
Fingerprint Synthesis Using
Deep Generative Models

Diego Andre Figueroa Llamosas,
Weizhong Tang

Master’s thesis

2023:E24

Faculty of Engineering

Centre for Mathematical Sciences

Mathematics

C
E
N
T
R
U
M

S
C
I
E
N
T
I
A
R
U
M

M
A
T
H
E
M
A
T
I
C
A
R
U
M

Fingerprint Synthesis Using Deep
Generative Models

Diego Figueroa
di4642fi-s@student.lu.se

Weizhong Tang
we1724ta-s@student.lu.se

May ��, ����

Master’s thesis work carried out at
the Centre for Mathematical Sciences, Lund University.

Supervisors: Alexandros Sopasakis, alexandros.sopasakis@math.lth.se
Donglin Liu, donglin.liu@math.lth.se

Kerstin Johnsson, kerstin.johnsson@precisebiometrics.com

Examiner: Kalle Åström, karl.astrom@math.lth.se

mailto:di4642fi-s@student.lu.se
mailto:we1724ta-s@student.lu.se
mailto:alexandros.sopasakis@math.lth.se
mailto:donglin.liu@math.lth.se
mailto:kerstin.johnsson@precisebiometrics.com
mailto:karl.astrom@math.lth.se

Abstract

The advancements in biometric technology have ampli�ed the need for more
robust �ngerprint synthesis techniques. In this thesis, We �rst explored the ap-
plication of synthesizing live �ngerprint images in high �delity using deep gen-
erative models (e.g., generative adversarial networks and di�usion models) and
created synthetic �ngerprints that retain the uniqueness and complexity of the
original samples. Thereafter, by employing style transfer techniques (e.g., cy-
cleGAN and cycleWGAN-GP), we e�ectively blended the global structure of
one �ngerprint with the local features of another �ngerprint to generate a new
�ngerprint that is both visually realistic and distinctive, such as generating a
one-to-one spoof �ngerprint that is highly consistent with the corresponding
live �ngerprint from the training set.

We employed, in the �eld of image generation, the state-of-the-art metrics
assessing the quality of synthetic �ngerprints, mainly from the perspectives of
statistical analysis and subjective evaluation, and conducted a comprehensive
evaluation of synthetic live and spoof �ngerprints.

Our best di�usion model achieves a promising Fréchet Inception Distance
(FID) score of ��.�� and is capable of generating live �ngerprints that obtain
even smaller False Acceptance Rate (FAR) than the real live �ngerprints. Our
best style transfer model - cycleWGAN-GP is capable of generating spoof �n-
gerprints in high quality from real live �ngerprints, and the distribution of these
synthetic spoof �ngerprints closely resembles that of real spoof �ngerprints.

Our results demonstrate the potential of these methods in generating high-
quality �ngerprints and can be used for various applications such as security
enhancement, template protection, and biometric system evaluation.

Keywords: Fingerprint Synthesis, Deep Generative Models, Style Transfer, Metrics

�

Acknowledgements

This thesis project was conducted in Spring ���� and was co-directed by Lund University
and Precise Biometrics AB. The aim of the thesis was to investigate a project proposed by the
development department of Precise Biometrics to enable �ngerprint synthesis usingmachine
learning techniques.

We would like to thank our academic supervisors at Lund University,

Alexandros Sopasakis

Donglin Liu

We would also like to thank our supervisor at Precise Biometrics,

Kerstin Johnsson

We are truly grateful for the invaluable assistance provided by our supervisors, which
encompassed challenging and instructive suggestions. The time spent during our meetings
with them not only helped us enhance our project and better analyze our results but also
inspired us to strive for excellence in our work.

We would like to extend a special thanks to Anders Olsson for all his feedback and sup-
port, as well as Johan Windmark for his insightful explanations of matching algorithms and
spoof detection. Ultimately, we extend our appreciation to everyone who contributed their
opinions and expertise, which signi�cantly enhanced the quality of our thesis.

Diego I am deeply grateful to Weizhong for being the most exceptional thesis partner
I could have hoped for. His unwavering support and dedication played a pivotal role in our
continuous and successful progress throughout this project. To my beloved mother, father,
and sister, I extend my heartfelt appreciation for the immeasurable love and unwavering
support they have showered upon me. My mother, in particular, deserves a special mention
for always believing in me and inspiring me to dream big for my future. Furthermore, I
extend my sincere thanks to my colleagues at Precise for their invaluable feedback and the
remarkable positive working culture they foster. I am truly grateful to everyone who has
played a part in this endeavor, as their presence and encouragement have made this thesis
possible. Thank you all from the bottom of my heart for your immeasurable contributions,
love, and support.

�

Weizhong First and foremost, I would like to extend my sincere gratitude to my thesis
partner, Diego. Without his strong support and excellent research skills, this thesis would
not have come to fruition. I would also like to express my deepest appreciation to my family,
who have always been by my side and supported me, particularly for providing me with the
opportunity to study in Sweden. I am grateful for all the help received from our supervisors
and colleagues to make this thesis possible. Lastly, I deeply appreciate professors Alexandros
Sopasakis, Bo Bernhardsson and Pierre Nugues for providing me with invaluable opportu-
nities and assistance. Their support has not only signi�cantly enhanced my knowledge and
capabilities, but also facilitated my progress on the academic path.

�

Abbreviations

CNNs - Convolutional Neural Networks

ConvNet - Convolutional Neural Networks

DCGAN - Deep Convolutional Generative Adversarial Network

DDIMs - Denoising Di�usion Implicit Models

DDPMs - Denoising Di�usion Probabilistic Models

FAR - False Acceptance Rate

FID - Fréchet Inception Distance

GANs - Generative Adversarial Networks

IS - Inception Score

KID - Kernel Inception Distance

LS - Likeness Score

PRDC - Precision, Recall, Density and Coverage

ReLU - Recti�ed Linear Unit

ResNet - Residual Neural Networks

SiLU - Sigmoid Linear Unit

vDDPM - Vanilla DDPM

WGAN-GP - Wasserstein Generative Adversarial Network + Gradient Penalty

�

�

Contents

� Introduction �
�.� Background . �
�.� Related Work . ��
�.� Goals . ��
�.� Division of Work . ��

� Methodology ��
�.� Generative Adversarial Networks . ��

�.�.� Deep Convolutional GAN . ��
�.�.� Improved Wasserstein GAN . ��
�.�.� CycleGAN . ��
�.�.� CycleWGAN-GP . ��

�.� Di�usion Models . ��
�.�.� Denoising Di�usion Probabilistic Models ��
�.�.� Denoising Di�usion Implicit Models ��

�.� Machine Learning Techniques . ��
�.�.� U-Net . ��
�.�.� Residual Neural Network . ��
�.�.� ConvNeXt . ��
�.�.� Self-Attention Technique . ��
�.�.� Time Schedule . ��
�.�.� Time Embedding . ��

�.� Metrics . ��
�.�.� False Acceptance Rate . ��
�.�.� Inception Score . ��
�.�.� Fréchet Inception Distance . ��
�.�.� Kernel Inception Distance . ��
�.�.� Likeness Score . ��
�.�.� Precision and Recall . ��
�.�.� Density and Coverage . ��

�

CONTENTS

� Implementation ��
�.� Datasets . ��

�.�.� Data Composition . ��
�.�.� Data Pre-processing . ��

�.� Live Fingerprint Synthesis . ��
�.�.� WGAN-GP . ��
�.�.� Vanilla DDPM . ��
�.�.� DDPM . ��

�.� Fingerprint-to-Fingerprint Transformation ��
�.�.� CycleGAN . ��
�.�.� CycleWGAN-GP . ��

� Result ��
�.� Live Fingerprint Synthesis . ��
�.� Fingerprint-to-Fingerprint Transformation ��

�.�.� Model results with Spoof Material � ��
�.�.� Model results with Spoof Material � ��
�.�.� Model results with Spoof Material � ��
�.�.� Model results with Spoof Material � ��

� Discussion ��
�.� Metrics . ��
�.� Live Fingerprint Synthesis . ��
�.� Fingerprint-to-Fingerprint Transformation ��

� Conclusion ��

� Appendix ��
�.� Algorithms . ��

�.�.� Improved WGAN Algorithm . ��
�.�.� Denoising Di�usion Probabilistic Models ��
�.�.� Likeness Score . ��

�.� DDPM Structure . ��

�

Chapter �

Introduction

1.1 Background
Biometric technologies have been widely used in various �elds for identity authentication.
Nowadays, technologies like �ngerprint, facial and iris recognition based on biometric fea-
tures are considered to bemore secure, con�dential, and convenient than traditional identi�-
cation methods, bene�ting from the fact that inherent biometric features are in general mea-
surable, veri�able and unique. While on the other hand, collecting �ngerprint data is costly
and time-consuming as a large number of high quality �ngerprint images are demanded in
order to develop and optimize �ngerprint matching algorithms. Moreover, it is also challeng-
ing and controversial when it comes to how those biometric information should be collected,
utilized and stored. Under the supervision of general policies in Europe e.g., GDPR, people’s
privacy is well protected while on the other hand it becomes more intractable to access and
collect human characteristics for the purpose of biometric authentication.

Machine Learning is a rapidly growing �eld that has seen signi�cant advancements and
has developed its applications in a wide range of �elds, including computer vision [�], medical
imaging [�], speech recognition [�], natural language processing [�] and so on. As the growth
of computational power, a branch of Machine Learning, Deep Learning has shown its poten-
tial and has substantially improved the performances of Machine Learning applications in
all aspects especially in computer vision and natural language processing. Undoubtedly, we
have seen many examples of deep learning generative models in image generation, such as au-
toencoders [�], variational autoencoders [�], generative adversarial networks (GANs) [�] and
the recent state-of-the-art di�usion models [�]. These models learn to generate new data by
modeling the underlying probability distribution of the training data, which enables them
to create new data samples that are similar but diverse to the training data.

In order to address the problem of �ngerprint data shortage, we therefore propose the
idea that, with a large number of real �ngerprints available for training, we will focus on
generating similar but unique live �ngerprints, and further generating spoof �ngerprints

�

�. I�����������

through �ngerprint-to-�ngerprint transformation by implementing a variety of deep learn-
ing generative models which will be trained on the company’s given dataset.

1.2 Related Work
The history of �ngerprint synthesis can be traced back to the beginning of ��st century and
even earlier. The paper [�] in ���� introduced away to generate�ngerprints usingGabor-like
space-variant �lters which can be tuned according to the underlying ridge orientation. After
two years, their work had been complemented by being able to derive a series of impressions
from the same master-�ngerprint, which made a large �ngerprint database construction
practical and possible [��]. On top of that, a modi�ed Gabor �lter was used for ridge pattern
generation in another �ve years [��]. Thereafter, a few of researches focused on synthesizing
iris by using e.g., principal component analysis (PCA) [��] or Markov Random Fields [��],
and a large number of articles [��], [��], [��], [��], [��], [��] researched into �ngerprint re-
construction based on minutiae templates. Later in ����, this paper [��] demonstrated the
e�ectiveness of its method of modeling and generating synthetic �ngerprint textures.

However, since the Generative Adversarial Networks (GANs) was �rstly proposed in
���� [�], there has been an increasing trend to use deep learning in �ngerprint synthesis.
Finger-GAN [��] was an early trial where GANs were actually implemented to generate re-
alistic �ngerprints. After that, a variety of GANs models were used to generate �ngerprints.
For instance, the two-stage GANs [��] and the lightweight version of GANs [��] were based
on the original standard GANs [�]. In this paper [��], based on deep convolutional generative
adversarial networks (DCGAN) [��], two networks (Alex-GAN and VGG-GAN) were pro-
posed to improve the performance of DCGANby enhancing the performance of the discrim-
inator, the structure of which was modi�ed by two typical convolutional neural networks,
AlexNet [��] and VGG�� [��]. Striuk, O. and Kondratenko, Y. in [��] researched into Adap-
tive Deep Convolutional GAN (ADCGAN) in �ngerprint synthesis. This paper [��] utilized
progressive growth-based GANs to develop the Clarkson Fingerprint Generator (CFG) that
is capable of generating realistic �ngerprints up to ���◊��� pixels. Recently, two papers [��],
[��] implemented cycleGAN [��] to generate �ngerprints in high �delity. Another Finger-
GAN [��] used for �ngerprint synthesis was proposed by embedding skip-connected DAE
(SC-DAE) in the GANs as a generator, and a SpoofGAN [��] was proposed this year for
generating spoof �ngerprints.

Most past models have been trained on publicly available �ngerprint datasets. Since the
techniques of the company Precise Biometrics are highly dependent on its con�dential data,
which is very di�erent from the publicly available �ngerprint datasets, these past studies can
hardly meet the company’s requirements. Although there have beenmany techniques applied
in the �eld of �ngerprint generation, the most popular di�usion models do not seem to have
been tried so far. We have tried to explore the performance of deep generative models in
the �eld of �ngerprint generation step by step, starting from the popular GAN models. In
addition to this, we also conducted �ngerprint-to-�ngerprint transformation speci�cally for
the company’s non-public dataset to address the problem of learning using a small number
of samples.

��

�.� G����

1.3 Goals
The current issue is that, for the company Precise Biometrics, new �ngerprints sensors � have
been developed continuously and each new sensor requires newmatching and spoof detection
algorithms. Due to the distinction of each sensor and the high-quality images required by the
matching algorithms, each dataset can only be used for speci�c sensors and new �ngerprints
therefore need to be collected for new sensors. In order to decrease the cost of data collection,
we hope to develop �ngerprint generators that can generate unique �ngerprint images for
speci�c sensors. In the case that the dataset required for the new sensor is similar to the
dataset used for training the old algorithms, we hope to leverage the existing datasets and
achieve high-quality �ngerprint synthesis by using a small and limited amount of new data.

We have seen large amount of previous publications that focused on generating synthetic
�ngerprints using machine learning generative models. At this stage, the master’s thesis
project aims at experimenting and performing mainly twomachine learning generative mod-
els (WGAN-GP and DDPMs) to generate �ngerprints. The training data will be given by the
company in order to enrich the quantity and diversity of the company’s real �ngerprint data
itself.
We are therefore aiming at resolving the research questions below:

• Which deep generative models perform best in live �ngerprints synthesis?

• Which deep generative models can achieve �ngerprint-to-�ngerprint transformation
in su�cient quality?

• How to measure the quality of generated �ngerprints in practice and in statistics?

Ultimately, we are aiming at achieving the research objectives below:

• Generate similar but unique synthetic �ngerprints in high �delity based on real �n-
gerprints using e.g. DCGAN[��], WGAN-GP[��] and di�usion models[�].

• Generate a variety of spoof �ngerprints correspondingly based on real live �ngerprints
using e.g. styleGAN[��], cycleGAN[��] and di�usion models[�].

1.4 Division of Work
We started from building up our datasets for the �rst step, in which we roughly shared equal
responsibilities. Thereafter, Diego made a signi�cant contribution to the implementation of
the �rst WGAN-GPmodel, and had done much work on tuning the model with the datasets.
While training themodel to synthesize live�ngerprint images,Weizhong carried out his work
on evaluation metrics separately.

After achieving satisfactory results in live �ngerprint synthesis with WGAN-GP, we in-
tended to implement another state-of-the-art deep generative technique - denoising di�u-
sion probabilistic models (DDPM) to generate live �ngerprint images. In this task, Weizhong

�The sensors are the physical devices capturing the �ngerprint as an image. The sensors di�er from each
other depending on the matching algorithms, hardware devices, customer’s demands and so on.

��

�. I�����������

contributed considerably to its implementation and optimization. Later on, Diego started
experimenting the next task of �ngerprint-to-�ngerprint transformation.

In terms of thesis writing, each of us has mostly carried out the relevant sections corre-
sponding to the programming work, i.e., sections related to GANs were assigned to Diego
and sections related to di�usion models and metrics were assigned toWeizhong. Apart from
that,Weizhong completedmost writtenwork in chapter �, Introduction and sections �.�, Ma-
chine Learning Techniques. The rest parts of the written work has been conducted together
throughout the period. All the unmentioned content is considered to be equally contributed.

��

Chapter �

Methodology

2.1 Generative Adversarial Networks
Generative Adversarial Networks (GANs) [�] are a powerful class of generative models that
involves setting up a competition between two networks. The �rst network, called the gen-
erator G, transforms random noise into data samples. The second network, known as the dis-
criminator D, receives input samples from either the generator or real data and must identify
which is which. The generator’s objective is to deceive the discriminator into classifying its
generated samples as real. Mathematically, this process is represented by the minimax objec-
tive equation (�.�) between the generator G and the discriminator D where Pdata is the data
distribution and Pmodel is the model distribution implicitly de�ned by x̃ = G(z), z ⇠ p(z)
(the input z to the generator is sampled from some simple noise distribution p, such as the
uniform distribution or a spherical Gaussian distribution).

min
G

max
D

E
x⇠Pdata

[log(D(x))] + E
x̃⇠Pmodel

[log(1 � D(x̃))] (�.�)

2.1.1 Deep Convolutional GAN
Deep Convolutional Generative Adversarial Networks (DCGAN) [��] is a type of GAN [�]
that uses convolutional neural networks (CNNs) as the generator and discriminator networks
was introduced in a ���� paper [��]. DCGAN is designed to generate high-quality images that
closely resemble real-world images.

The main innovation of DCGAN is the use of convolutional layers in both the generator
and discriminator networks. This allows the networks to learn hierarchical representations
of the input data, capturing both low-level features such as edges and textures and high-level
features such as object shapes and compositions.

DCGAN also includes several architectural guidelines for building the generator and dis-
criminator networks. The �rst is using the all convolutional net [��] which replaces any

��

�. M����������

pooling layers with strided convolutions (discriminator) and fractional-strided convolutions
(generator). Second is removing fully connected hidden layers for deeper architectures, using,
for example, global average pooling which has been utilized in image classi�cation models
[��]. See Fig. (�.�) for a visualization of an example model architecture. Third is using Batch
Normalization [��] in both the generator and the discriminator which helps to stabilize the
learning process by normalizing the input to each unit to have zero mean and unit variance.
These guidelines help improve the stability of the training process, helps gradient �ow, pre-
vent mode collapse, and produce more visually pleasing results.

Figure �.�: A uniform distribution Z with ��� dimensions is transformed into a small
spatial extent convolutional representation that has many feature maps. Then, a se-
quence of four fractionally-strided convolutions is applied to convert the high level
representation into an image with a resolution of �� ◊ �� pixels. It’s important to note
that neither fully connected layers nor pooling layers are utilized in this process. How-
ever, it should be noted that some recent papers inaccurately refer to these fractionally-
strided convolutions as deconvolutions. Cited from [��]

Apart for these guidelines, the authors made use of ReLU activation [��] in the generator
for all layers except for the output, which uses Tanh. For all the layers on the discriminator,
it is used LeakyReLU activation [��].

During training, the generator network takes random noise as input and generates im-
ages that are then fed to the discriminator network, which tries to distinguish between the
generated images and real images from a training dataset. The generator and discriminator
networks are trained together, with the generator trying to fool the discriminator into think-
ing its generated images are real, and the discriminator trying to correctly classify the images
as real or fake.

The authors demonstrated the e�ectiveness of DCGAN on several image generation
tasks, including generating images of faces, bedrooms, and street scenes. Since then, DCGAN
has become a widely used architecture for various generative modeling tasks in computer vi-
sion and beyond, including image super-resolution, text-to-image synthesis, and video pre-
diction.

2.1.2 Improved Wasserstein GAN
Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) [��] was
introduced in a ���� paper [��]. The authors proposed a modi�cation to the loss function

��

�.� G��������� A���������� N�������

used in the original Wasserstein GAN (WGAN) [��] Eq. (�.�)� which uses the Wasserstein
distance [��] (also known as earth mover’s distance) as the objective function for training
the generator and discriminator networks. This distance metric measures the di�erence be-
tween the probability distributions of real and fake data, making it more stable and easier to
optimize than traditional GAN loss Eq. (�.�).

LWGAN = min
G

max
D2D

E
x⇠Pr

[D(x)] � E
x̃⇠Pg

[D(x̃)] (�.�)

In addition to using the Wasserstein distance, WGAN-GP introduces a gradient penalty
term to the loss function as an alternative method for enforcing the Lipschitz constraint. By
considering the fact that a di�erentiable function is �-Lipschitz if and only if its gradients
have a norm of � everywhere, the authors suggest directly limiting the norm of the critic’s
output gradients with respect to its input. To address issues of computational feasibility, a
penalty is applied to the gradient norm for random samples obtained from Px̂, e�ectively
implementing a softened version of the constraint. The revised objective function is thus
formulated accordingly,

L = E
x̃⇠Pg

[D(x̃)] � E
x⇠Pr

[D(x)]
| {z }

Original WGAN loss

+ � E
x̂⇠Px̂

h
(krx̂D(x̂)k2 � 1)2

i

| {z }
Gradient penalty

. (�.�)

The penalty term helps prevent the discriminator from becoming too powerful and domi-
nating the training process, which encourages smoothness in the decision boundary between
real and fake data and can contribute to mode collapse.

There are made two further modi�cations to the training procedure. First, it is noted
that using batch normalization in both the generator and discriminator can a�ect the dis-
criminator’s problem formulation and make the penalized training objective invalid. As a
solution, it is suggested omitting batch normalization in the critic and using normalization
schemes that do not introduce correlations between examples, such as layer normalization.
Second, it is proposed using a two-sided penalty instead of the traditional one-sided penalty.
Empirically, it is found that this change did not constrain the critic too much and led to
slightly better performance.

2.1.3 CycleGAN
Cycle-Consistent Adversarial Network (CycleGAN) [��] is a type of GAN [�] that is used for
unsupervised image-to-image translation. Introduced in a ���� paper [��] by Jun-Yan Zhu
and his colleagues, CycleGAN is designed to learn mappings between two di�erent domains
of images without the need for paired training data.

The key innovation of CycleGAN is the use of cycle consistency [��], which allows the
model to learn themappings between the two domains X andY given training samples {xi}Ni=1
where xi 2 X and {yj}Nj=1 where yj 2 Y . Speci�cally, the model consists of two GANs, each
with a generator G and F and a discriminator network DY and DX . One GAN is trained
to map images from domain X to domain Y , while the other GAN is trained to map images
from domain Y to domain X .

�Equations (�.�) and (�.�) are referred from [��]

��

�. M����������

The objective contains two types of terms: adversarial losses [�] formatching the distribu-
tion of generated images to the data distribution in the target domain; and cycle consistency
losses [��] to prevent the learned mappings G and F from contradicting each other.

The adversarial loss [�] for the mapping function G : XY and its discriminator DY is
express as,

LGAN (G,DY , X,Y) = Ey⇠pdata (y)
⇥log DY (y)⇤ + Ex⇠pdata (x)

⇥log (1 � DY (G(x))] , (�.�)

in a similar way, the adversarial loss for the mapping function F : YX and its discriminator
DX is express as,

LGAN (F,DX ,Y, X) = Ex⇠pdata (x)
⇥log DX(x)⇤ + Ey⇠pdata (y)

⇥log (1 � DX(F(y))⇤ . (�.�)

The cycle consistency loss is express as,

Lcyc(G, F) = Ex⇠pdata (x) [kF(G(x)) � xk1] + Ey⇠pdata (y)
⇥kG(F(y)) � yk1

⇤
. (�.�)

The full objective function [��] is then express as,

L (F,DX ,Y, X) = LGAN (G,DY , X,Y) +LGAN (F,DX ,Y, X) + �Lcyc(G, F), (�.�)

where � controls the relative importance of the two objectives.

2.1.4 CycleWGAN-GP
Yanming Zhu et al. [��] proposed a new comprehensive objective function to enhance the
training stability of CycleGAN by extending the concept of WGAN [��] and Improved
WGAN [��] to it.

Using Eq. (�.�), the proposed adversarial losses are expressed as,

LWGAN (G,DY , X,Y) = Ey⇠pY (y)
⇥DY (y)⇤ � Ex⇠pX (x) [DY (G(x)],

LWGAN (F,DX ,Y, X) = Ex⇠pX(x) [DX(x)] � Ey⇠pY (y) [DX(F(x)].
(�.�)

By introducing gradient penalty [��] Eq. (�.�), the full objective function is expressed as,

L (G, F,DX ,DY) = LWGAN (G,DY , X,Y) +LWGAN (F,DX ,Y, X) + �0Lcyc(G, F)

+ �1 E
x̂1⇠Px1

⇣���rx̂1 DY (x̂1)
���

2 � 1
⌘2�
+ �2 E

x̂2⇠Px2

⇣���rx̂2 DX (x̂2)
���

2 � 1
⌘2�
.

(�.�)

2.2 Di�usion Models
The original idea of di�usion models inspired by non-equilibrium statistical physics was
initially presented in the paper [��] in ����. As its name indicates, any substance that exists in
a di�usible form can be spread uniformly throughout space by random motion, which turns
out that its own localized distribution will eventually transform into uniform distribution.
This theory was then referred again by Jonathan H., Ajay J. and Pieter A. who proposed
a state-of-the-art deep learning generative model called Denoising Di�usion Probabilistic
Models (DDPMs) [�].

��

�.� D��������M�����

2.2.1 Denoising Di�usion Probabilistic Models
Given latent variables x1,..., xT with the same dimensionality as x0, a DDPM starts from
addingGaussian noise into the input sample i.e. x0 step by step until it is converted to a purely
isotropic Gaussian sample i.e. xT . The di�usion steps are carried out on the assumption of
Markov chain which indicates that the future state of the process only depends on the current
state of the process. In Eq. (�.��)�, q (xt | xt�1) is controlled by the previous state xt�1, I is the
identity matrix, and the trainable noise variable �t controlling the noise level in each step.
We then call it the forward process as illustrated in Fig. (�.�),

q (x1:T | x0) :=
TY

t=1
q (xt | xt�1) , q (xt | xt�1) := N

⇣
xt;

p
1 � �txt�1, �tI

⌘
(�.��)

In the forward process, a notable property is that xt can be sampled at any arbitrary time
step t in a closed form using the reparameterization trick,

q (xt | x0) = N
⇣
xt;
p
↵̄tx0, (1 � ↵̄t) I

⌘
, (�.��)

where ↵t := 1 � �t and ↵̄t :=Qt
s=1 ↵s.

Likewise, the reverse process p✓ (x0:T) is conducted through subtracting or denoising the
purely noisy sample xT step by step in a reverse way,

p✓ (x0:T) := p (xT)
TY

t=1
p✓ (xt�1 | xt) , p✓ (xt�1 | xt) := N �xt�1;µ✓ (xt, t) ,⌃✓ (xt, t)

�
(�.��)

Figure �.�: The forward and reverse processes of DDPMs. In the forward process, the
input sample is randomly added with Gaussian noise constantly in each step, and be-
coming an isotropic Gaussian noise image in the end. In the reverse process, a random
noise sample drawn from an isotropic Gaussian distribution is denoised in a level es-
timated by a deep learning model (typically a U-Net) in each step, and being recon-
structed completely after going through all the time steps.

Given the condition that x0 is known,
�Equations (�.��), (�.��), (�.��), (�.��), (�.��), (�.��) and (�.��) are referred from DDPM [�].

��

�. M����������

q (xt�1 | xt, x0) = N
⇣
xt�1; µ̃t (xt, x0) , �̃tI

⌘
, (�.��)

where,

µ̃t (xt, x0) :=
p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t (1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t := 1 � ↵̄t�1

1 � ↵̄t
�t. (�.��)

However, x0 remains unknown in image generation until the last step. It is tractable to
estimate the next step based on Bayes Theorem and probability as shown in the forward
process, but this is unfortunately not feasible for the reverse process. As the knowledge of
the whole data distribution is required to resolve the backward conditional probability, the
sample in the previous step needs to be instead predicted by deep learning models in the
reverse process.

Without knowing the x0, by sampling xt step by step, the reverse sampling process then
goes to,

xt�1 = µ✓ (xt, t) + �tz, z ⇠ N(0, I), (�.��)

where,

µ✓ (xt, t) = µ̃t

xt,

1p
↵̄t

⇣
xt �

p
1 � ↵̄t✏ ✓ (xt)

⌘!
=

1p
↵t

xt �

�tp
1 � ↵̄t

✏ ✓ (xt, t)
!

(�.��)

where ✏ ✓ is a function approximator given by the deep generative model for predicting ✏
from xt . The desired image can then be reconstructed eventually.

2.2.2 Denoising Di�usion Implicit Models
Unlike DDPMs that require the di�usion processes to be Markovian, denoising di�usion
implicit models (DDIMs) [��] propose a newway that can dramatically accelerate the forward
processes de�ned as a class of Non-Markovian processes. DDIMs have been demonstrated to
be able to generate samples in high quality from �� up to �� times faster than the timeDDPMs
need.

The authors chose one of the non-Markovian inference processes in which the reverse
process relies on the conditional probability q (xt�1 | xt, x0) rather than q (xt�1 | xt). There-
after, the non-Markovian forward process according to the Bayes Theorem is derived as �,

q� (xt | xt�1, x0) =
q� (xt�1 | xt, x0) q� (xt | x0)

q� (xt�1 | x0)
, (�.��)

where,

q� (xt�1 | xt, x0) = N
 p
↵t�1x0 +

q
1 � ↵t�1 � �2

t ·
xt �
p
↵t x0p

1 � ↵t
,�2

t I
!

(�.��)

�Note: All the ↵t in DDIMs equal to ↵̄t in DDPMs

��

�.�M������ L������� T���������

In section �.�.�, we have shown how xt�1 is generated by subtracting the noise map
✏ ✓ (xt, t) from the noise image xt . However, here xt�1 is generated by �rst predicting the
desired image x0 and then adding the predicted noise term to x0, i.e.,

xt�1 =
p
↵t�1

0
BBBBB@
xt �
p

1 � ↵t✏
(t)
✓ (xt)p

↵t

1
CCCCCA

| {z }
“predicted x0 "

+

q
1 � ↵t�1 � �2

t · ✏ (t)
✓ (xt)

| {z }
“direction pointing to xt ”

+ �t✏t|{z}
random noise

. (�.��)

2.3 Machine Learning Techniques
In this section, we will discuss a variety of machine learning techniques which have been
extensively used for a number of popular model structures. Some of them constitute the core
parts of machine learning models, for example, the attention blocks in a transformer, the
U-Net structure in the reverse process of a di�usion model and so on.

We will brie�y introduce several typical deep neural networks (DNNs), a couple of nor-
malization methods and activation functions used in the thesis. We will then, in Chapter �,
point out what the roles of these machine learning modules are in our task.

2.3.1 U-Net
U-Net is a popular deep learning architecture speci�cally designed for biomedical image
segmentation tasks. It was �rst proposed by Olaf Ronneberger, Philipp Fischer and Thomas
Brox in ���� [��]. Since then, the architecture has been adopted and applied to various other
image segmentation tasks in di�erent �elds.

Figure �.�: A typically U-Net structure. Cited from [��]

The U-Net architecture consists of a systolic (encoder) path and an extended (decoder)
path (see Fig. (�.�)), which together form a "U" shape, hence the name. The encoder path is a

��

�. M����������

series of convolutional layers followed by a maximum set layer, which helps capture contex-
tual information and reduces the spatial size of the input image. The decoder path consists of
a series of transposed convolutional layers, which helps to reconstruct the segmented image
from the feature map generated by the encoder.

One of the main features of U-Net is the introduction of jump connections between the
encoder and decoder paths. These connections allow the model to preserve and utilize the
high-resolution spatial information from the earlier layers of the encoder when reconstruct-
ing the segmented image in the decoder path. This design choice greatly improves the per-
formance of U-Net, especially when working with images containing �ne details or complex
structures.

2.3.2 Residual Neural Network
ResNet [��], which stands for Residual Network, is a deep learning architecture designed for
image recognition and classi�cation tasks. Because of its ability to e�ectively train very deep
neural networks, ResNet has since become a popular and in�uential architecture in the �eld
of computer vision.

Figure �.�: Overview of residual connections. Cited from [��]

The key innovation of ResNet is, in Fig. (�.�), the introduction of residual connections
(also known as skip connections or shortcut connections) that allow the network to learn
residual functions associated with layer inputs instead of learning unreferenced functions.
These connections allow the model to bypass certain layers during training, e�ectively creat-
ing shorter paths for the �ow of gradients during backpropagation. This helps alleviate the
gradient disappearance problem common in deep neural networks and allows the trained
network to be deeper than before.

2.3.3 ConvNeXt
ConvNeXt [��] proposed in ���� is a deep neural network constructed entirely from standard
Convolutional Neural Networks (ConvNets) modules. The authors demonstrated that Con-
vNeXt was capable of competing with state-of-the-art hierarchical vision Transformers [��]
across various computer vision benchmarks, while maintaining the simplicity and e�ciency
of standard ConvNets.

ConvNeXt is considered to be an alternative to ResNet in standard DDPM [�].

��

�.�M������ L������� T���������

2.3.4 Self-Attention Technique
Self-attention [��] is a technique used in deep learning models to capture long-range depen-
dencies and contextual information within sequences, such as text or time series data.

Figure �.�: Visual expression of self-attention mechanism. Cited from [��]

As shown in Fig. (�.�), self-attention mechanism calculates the relationship between ele-
ments in a sequence by assigning a weight to each pair of elements, indicating how much one
element contributes to the other. This is done by computing dot product between element
representatives (usually vectors) and then normalizing the weights using a soft key operation.
The resulting weighted sum of the sequence elements forms the output representation, which
captures the dependencies between the elements. Self-attention has become a crucial com-
ponent in various state-of-the-art natural language processing (NLP) and sequence modeling
architectures.

2.3.5 Time Schedule
For di�usion models, in the forward process formulated by Eq. (�.��) and (�.��), one needs
to de�ne the time schedule of the noise level �t for formulating the degree of noise at each
time step. There are two time schedules we used in this project.

Figure �.�: The upper one is linear. The lower one is cosine.

��

�. M����������

Linear Beta Schedule
As shown in the original DDPMs [�], a linear beta schedule was proposed to depict the evo-
lution of the noise level. Suppose the range of �t is from �.���� to �.��, and the total time
step T = 1000, a linear beta schedule is given by,

�t =
t
T (�max � �min) . (�.��)

Cosine Beta Schedule
A cosine beta schedule was proposed in the improved DDPMs [��] to smooth the noise sched-
ule and avoid abrupt changes,

↵̄t =
f (t)
f (0) , f (t) = cos

t/T + s
1 + s ·

⇡

2

!2

. (�.��)

where s stands for a parameter to prevent �t from being too small when t converges to �.
From the Eq. (�.��) de�ning the term ↵̄t , the de�nition of �t is derived as,

�̄t = 1 � ↵̄t

↵̄t�1
. (�.��)

2.3.6 Time Embedding
Similar to word embeddings, time embedding aims to encode and represent the time data
into vectors so that it can be interpreted by the machine learning models. In the di�usion
models, this technique refers the knowledge of position embedding proposed in the intro-
duction of transformer [��].

Sinusoidal Embedding
In order to represent the information of time steps in di�usion models, a sinusoidal time
embedding is utilized to vectorize a series of time steps from e.g., � to ����,

�!pt
(i) :=

8>><
>>:
sin (!k · t) , if i = 2k
cos (!k · t) , if i = 2k + 1

, where !k =
1

100002k/d . (�.��)

Eq. (�.��) provides the de�nition of time embedding, where�!pt
(i)
represents the output vector,

and d stands for the length of the vector.

2.4 Metrics
As typical black-box models, deep generative models have been constantly worried about the
lack of explainability and transparency. It is therefore necessary to either clarify the internal
model structure beforehand or perform all kinds of post hoc explanationmethods afterwards.

��

�.�M������

2.4.1 False Acceptance Rate
In biometric security systems, False Acceptance Rate (FAR) and False Rejection Rate (FRR)
are commonly used for assessing the performance of biometric authentication. A FAR indi-
cates the percentage of an unauthorized person being incorrectly accepted by the biometric
security system.

In this case, we evaluated the quality of generated �ngerprints using the company’s al-
gorithm that calculates the score of every pair of real (training) �ngerprints, and the score
of every pair of generated �ngerprints respectively. These scores formed two distributions
where we compared the FAR of them, and hence obtained a relatively comparable metric.

2.4.2 Inception Score
Inception Score (IS)[��] is a well-performing algorithm used to assess the quality of images
created by a generative model such as a GAN. It tries to learn the statistics from the generated
images and correlate with human judgement in some way.

First of all, a group of (typically around ��,���) generated images is fed into a pre-trained
Inception v� image classi�cation model [��] in order to obtain the conditional probability of
each generated image p(y|xi). In other words, as the pre-trained model is able to classify an
input image into a thousand classes, the conditional probability here indicates the probability
that the image would be labelled to one of the one thousand classes. The marginal probability
p(y) is then computed by averaging all the conditional probabilities in the group.

Thereafter, the inception score is given by calculating the KL divergence of these two
distributions,

DKL =
1
N

NX
p(y|xi) log(p(y|xi)

p(y)). (�.��)

Intuitively, we hope that the marginal probability and have fairly equal weights on as
many classes as possible. On the other hand, we hope the conditional probability can be
more distinct (showing high probability in one or two classes but extremely low probability
in most classes). We therefore can measure the �delity and diversity of the generated dataset.

As can be seen in Eq. (�.��), the real dataset for training is not involved in the calculation,
which implies one of the disadvantages that Inception Score is not referring the statistics of
the real samples.

2.4.3 Fréchet Inception Distance
Fréchet Inception Distance (FID) [��] is a metric used to evaluate the similarity of the syn-
thetic images to the real ones by calculating the Fréchet Distance [��] between two feature
vectors. The pre-trained Inception v� image classi�cation model [��] without the last activa-
tion layer is used again to transform two groups of image datasets into two groups of feature
vectors, in which each image will be �rst resized to ���x��� pixels and then be transformed
to a �x���� feature vector. Fr = �(R), Fg = �(G) are two groups of feature vectors extracted
from real and generated image datasets. We consider that the distributions of Fr , Fg are
multivariate Gaussian,

��

�. M����������

Fr ⇠ N (µr ,�r) ; Fg ⇠ N
⇣
µg,�g

⌘
. (�.��)

The di�erence of two Gaussians is measured by the Frechet distance [��],

FID(R,G) =
���µr � µg

���2
2 + Tr

✓
�r + �g � 2

⇣
�r�g

⌘ 1
2
◆
. (�.��)

FID has been tested on a variety of deep generative models and large image datasets, and has
shown more robust performance than Inception Score. A FID score reveals the similarity
between two probability distributions.

2.4.4 Kernel Inception Distance
Kernel Inception Distance (KID) [��] is a metric similar to FID used to evaluate the quality
of generated images. It uses the squared MMD between Inception representations (See Eq.
(�.��)) in combination with a kernel function to measure the similarity between the distri-
bution of real images and the distribution of generated images.

MMD2
u(X,Y) = 1

m(m � 1)

mX

i 6= j
k
⇣
xi, x j

⌘
+

1
n(n � 1)

nX

i 6= j
k
⇣
yi, yj

⌘
� 2

mn

mX

i=1

nX

j=1
k
⇣
xi, yj

⌘
.

(�.��)
Unlike FID that relies on Gaussian assumption, KID provides a more �exible measure

that only assumes the kernel is suitable enough. KID has proven its remarkable performance
compared to FID and IS in [��], and has become a popular tool for evaluating generative
models such as generative adversarial networks (GANs) and variational autoencoders (VAEs).
KID is also used as a loss function for training generative models, as it provides a measure of
how well the generated images match the real images. KID is a powerful evaluation metric
that has been shown to correlate well with human judgments of image quality. However, it
is important to note that KID is not perfect and may not capture all aspects of image quality,
such as diversity and novelty.

2.4.5 Likeness Score
A novel and distance-based measure - Likeness Score [��] was proposed to evaluate GAN-
based generated images without projecting images into feature vectors. It calculates the Eu-
clidean distances of data and also the KS distances [��] between distributions.

The de�nition of LS follows the steps in Algorithm � (In Appendix).
Fig. (�.�) illustrates how ICD and BCD sets interpret the quality of generated samples in
terms of creativity, diversity and inheritance. Only peaks of BCD showing in the beginning
of the histograms indicate the generated samples are highly overlapped with the real samples.
This lack of creativity may cause problems of generating identical samples. Having a peak
of generated ICD ahead indicates the generated samples follow only a partial distribution of
real samples. In addition to that, if the distributions of ICD and BCD sets are not su�ciently
matched with each other, the lack of inheritance means the generated samples may not learn
from the real samples at all.

��

�.�M������

Figure �.�: Example of how Intra-Class Distance (ICD) and Between-Class Distance
(BCD) interpret the quality of generated sample in terms of creativity, diversity and
inheritance. First row: the �D tSNE plots of real (blue) and generated (orange) data
points from each virtual GAN. Second row: histograms of ICDs and BCD for real and
generated datasets. The histograms in (b)-(d) are zoomed to the beginning of plots.
Cited from [��]

2.4.6 Precision and Recall
The FID score is the most commonly used metric to assess the similarity between real and
generated images. However, it does not distinguish between �delity and diversity of the gen-
erated images, leading recent papers to introduce variants of precision and recall to evaluate
these properties separately. Precision and Recall [��] proposed in ���� are evaluation metrics
that can dependably and independently gauge factors in image generation tasks by creating
explicit, non-parametric representations of real and generated data manifolds. The purpose
of this metric is to evaluate the quality and coverage of the generated samples. Fig. (�.�)
illustrates the de�nition of precision and recall in a brief way.

Figure �.�: De�nition of precision and recall. (a) denotes the distribution of real sam-
ples with Pr (blue) and the distribution of generated samples with Pg (red). (b) denotes
the de�nition of precision: the percentage of generated samples falling within the dis-
tribution of real samples Pr. (c) denotes the de�nition of recall: the percentage of real
samples falling within the distribution of generated samples Pg. Cited from [��]

f (�,�) =
(

1, if k� � �0k2  k�0 � NNk (�0,�)k2 for at least one �0 2 �
0, otherwise, (�.��)

��

�. M����������

Figure �.�: The left graph is a true manifold in a feature space. The right graph is an
estimate of the real manifold using k-nearest neighbors. Cited from [��]

precision
⇣
�r ,�g

⌘
=

1����g
���

X

�g2�g

f
⇣
�g,�r

⌘
recall

⇣
�r ,�g

⌘
=

1
|�r |

X

�r2�r

f
⇣
�r ,�g

⌘
(�.��)

In the Eq. (�.��), � denotes a given generated or real sample, and � denotes either �r
or �g depending on calculating precision or recall. Basically, this equation calculates if a
given sample is included within the manifold (See in Fig. (�.�)) of a distribution estimated
by sampling a group of points and surrounding each point with a hypersphere that reaches
its kth nearest neighbor. By averaging the relevant binary score for each sample f (�,�), the
resulting formulas are presented in Eq. (�.��). Notably, all the representations of samples
here are obtained by feeding them into a pre-trained VGG-�� classi�er [��], similar to what
is done in FID and KID.

2.4.7 Density and Coverage

Figure �.��: Overview of metrics. (a) illustrates the advantage of density against pre-
cision on a real manifold, on which a real outlier dramatically in�uences the accuracy
of the precision, while density, a more robust metric, is capable of standing against the
negative impact of the real outlier. (b) illustrates the advantage of coverage against re-
call on a fake manifold, on which a fake outlier tricks the recall by covering all the real
samples in one circle. While the coverage uses the real manifold to avoid this fake out-
lier as the real samples are less likely with outliers. Notably, the real and fake samples
are identical across subplots in graph (b). k indicates the k-nearest neighbors. Cited
from [��]

Density and Coverage [��] are new evaluation metrics aiming to assess the �delity and
diversity of the generated samples. According to the paper, these new metrics resolve the is-
sues that the latest precision and recall metrics [��] can not handle. For example, they cannot

��

�.�M������

detect a match between two identical distributions (a precision of � would not appear), are
susceptible to outliers, and involve arbitrary choices for evaluating hyperparameters.

density := 1
kM

MX

j=1

NX

i=1
1Y j2B(Xi ,NNDk(Xi)), coverage := 1

N

NX

i=1
19 j s.t. Y j2B(Xi ,NNDk(Xi)).

(�.��)
Density is de�ned in Eq. (�.��) where k indicates the k-nearest neighbors. Density favors
samples in areas where real samples are densely clustered, reducing susceptibility to outliers.
For instance, the issue of overestimating precision (���%) in Fig. (�.��) is addressed by using
the density measure (��%). It is important to know that density does not have an upper limit
of � and it may exceed � depending on the density of real samples surrounding the fake ones.
On the other hand, coverage is de�ned as the percentage of real samples whose manifolds
cover at least � fake sample and has a �xed interval between � and �.

��

�. M����������

��

Chapter �

Implementation

3.1 Datasets
Initially, our primary focus was on choosing datasets that contained themost readily available
�ngerprint images in live conditions. As the subject expanded to encompass �ngerprint-to-
�ngerprint transformations, we gradually began to engage in the collection of spoof �nger-
print images.

3.1.1 Data Composition
We list the information of all the datasets that were used for live �ngerprint synthesis in Tab.
(�.�), and �ngerprint-to-�ngerprint transformation in Tab. (�.�).

Table �.�: Overview of datasets used for live �ngerprint synthesis. The rule of names
is: SENSOR-CONDITION-(Optional) SUBSET.

Name Condition Amount
S�-L Live ����
S�-L Live �����
S�-L-� Live �����
S�-L-� Live �����
S�-L Live �����
S�-L Live ����
S�-L Live ����

Due to the privacy issues, we are not allowed to present the real �ngerprints either in live
or in spoof conditions in the thesis for most datasets. We are not allowed also to present the
real spoof material and mold names. We are however able to present some speci�c generated

��

�. I�������������

Table �.�: Overview of datasets used for �ngerprint-to-�ngerprint transformation.
The rule of names is: SENSOR-CONDITION. The spoof images are made of di�erent
materials and molds.

Name Condition Amount
S�-L Live �����
S�-SM� Spoof Material � ����
S�-SM� Spoof Material � ����
S�-SM� Spoof Material � ����
S�-L Live �����
S�-SM� Spoof Material � ����

�ngerprints here. In that case, models trained on dataset S�-L are allowed to print out the
generated results.

3.1.2 Data Pre-processing
Data pre-processing involves cleaning, transforming, and organizing raw data into a struc-
tured format that is easily understood by algorithms. This process typically includes handling
missing values, converting categorical variables into numerical ones, scaling and normalizing
data, and even feature engineering.

In the domain of image processing and computer vision, data pre-processing serves as
a crucial step for preparing image data before it is ingested into machine learning models.
Images often require pre-processing to enhance their quality, remove noise, and standard-
ize their properties, ensuring a more accurate and robust analysis. Common pre-processing
techniques for images include resizing, normalization, data augmentation, and gray-scale
conversion. Additionally, more advanced methods such as histogram equalization, edge de-
tection, and feature extraction may be employed to highlight speci�c characteristics within
images.

In order to match the image format with the deep generative models, the original data
is �rst converted from .bmp format into .jpg. Likewise, in general a machine learning model
has speci�c regulation of the pixel range. Hence the input images need to be normalized in a
corresponding way, typically ranging from � to �, or -� to �.

Considering the consistency of the available datasets, we propose to control all input im-
ages to a size of ���x���, using internal padding in the networks, to make the model building
easier and more focused. In other cases, for some input images of bigger size, e.g., ���x���,
we use a cropping method to extract ���x��� pixels of them.

In addition, considering the potential gains that data enhancement may bring, we do use
pytorch’s own data augmentation functions to �ip, rotate, color enhance, sharpen, etc. on
the real data during the training of the model. However, considering that our ultimate goal
is to generate synthetic �ngerprints similar to the real dataset, changes in color, brightness
and contrast may result in a higher diversity of the generated �ngerprints, which reduces
the similarity of the synthetic �ngerprints to some extent. And since we still compare the
original dataset with the synthetic dataset when evaluating synthetic �ngerprints, without
using the augmented data, this makes the scores of each of the measures negatively a�ected
by it.

��

�.� L��� F���������� S��������

3.2 Live Fingerprint Synthesis
The �rst goal of the thesis is to generated live �ngerprint images in high �delity. As written
in the �rst chapter, there have been a few of publications that researched into �ngerprint syn-
thesis with either traditional or machine learning methods. We aim to �rst ful�ll �ngerprint
synthesis with existing deep generative models such as GANs. Besides, we aim to try more
implementations in terms of �ngerprint synthesis using di�usion models. Our implementa-
tions demonstrated the feasibility of the goal. Amongst all the experiments we have done,
the WGAN-GP and DDPMs obtained relatively satisfactory results. We therefore present
more details below.

3.2.1 WGAN-GP
Weadopt theDCGANarchitecture for our generative and critic networks fromAlecRadford
et al. [��].

Table �.�: Typical model structure of WGAN-GP model.

Model Name WGAN-GP
Input Padded to ���x���
� ��.�
Batch Size ���
Epochs ����
Loss Wasserstein-GP
Optimizer Adam
Learning Rate �e-�
�1 �.�
�2 �.�

The generator network contains four convolutions. Let b8r256 denote a 8 ⇥ 8 ⇥ 256
Dense-BatchNorm-LeakyReLU-Reshape layer. dk denotes a 3⇥3Convolution-InstanceNorm-
ReLU layer with k �lters and stride �. Re�ection padding was used to reduce artifacts. Rk
denotes a residual block that contains two 3⇥3 convolutional layers with the same number of
�lters on both layer. uk denotes a 3 ⇥ 3 UpSampling-Convolution-BatchNorm-LeakyReLU
layer with k �lters, stride � and up sampling �. The last convolution has a tanh activation
function instead of a LeakyRelu. The network consists of:

b8r256 � u128 � u64 � u32 � u1

The critic network contains six convolutions, which aim to score the similarity between
the real and generated image. Let Ck denote a 5 ⇥ 5 Convolution-LeakyReLU layer with k
�lters and stride �. Let Cdk denote a 5 ⇥ 5 Convolution-Dropout-LeakyReLU layer with
k �lters and stride �. After the last layer, we �atten the result to produce a �-dimensional
output. We do not use InstanceNorm for the �rst C�� layer. We use leaky ReLUs with a
slope of �.� and a dropout value of �.�. The network consists of:

C16 �Cd32 �C64 �Cd128 �C256 �Cd512

��

�. I�������������

For all the experiments, we set � = 10 in LWGAN�GP Eq. (�.�). We use the Adam solver
with a batch size of ���. All networks were trained from scratch with a learning rate of
�.����. A typical setting of WGAN-GP is shown in the Tab. (�.�).

3.2.2 Vanilla DDPM
We initially implemented a plain version of DDPM called Vanilla DDPM in the thesis, in
which the deep learning model only consists of a typical U-Net structure within a type of
layer normalization and a sigmoid linear unit (SiLU) activation function.

Figure �.�: The U-Net structure used in vanilla DDPM. This is only a brief picture de-
picting a rough structure of U-Net. In the code, there exist many more trivial modules
in between.

As shown in Fig. (�.�), this is a typical U-Net that can �rst down-sample the input padded
image from ���x��� to �x�, and then up-sample it back to ���x���. The output image is the
estimation of the noise at that time step.

Multiple setups of kernel size and the number of channels have been tried when training
the vanilla DDPM. A typical setting of vanilla DDPM is shown in the Tab. (�.�).

3.2.3 DDPM
After achieving good �tting results with the vanilla DDPM, we decided to increase the com-
plexity of the model on top of it, while introducing various practical modules such as at-

��

�.� F��������������F���������� T�������������

Table �.�: Typical model setting of vanilla DDPM.

Model Name Vanilla DDPM
Image Size Padded to ���x���
Time Embedding Sinusoidal Embedding
Time Schedule Linear Schedule
Time Steps ����
Noise Level [�e-�, �e-�]
Batch Size ��
Learning Rate �e-�
Epochs ���
Loss MSE
Optimizer Adam

tention, ResNet, etc. Thanks to the meticulous annotations provided by HuggingFace �, we
therefore were able to e�ciently build up our model based on their comprehensively funda-
mental DDPM. As shown in Fig. (�.�), the new DDPM structure in the thesis remains most
parts of the standard one propose.

Figure �.�: The U-Net structure used in DDPM. In order for the model to process more
details of the input images, compared to vanilla DDPM, this DDPM deploys a variety
of modules such as attention, ResNet, etc. to enrich the complexity of the model while
maintaining a small number of model parameters.

3.3 Fingerprint-to-Fingerprint Transformation
Here we are going to explain the network architecture and training details for cycleGAN and
cycleWGAN-GP.

�Credit to https://github.com/huggingface/blog/blob/main/annotated-di�usion.md

��

�. I�������������

Table �.�: Typical model setting of DDPM.

Model Name DDPM
Image Size Padded to ���x���
Time Embedding Sinusoidal Embedding
Time Schedule Cosine Schedule
Time Steps ����
Noise Level [�e-�, �e-�]
Batch Size ��
Learning Rate �e-�
Epochs ���
Loss Huber
Optimizer Adam

3.3.1 CycleGAN
• Network Architecture

We adopt the architecture for our generative networks from Jun-Yan Zhu et al. [��]
who have shown impressive results for style transfer, object trans�guration, season
transfer, photo generation from paintings and photo enhancement.

The generator network inputs di�erent size training images which are padded to ���⇥
���. This network contains three convolutions, six residual blocks [��], two fractionally-
strided convolutionswith stride 1

2 , and one convolution thatmaps features to grayscale.
Similar as Jun-Yan Zhu et al. [��], we use instance normalization [��]. Below, we follow
the naming convention used in the Johnson et al.’s Github repository.

Let c7s1� k denote a 7⇥ 7 Convolution-InstanceNorm-ReLU layer with k �lters and
stride �. dk denotes a 3⇥ 3 Convolution-InstanceNorm-ReLU layer with k �lters and
stride �. Re�ection padding was used to reduce artifacts. Rk denotes a residual block
that contains two 3 ⇥ 3 convolutional layers with the same number of �lters on both
layer. uk denotes a 3 ⇥ 3 fractional-strided-Convolution-InstanceNorm-ReLU layer
with k �lters and stride ��.

The network with � residual blocks consists of:

c7s1 � 64, d128, d256,R256,R256,R256,R256,R256,R256, u128, u64, c7s1 � 3

The discriminator networks contains four convolutions, which aim to classify whether
the image is real or fake.

LetCk denote a 4⇥4 Convolution-InstanceNorm-LeakyReLU layer with k �lters and
stride �. After the last layer, we apply a convolution to produce a �-dimensional output.
We do not use InstanceNorm for the �rst C�� layer. We use leaky ReLUs with a slope
of �.�.

The discriminator architecture is:

C64 �C128 �C256 �C512

��

�.� F��������������F���������� T�������������

• Training details

We follow the same guidelines as Jun-Yan Zhu et al. [��]. We replace the negative
log likelihood objective by a least-squares loss [��] for LGAN Eq. (�.�). This loss have
shown being more stable during training and generates higher quality results. For all
the experiments, we set � = 10 in Equation �. We use the Adam solver [��] with a
batch size of �. All networks were trained from scratch with a learning rate of �.����.
We keep the same learning rate for the �rst ��� epochs and linearly decay the rate to
zero over the next ��� epochs.

Table �.�: Typical model structure of cycleGAN model.

Model Name cycleGAN
Input Padded to ���x���
�cycle ��.�
�identi t y �.�
Batch Size �
Epochs ���
Loss Wasserstein
Optimizer Adam
Learning Rate �e-�
�1 �.�

3.3.2 CycleWGAN-GP
• Network Architecture

We adopt the architecture for our generative networks from Jun-Yan Zhu et al. [��]
who have shown impressive results for style transfer, object trans�guration, season
transfer, photo generation from paintings and photo enhancement.

The generator network inputs di�erent size training images which are padded to ���⇥
���. This network contains three convolutions, six residual blocks [��], two fractionally-
strided convolutionswith stride 1

2 , and one convolution thatmaps features to grayscale.
Similar as Jun-Yan Zhu et al. [��], we use instance normalization [��]. Below, we follow
the naming convention used in the Johnson et al.’s Github repository.

Let c7s1� k denote a 7⇥ 7 Convolution-InstanceNorm-ReLU layer with k �lters and
stride �. dk denotes a 3⇥ 3 Convolution-InstanceNorm-ReLU layer with k �lters and
stride �. Re�ection padding was used to reduce artifacts. Rk denotes a residual block
that contains two 3 ⇥ 3 convolutional layers with the same number of �lters on both
layer. uk denotes a 3 ⇥ 3 fractional-strided-Convolution-InstanceNorm-ReLU layer
with k �lters and stride ��.

The network with � residual blocks consists of:

c7s1 � 64, d128, d256,R256,R256,R256,R256,R256,R256, u128, u64, c7s1 � 3

��

�. I�������������

The discriminator networks contains four convolutions, which aim to classify whether
the image is real or fake.

LetCk denote a 4⇥4 Convolution-InstanceNorm-LeakyReLU layer with k �lters and
stride �. After the last layer, we apply a convolution to produce a �-dimensional output.
We do not use InstanceNorm for the �rst C�� layer. We use leaky ReLUs with a slope
of �.�.

The discriminator architecture is:

C64 �C128 �C256 �C512

• Training details

We follow the same guidelines as Jun-Yan Zhu et al. [��]. We replace the negative
log likelihood objective by a least-squares loss [��] for LGAN Eq. (�.�). This loss have
shown being more stable during training and generates higher quality results. For all
the experiments, we set � = 10 in Equation �. We use the Adam solver [��] with a
batch size of �. All networks were trained from scratch with a learning rate of �.����.
We keep the same learning rate for the �rst ��� epochs and linearly decay the rate to
zero over the next ��� epochs.

Table �.�: Typical model structure of cycleWGAN-GP model.

Model Name cycleWGAN
Input Padded to ���x���
�GP ��.�
�cycle ��.�
�identi t y �.�
Batch Size �
Epochs ���
Loss Wasserstein
Optimizer Adam
Learning Rate �e-�
�1 �.�

��

Chapter �

Result

4.1 Live Fingerprint Synthesis
In this section, we are going to present all the results we obtained during training a variety
of deep generative models. Due to the privacy and IP issues, unfortunately, there will not be
any real �ngerprint images showing up from the private datasets collected by the company,
and most generated �ngerprint images will not appear in the thesis as well, which means
that inevitably we will have to present and discuss our results mostly in numerical tables and
�gures.

Table �.�: Evaluation of synthetic �ngerprint images generated by � di�erent models
trained on one large common dataset S�-Lwith around ��,��� images in total. (C): Us-
ing ConvNext Block instead of ResNetBlock. (A): Deploying data augmentation while
training. The up arrows indicate larger values are better, and vice versa. vDDPMmeans
vanilla DDPM. The DDPM-������ outperforms all the other models as it achieved the
best performance across all the metrics except the IS which may be of the least interest.

Model name IS" FID# KID# Precision" Recall" Density" Coverage"
WGAN-GP-������ �.�� ��.�� �.���� �.�� �.�� �.�� �.��
vDDPM-������ �.�� ��.�� �.���� �.�� �.�� �.�� �.��
DDPM-������ �.�� ��.�� �.���� �.�� �.�� �.�� �.��
DDPM-������ (C) �.�� ��.�� �.���� �.�� �.�� �.�� �.��
DDPM-������ (A) �.�� ��.�� �.���� �.�� �.�� �.�� �.��

As mentioned in the implementation, we experimented plenty of methods to achieve
live �ngerprint synthesis. As can be seen in Tab. (�.�), following the directions of the arrows,
we achieved satisfactory results by using WGAN-GP, and the best scores by using a model
called DDPM-������ which is a standard version of DDPM in combination with U-Net,
ResNet, attention architectures, etc. The highest Inception Score (IS) of �.�� was obtained
by WGAN-GP-������, whereas the lowest FID of ��.�� and KID of �.���� plus the highest

��

�. R�����

Precison, Recall, Density and Coverage (�.��, �.��, �.�� and �.�� respectively) were provided
by DDPM-�������. Interestingly, either utilizing the ConvNext Block or the data augmen-
tation would eventually deteriorate the results. Given all these scores we have achieved so
far, it has become signi�cantly di�cult for human beings to di�erentiate the authenticity of
the synthetic �ngerprint images generated by either WGAN-GP or DDPM.

Table �.�: Overview of the Inception Score (IS). Left: IS of the real �ngerprint datasets.
Right: IS of the synthetic �ngerprint datasets denoted by model names. A higher IS
indicates the�ngerprints aremore diverse, while it might also indicate there exist more
�ngerprint images in low quality.

Dataset IS"
S�-L �.��
S�-L �.��
S�-L �.��
S�-L �.��
S�-L �.��

Model Name IS"
WGAN-GP-������ �.��
vDDPM-������ �.��
DDPM-������ �.��
DDPM-������ (C) �.��
DDPM-������ (A) �.��

As shown in the Tab. (�.�), the highest IS for real �ngerprint datasets and generative
models are obtained by S�-L and vDDPM-������ respectively. We collected all the IS in an
isolated table. The reason is that IS does not require the knowledge of the real �ngerprint
datasets. In other words, the IS only evaluates how many di�erent classes the synthetic �n-
gerprints can be classi�ed into. This may sound a bit absurd as �ngerprint denotes only
one-class dataset, while we manage to make use of all the existing evaluation methods and
IS has been quite signi�cant for many other tasks in image generation. In fact, IS plays the
least important role in our evaluation, whereas wemay still be bene�cial from it if a synthetic
�ngerprint dataset obtains a IS of �.� for example.

Table �.�: Evaluation of the baseline of all the metrics by hypothesizing one of the real
datasets is synthetic. S�-L-� and S�-L-� are two real datasets used for the same sensor
(indicating the same image con�gurations but di�erent local details). S�-L-�-� and
S�-L-�-� contain ��,��� di�erent �ngerprint images separately, both collected from
S�-L-�. As these metrics are neither built for �ngerprints nor perfect for evaluating
synthetic data, these results obtained by only real �ngerprint datasets formulate the
baseline for the evaluation of synthetic �ngerprints.

Real-A Real-B FID# KID# Precision" Recall" Density" Coverage"
S�-L-� S�-L-� �.�� �.���� �.�� �.�� �.�� �.��
S�-L-�-� S�-L-�-� �.�� �.�� �.�� �.�� �.�� �.��
S�-L S�-L ��.�� �.���� �.�� �.�� �.�� �.��
S�-L S�-L ���.�� �.���� �.�� �.�� �.�� �.��
S�-L S�-L ��.�� �.���� �.�� �.�� �.�� �.��
S�-L S�-L ��.�� �.���� �.�� �.�� �.�� �.��

In order to have a better insight of the metrics, when interpreting the evaluation of the
generated images, we recommend to refer the baseline of the metrics in Tab. (�.�) calculated
by replacing the synthetic �ngerprint images with the real ones. For example, through this
experiment, we have the knowledge of what IS the real dataset can obtain, and also the FID
between two real datasets. The Inception Score ranging from �.�� to �.��, the FID ranging

��

�.� L��� F���������� S��������

from �.�� to ���.�� and the rest scores obtained by real datasets deliver us a message about
what our expectations should be in terms of reaching di�erent levels of live �ngerprint syn-
thesis. It is worth noting that for the remaining four metrics: Precision, Recall, Density, and
Coverage (PRDC), they all range from � to �, except for density, which ranges from � to
in�nity.

As we always emphasize, we are not only assess the quality of the synthetic �ngerprint
images, but also assess in which ways we should make use of them.

(a) (b)

(c) (d)

Figure �.�: Evaluation of the synthetic �ngerprints generated by WGAN-GP-������
using the �ngerprint matching algorithm provided by Precise Biometrics. (a) presents
the histogram of thematching scores for both real and generated �ngerprints. A higher
score indicates the two �ngerprints contain more structures overlapped or connected.
(b) presents the cumulative distribution of the matching scores. (c) and (d) depict a
picture where the FAR of the generated ones beat the FAR of the real ones.

Apart from using all those metrics created for evaluating the quality of synthetic data,
we also want to explore some methods speci�c for evaluating �ngerprints. In the �eld of
�ngerprint recognition, False Acceptance Rate (FAR) and False Rejection Rate (FRR) seem
to be very suitable for testing the performance of �ngerprint authentication. Likewise, in
order to �nd out whether these generated �ngerprints are unique or not, we employed the
�ngerprint matching algorithm from the company. As shown in Fig. (�.�) and (�.�), the
histograms of (a) and (b) clearly depict the strong consistency between real and generated
�ngerprints in terms of the score distributions. The charts (c) and (d) show the comparison
of FARs between real and generated ones. The table of FARs is given in Tab. (�.�).

��

�. R�����

(a) (b)

(c) (d)

Figure �.�: Evaluation of the synthetic �ngerprints generated by vDDPM-������ using
the �ngerprint matching algorithm provided by Precise Biometrics. (a) presents the
histogram of the matching scores for both real and generated �ngerprints. A higher
score indicates the two �ngerprints contain more structures overlapped or connected.
(b) presents the cumulative distribution of the matching scores. (c) and (d) depict a
picture where the FAR of the generated ones beat the FAR of the real ones.

Figure �.�: A zoom-in graph of histograms obtained by vDDPM-������. This is a
zoom-in version of the sub-�gure (a) above. The "Between" histogram is calculated
by matching one �ngerprint from the real dataset and the other �ngerprint from the
generated dataset.

��

�.� L��� F���������� S��������

Table �.�: Overview of FARs. The FAR of real is �rst calculated by setting the thresh-
old of X. The matching scores equal or larger than X would be considered as accepted.
If multiple samples share the same value of X, the FAR of real would be slightly larger
than the FAR, otherwise they would be identical. Once all the thresholds of X are
found, they will be used for calculating the FAR of generated ones.

FAR X FAR - Real FAR - WGAN-GP-������ FAR - vDDPM-������
�e-� ����� �e-� � �
�e-� ����� �e-� �e-� �.�e-�
�e-� ����� �e-� �.��e-� �.��e-�
�e-� ����� �.���e-� �.���e-� �.���e-�
�e-� ���� �.����e-� �.����e-� �.����e-�

Notably, all the FARs were calculated between impostors, which means none of these
pairs are supposed to be matched. By taking the FAR of real as standards so as to choose
suitable thresholds X for each FAR level, we were able to compute the FAR of generated
samples.

Figure �.�: Generated live �ngerprints at the best epoch from DDPM-������ trained
on S�-L

Fig. (�.�) presents some examples of synthetic live �ngerprint images at the best epoch
from DDPM-������, and Fig. (�.�) visualizes the change of synthetic live �ngerprint images
during training.

��

�. R�����

Figure �.�: Generated live �ngerprints at di�erent epochs fromDDPM-������ trained
on S�-L

��

�.� F��������������F���������� T�������������

4.2 Fingerprint-to-Fingerprint Transformation
In this section, we are going to present all the results we obtained during training a variety
of deep generative models. As mentioned in the section above, unfortunately, there will
not be any real �ngerprint images showing up from the private datasets collected by the
company, and most generated, spoof and live, �ngerprint images will not appear in the thesis
as well, which means that inevitably we will have to present and discuss our results mostly in
numerical terms.

4.2.1 Model results with Spoof Material 1
For the�rst experiment, we use the cycleGANarchitecturewith the S�-L and S�-SM� datasets.
Themodel consist of two cycles: Live-Spoof-Live (LSL) and Spoof-Live-Spoof (SLS). Each cy-
cle makes two transformations, resulting in two generated datasets respectably. In the LSL
cycle, we get the Generated spoof (GS) and Cycle live (CL) �ngerprints. The GS is the re-
sult of transforming the S�-L �ngerprints to the S�-SM� domain, and the CL is the result of
transforming the GS �ngerprints to the S�-L domain. This completes the LSL cycle. In the
SLS cycle, we get the Generated live (GL) and Cycle spoof (CS) �ngerprints. The GL is the
result of transforming the S�-SM� �ngerprints to the S�-L domain, and the CS is the result
of transforming the GL �ngerprints to the S�-SM� domain. This completes the SLS cycle.

The calculated metrics between the real live dataset (S�-L), and the four generated �n-
gerprints datasets and the real spoof dataset (S�-SM�) are recorded in Tab. (�.�).

Table �.�: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real live (RL) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real live (RL) ����� Real spoof (RS) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen spoof (GS) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen live (GL) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle live (CL) ����� �.�� ���.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle spoof (CS) ���� �.�� ���.�� �.�� �.�� �.�� �.��

The calculated metrics between the real spoof dataset (S�-SM�), and the four generated
�ngerprints datasets and the real live dataset (S�-L) are recorded in Tab. (�.�). As in the
previous subsection, it is very unfortunate that the resulting images can not be shown over
here, we however believe that is very interesting to see how the metrics give us a glimpse in
how consistent is the transformation between the two cycle networks.

Apart from using all those metrics created for evaluating the quality of synthetic data, we
also want to explore some methods speci�c for evaluating �ngerprints. In order to �nd out
whether the generated �ngerprints are similar to the domain target, we employed the �n-
gerprint matching algorithm from the company. As shown in Fig. (�.�), (�.�) and (�.�), the
histograms clearly depict the density distribution between real, generated and cycle �nger-

��

�. R�����

Table �.�: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real spoof (RS) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real spoof (RS) ���� Real live (RL) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen live (GL) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen spoof (GS) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle spoof (CS) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle live (CL) ����� �.�� ���.�� �.�� �.�� �.�� �.��

prints in terms of the matching score. The goal of the model is to have the shape distributions
of live vs live and spoof vs spoof similar to each other.

(a) (b)

Figure �.�: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the real, generated and cycle �ngerprint images. As the size of the datasets vary by a
large margin, we choose to use the histogram density distribution for a better analysis.
(a) Histogram density distribution of the Live-Spoof-Live cycle. (b) Histogram density
distribution of the Spoof-Live-Spoof cycle.

��

�.� F��������������F���������� T�������������

(a) (b)

Figure �.�: Evaluation result with one of Precise Biometrics’ spoof scoring functions on
the Live-Spoof-Live cycle for the real live (S�-L) and spoof (S�-SM�) �ngerprint im-
ages. As the size of the datasets vary by a large margin, we choose to use the histogram
density distribution for a better analysis. (a) Comparison of the histogram density dis-
tribution between Real live (RL) and Cycle live (CL) �ngerprints. (b) Comparison of
the histogram density distribution between Real live (RL) and Gen Spoof (GS) �nger-
prints.

(a) (b)

Figure �.�: Evaluation result with one of Precise Biometrics’ spoof scoring functions on
the Spoof-Live-Spoof cycle for the real live (S�-L) and spoof (S�-SM�) �ngerprint im-
ages. As the size of the datasets vary by a large margin, we choose to use the histogram
density distribution for a better analysis. (a) Comparison of the histogram density dis-
tribution between Real live (RL) and Gen live (GL) �ngerprints. (b) Comparison of
the histogram density distribution between Real live (RL) and Cycle spoof (CS) �n-
gerprints.

4.2.2 Model results with Spoof Material 2
For the second experiment, we use the cycleWGAN-GP architecture with the live (S�-L)
and Spoof material � (S�-SM�) datasets. The model consist of two cycles: Live-Spoof-Live
(LSL) and Spoof-Live-Spoof (SLS). Each cycle makes two transformations, resulting in two
generated datasets respectably. In the LSL cycle, we get the Generated spoof (GS) and Cycle
live (CL) �ngerprints. The GS is the result of transforming the S�-L �ngerprints to the S�-
SM� domain, and theCL is the result of transforming theGS�ngerprints to the S�-L domain.

��

�. R�����

This completes the LSL cycle. In the SLS cycle, we get the Generated live (GL) and Cycle
spoof (CS) �ngerprints. The GL is the result of transforming the S�-SM� �ngerprints to the
S�-L domain, and the CS is the result of transforming the GL �ngerprints to the S�-SM�
domain. This completes the SLS cycle.

The calculated metrics between the real live dataset (S�-L), and the four generated �n-
gerprints datasets and the real spoof dataset (S�-SM�) are recorded in Tab. (�.�).

Table �.�: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real live (RL) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real live (RL) ����� Real spoof (RS) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen spoof (GS) ����� �.�� ���.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen live (GL) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle live (CL) ����� �.�� �.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle spoof (CS) ���� �.�� ��.�� �.�� �.�� �.�� �.��

The calculated metrics between the real spoof dataset (S�-SM�), and the four generated
�ngerprints datasets and the real live dataset (S�-L) are recorded in Tab. (�.�).

Table �.�: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real spoof (RS) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real spoof (RS) ���� Real live (RL) ����� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen live (GL) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen spoof (GS) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle spoof (CS) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle live (CL) ����� �.�� ���.�� �.�� �.�� �.�� �.��

As in the subsection �.�.�, in order to�nd outwhether the generated�ngerprints are simi-
lar to the domain target, we employed the �ngerprint matching algorithm from the company.
As shown in Fig. (�.�), (�.��) and (�.��), the histograms clearly depict the density distribution
between real, generated and cycle �ngerprints in terms of the matching score. The goal of
the model is to have the shape distributions of live vs live and spoof vs spoof similar to each
other.

��

�.� F��������������F���������� T�������������

(a) (b)

Figure �.�: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the real, generated and cycle �ngerprint images. As the size of the datasets vary by a
large margin, we choose to use the histogram density distribution for a better analysis.
(a) Histogram density distribution of the Live-Spoof-Live cycle. (b) Histogram density
distribution of the Spoof-Live-Spoof cycle.

(a) (b)

Figure �.��: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the Live-Spoof-Live cycle for the real live (S�-L) and spoof (S�-SM�) �ngerprint im-
ages. As the size of the datasets vary by a large margin, we choose to use the histogram
density distribution for a better analysis. (a) Comparison of the histogram density dis-
tribution between Real live (RL) and Cycle live (CL) �ngerprints. (b) Comparison of
the histogram density distribution between Real live (RL) and Gen Spoof (GS) �nger-
prints.

4.2.3 Model results with Spoof Material 3
For the third experiment, we use the cycleWGAN-GP architecture with the live (S�-L) and
Spoof material � (S�-SM�) datasets. The model consist of two cycles: Live-Spoof-Live (LSL)
and Spoof-Live-Spoof (SLS). Each cycle makes two transformations, resulting in two gener-
ated datasets respectably. In the LSL cycle, we get the Generated spoof (GS) and Cycle live
(CL) �ngerprints. The GS is the result of transforming the S�-L �ngerprints to the S�-SM�
domain, and the CL is the result of transforming the GS �ngerprints to the S�-L domain.
This completes the LSL cycle. In the SLS cycle, we get the Generated live (GL) and Cycle
spoof (CS) �ngerprints. The GL is the result of transforming the S�-SM� �ngerprints to the

��

�. R�����

(a) (b)

Figure �.��: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the Spoof-Live-Spoof cycle for the real live (S�-L) and spoof (S�-SM�) �ngerprint
images. As the size of the datasets vary by a large margin, we choose to use the his-
togram density distribution for a better analysis. (a) Comparison of the histogram
density distribution between Real live (RL) and Gen live (GL) �ngerprints. (b) Com-
parison of the histogram density distribution between Real live (RL) and Cycle spoof
(CS) �ngerprints.

S�-L domain, and the CS is the result of transforming the GL �ngerprints to the S�-SM�
domain. This completes the SLS cycle.

The calculated metrics between the real live dataset (S�-L), and the four generated �n-
gerprints datasets and the real spoof dataset (S�-SM�) are recorded in Tab. (�.�).

Table �.�: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real live (RL) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real live (RL) ����� Real spoof (RS) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen spoof (GS) ����� �.�� ���.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen live (GL) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle live (CL) ����� �.�� �.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle spoof (CS) ���� �.�� ���.�� �.�� �.�� �.�� �.��

The calculated metrics between the real spoof dataset (S�-SM�), and the four generated
�ngerprints datasets and the real live dataset (S�-L) are recorded in Tab. (�.��).

As in the subsection �.�.�, in order to�nd outwhether the generated�ngerprints are simi-
lar to the domain target, we employed the �ngerprint matching algorithm from the company.
As shown in Fig. (�.��), (�.��) and (�.��), the histograms clearly depict the density distribu-
tion between real, generated and cycle �ngerprints in terms of the matching score. The goal
of the model is to have the shape distributions of live vs live and spoof vs spoof similar to
each other.

��

�.� F��������������F���������� T�������������

Table �.��: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real spoof (RS) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real spoof (RS) ���� Real live (RL) ����� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen live (GL) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen spoof (GS) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle spoof (CS) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle live (CL) ����� �.�� ���.�� �.�� �.�� �.�� �.��

(a) (b)

Figure �.��: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the real, generated and cycle �ngerprint images. As the size of the datasets vary by a
large margin, we choose to use the histogram density distribution for a better analysis.
(a) Histogram density distribution of the Live-Spoof-Live cycle. (b) Histogram density
distribution of the Spoof-Live-Spoof cycle.

��

�. R�����

(a) (b)

Figure �.��: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the Live-Spoof-Live cycle for the real live (S�-L) and spoof (S�-SM�) �ngerprint im-
ages. As the size of the datasets vary by a large margin, we choose to use the histogram
density distribution for a better analysis. (a) Comparison of the histogram density dis-
tribution between Real live (RL) and Cycle live (CL) �ngerprints. (b) Comparison of
the histogram density distribution between Real live (RL) and Gen Spoof (GS) �nger-
prints.

(a) (b)

Figure �.��: Evaluation result with one of Precise Biometrics’ spoof scoring functions
on the Spoof-Live-Spoof cycle for the real live (S�-L) and spoof (S�-SM�) �ngerprint
images. As the size of the datasets vary by a large margin, we choose to use the his-
togram density distribution for a better analysis. (a) Comparison of the histogram
density distribution between Real live (RL) and Gen live (GL) �ngerprints. (b) Com-
parison of the histogram density distribution between Real live (RL) and Cycle spoof
(CS) �ngerprints.

��

�.� F��������������F���������� T�������������

4.2.4 Model results with Spoof Material 4
For the last experiment, we use the cycleWGAN-GP architecture with the live (S�-L) and
Spoof Material � (S�-SM�) datasets. The model consist of two cycles: Live-Spoof-Live (LSL)
and Spoof-Live-Spoof (SLS). Each cycle makes two transformations, resulting in two gener-
ated datasets respectably. In the LSL cycle, we get the Generated spoof (GS) and Cycle live
(CL) �ngerprints. The GS is the result of transforming the S�-L �ngerprints to the S�-SM�
domain, and the CL is the result of transforming the GS �ngerprints to the S�-L domain.
This completes the LSL cycle. In the SLS cycle, we get the Generated live (GL) and Cycle
spoof (CS) �ngerprints. The GL is the result of transforming the S�-SM� �ngerprints to the
S�-L domain, and the CS is the result of transforming the GL �ngerprints to the S�-SM�
domain. This completes the SLS cycle.

The calculated metrics between the real live dataset (S�-L), and the four generated �n-
gerprints datasets and the real spoof dataset (S�-SM�) are recorded in Tab. (�.��).

Table �.��: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real live (RL) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real live (RL) ����� Real spoof (RS) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen spoof (GS) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Gen live (GL) ���� �.�� ��.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle live (CL) ����� �.�� �.�� �.�� �.�� �.�� �.��
Real live (RL) ����� Cycle spoof (CS) ���� �.�� ���.�� �.�� �.�� �.�� �.��

The calculated metrics between the real spoof dataset (S�-SM�), and the four generated
�ngerprints datasets and the real live dataset (S�-L) are recorded in Tab. (�.��).

Table �.��: Evaluation on �ngerprint-to-�ngerprint transformation between real, gen-
erated and cycle �ngerprint images with main focus in the Real spoof (RS) dataset. The
original datasets are Real live (RL) and Real spoof (RS). The generated datasets are Gen
spoof (GS), Gen live (GL), Cycle spoof (CS) and Cycle live (CL). The up arrows indicate
larger values are better, and vice versa. The model was trained with a sample size of
���� live and spoof images of the dataset S�-L and S�-SM�, respectively.

Dataset-A Amount Dataset-B Amount IS (of B)" FID# Pre." Rec." Den." Cov."
Real spoof (RS) ���� Real live (RL) ����� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen live (GL) ���� �.�� ���.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Gen spoof (GS) ����� �.�� ��.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle spoof (CS) ���� �.�� �.�� �.�� �.�� �.�� �.��
Real spoof (RS) ���� Cycle live (CL) ����� �.�� ���.�� �.�� �.�� �.�� �.��

��

�. R�����

��

Chapter �

Discussion

5.1 Metrics
To begin with the discussion of the results here, we would like to �rst elaborate our opinions
of the evaluation metrics. Starting from the Inception Score (IS), we prefer to interpret
it as a metric to evaluate the diversity of the synthetic �ngerprint images. This metric was
originally invented by using a large image classi�er that was trained on a huge database called
ImageNet, in which there were up to ���� classes of images. Typically, the range of IS is from
� to ����, which is determined by the number of classes in the dataset. Considering this
feature, Inception Score may not be the best metric here to assess the quality of synthetic
�ngerprints, as we only have, in this case, one class in the dataset which is the �ngerprint.
As we have also done some experiments of evaluating the IS of the real �ngerprint datasets
(See in Tab. (�.�)), most of which obtain a score of around �, which we believe helps to
restrict the range of IS from � to �. The IS seems to be more interesting for the task of live
�ngerprint synthesis rather than �ngerprint-to-�ngerprint transformation as the goals of
them are di�erent.

The FID and KID are both de�ned in a similar way to calculate the dissimilarity between
two datasets. In our case, the FID score is considered as a very meaningful and the most
important metric to evaluate the similarity between two distributions, since one of the pri-
oritized features of synthetic �ngerprints is similarity. The lower FID and KID interpret the
more similar patterns between real ones and generated ones.

On top of that, the Precision, Recall, Density and Coverage (PRDC) are deemed to be
important metrics to further elaborate the relationships between two distributions. As writ-
ten in the chapter of methodology, by creating the manifolds of the two distributions, one
is able to calculate the precision and recall to explain how much real samples are covered by
the distribution of generated samples, and how much generated samples are covered by the
distribution of real samples respectively. The density and coverage are deemed to be more
robust and accurate than the precision and recall in terms of identifying the information of

��

�. D���������

the two distributions.
Another core feature of synthetic �ngerprints is the uniqueness. In order to assess the

uniqueness of synthetic �ngerprints, we intended to use the company’s �ngerprint matching
algorithm which would calculate the matching score of a pair of �ngerprint images from the
dataset, and then a False Acceptance Rate (FAR) would be reported for each dataset. By
comparing the FAR of real and generated �ngerprint datasets while taking the matching
scores of "Between" distribution (See Fig. (�.�)) into account, we are able to evaluate the
uniqueness of the synthetic �ngerprints.

5.2 Live Fingerprint Synthesis
We have seen in previous chapters the worthy performance and potential of deep generative
models in the topic of live �ngerprint synthesis. However, some details involved in the train-
ing as well as image generation process have not been discussed and explained in a targeted
manner. Therefore, we will make a comprehensive discussion of all the experiments we have
done in the next step.

We initially chose to use the basic DCGANmainly because previous studies had demon-
strated its e�ectiveness. However, due to the relatively naive model con�guration of DC-
GAN, it did not perform well on our dataset without much tuning. Also, part of the reason
may be that we did not explore the depth of the network extensively. Although it is possible
to achieve some degree of �ngerprint synthesis using DCGAN, as we have been seeking more
innovative and diverse generative models, based on our �ndings withWGAN-GP, we believe
that the robustness and �tting ability ofWGAN-GP will exceed that of traditional DCGAN.
We therefore pivoted our focus toward WGAN-GP.

The truth is, WGAN-GP demonstrated astonishing learning capabilities from the very
beginning, with the quality of its generated images being quite di�cult to distinguish from
real ones compared to DCGAN. We made numerous con�gurations about its model archi-
tecture and parameters afterward, hoping to obtain even higher-quality synthetic images.
However, after conducting a multitude of experiments, we found that the training process
of WGAN-GP usually converges within the �rst �� epochs, i.e., the loss remains stable after
�� epochs, but it is capable of generating �ngerprints in good quality around ��� to ���
epochs. This could be a good thing that the gradient optimization of its loss function is
highly e�cient, but it also presents a potential issue, namely that it might be di�cult to
further optimize WGAN-GP by exploring its model depth and structure.

Later on, we became more interested in trying the state-of-the-art deep generative mod-
els, the di�usion models. We implemented a few types of di�usion models which share very
similar structure and con�guration to each other. The �rst issue we found out about di�u-
sion models was its excessive training time. We implemented both WGAN-GP and DDPMs
with similar complexity, and the latter took much longer time (approximately � to � times)
to train. In addition to that, DDPMs require a sampling process in ���� steps to generate im-
ages, which again increases the time and computational cost of image generation. Neverthe-
less, along with the cost, it is worth noting that DDPMs achieve better results of �ngerprint
synthesis in almost all aspects, and it also avoids the problem of model collapse occurring in
WGAN-GP.

As shown in the Tab. (�.�), the best IS of �.��was obtained by vDDPM-������. Although

��

�.� F��������������F���������� T�������������

vDDPM-������ achieves higher IS thanWGAN-GP-������ across all themetrics, it is beaten
by DDPM-������ again except for the IS which is considered to be of least interest. In the
Tab. (�.�), the best results we achieved using WGAN-GP has a rather low FID value of ��.��.
At the same time, DDPM-������ has the lowest FID score of ��.��, which means that it
has the highest similarity to the real �ngerprint dataset among all other generative models.
Interestingly, the FID score calculated between two real datasets used for the same sensor
is �.�� according to the table, which sort of inspires us about the minimum FID score we
can get. As proposed in the previous paper [��], the state-of-the-art model, at that moment,
generating ���x��� �ngerprint images from the public datasets achieved a relatively low
FID score of ��.�. Similarly, the smallest KID score is again obtained by DDPM-������ as
well. Speaking of the rest four metrics PRDC, WGAN-GP-������ still have the potential
to improved compared to the baseline of PRDC shown in Tab. (�.�), while DDPM-������
amazingly outperforms even the real �ngerprint datasets in terms of PRDC. Moreover, if
we take a closer look at the Fig. (�.�), in sub-�gure (a) the histogram of the generated one
is located slightly on the right side of the histogram of the real one, which proves that the
synthetic �ngerprints generated by WGAN-GP-������ match each other more easily than
the real �ngerprints in the real dataset. On the contrary, if we look at the sub-�gure (a) in
Fig. (�.�), a reverse situation happens to vDDPM-������, which means based on the identical
histogram of the real dataset, the synthetic �ngerprints generated by vDDPM-������ are
clearly better than the real �ngerprints, and much better than the synthetic �ngerprints
generated by WGAN-GP-������. This �nding is also demonstrated in sub-�gure (c) of both
�gures where the FAR - generated of vDDPM-������ is much better than the others.

In addition to calculating the FAR within each dataset, it is also crucial to verify if the
�ngerprint generators are doing copy work. As shown in Fig. (�.�), on top of the real and
generated histograms, the added histogram of "Between" depicts a relatively similar distri-
bution that has a high peak at the score of �, and is highly overlapped with the other two
distributions. Given the results obtained from these evaluations, these synthetic �ngerprint
data has proven its high quality and uniqueness.

5.3 Fingerprint-to-Fingerprint Transformation
We have seen in section �.�, the performance of the cycleGAN and cycleWGAN-GP models.

In subsection �.�.�, we focus mainly on the LSL cycle evaluation for RL-RS vs RL-GS in
Tab. �.�. These two comparisons should give us close IS and FID scores to consider GL a
successful transformation. In this case, we obtain an IS of �.�� and FID of ��.�� for RS-RL,
and an IS of �.�� and a FID of ��.�� for RL-GS. This appears to be a good range of similarity
between them. This seems surprising as in Fig. �.�a, the histogram distribution shows that
the GS �ngerprints are just in the middle of the distributions of RL and RS.

In Fig. �.�, the distribution of the real and cycle live �ngerprints are well aligned to each
other. Nevertheless, from the metric evaluation in Tab. �.� we got a FID of ���.�� which
means the features of the two datasets are di�erent to each other. This also explains the
shape di�erence between the distributions. This can also be corroborated in the SLS cycle
in Tab. �.� and Fig. �.� where we get a FID score of ���.�� and mismatched distributions for
the real and cycle spoof �ngerprints.

In order to improve these scores, we implemented the Wasserstein loss with gradient

��

�. D���������

penalty to the cycleGANmodel, called cycleWGAN-GP. In subsection �.�.� and �.�.�, we get
the results by running the model with the S�-L, S�-SM� and S�-SM� datasets. The RL-RS
vs RL-GS metric comparison for the LSL cycle is shown in Tab. �.� for the S�-SM� spoof
dataset. We get satisfactory results with an IS of �.�� and FID of ���.�� for RS-RL, and an IS
of �.�� and a FID of ���.�� for RL-GS. Not only that, in Fig. �.�a, we can see how perfectly
aligned in shape and mean are the RS and GS distributions. In a similar way, the RL-RS
vs RL-GS metric comparison for the LSL cycle is shown in Tab. �.� for the S�-SM� spoof
dataset. We get again astonishing results with an IS of �.�� and FID of ���.�� for RS-RL, and
an IS of �.�� and a FID of ���.�� for RL-GS. In Fig. �.��a, we can see how perfectly aligned in
shape and mean are the RS and GS distributions. We can agree that this model has achieved
a successful transformation for these datasets.

As to further test the capabilities of the cycleWGAN-GP model, we used a more chal-
lenging spoof dataset (S�-SM�). As expected, the model struggled to make a clear distinction
between the live and spoof domains as shown in Tab. �.��. We get quite di�erent results from
the previous discussed datasets. The RS-RL have an IS of �.�� and a FID of ���.�� and the
RL-GS have an IS of �.�� and a FID of ��.��, far worse results than with cycleGAN. We can
agree that there is still work to be done for this type of spoof �ngerprints.

An unexpected �nding in the cycleWGAN-GPmodels was the behavior of the cycle gen-
erated �ngerprints. As shown in Fig. �.��, �.��, �.�� and �.��, the cycle images have the
characteristic of being less spoof than their real counterparts. Further evaluation is needed
to �nd the changes the model made in the �ngerprints to get these results.

In general, we can agree that the cycleWGAN-GP outperforms the cycleGAN model in
generation quality and training capabilities. We need to take in account how spoofy the spoof
�ngerprints are, as there is a direct correlation between the spoo�ness and the transformation
quality. The higher the spoo�ness in the �ngerprint is, the better the transformation for the
model becomes.

��

Chapter �

Conclusion

Wehave now achieved satisfactory results in the task of live�ngerprint synthesis and�ngerprint-
to-�ngerprint transformation, and we have used a variety of evaluation metrics, i.e., Incep-
tion Score (IS), Fréchet Inception Distance (FID), Kernel Inception Distance (KID), Preci-
sion, Recall, Density and Coverage (PRDC), to assess the quality of the synthetic �ngerprint
images.

It is natural to suspect the e�ectiveness of all the metrics used since there does not ex-
ist a criterion that can perfectly evaluate the quality of synthetic images in all aspects, let
alone �ngerprints. When we were utilizing these methods to evaluate the �ngerprints, these
methods were also evaluated by us simultaneously. We hope that these metrics in some sense
validate the quality of the synthetic �ngerprints.

In the task of live �ngerprint synthesis, both Generative Adversarial Networks (GANs)
and di�usion models (e.g., DDPMs) showcase their incredible learning abilities. At the cost
of computational power and time, DDPMs achieve the best performance by generating more
unique, similar and random �ngerprints.

In the task of �ngerprint-to-�ngerprint transformation, both Cycle Consistent Adver-
sarial Network (cycleGAN) and Cycle Consistent Wasserstein Adversarial Network with
Gradient Penalty (cycleWGAN-GP) showcase an incredible performance and creativitywhile
maintaining a reasonable computational cost and training time.

The models have shown us the potential of generating paired images with high quality
and �delity while training with unpaired data.

Now if we look back to the goals we proposed in the beginning, here is the answers to
them:

• Which deep generative models perform best in live �ngerprints synthesis?

WGAN-GP has shown its competence in terms of generating very similar synthetic
�ngerprint images that can hardly be distinguished by humans, while synthetic �nger-
prints with the best uniqueness, similarity and �delity are generated by the state-of-
the-art DDPMs.

��

�. C���������

• Which deep generative models can achieve �ngerprint-to-�ngerprint transformation
in su�cient quality?

CycleWGAN-GP have shownmore stable and better results than cycleGAN. The cycle
images generated by the former are as similar as possible to the real ones, while the
latter removed the noisiness in the �ngerprints resulting in untrainable images for the
company. Another advantage is the robustness of the cycleWGAN-GP while training
with uneven ratio of live and spoof �ngerprints. In which case, the cycleGAN mode
collapse during training.

One main comment would be that the e�ectiveness of the transformation was highly
correlatedwith how spoofywas the�ngerprint. As higher spoo�ness in the�ngerprint,
meant a better transformation for either model.

• How to measure the quality of generated �ngerprints in practice and in statistics?

The �rst step is to visually check the similarity between synthetic �ngerprint images
and real �ngerprint images. Then we recommend to mainly calculate FID to evaluate
the similarity, and FAR to evaluate the uniqueness. Overall, IS is not recommended,
but PRDC can be considered as extra metrics to comprehend the results from wider
perspectives.

We have proven the feasibility of generating synthetic �ngerprints in high �delity by
using deep generative models. We believe there is still a great deal of further work that can
be done in the future, for instance

• Extend the research of live �ngerprint synthesis by applying the existing deep genera-
tive models to a wide range of live �ngerprint datasets

• Extend the research of �ngerprint synthesis by constructing deep generative models to
generate �ngerprint in more di�cult capture conditions (such as cold or dry �ngers)
and a wider range of spoof materials.

• Implementation of a �ngerprint database pipeline which will generate random unique
�ngerprints and their corresponding spoof variations for creating a complete database
not controlled by GDPR policies.

��

References

[�] Roberto Cipolla et al. Studies in Computational Intelligence: ���. Springer Berlin Hei-
delberg, ����. ����: �������������.

[�] Chunfeng Lian et al. Machine Learning in Medical Imaging. ��th International Workshop,
MLMI ����, Held in Conjunction with MICCAI ����, Strasbourg, France, September ��, ����,
Proceedings. Image Processing, Computer Vision, Pattern Recognition, and Graphics:
�����. Springer International Publishing, ����. ����: �������������.

[�] M. W. Mak and Jen-Tzung Chien. Machine learning for speaker recognition. Cambridge
University Press, ����. ����: �������������.

[�] Nikolaos-Ioannis Galanis et al.Machine Learning Meets Natural Language Processing - The
Story so Far. Vol. ���. IFIP Advances in Information and Communication Technology.
���. Springer International Publishing, ����. ����: ���-�-���-�����-�.

[�] Dor Bank, NoamKoenigstein, andRaja Giryes.Autoencoders. ����. arXiv: 2003.05991
[cs.LG].

[�] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. ����. arXiv:
1312.6114 [stat.ML].

[�] Ian J. Goodfellow et al.Generative Adversarial Networks. ����. arXiv: 1406.2661 [stat.ML].
[�] JonathanHo, Ajay Jain, and Pieter Abbeel.Denoising Di�usion Probabilistic Models. ����.

arXiv: 2006.11239 [cs.LG].
[�] R. Cappelli et al. “Synthetic �ngerprint-image generation”. In: Proceedings ��th Inter-

national Conference on Pattern Recognition. ICPR-����. Vol. �. ����, ���–��� vol.�. ���:
10.1109/ICPR.2000.903586.

[��] R. Cappelli, D. Maio, and D. Maltoni. “Synthetic �ngerprint-database generation”. In:
���� International Conference on Pattern Recognition. Vol. �. ����, ���–��� vol.�. ���:
10.1109/ICPR.2002.1048096.

[��] Jin Hu et al. “A synthetic �ngerprint generation method and its implementation.” In:
Journal of Software ��.� (����), pp. ���–���.

��

https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2006.11239
https://doi.org/10.1109/ICPR.2000.903586
https://doi.org/10.1109/ICPR.2002.1048096

REFERENCES

[��] Jiali Cui et al. “An iris image synthesis method based on PCA and super-resolution”.
In: Proceedings of the ��th International Conference on Pattern Recognition, ����. ICPR ����.
Vol. �. ����, ���–��� Vol.�. ���: 10.1109/ICPR.2004.1333804.

[��] SarveshMakthal andArunRoss. “Synthesis of iris images usingMarkovRandomFields”.
In: ���� ��th European Signal Processing Conference. ����, pp. �–�.

[��] R. Cappelli et al. “Fingerprint Image Reconstruction from Standard Templates”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence ��.� (����), pp. ����–����.
���: 10.1109/TPAMI.2007.1087.

[��] Mark Rahmes et al. “Fingerprint Reconstruction Method Using Partial Di�erential
Equation and Exemplar-Based Inpainting Methods”. In: ���� Biometrics Symposium.
����, pp. �–�. ���: 10.1109/BCC.2007.4430539.

[��] Arun Ross, Jidnya Shah, and Anil K. Jain. “From Template to Image: Reconstructing
Fingerprints from Minutiae Points”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence ��.� (����), pp. ���–���. ���: 10.1109/TPAMI.2007.1018.

[��] Jianjiang Feng and Anil K Jain. “FM model based �ngerprint reconstruction from
minutiae template”. In: Advances in Biometrics: Third International Conference, ICB ����,
Alghero, Italy, June �-�, ����. Proceedings �. Springer. ����, pp. ���–���. ����: ���-�-���-
�����-�.

[��] Jianjiang Feng andAnil K. Jain. “FingerprintReconstruction: FromMinutiae to Phase”.
In: IEEE Transactions on Pattern Analysis andMachine Intelligence ��.� (����), pp. ���–���.
���: 10.1109/TPAMI.2010.77.

[��] Kai Cao and Anil K. Jain. “Learning Fingerprint Reconstruction: From Minutiae to
Image”. In: IEEE Transactions on Information Forensics and Security ��.� (����), pp. ���–
���. ���: 10.1109/TIFS.2014.2363951.

[��] Peter Johnson, Fang Hua, and Stephanie Schuckers. “Texture Modeling for Synthetic
Fingerprint Generation”. In: ���� IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops. ����, pp. ���–���. ���: 10.1109/CVPRW.2013.30.

[��] Shervin Minaee and AmirAli Abdolrashidi. “Finger-GAN: Generating Realistic Fin-
gerprint Images Using Connectivity Imposed GAN”. In: CoRR abs/����.����� (����).
arXiv: 1812.10482. ���: http://arxiv.org/abs/1812.10482.

[��] Kim Hakil et al. “Fingerprint Generation and Presentation Attack Detection using
DeepNeural Networks.” In: InhaUniversity, Department of Information andCommu-
nication Engineering, ��� Inha, Michuhol, Incheon, �����, South Korea, �����, ����.
���: https://ludwig.lub.lu.se/login?url=https://search.ebscohost.
com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=18619188&
site=eds-live&scope=site.

[��] Masud An-Nur Islam Fahim and Ho Yub Jung. “A Lightweight GAN Network for
Large Scale Fingerprint Generation”. In: IEEE Access � (����), pp. �����–�����. ���:
10.1109/ACCESS.2020.2994371.

[��] Chenhao Zhong, Pengxin Xu, and Longsheng Zhu. “A deep convolutional generative
adversarial network-based fake �ngerprint generation method”. In: ���� IEEE Inter-
national Conference on Computer Science, Electronic Information Engineering and Intelligent
Control Technology (CEI). ����, pp. ��–��. ���: 10.1109/CEI52496.2021.9574508.

��

https://doi.org/10.1109/ICPR.2004.1333804
https://doi.org/10.1109/TPAMI.2007.1087
https://doi.org/10.1109/BCC.2007.4430539
https://doi.org/10.1109/TPAMI.2007.1018
https://doi.org/10.1109/TPAMI.2010.77
https://doi.org/10.1109/TIFS.2014.2363951
https://doi.org/10.1109/CVPRW.2013.30
https://arxiv.org/abs/1812.10482
http://arxiv.org/abs/1812.10482
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=18619188&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=18619188&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=18619188&site=eds-live&scope=site
https://doi.org/10.1109/ACCESS.2020.2994371
https://doi.org/10.1109/CEI52496.2021.9574508

REFERENCES

[��] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. ����. ���: 10.48550/ARXIV.
1511.06434. ���: https://arxiv.org/abs/1511.06434.

[��] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. “ImageNet Classi�cation
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by F. Pereira et al. Vol. ��. Curran Associates, Inc., ����. ���:
https : / / proceedings . neurips . cc / paper _ files / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[��] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. ����. arXiv: 1409.1556 [cs.CV].

[��] O. Striuk and Y. Kondratenko. “Adaptive Deep Convolutional GAN for Fingerprint
Sample Synthesis.” In: Petro Mohyla Black Sea National University, Intelligent Infor-
mation Systems Department, Mykolaiv, Ukraine, ����. ���: https://ludwig.lub.
lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=
true&AuthType=ip,uid&db=inh&AN=21503542&site=eds-live&scope=
site.

[��] Keivan Bahmani et al. “High Fidelity Fingerprint Generation: Quality, Uniqueness,
And Privacy”. In: ���� IEEE International Conference on Image Processing (ICIP). ����,
pp. ����–����. ���: 10.1109/ICIP42928.2021.9506386.

[��] André Brasil VieiraWyzykowski,Maurıécio Pamplona Segundo, andRubisley de Paula
Lemes. “Level Three Synthetic FingerprintGeneration”. In:CoRR abs/����.����� (����).
arXiv: 2002.03809. ���: https://arxiv.org/abs/2002.03809.

[��] Ataher Sams, Homaira Shomee, and S. Rahman. “HQ-�nGAN: High-Quality Syn-
thetic Fingerprint Generation Using GANs”. In: Circuits, Systems, and Signal Processing
�� (July ����), pp. �–��. ���: 10.1007/s00034-022-02089-1.

[��] Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. ����. arXiv: 1703.10593 [cs.CV].

[��] Yanming Zhu, Xuefei Yin, and Jiankun Hu. FingerGAN: A Constrained Fingerprint Gen-
eration Scheme for Latent Fingerprint Enhancement. ����. arXiv: 2206.12885 [cs.CV].

[��] Steven A. Grosz and Anil K. Jain. “SpoofGAN: Synthetic Fingerprint Spoof Images”.
In: IEEE Transactions on Information Forensics and Security �� (����), pp. ���–���. ���:
10.1109/TIFS.2022.3227762.

[��] Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. ����. ���: 10.48550/
ARXIV.1704.00028. ���: https://arxiv.org/abs/1704.00028.

[��] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architecture
for Generative Adversarial Networks”. In: CoRR abs/����.����� (����). arXiv: 1812.
04948. ���: http://arxiv.org/abs/1812.04948.

[��] Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolutional Net. ����.
arXiv: 1412.6806 [cs.LG].

[��] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going Deeper
into Neural Networks. ����. ���: https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html.

��

https://doi.org/10.48550/ARXIV.1511.06434
https://doi.org/10.48550/ARXIV.1511.06434
https://arxiv.org/abs/1511.06434
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1409.1556
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=21503542&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=21503542&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=21503542&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=21503542&site=eds-live&scope=site
https://doi.org/10.1109/ICIP42928.2021.9506386
https://arxiv.org/abs/2002.03809
https://arxiv.org/abs/2002.03809
https://doi.org/10.1007/s00034-022-02089-1
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/2206.12885
https://doi.org/10.1109/TIFS.2022.3227762
https://doi.org/10.48550/ARXIV.1704.00028
https://doi.org/10.48550/ARXIV.1704.00028
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1412.6806
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

REFERENCES

[��] Sergey Io�e andChristian Szegedy. BatchNormalization: Accelerating DeepNetwork Train-
ing by Reducing Internal Covariate Shift. ����. arXiv: 1502.03167 [cs.LG].

[��] VinodNair andGeo�rey E. Hinton. “Recti�ed Linear Units Improve Restricted Boltz-
mann Machines”. In: Proceedings of the ��th International Conference on International Con-
ference onMachine Learning. ICML’��. Haifa, Israel: Omnipress, ����, pp. ���–���. ����:
�������������.

[��] Andrew L. Maas. “Recti�er Nonlinearities Improve Neural Network Acoustic Mod-
els”. In: ����.

[��] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. ����. arXiv:
1701.07875 [stat.ML].

[��] Cédric Villani. “The Wasserstein distances”. In: Optimal Transport: Old and New. Berlin,
Heidelberg: Springer Berlin Heidelberg, ����, pp. ��–���. ����: ���-�-���-�����-�.
���: 10.1007/978-3-540-71050-9_6. ���: https://doi.org/10.1007/978-
3-540-71050-9_6.

[��] Furkan Luleci, F. Necati Catbas, and Onur Avci. CycleGAN for Undamaged-to-Damaged
Domain Translation for Structural Health Monitoring and Damage Detection. ����. arXiv:
2202.07831 [cs.LG].

[��] Jascha Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Thermody-
namics. ����. arXiv: 1503.03585 [cs.LG].

[��] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Di�usion Implicit Models.
����. ���: 10.48550/ARXIV.2010.02502. ���: https://arxiv.org/abs/
2010.02502.

[��] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. ����. arXiv: 1505.04597 [cs.CV].

[��] KaimingHe et al.Deep Residual Learning for Image Recognition. ����. arXiv: 1512.03385
[cs.CV].

[��] Zhuang Liu et al. A ConvNet for the ����s. ����. arXiv: 2201.03545 [cs.CV].
[��] Alexey Dosovitskiy et al. An Image is Worth ��x�� Words: Transformers for Image Recogni-

tion at Scale. ����. arXiv: 2010.11929 [cs.CV].
[��] Ashish Vaswani et al. Attention Is All You Need. ����. arXiv: 1706.03762 [cs.CL].
[��] Lilian Weng. Attention? Attention! ����. ���: https://lilianweng.github.io/

posts/2018-06-24-attention.
[��] Alex Nichol and Prafulla Dhariwal. Improved Denoising Di�usion Probabilistic Models.

����. ���: 10.48550/ARXIV.2102.09672. ���: https://arxiv.org/abs/
2102.09672.

[��] Tim Salimans et al. Improved Techniques for Training GANs. ����. ���: 10 . 48550 /
ARXIV.1606.03498. ���: https://arxiv.org/abs/1606.03498.

[��] Christian Szegedy et al. “Rethinking the InceptionArchitecture for Computer Vision”.
In: CoRR abs/����.����� (����). arXiv: 1512.00567. ���: http://arxiv.org/
abs/1512.00567.

��

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1701.07875
https://doi.org/10.1007/978-3-540-71050-9_6
https://doi.org/10.1007/978-3-540-71050-9_6
https://doi.org/10.1007/978-3-540-71050-9_6
https://arxiv.org/abs/2202.07831
https://arxiv.org/abs/1503.03585
https://doi.org/10.48550/ARXIV.2010.02502
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1706.03762
https://lilianweng.github.io/posts/2018-06-24-attention
https://lilianweng.github.io/posts/2018-06-24-attention
https://doi.org/10.48550/ARXIV.2102.09672
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672
https://doi.org/10.48550/ARXIV.1606.03498
https://doi.org/10.48550/ARXIV.1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

REFERENCES

[��] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Converge to
a Local Nash Equilibrium”. In: (����). ���: 10.48550/ARXIV.1706.08500. ���:
https://arxiv.org/abs/1706.08500.

[��] Maurice Fréchet. “Sur la distance de deux lois de probabilité”. In: Comptes Rendus Heb-
domadaires des Seances de L Academie des Sciences ���.� (����), pp. ���–���.

[��] Miko�aj Bi�kowski et al.DemystifyingMMDGANs. ����. arXiv: 1801.01401 [stat.ML].
[��] Qiantong Xu et al. An empirical study on evaluation metrics of generative adversarial net-

works. ����. arXiv: 1806.07755 [cs.LG].
[��] Shuyue Guan and Murray Loew. “A novel measure to evaluate generative adversarial

networks based on direct analysis of generated images”. In: Neural Computing and Ap-
plications ��.�� (May ����), pp. �����–�����. ���: 10.1007/s00521-021-06031-5.
���: https://doi.org/10.1007%2Fs00521-021-06031-5.

[��] Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness of �t”. In: Journal of the
American statistical Association ��.��� (����), pp. ��–��.

[��] Tuomas Kynkäänniemi et al. Improved Precision and Recall Metric for Assessing Generative
Models. ����. ���: 10.48550/ARXIV.1904.06991. ���: https://arxiv.org/
abs/1904.06991.

[��] Mehdi S. M. Sajjadi et al. Assessing Generative Models via Precision and Recall. ����. arXiv:
1806.00035 [stat.ML].

[��] Muhammad FerjadNaeem et al.Reliable Fidelity and Diversity Metrics for Generative Mod-
els. ����. ���: 10.48550/ARXIV.2002.09797. ���: https://arxiv.org/abs/
2002.09797.

[��] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization: The
Missing Ingredient for Fast Stylization. ����. arXiv: 1607.08022 [cs.CV].

[��] Xudong Mao et al. Least Squares Generative Adversarial Networks. ����. arXiv: 1611.
04076 [cs.CV].

��

https://doi.org/10.48550/ARXIV.1706.08500
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1806.07755
https://doi.org/10.1007/s00521-021-06031-5
https://doi.org/10.1007%2Fs00521-021-06031-5
https://doi.org/10.48550/ARXIV.1904.06991
https://arxiv.org/abs/1904.06991
https://arxiv.org/abs/1904.06991
https://arxiv.org/abs/1806.00035
https://doi.org/10.48550/ARXIV.2002.09797
https://arxiv.org/abs/2002.09797
https://arxiv.org/abs/2002.09797
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1611.04076

REFERENCES

��

Chapter �

Appendix

7.1 Algorithms
7.1.1 Improved WGAN Algorithm
The algorithm of improved WGAN is shown below.

Figure �.�: The training algorithm of WGAN-GP. Cited from [��]

7.1.2 Denoising Di�usion Probabilistic Models
The training and sampling algorithms of DDPMs are shown below.

��

�. A�������

Figure �.�: The training and sampling algorithms of DDPMs. In the training algorithm,
every training sample will be fed into the model with the time embedding that is ar-
bitrarily chosen from a uniform distribution, which means the model also learns how
to predict noise at di�erent time steps. In the sampling algorithm, a Gaussian noise
sample has to go through the whole denoising process step by step. At each step, a
small random noise is added again to enrich the diversity of generated images. Cited
from [�]

7.1.3 Likeness Score
The algorithm of likeness score is shown below.

Algorithm � The de�nition of Likeness Score
Explanations
R corresponds to the real dataset; G corresponds to the generated dataset.
The Intra-Class Distance (ICD) set is a set of distances between any two points in the
same dataset (R or G).
The Between-Class Distance (BCD) set is a set of distances between any two points from
di�erent datasets (R and G).
The Kolmogorov-Smirnov (KS) distance is the maximum distance between two
distribution functions.

Steps
�: Calculate the ICD set of R {dr}:
{dr} =

n���xi � x j
���

2 | xi, x j 2 R; xi 6= x j
o

�: Calculate the ICD set of G
n
dg

o
:n

dg
o
=

n���xi � x j
���

2 | xi, x j 2 G; xi 6= x j
o

�: Calculate the BCD set of R and G
n
dr,g

o
:n

dr,g
o
=

n���xi � yj
���

2 | xi 2 R; yj 2 G
o

�: Calculate the KS distance between ICD and BCD sets:
sr = KS

⇣
{dr} ,

n
dr,g

o⌘

sg = KS
⇣n

dg
o
,
n
dr,g

o⌘

where KS(P,Q) = supx |P(x) � Q(x)|
�: Calculate the Likeness Score:

LS = 1 � DSI({R,G}) = max
n
sr , sg

o

��

�.� DDPM S��������

7.2 DDPM Structure
The listing below elaborates the model structure of the DDPM.

Listing �.�: DownSampling
� (downs): ModuleList (
� (0): ModuleList (
� (0): ResnetBlock (
� (mlp): Sequential (
� (0): SiLU ()
� (1): Linear (in_features =128 , out_features =32, bias=True)
�)
� (block1): Block(
� (proj): Conv2d (20, 32, kernel_size =(3, 3), stride =(1, 1)...

, padding =(1, 1))
�� (norm): GroupNorm (8, 32, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (block2): Block(
�� (proj): Conv2d (32, 32, kernel_size =(3, 3), stride =(1, 1)...

, padding =(1, 1))
�� (norm): GroupNorm (8, 32, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (res_conv): Conv2d (20, 32, kernel_size =(1, 1), stride =(1, ...

1))
��)
�� (1): ResnetBlock (
�� (mlp): Sequential (
�� (0): SiLU ()
�� (1): Linear (in_features =128 , out_features =32, bias=True)
��)
�� (block1): Block(
�� (proj): Conv2d (32, 32, kernel_size =(3, 3), stride =(1, 1)...

, padding =(1, 1))
�� (norm): GroupNorm (8, 32, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (block2): Block(
�� (proj): Conv2d (32, 32, kernel_size =(3, 3), stride =(1, 1)...

, padding =(1, 1))
�� (norm): GroupNorm (8, 32, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (res_conv): Identity ()
��)
�� (2): Residual (
�� (fn): PreNorm (
�� (fn): LinearAttention (
�� (to_qkv): Conv2d (32, 384, kernel_size =(1, 1), stride...

=(1 , 1) , bias= False)
�� (to_out): Sequential (
�� (0): Conv2d (128 , 32, kernel_size =(1, 1), stride =(1, ...

��

�. A�������

1))
�� (1): GroupNorm (1, 32, eps =1e-05, affine =True)
��)
��)
�� (norm): GroupNorm (1, 32, eps =1e-05, affine =True)
��)
��)
�� (3): Conv2d (32, 32, kernel_size =(4, 4) , stride =(2, 2), ...

padding =(1 , 1))
��)

Listing �.�: MidBottle
� (mid_block1): ResnetBlock (
� (mlp): Sequential (
� (0): SiLU ()
� (1): Linear (in_features =128 , out_features =256 , bias=True...

)
�)
� (block1): Block(
� (proj): Conv2d (256 , 256, kernel_size =(3, 3), stride =(1, ...

1), padding =(1 , 1))
� (norm): GroupNorm (8, 256, eps =1e-05, affine =True)
� (act): SiLU ()
��)
�� (block2): Block(
�� (proj): Conv2d (256 , 256, kernel_size =(3, 3), stride =(1, ...

1), padding =(1 , 1))
�� (norm): GroupNorm (8, 256, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (res_conv): Identity ()
��)
�� (mid_attn): Residual (
�� (fn): PreNorm (
�� (fn): Attention (
�� (to_qkv): Conv2d (256 , 384, kernel_size =(1, 1), stride...

=(1, 1) , bias= False)
�� (to_out): Conv2d (128 , 256, kernel_size =(1, 1), stride...

=(1, 1))
��)
�� (norm): GroupNorm (1, 256, eps =1e-05, affine =True)
��)
��)
�� (mid_block2): ResnetBlock (
�� (mlp): Sequential (
�� (0): SiLU ()
�� (1): Linear (in_features =128 , out_features =256 , bias=True...

)
��)
�� (block1): Block(
�� (proj): Conv2d (256 , 256, kernel_size =(3, 3), stride =(1, ...

1), padding =(1 , 1))
�� (norm): GroupNorm (8, 256, eps =1e-05, affine =True)
�� (act): SiLU ()

��

�.� DDPM S��������

��)
�� (block2): Block(
�� (proj): Conv2d (256 , 256, kernel_size =(3, 3), stride =(1, ...

1) , padding =(1 , 1))
�� (norm): GroupNorm (8, 256, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (res_conv): Identity ()
��)

Listing �.�: UpSampling
� (ups): ModuleList (
� (0): ModuleList (
� (0): ResnetBlock (
� (mlp): Sequential (
� (0): SiLU ()
� (1): Linear (in_features =128 , out_features =128 , bias=...

True)
�)
� (block1): Block(
� (proj): Conv2d (512 , 128, kernel_size =(3, 3), stride...

=(1 , 1) , padding =(1 , 1))
�� (norm): GroupNorm (8, 128, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (block2): Block(
�� (proj): Conv2d (128 , 128, kernel_size =(3, 3), stride...

=(1 , 1) , padding =(1 , 1))
�� (norm): GroupNorm (8, 128, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (res_conv): Conv2d (512 , 128, kernel_size =(1, 1), ...

stride =(1, 1))
��)
�� (1): ResnetBlock (
�� (mlp): Sequential (
�� (0): SiLU ()
�� (1): Linear (in_features =128 , out_features =128 , bias=...

True)
��)
�� (block1): Block(
�� (proj): Conv2d (128 , 128, kernel_size =(3, 3), stride...

=(1 , 1) , padding =(1 , 1))
�� (norm): GroupNorm (8, 128, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (block2): Block(
�� (proj): Conv2d (128 , 128, kernel_size =(3, 3), stride...

=(1 , 1) , padding =(1 , 1))
�� (norm): GroupNorm (8, 128, eps =1e-05, affine =True)
�� (act): SiLU ()
��)
�� (res_conv): Identity ()
��)

��

�. A�������

�� (2): Residual (
�� (fn): PreNorm (
�� (fn): LinearAttention (
�� (to_qkv): Conv2d (128 , 384, kernel_size =(1, 1), ...

stride =(1, 1), bias=False)
�� (to_out): Sequential (
�� (0): Conv2d (128 , 128, kernel_size =(1, 1), stride...

=(1, 1))
�� (1): GroupNorm (1, 128, eps =1e-05, affine =True)
��)
��)
�� (norm): GroupNorm (1, 128, eps =1e-05, affine =True)
��)
��)
�� (3): ConvTranspose2d (128 , 128, kernel_size =(4, 4), ...

stride =(2, 2), padding =(1, 1))
��)

��

Master’s Theses in Mathematical Sciences 2023:E24
ISSN 1404-6342

LUTFMA-3502-2023

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Background
	Related Work
	Goals
	Division of Work

	Methodology
	Generative Adversarial Networks
	Deep Convolutional GAN
	Improved Wasserstein GAN
	CycleGAN
	CycleWGAN-GP

	Diffusion Models
	Denoising Diffusion Probabilistic Models
	Denoising Diffusion Implicit Models

	Machine Learning Techniques
	U-Net
	Residual Neural Network
	ConvNeXt
	Self-Attention Technique
	Time Schedule
	Time Embedding

	Metrics
	False Acceptance Rate
	Inception Score
	Fréchet Inception Distance
	Kernel Inception Distance
	Likeness Score
	Precision and Recall
	Density and Coverage

	Implementation
	Datasets
	Data Composition
	Data Pre-processing

	Live Fingerprint Synthesis
	WGAN-GP
	Vanilla DDPM
	DDPM

	Fingerprint-to-Fingerprint Transformation
	CycleGAN
	CycleWGAN-GP

	Result
	Live Fingerprint Synthesis
	Fingerprint-to-Fingerprint Transformation
	Model results with Spoof Material 1
	Model results with Spoof Material 2
	Model results with Spoof Material 3
	Model results with Spoof Material 4

	Discussion
	Metrics
	Live Fingerprint Synthesis
	Fingerprint-to-Fingerprint Transformation

	Conclusion
	Appendix
	Algorithms
	Improved WGAN Algorithm
	Denoising Diffusion Probabilistic Models
	Likeness Score

	DDPM Structure

