time of a
certain node with its relevance in terms of dynamic broadcast centrality.

For this experiment, A(t) is assumed to be symmetric, meaning that A(t)ij = A(t)ji = 1 if
nodes i and j are communicating at time t, which is measured in seconds. The β parameter
is chosen to be approximately β = 1/(60 × 60 × 24) ≈ 1.2 × 10−5, which corresponds to
a time downweighting of e−1 per day. We set the edge attenuation parameter α to a similar
value of 10−4. The SciPy’s solve_ivp method is again used to numerically solve the ODE
(2.6) (see Appendix A - Voice call experiment, l.257). Additionally, absolute and relative error
tolerances are both set to 10−4. To improve efficiency, the matrix logarithm is approximated in
this occasion with its expansion to the fifth power:
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log(I− αA(t)) ≈ αA(t)− α2A(t)2/2 + α3A(t)3/3− α4A(t)4/4 + α5A(t)5/5

Visually speaking, the effects of increasing the number of terms in the expansion to 6 and 7
remained identical.

This experiment yields two key findings:

(i) The dynamic broadcast/receive measures (2.7) are able to identify key nodes as highly in-
fluential, even if they are not actively usingmuch bandwidth, without any prior knowledge
of an inner circle’s existence.

(ii) The transformation that occurs in the network on day 7 is revealed by the running cen-
trality measures once we know the IDs of the inner circle.

Fig. 3.5 is used to demonstrate point (i) by plotting bandwidth against dynamic broadcast,
b(t), using data up until the end of day 6. The scatter plot also includes symbols to mark
certain nodes, such as a star for the ring leader, 200, and squares for the related inner-circle
nodes, 1, 2, 3, and 5. The follow-on ID for the ringleader, 300, is marked with a plus symbol,
and those for other members, 306, 309, 360, and 392, are marked with diamonds.
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Figure 3.5: Voice call experiment: broadcast centrality for each node at the end of day 6 vs. bandwidth (secs.).

The results show that the key nodes for days 1-7 are much more dominant in terms of dynamic
broadcast than overall bandwidth. Specifically, the ringleader node has a low bandwidth but
ranks sixth out of 400 in terms of broadcast communicability.

The data from days 7 to 10 is displayed in Fig. 3.6. The plot shows how the new ID of the
ringleader, that is indicated by a plus symbol, has a low overall bandwidth, but ranks seventh
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highest for broadcast centrality. Although the former IDs from the inner circle, marked with
diamonds, still possess high bandwidth, their low dynamic broadcast scores suggest that they
are no longer central players. This experiment confirms that the dynamic broadcast score is a
more effective indicator of centrality than overall bandwidth in uncovering the inner circle.
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Figure 3.6: Voice call experiment: broadcast centrality for each node at the end of day 10 vs. bandwidth (secs.).

Similar results are found when the dynamic receive centrality, r(t), is computed by using its
own vector-valued ODE (2.8). For data from days 1 to 7, a computation time reduction per
function call of approximately 30% is obtained with respect to b(t) computations (see Appendix
A - b(t) vs. r(t) cost comparison). The execution times in that comparison are measured
over 100 repetitions for the computation of their respective matrix/vector ODE systems. The
frequency (time per call ratio) at which the matrix function (2.6) or vector function (2.8) is
evaluated by the solve_ivp Python method with parameters RK45, rtol = 0.05, atol = 0.01,
and RK45, rtol = atol = 10−4 is shown in Table 3.2 and Table 3.3 respectively.

Method (RK45× 100 rep.) rtol/atol time (s) function calls ratio (ms/call)
b(t) 0.05/0.01 241.24 9200 26.22
r(t) 0.05/0.01 204.35 11600 17.62

Table 3.2: b(t) vs. r(t) cost comparison for RK45, rtol = 0.05, atol = 0.01.
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For smaller error tolerance values (Table 3.3), the results reveal that the vector ODE for r(t) is
invoked significantly more times than the matrix ODE needed for b(t). The underlying reasons
for this observation would demand a comprehensive investigation of the internal workings of
the Python solve_ivp algorithm, which is beyond the scope of this thesis. Just mention here
that for the tolerance scale proposed in Table 3.2, where the number of evaluations is similar,
the improvements mentioned in this thesis for r(t) are remarkable both in terms of absolute
time values and the time per call ratio.

Method (RK45× 100 rep.) rtol/atol time (s) function calls ratio (ms/call)
b(t) 10−4/10−4 984.47 32600 30.20
r(t) 10−4/10−4 2627.48 122600 21.43

Table 3.3: b(t) vs. r(t) cost comparison for RK45, rtol = atol = 10−4.

In order to support point (ii), we define the communicability between key nodes (C) at each
discretized time point, as the average amount of messages, broadcast (Uij) and received (Uji),
between each pair of key nodes, scaled by the average amount of communication between all
pairs of nodes in the network, i.e.,

C(t) = K(t)

T (t)
,

where

K(t) =

∑
i ̸=j (U(t)ij +U(t)ji)

2
∑4

k=1 k
for i = 1, 2, 3, 5, 200,

T (t) =

(∑N
i=1

∑N
j=1U(t)ij

)
−
∑N

i=1U(t)ii

N2 −N
.

The communicability between the original IDs of the five most important players (ID nodes:
200, 1, 2, 3, and 5) during the ten days period is presented in Figure 3.7. By analyzing this
measure, we can observe how the structure of the network changes over time, especially when
the players start using different IDs after day 7.
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Figure 3.7: Voice call data: dynamic communicability between the five key nodes as a function of time.
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Conclusions

This research describes and analyzes a novel approach, using a continuous-time framework, to
analyze dynamic network centrality, introduced in [10]. This new model is an improvement
over existing methods that rely on analyzing individual snapshots of the network, as it allows
for better data-driven simulations and theoretical analysis:

(i) The continuous-time framework fits better and in a more natural way with human com-
munication patterns, allowing for a more accurate and realistic representation of commu-
nication dynamics. This is because it eliminates the need to divide the network data into
predetermined time intervals, which can result in inaccuracies if they are too large or if, on
the contrary, they are too finely spaced, in redundant computational processes or a false
impression of accuracy.

(ii) By using ready-made, advanced numerical ODE solvers, network simulations can be car-
ried out in a manner that time discretization is performed automatically ”under the hood”,
ensuring high accuracy and efficiency. This approach enables us to effectively handle sud-
den and significant changes in network behavior in an adaptive manner.

(iii) Real-time summaries of centrality rankings can be monitored through this new ODE-
based framework due to its property of downweighting information over time without
the need to store or take account of all previous node interaction history.

(iv) Computing the dynamic receive centrality, r(t), is a factorN cheaper than dynamic broad-
cast centrality, b(t), in terms of storage and computational cost for sparse networks.

(v) The continuous-time framework is shown to be effective in real-time computation of dy-
namic centrality measures through the numerical experiments analyzed. These allowed
us to illustrate that this type of measures can offer a better perspective of centrality than
static or aggregate measures. Moreover, by tracking the most relevant nodes once they are
known, this model is able to detect changes in the network structure.
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Further studies

Further generalization of the framework on dynamical systems at lower
dimensions

A natural continuation of this study could be applied to different types of dynamical systems
where only a few nodes compared to the total number of nodes are really significant in the
behavior and evolution of such systems [10]. For instance, consider an evolving network A(t)
with N × N dimensions, where N is very large. If a smaller subset of M ≪ N nodes is
identified as significant, it might be worthwhile to explore an ordinary differential equation
involving V(t) ∈ RM×M with M ×M dimensions. The equation could be in the form of

V′(t) = P (V(t)) +Q(V(t))F (A(t)),

where P and Q are polynomial or matrix-valued functions, and F : [0, 1]N×N → RM×M

is an appropriate matrix-valued mapping. This kind of system would allow us to reduce the
interactions among allN nodes to the subset of interest, and then measure the resulting changes
in behavior in this lower dimension.

Potential use of the framework in applied scientific fields

Further studies could explore the potential of centrality measures such as the generalized Katz
measure derived from this study and dynamic network broadcast/receive analysis in applied
fields like fluid dynamics, atmospheric science or engineering:

• These measures could be used to study the complex spatio-temporal dynamics of turbu-
lent flows, and identify key locations or structures that could be targeted for control or
optimization.

• They can also be a useful tool in the study of fluid combustion, by identifying the critical
points in the combustion system where the combustion reaction is most likely to be af-
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fected by various factors such as temperature, pressure, and turbulence. This information
can be used later to optimize the combustion process and improve its efficiency.

Many other scientific areas are suitable to the application of this novel framework such as social
networks, traffic flow, transportation or power grids, neural networks, etc. since a huge number
of real problems can be modeled through the use of evolving networks.

Overall, the application of centrality measures has the potential to provide valuable insights
into the behavior of complex systems in multiple and diverse fields, enabling the development
of more effective control and optimization strategies.
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CHAPTERAppendix A
| Python code

First synthetic experiment

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3

4 #############################################################
5 ################### SYNTHETIC EXPERIMENT 1 ##################
6 #############################################################
7

8 ########################## MODULES ##########################
9

10 import numpy as np
11 from scipy.integrate import solve_ivp
12 from scipy.linalg import logm
13 import matplotlib.pyplot as plt
14

15 ######################### VARIABLES #########################
16 # number of nodes
17 N = 31
18 # alpha and beta parameters
19 a = 0.7
20 b = 0.1
21 # depth of binary tree (2 even and 2 odd)
22 levels = 2
23 # identity matrix
24 I = np.eye(N)
25

26 ######################### FUNCTIONS #########################
27

28 def unirandom(matrix):
29 '''
30 Introduces a 1 in a uniform randomized number of entries, specified by the
31 parameter 'num_entries' in a given matrix.
32

33 Parameters:
34 matrix (arr): matrix of size MxN
35

36 Returns:
37 -
38 '''
39 # number of entries to randomize, uniform dist. with avg.= 5
40 num_entries = int(np.random.uniform(low=0, high=10))
41

42 if matrix.size < num_entries:
43 raise ValueError("Invalid number of entries to randomize")
44

45 # randomly select num_entries unique positions in the matrix
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46 positions = np.random.choice(matrix.size, size=num_entries, replace=False)
47 # set the selected positions to 1
48 matrix.flat[positions] = 1.
49

50 def A_even():
51 '''
52 Returns the constant value that takes A(t) at even time intervals with
53 some noise added by 'unirandom' function.
54

55 Parameters:
56 -
57

58 Returns:
59 ematrix (arr): NxN matrix for even time intervals
60 '''
61 ematrix = np.zeros((N, N))
62 for i in (2**k for k in range(0, levels*2 , 2)):
63 for j in range(1, i+1):
64 ematrix[i-1][i*2-1] = 1
65 ematrix[i-1][i*2] = 1
66 i = i + 1
67 unirandom(ematrix)
68 return ematrix
69

70 def A_odd():
71 '''
72 Returns the constant value that takes A(t) at odd time intervals with
73 some noise added by 'unirandom' function.
74

75 Parameters:
76 -
77

78 Returns:
79 omatrix (arr): NxN matrix for odd time intervals
80 '''
81 omatrix = np.zeros((N, N))
82 for i in (2**k for k in range(1, levels*2 , 2)):
83 for j in range(1, i+1):
84 omatrix[i-1][i*2-1] = 1
85 omatrix[i-1][i*2] = 1
86 i = i + 1
87 unirandom(omatrix)
88 return omatrix
89

90 def aggregate_out_degree(matrix):
91 '''
92 Returns the row sums that represent the aggregate out degree for each
93 node (row) given an adjacency matrix.
94

95 Parameters:
96 matrix (arr): adjacency matrix of size NxN
97

98 Returns:
99 row_sums (list): list of agg. out degree for each node

100 '''
101 row_sums = [sum(row) for row in matrix]
102

103 return row_sums
104

105

106 ######################### A(t) #########################
107

108 # time interval t=[0, 20], with A(t) constant over each subinterval [i, i + 1)
109 # where A(t) = A_even and A(t) = A_odd when 'i' is even and odd respectively
110

111 A0 = A_even()
112 A1 = A_odd()
113 A2 = A_even()
114 A3 = A_odd()
115 A4 = A_even()
116 A5 = A_odd()
117 A6 = A_even()
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118 A7 = A_odd()
119 A8 = A_even()
120 A9 = A_odd()
121 A10 = A_even()
122 A11 = A_odd()
123 A12 = A_even()
124 A13 = A_odd()
125 A14 = A_even()
126 A15 = A_odd()
127 A16 = A_even()
128 A17 = A_odd()
129 A18 = A_even()
130 A19 = A_odd()
131 A20 = np.zeros((N, N))
132

133 w0, v0 = eig(A0)
134 w1, v1 = eig(A1)
135 w2, v2 = eig(A2)
136 w3, v3 = eig(A3)
137 w4, v4 = eig(A4)
138 w5, v5 = eig(A5)
139 w6, v6 = eig(A6)
140 w7, v7 = eig(A7)
141 w8, v8 = eig(A8)
142 w9, v9 = eig(A9)
143 w10, v10 = eig(A10)
144 w11, v11 = eig(A11)
145 w12, v12 = eig(A12)
146 w13, v13 = eig(A13)
147 w14, v14 = eig(A14)
148 w15, v15 = eig(A15)
149 w16, v16 = eig(A16)
150 w17, v17 = eig(A17)
151 w18, v18 = eig(A18)
152 w19, v19 = eig(A19)
153

154 print("w0 =", w0)
155 print("w1 =", w1)
156 print("w2 =", w2)
157 print("w3 =", w3)
158 print("w4 =", w4)
159 print("w5 =", w5)
160 print("w6 =", w6)
161 print("w7 =", w7)
162 print("w8 =", w8)
163 print("w9 =", w9)
164 print("w10 =", w10)
165 print("w11 =", w11)
166 print("w12 =", w12)
167 print("w13 =", w13)
168 print("w14 =", w14)
169 print("w15 =", w15)
170 print("w16 =", w16)
171 print("w17 =", w17)
172 print("w18 =", w18)
173 print("w19 =", w19)
174

175 # aggregate matrix to compute the agg. out degree
176 agg_matrix = A0 + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 +\
177 A11 + A12 + A13 + A14 +A15 + A16 + A17 + A18 + A19
178

179

180 # Adjacency matrix for t=[0,20]
181 def Adj(t):
182 if 0.0 <= t < 1.0:
183 return A0
184 if 1.0 <= t < 2.0:
185 return A1
186 if 2.0 <= t < 3.0:
187 return A2
188 if 3.0 <= t < 4.0:
189 return A3
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190 if 4.0 <= t < 5.0:
191 return A4
192 if 5.0 <= t < 6.0:
193 return A5
194 if 6.0 <= t < 7.0:
195 return A6
196 if 7.0 <= t < 8.0:
197 return A7
198 if 8.0 <= t < 9.0:
199 return A8
200 if 9.0 <= t < 10.0:
201 return A9
202 if 10.0 <= t < 11.0:
203 return A10
204 if 11.0 <= t < 12.0:
205 return A11
206 if 12.0 <= t < 13.0:
207 return A12
208 if 13.0 <= t < 14.0:
209 return A13
210 if 14.0 <= t < 15.0:
211 return A14
212 if 15.0 <= t < 16.0:
213 return A15
214 if 16.0 <= t < 17.0:
215 return A16
216 if 17.0 <= t < 18.0:
217 return A17
218 if 18.0 <= t < 19.0:
219 return A18
220 if 19.0 <= t <= 20.0:
221 return A19
222 return A20
223

224 ######################### ODE #########################
225

226 # Matrix ODE function in vector form
227 def f(t, U):
228

229 # Reshape U from vector to matrix
230 U = U.reshape((N, N))
231

232 # Compute the matrix ODE
233 dUdt = -b * (U - I) - U @ logm(I - a * Adj(t))
234

235 # Reshape dUdt from matrix to vector
236 dUdt = dUdt.flatten()
237 return dUdt
238

239

240 # Initial condition
241 U0 = np.eye(N)
242 U0 = U0.flatten()
243 #time span
244 t_span = (0, 20)
245

246 # Solve the matrix ODE numerically using Runge-Kutta 45 method
247 sol = solve_ivp(f, t_span, U0, method='RK45')
248

249 # Print the solution at discrete time points
250 print("\nsol_t :\n", sol.t)
251 print("\nsol_y :\n", sol.y)
252

253 # Communicability matrix U at t = 20 (entries >= 0)
254 U_t_20 = np.abs(sol.y[:,-1].reshape(N,N))
255

256 # broadcast centrality at t = 20
257 b_t_20 = U_t_20 @ np.ones(N)
258

259 # aggregate out degree
260 out_degree_list = aggregate_out_degree(agg_matrix)
261
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262 print("\nb(t=20) :\n", b_t_20)
263 print("\nAgg. out degree =", out_degree_list)
264

265 ######################### PLOTS #########################
266

267 fig, ax = plt.subplots()
268 ax.plot(list(range(1,N+1)), b_t_20, '*')
269 ax.set_title(r"First synthetic experiment: $\alpha=0.7$ $\beta=0.1$")
270 ax.set_xlabel("node")
271 ax.set_ylabel("dynamic broadcast b(t=20)")
272

273 fig.savefig('exp1_bt20.eps', format='eps')
274

275 fig2, ax2 = plt.subplots()
276 ax2.plot(list(range(1,N+1)), out_degree_list, '*', color='r')
277 ax2.set_title("First synthetic experiment")
278 ax2.set_xlabel("node")
279 ax2.set_ylabel("aggregate out degree")
280

281 fig2.savefig('exp1_agg_out_degree.eps', format='eps')

Listing A.1: First synthetic experiment

Second synthetic experiment

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3

4 #############################################################
5 ################### SYNTHETIC EXPERIMENT 2 ##################
6 #############################################################
7

8 ########################## MODULES ##########################
9

10 import numpy as np
11 from scipy.integrate import solve_ivp
12 from scipy.linalg import logm
13 import matplotlib.pyplot as plt
14

15 ######################## VARIABLES #####################
16 # number of nodes
17 N = 17
18 # alpha and beta parameters
19 a = 0.9
20 b = 0.1
21

22 ######################### A(t) #########################
23

24 # identity matrix of size NxN
25 I = np.eye(N)
26

27 # A(ti) for each interval where
28 # ti := [(i − 1)� , (i − 1 + 0.9)� ), for i = 0, 1, . . . , 7, and � = 0.1
29 # over the full interval t = [0, 3.5]
30

31 A0 = np.zeros((N, N)) # intercycle value, no connections
32

33 A1 = np.zeros((N, N))
34 A1[0][2] = 1
35 A1[2][0] = 1
36 A1[1][16] = 1
37 A1[16][1] = 1
38

39 A2 = np.zeros((N, N))
40 A2[2][3] = 1
41 A2[3][2] = 1
42

43 A3 = np.zeros((N, N))
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44 A3[2][4] = 1
45 A3[4][2] = 1
46 A3[3][5] = 1
47 A3[5][3] = 1
48

49 A4 = np.zeros((N, N))
50 A4[0][16] = 1
51 A4[16][0] = 1
52 A4[1][2] = 1
53 A4[2][1] = 1
54 A4[6][3] = 1
55 A4[3][6] = 1
56 A4[4][7] = 1
57 A4[7][4] = 1
58 A4[5][9] = 1
59 A4[9][5] = 1
60

61 A5 = np.zeros((N, N))
62 A5[4][8] = 1
63 A5[8][4] = 1
64 A5[5][10] = 1
65 A5[10][5] = 1
66 A5[6][11] = 1
67 A5[11][6] = 1
68 A5[7][13] = 1
69 A5[13][7] = 1
70

71 A6 = np.zeros((N, N))
72 A6[6][12] = 1
73 A6[12][6] = 1
74 A6[7][14] = 1
75 A6[14][7] = 1
76 A6[8][15] = 1
77 A6[15][8] = 1
78

79 A7 = np.zeros((N, N))
80 A7[8][16] = 1
81 A7[16][8] = 1
82

83 # Adjacency matrix during five cycles
84 def Adj(t):
85 if 0.0 <= t < 0.09:
86 return A1
87 if 0.1 <= t < 0.19:
88 return A2
89 if 0.2 <= t < 0.29:
90 return A3
91 if 0.3 <= t < 0.39:
92 return A4
93 if 0.4 <= t < 0.49:
94 return A5
95 if 0.5 <= t < 0.59:
96 return A6
97 if 0.6 <= t < 0.69:
98 return A7
99

100 if 0.8 <= t < 0.89:
101 return A1
102 if 0.9 <= t < 0.99:
103 return A2
104 if 1.0 <= t < 1.09:
105 return A3
106 if 1.1 <= t < 1.19:
107 return A4
108 if 1.2 <= t < 1.29:
109 return A5
110 if 1.3 <= t < 1.39:
111 return A6
112 if 1.4 <= t < 1.49:
113 return A7
114

115 if 1.6 <= t < 1.69:
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116 return A1
117 if 1.7 <= t < 1.79:
118 return A2
119 if 1.8 <= t < 1.89:
120 return A3
121 if 1.9 <= t < 1.99:
122 return A4
123 if 2.0 <= t < 2.09:
124 return A5
125 if 2.1 <= t < 2.19:
126 return A6
127 if 2.2 <= t < 2.29:
128 return A7
129

130 if 2.4 <= t < 2.49:
131 return A1
132 if 2.5 <= t < 2.59:
133 return A2
134 if 2.6 <= t < 2.69:
135 return A3
136 if 2.7 <= t < 2.79:
137 return A4
138 if 2.8 <= t < 2.89:
139 return A5
140 if 2.9 <= t < 2.99:
141 return A6
142 if 3.0 <= t < 3.09:
143 return A7
144

145 if 3.2 <= t < 3.29:
146 return A1
147 if 3.3 <= t < 3.39:
148 return A2
149 if 3.4 <= t < 3.49:
150 return A3
151 if 3.5 <= t < 3.59:
152 return A4
153 if 3.6 <= t < 3.69:
154 return A5
155 if 3.7 <= t < 3.79:
156 return A6
157 if 3.8 <= t < 3.89:
158 return A7
159

160 return A0
161

162 ######################### ODE #########################
163

164 # Matrix ODE function in vector form
165 def f(t, U):
166

167 # Reshape U from vector to matrix
168 U = U.reshape((N, N))
169

170 # Compute the matrix ODE
171 dUdt = -b * (U - I) - U @ logm(I - a * Adj(t))
172 # Reshape dUdt from matrix to vector
173 dUdt = dUdt.flatten()
174 return dUdt
175

176

177 # Initial condition
178 U0 = np.eye(N)
179 U0 = U0.flatten()
180 # time span
181 t_span = (0, 3.5) # time span
182

183 # Solve the matrix ODE numerically using solve_ivp
184 sol = solve_ivp(f, t_span, U0)
185

186 # Print the solution at discrete time points
187 print("\nsol_t :\n", sol.t)
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188 print("\nsol_y :\n", sol.y)
189

190 # broadcast centrality of nodes A (node 0) and B (node 1)
191 b_t_A = [(np.abs(sol.y[:,i].reshape(N,N)) @ np.ones(N))[0] for i in range(0,sol.y.shape[1])]
192 b_t_B = [(np.abs(sol.y[:,i].reshape(N,N)) @ np.ones(N))[1] for i in range(0,sol.y.shape[1])]
193

194 print("\nb(t)_A :\n", b_t_A)
195 print("\nb(t)_B :\n", b_t_B)
196

197 ######################### PLOT #########################
198

199 fig, ax = plt.subplots()
200 ax.plot(sol.t, b_t_A, 'r', sol.t, b_t_B, 'b--')
201 ax.set_title(r"Second synthetic experiment: $\alpha=0.9$, $\beta=0.1$")
202 ax.set_xlabel("time (s)")
203 ax.set_ylabel("broadcast centrality b(t)")
204 ax.legend(["b(t) of node A", "b(t) of node B"])
205 #ax.grid()
206 ax.set_xlim(0, 3.5)
207 ax.set_ylim(1, None)
208

209 fig.savefig('exp2_btA_vs_btB.eps', format='eps')

Listing A.2: Second synthetic experiment

Voice call experiment

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3

4 #############################################################
5 ################### VOICE CALL EXPERIMENT ##################
6 #############################################################
7

8 ########################## MODULES ##########################
9

10 import numpy as np
11 from scipy.integrate import solve_ivp
12 #from scipy.linalg import logm
13 import matplotlib.pyplot as plt
14 from datetime import datetime, timedelta
15 import pandas as pd
16 from itertools import combinations
17 import time
18

19 ######################## VARIABLES #####################
20 # number of nodes
21 N = 400
22 # alpha and beta parameters
23 a = 1E-4
24 b = 1.2E-5
25 # identity matrix of size NxN
26 I = np.eye(N)
27

28 # Path to the csv file
29 csv_file_path = "CellPhoneCallRecords.csv"
30

31 # Max. call time duration in seconds
32 t_max = 3000
33

34 ################### FUNCTIONS #################
35

36 def sort_indexes(arr):
37 '''
38 Returns array indexes sorted in descending order from max value to min
39 value.
40

41 Parameters:
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42 arr (arr): array to be sorted
43

44 Returns:
45 sorted_indexes (arr): sorted array of indexes
46 '''
47 sorted_indexes = sorted(range(len(arr)), key=lambda i: arr[i], reverse=True)
48 return sorted_indexes
49

50 def symmetric_sum(matrix):
51 '''
52 Returns resulting matrix from the sum of symmetric elements of a matrix.
53

54 Parameters:
55 matrix (arr): NxN array
56

57 Returns:
58 res (arr): NxN array with sum of symmetric entries
59 '''
60 n = len(matrix)
61 res = np.zeros((n,n))
62 for i in range(n):
63 for j in range(i, n):
64 if i == j:
65 res[i][j] = matrix[i][j]
66 else:
67 res[i][j] = matrix[i][j] + matrix[j][i]
68 res[j][i] = res[i][j]
69 return res
70

71 #################### logm approx. #####################
72

73 def logm_approx(A, a=a):
74 '''
75 Returns the approximation of the function logm by truncation to the
76 fifth power of its series expansion.
77

78 Parameters:
79 A (arr): NxN array
80 a (float): parameter
81

82 Returns:
83 principal matrix logarithm approximation
84 '''
85 A2 = A @ A
86 A3 = A2 @ A
87 A4 = A3 @ A
88 A5 = A4 @ A
89

90 return a * A - (a**2/2) * A2 + (a**3/3) * A3 - (a**4/4) * A4 + (a**5/5) * A5
91

92

93 #### Dynamic communicability of key nodes ####
94

95 def dyncomm_key_nodes(U):
96

97 # Calculate the sum and average of all entries except the main diagonal
98 total_sum = np.sum(U) - np.sum(np.diag(U))
99 total_avg = total_sum / (N*N - N)

100

101 # key nodes indexes
102 nodes = [1, 2, 3, 5, 200]
103

104 # All pairwise combinations
105 pairs = list(combinations(nodes, 2))
106

107 # key nodes sum
108 key_sum = 0
109 for item in pairs:
110 key_sum += U[item[0]][item[1]]
111 key_sum += U[item[1]][item[0]]
112

113 # key nodes average
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114 key_sum_avg = key_sum / (len(pairs) * 2)
115

116 if total_avg == 0:
117 return 0
118

119 return key_sum_avg / total_avg
120

121

122 ################### AGGREGATE BANDWIDTH #################
123 # bandwidth of a node is defined as the aggregate time call duration in which
124 # this node is active over a certain period
125

126 # Read the csv file into a Pandas DataFrame
127 df = pd.read_csv(csv_file_path)
128

129 # Convert the Datetime field to a datetime object
130 df["Datetime"] = pd.to_datetime(df["Datetime"], format="%Y%m%d %H%M")
131

132 # Filter the data for days 1 to 10
133 start_date = pd.Timestamp(2006, 6, 1)
134 end_date = pd.Timestamp(2006, 6, 10, 23, 59, 59)
135

136 df = df[(df["Datetime"] >= start_date) & (df["Datetime"] <= end_date)]
137

138 # Group the data by 'From' and 'To' fields and sum the call durations
139 grouped = df.groupby(["From", "To"])["Duration(seconds)"].sum()
140

141 # Initialize the matrix for call time duration for each node with zeros
142 agg_matrix = np.zeros((N, N))
143

144 # Update the matrix entries with the sum of call durations
145 for (from_cell, to_cell), duration in grouped.items():
146 agg_matrix[from_cell][to_cell] = duration
147

148 # sum symmetric elements (node as sender or receiver)
149 agg_matrix = symmetric_sum(agg_matrix)
150

151 # aggregate vector with the bandwidth of each node from day 1 to 10
152 agg_day1_to_10 = [np.sum(row) for row in agg_matrix]
153

154 print("agg_day1_to_10: (first ten elem.): \n", agg_day1_to_10[0:10])
155

156 ######################### A(t) #########################
157

158 # Read the csv file into a Pandas DataFrame
159 df = pd.read_csv(csv_file_path)
160

161 # Convert the Datetime field to a datetime object
162 df["Datetime"] = pd.to_datetime(df["Datetime"], format="%Y%m%d %H%M")
163

164 def Adj(t):
165 '''
166 Returns the adjacency matrix of the network at a given time 't'.
167 Sets elements to 1 if 't' belongs to the datetime conversation which nodes
168 are given in the .csv file by the fields 'From' and 'To'.
169

170 Parameters:
171 t (float): time
172

173 Returns:
174 A (arr): NxN adjacency matrix
175 '''
176

177 # Filter all datetimes in the interval actual time - max calltime duration
178 actual_time = t0_datetime + pd.Timedelta(seconds=t)
179 start_time = actual_time - pd.Timedelta(seconds=t_max)
180

181 filtered = df[(df["Datetime"] >= start_time) & (df["Datetime"] <= actual_time)]
182

183 # Initialize the adjacency matrix with zeros
184 A = np.zeros((N, N))
185
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186 # Set matrix entries to 1 if the time is inside a conversation
187 for index, row in filtered.iterrows():
188 from_cell = row["From"]
189 to_cell = row["To"]
190 start_call_time = row["Datetime"]
191 end_call_time = start_call_time + pd.Timedelta(seconds=row["Duration(seconds)"])
192 if end_call_time >= actual_time:
193 A[from_cell][to_cell] = 1
194 A[to_cell][from_cell] = 1
195

196 return A
197

198 ######################## Alternative Adj(t)#####################
199

200 # Read the csv file into a Pandas DataFrame
201 #df = pd.read_csv(csv_file_path)
202

203 # Convert the Datetime field to a datetime object
204 #df["Datetime"] = pd.to_datetime(df["Datetime"], format="%Y%m%d %H%M")
205

206 # Extract the start and end time of each call
207 #df['start_call'] = df['Datetime']
208 #df['end_call'] = df['Datetime'] + pd.to_timedelta(df['Duration(seconds)'], unit='s')
209

210 def Adj2(t):
211

212 # Filter the dataframe to keep only the active calls at time 't'
213 actual_time = t0_datetime + timedelta(seconds=t)
214 active_calls = df[(actual_time >= df['start_call']) & (actual_time <= df['end_call'])]
215

216 # Create the adjacency matrix
217 A = np.zeros((N, N))
218 for _, row in active_calls.iterrows():
219 A[row['From'], row['To']] = 1
220 A[row['To'], row['From']] = 1
221

222 return A
223

224 ######################### ODE #########################
225

226 # Matrix ODE function in vector form
227 def f(t, U):
228

229 # Reshape U from vector to matrix
230 U = U.reshape((N, N))
231

232 # Compute the matrix ODE
233 dUdt = -b * (U - I) - U @ logm_approx(Adj(t))
234 # Reshape dUdt from matrix to vector
235 dUdt = dUdt.flatten()
236 return dUdt
237

238 ######################### day 1 to 7 broadcast #########################
239

240 start_time = time.time()
241

242 # Initial condition
243 U0 = np.eye(N)
244 U0 = U0.flatten()
245

246 # Time interval
247 t0_datetime = pd.Timestamp(2006, 6, 1)
248 tf_datetime = pd.Timestamp(2006, 6, 6, 23, 59 ,59)
249 delta = tf_datetime - t0_datetime
250

251 # Time span
252 t0 = 0
253 tf = delta.total_seconds()
254 t_span = (t0, tf)
255

256 # Solve the matrix ODE numerically using solve_ivp
257 sol = solve_ivp(f, t_span, U0, method='RK23', rtol=1e-4, atol=1e-4)
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258

259 # Print the solution at discrete time points
260 #print("\nsol_t :\n", sol.t)
261 #print("\nsol_y :\n", sol.y)
262

263 # Communicability matrix U at t=tf (day 7)
264 U_t_7 = np.abs(sol.y[:,-1].reshape(N,N))
265

266 # broadcast centrality at t = tf (day 7)
267 b_t_7 = U_t_7 @ np.ones(N)
268

269 print("\nb(t='day 7') :\n", b_t_7)
270

271 print("\nb_t_day7[1] =", b_t_7[1])
272 print("b_t_day7[2] =", b_t_7[2])
273 print("b_t_day7[3] =", b_t_7[3])
274 print("b_t_day7[5] =", b_t_7[5])
275 print("b_t_day7[200] =", b_t_7[200])
276

277 #print("\nsorted_b_indexes(t='day 7') : ",sort_indexes(b_t_7)[0:5])
278

279 # receive centrality at t = tf (day 7)
280 r_t_7 = U_t_7.T @ np.ones(N)
281

282 print("\nBroadcast from day 1 - 7 done!")
283

284 end_time = time.time()
285 total_time = end_time - start_time
286

287 print("Time taken:", round(total_time, 2), "seconds")
288

289 ######################## day 7 to 10 broadcast #########################
290

291 start_time = time.time()
292

293 # Initial condition
294 U0 = np.eye(N)
295 U0 = U0.flatten()
296

297 # Time interval
298 t0_datetime = pd.Timestamp(2006, 6, 7)
299 tf_datetime = pd.Timestamp(2006, 6, 10, 23, 59, 59)
300 delta = tf_datetime - t0_datetime
301

302 # Time span
303 t0 = 0
304 tf = delta.total_seconds()
305 t_span = (t0, tf)
306

307 # Solve the matrix ODE numerically using solve_ivp
308 sol = solve_ivp(f, t_span, U0, method='RK23', rtol=1e-4, atol=1e-4)
309

310 # Print the solution at discrete time points
311 #print("\nsol_t :\n", sol.t)
312 #print("\nsol_y :\n", sol.y)
313

314 # Communicability matrix U at t=tf (day 10)
315 U_t_10 = np.abs(sol.y[:,-1].reshape(N,N))
316

317 # broadcast centrality at t = tf (day 10)
318 b_t_10 = U_t_10 @ np.ones(N)
319

320 print("\nb(t='day 10') :\n", b_t_10)
321

322 print("\nb_t_day10[309] =", b_t_10[309])
323 print("b_t_day10[392] =", b_t_10[392])
324 print("b_t_day10[360] =", b_t_10[360])
325 print("b_t_day10[306] =", b_t_10[306])
326 print("b_t_day10[300] =", b_t_10[300])
327

328 #print("\nsorted_b_indexes(t='day 10') : ",sort_indexes(b_t_10)[0:5])
329
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330 # Receive centrality at t = tf (day 10)
331 r_t_10 = U_t_10.T @ np.ones(N)
332

333 print("\nBroadcast from day 7 - 10 done!")
334

335 end_time = time.time()
336 total_time = end_time - start_time
337

338 print("Time taken:", round(total_time, 2), "seconds")
339

340 ######################### PLOTS #########################
341

342 fig, ax = plt.subplots(figsize=(10,8))
343 ax.plot(agg_day1_to_10, b_t_7, '+', color='blue', label="rest of nodes")
344 ax.plot(agg_day1_to_10[200], b_t_7[200], 'v', color='red', label="ring leader ID before day 7")
345 ax.plot(agg_day1_to_10[1], b_t_7[1], 's', color='red', label="key nodes IDs before day 7")
346 ax.plot(agg_day1_to_10[2], b_t_7[2], 's', color='red')
347 ax.plot(agg_day1_to_10[3], b_t_7[3], 's', color='red')
348 ax.plot(agg_day1_to_10[5], b_t_7[5], 's', color='red')
349 ax.plot(agg_day1_to_10[300], b_t_7[300], '^', color='green', label="ring leader ID after day 7")
350 ax.plot(agg_day1_to_10[309], b_t_7[309], 'd', color='green', label="key nodes IDs after day 7")
351 ax.plot(agg_day1_to_10[392], b_t_7[392], 'd', color='green')
352 ax.plot(agg_day1_to_10[360], b_t_7[360], 'd', color='green')
353 ax.plot(agg_day1_to_10[306], b_t_7[306], 'd', color='green')
354 ax.set_title("Voice call experiment")
355 ax.set_xlabel("bandwidth")
356 ax.set_ylabel("broadcast centrality at day 7")
357 ax.ticklabel_format(axis="x", style="sci", scilimits=(0,0))
358 ax.set_xlim(0, 3.5e5)
359 ax.legend()
360

361 fig.savefig('voicecall_exp_1_7.eps', format='eps')
362

363 fig2, ax2 = plt.subplots(figsize=(10,8))
364 ax2.plot(agg_day1_to_10, b_t_10, '+', color='blue', label="rest of nodes")
365 ax2.plot(agg_day1_to_10[200], b_t_10[200], 'v', color='red', label="ring leader ID before day 7")
366 ax2.plot(agg_day1_to_10[1], b_t_10[1], 's', color='red', label="key nodes IDs before day 7")
367 ax2.plot(agg_day1_to_10[2], b_t_10[2], 's', color='red')
368 ax2.plot(agg_day1_to_10[3], b_t_10[3], 's', color='red')
369 ax2.plot(agg_day1_to_10[5], b_t_10[5], 's', color='red')
370 ax2.plot(agg_day1_to_10[300], b_t_10[300], '^', color='green', label="ring leader ID after day 7"

)
371 ax2.plot(agg_day1_to_10[309], b_t_10[309], 'd', color='green', label="key nodes IDs after day 7")
372 ax2.plot(agg_day1_to_10[392], b_t_10[392], 'd', color='green')
373 ax2.plot(agg_day1_to_10[360], b_t_10[360], 'd', color='green')
374 ax2.plot(agg_day1_to_10[306], b_t_10[306], 'd', color='green')
375 ax2.set_title("Voice call experiment")
376 ax2.set_xlabel("bandwidth")
377 ax2.set_ylabel("broadcast centrality at day 10 (from day 7)")
378 ax2.ticklabel_format(axis="x", style="sci", scilimits=(0,0))
379 ax2.set_xlim(0, 3.5e5)
380 ax2.legend()
381

382 fig2.savefig('voicecall_exp_7_10.eps', format='eps')
383

384 ######################### day 1 to 10 broadcast #########################
385

386 # Initial condition
387 U0 = np.eye(N)
388 U0 = U0.flatten()
389

390 # Time interval
391 t0_datetime = pd.Timestamp(2006, 6, 1)
392 tf_datetime = pd.Timestamp(2006, 6, 11)
393 delta = tf_datetime - t0_datetime
394

395 # Time span
396 t0 = 0
397 tf = delta.total_seconds()
398 t_span = (t0, tf)
399

400 # Solve the matrix ODE numerically using solve_ivp
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401 sol = solve_ivp(f, t_span, U0, method='RK45', atol=1e-4, rtol=1e-4)
402

403 # dynamic communicability vector
404 comm_1_10 = np.zeros(sol.y.shape[1])
405

406 for i in range(sol.y.shape[1]):
407 comm_1_10[i] = dyncomm_key_nodes(sol.y[:,i].reshape(N,N))
408

409

410 # No communication in the first 8 min, removing zero communicability
411 # Boolean mask indicating which elements are close to zero
412 mask = np.isclose(comm_1_10, 0, atol=1e-5)
413

414 # Filtered communicability array using the mask
415 filtered_comm = comm_1_10[~mask]
416

417 # Array without the close-to-zero elements
418 comm_1_10 = filtered_comm[np.nonzero(filtered_comm)]
419 sol.t = sol.t[np.nonzero(filtered_comm)]
420

421 print("communicability vector: \n", comm_1_10)
422

423 ###### PLOT ######
424

425 fig3, ax3 = plt.subplots(figsize=(10,8))
426 x_label = np.arange(1, 11)
427 ax3.plot(np.linspace(1, 11, num = len(comm_1_10)), comm_1_10, color='red')
428 ax3.set_xlim(1, 11)
429 ax3.set_ylim(0, None)
430 ax3.set_xlabel("time")
431 ax3.set_ylabel("communicability between key nodes")
432 ax3.set_xticks(x_label)
433 ax3.set_xticklabels(['Day {}'.format(i) for i in x_label])
434 ax3.axvline(x=8, linestyle='--', color='gray', linewidth=0.8)
435

436 fig3.savefig('voicecall_exp_dyncomm.eps', format='eps')

Listing A.3: Voice call experiment

b(t) vs. r(t) cost comparison

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3

4 #############################################################
5 ##################### RECEIVE CENTRALITY ####################
6 #############################################################
7

8 ########################## MODULES ##########################
9

10 import numpy as np
11 from scipy.integrate import solve_ivp
12 #from scipy.linalg import logm
13 import pandas as pd
14 import time
15

16 ######################## VARIABLES #####################
17 # number of nodes
18 N = 400
19 # alpha and beta parameters
20 a = 1E-4
21 b = 1.2E-5
22 # identity matrix of size NxN
23 I = np.eye(N)
24 # ones vector
25 r0 = np.ones(N)
26 # tolerances
27 RTOL = 0.05
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28 ATOL = 0.01
29

30 # Path to the csv file
31 csv_file_path = "CellPhoneCallRecords.csv"
32

33 # Max. call time duration in seconds
34 t_max = 3000
35

36 #################### logm approx. #####################
37

38 def logm_approx(A, a=a):
39 '''
40 Returns the approximation of the function logm by truncation to the
41 fifth power of its series expansion.
42

43 Parameters:
44 A (arr): NxN array
45 a (float): parameter
46

47 Returns:
48 principal matrix logarithm approximation
49 '''
50 A2 = A @ A
51 A3 = A2 @ A
52 A4 = A3 @ A
53 A5 = A4 @ A
54

55 return a * A - (a**2/2) * A2 + (a**3/3) * A3 - (a**4/4) * A4 + (a**5/5) * A5
56

57 ######################### A(t) #########################
58

59 # Read the csv file into a Pandas DataFrame
60 df = pd.read_csv(csv_file_path)
61

62 # Convert the Datetime field to a datetime object
63 df["Datetime"] = pd.to_datetime(df["Datetime"], format="%Y%m%d %H%M")
64

65 def Adj(t):
66 '''
67 Returns the adjacency matrix of the network at a given time 't'.
68 Sets elements to 1 if 't' belongs to the datetime conversation which nodes
69 are given in the .csv file by the fields 'From' and 'To'.
70

71 Parameters:
72 t (float): time
73

74 Returns:
75 A (arr): NxN adjacency matrix
76 '''
77 # Filter all datetimes in the interval actual time - max calltime duration
78 actual_time = t0_datetime + pd.Timedelta(seconds=t)
79 start_time = actual_time - pd.Timedelta(seconds=t_max)
80

81 filtered = df[(df["Datetime"] >= start_time) & (df["Datetime"] <= actual_time)]
82

83 # Initialize the adjacency matrix with zeros
84 A = np.zeros((N, N))
85

86 # Set matrix entries to 1 if the time is inside a conversation
87 for index, row in filtered.iterrows():
88 from_cell = row["From"]
89 to_cell = row["To"]
90 start_call_time = row["Datetime"]
91 end_call_time = start_call_time + pd.Timedelta(seconds=row["Duration(seconds)"])
92 if end_call_time >= actual_time:
93 A[from_cell][to_cell] = 1
94 A[to_cell][from_cell] = 1
95

96 return A
97

98 ######################### ODE #########################
99
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100 # Matrix ODE functions
101 def f1(t, U):
102

103 f1.num_calls += 1
104

105 # Reshape U from vector to matrix
106 U = U.reshape((N, N))
107

108 # Compute the matrix ODE
109 dUdt = -b * (U - I) - U @ logm_approx(Adj(t))
110 # Reshape dUdt from matrix to vector
111 dUdt = dUdt.flatten()
112 return dUdt
113

114 def f2(t, r):
115

116 f2.num_calls += 1
117

118 # Compute the matrix ODE
119 drdt = -b * (r - r0) - (logm_approx(Adj(t)).T) @ r
120 return drdt
121

122 ###############################################################
123

124 def method1(t0_datetime, tf_datetime):
125

126 # Initial condition
127 U0 = np.eye(N)
128 U0 = U0.flatten()
129

130 delta = tf_datetime - t0_datetime
131

132 # Time span
133 t0 = 0
134 tf = delta.total_seconds()
135 t_span = (t0, tf)
136 t_eval = np.linspace(t0, tf, num=100)
137

138 # Solve the matrix ODE numerically using solve_ivp
139 sol = solve_ivp(f1, t_span, U0, method='RK45', t_eval=t_eval, atol = ATOL, rtol = RTOL)
140

141 return sol
142

143

144 def method2(t0_datetime, tf_datetime):
145

146 # Initial condition
147 r0 = np.ones(N)
148

149 delta = tf_datetime - t0_datetime
150

151 # Time span
152 t0 = 0
153 tf = delta.total_seconds()
154 t_span = (t0, tf)
155 t_eval = np.linspace(t0, tf, num=100)
156

157 # Solve the matrix ODE numerically using solve_ivp
158 sol = solve_ivp(f2, t_span, r0, method='RK45', t_eval=t_eval, atol = ATOL, rtol = RTOL)
159 return sol
160

161 ######################### TIMES #########################
162

163 # Time interval
164 t0_datetime = pd.Timestamp(2006, 6, 1)
165 tf_datetime = pd.Timestamp(2006, 6, 1, 23, 59 ,59)
166

167 # number of repetions
168 rep = 100
169

170 total_calls = 0
171 total_time = 0
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172

173 for i in range(rep):
174 f1.num_calls = 0
175 # Time taken by method 1
176 start_time = time.time()
177 sol_1 = method1(t0_datetime, tf_datetime)
178 end_time = time.time()
179 duration = end_time - start_time
180 total_calls += f1.num_calls
181 total_time += duration
182

183 print("###### Method 1: b(t)######")
184 print("total time =", total_time)
185 print("function calls = ", total_calls)
186 r1 = round((total_time / total_calls) * 1000, 2)
187 print(f"Ratio ms/call ({rep} rep.): {r1}\n")
188

189 total_calls = 0
190 total_time = 0
191

192 for i in range(rep):
193 f2.num_calls = 0
194 # Time taken by method 2
195 start_time = time.time()
196 sol_2 = method2(t0_datetime, tf_datetime)
197 end_time = time.time()
198 duration = end_time - start_time
199 total_calls += f2.num_calls
200 total_time += duration
201

202 print("###### Method 2: r(t) ######")
203 print("total time =", total_time)
204 print("function calls = ", total_calls)
205 r2 = round((total_time / total_calls) * 1000, 2)
206 print(f"Ratio ms/call ({rep} rep.): {r2}")
207

208 print("% improvement =", round(((r2 - r1) / r1) * 100, 2))

Listing A.4: b(t) vs. r(t) cost comparison
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