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Abstract. The thesis explores an already developed symmetry adapted representation of a
two-body interaction with the main goal of extending the method to also include three-body
interactions. The method considers a space of shifted one dimensional Gaussian particle
densities which are used, together with their corresponding Hartree potentials, to define the
respective collective subspaces in which the interactions are expanded. The performance of
the method is then examined by how much the interactions can be compressed at the expense
of the resolution in the potential energy of particle densities modeled by one dimensional
Gaussian distributions. By compression, the percentage reduction in numerical calculations
is meant. The result shows that the method is successful in compressing two and three-body
interactions by about 94 and 97 % respectively, while still allowing the interactions to be
fully recovered in their collective subspaces.
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Notation and List of Abbreviations

Below is list of abbreviations used throughout the text.

• SVD – Singular Value Decomposition.

• HOSVD – Higher-Order Singular Value Decomposition.

• RMSLE – Root-Mean-Square-Logarithmic Error.

• LAE – Logarithmic-Absolute Error

Tensors are denoted by calligraphic capital letters (A, B, ... ), matrices are written in bold
capital letters (A, B, ... ) while scalars are represented by ordinary lowercase letters (a, b, ...
). Entries of tensors/matrices are similarly denoted by ordinary letters, but with an additional
subscript indicating the position of the element along the axes of the tensor/matrix. The
English (Latin) and Greek alphabet are both used.
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1 Introduction

The primary goal of physics is to find the fundamental laws that govern the behavior of
our universe. This is indeed possible in areas such as classical mechanics and optics, where
a few unifying concepts can be used to explain nearly all observed phenomena. The same
can not be said about nuclear physics, however, where the underlying principles determining
basic properties of nuclear matter, such as the binding energy or density of nuclei, are still
being uncovered. The fundamental theory of strong interactions is notoriously difficult to
solve in the low energy regime, as a result, solving the many-body nuclear problem from first
principles becomes extremely challenging.

In order to resolve this issue, one usually has to resort to effective field theories, where
the appropriate degrees of freedom are restricted and expanded. Typically, in the context of
nuclear physics at least, such effective theories features both two and higher-body forces. The
two-body force is generally defined to act as the main contributor, with three and higher-
body forces giving gradually smaller corrections. Although, there is evidence that three-body
forces might have a significant contribution to the binding energy in light nuclei [1].

Calculations involving three-body forces dates back to the mid fifties [2][3] and has led to
the formation of several effective theories adopting the three-body formalism. The perhaps
most prominent such theory is the Skyrme interaction [4]. The three-body force then takes
the form of a repulsive contact interaction, modeled by a zero-range delta potential. However,
effective theories featuring a finite-range three-body term has also been suggested [5].

Three-body forces appears in many other areas of physics as well. For instance, in celestial
mechanics, three-body tidal forces arise if the bodies are treated as point particles rather than
as extended objects, even though gravity only acts pairwise between individual particles.
Another example is the Effimov effect, a phenomenon displayed by three-body systems in
which resonant two-body forces causes a spectrum of three-body bound states to appear [6]
[7].

Practical calculations involving these many-body forces can, however, be computationally
hefty, especially calculations concerning three-body forces. It is therefore imperative to have
reliable methods that allows one to simulate realistic systems in an efficient way. One such
method, which utilizes a symmetry adapted representation of two-body interactions, has
recently been developed [8]. The primary goal of this thesis is to extend this method to
also treat three-body interactions as well as to further study this earlier work. It will be of
particular interest to explore to what degree the resolution of three-body interactions can be
optimized to allow for advanced many-body calculations.

We will only consider local two and three-body interactions that are independent of
both spin and isospin, which, admittedly, limits the use of the method in its current state.
In particular, we will use finite-ranged Gaussian potentials, although, the method is very
general and works equally well no matter the spacial dependence. Additionally, we will
restrict ourselves to work in one dimension, though, in [8] the problem is fully treated in
three dimensions. In order to simplify matters further, kinetic terms will also be disregarded.

The results shows that the two and three-body interactions can each be compressed
by about 94 and 97 %, in the particular systems under consideration that is, without any
significant loss in resolution. More specifically, this implies that the numerical calculations
are effectively reduced by about 94 and 97 %, respectively.
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2 Theoretical Framework

2.1 Representation of Two-Body Interactions

We begin with treating the problem of finding a symmetry adapted representation of a two-
body interaction in one dimension by first considering the two-body interaction of a set of
particle densities on a line. The interaction is mediated by the two-body Gaussian potential

V
(2)
G (x1, x2) = ±V

(2)
0 exp

[
−
(
x1 − x2

a(2)

)2
]
, (1)

where the sign determines whether the force is attractive (-) or repulsive (+), V
(2)
0 sets the

potential depth and a(2) is the range of the interaction. Even though the method is applicable
to any central potential, this particular choice is motivated by the fact that, for instance, the
Coulomb potential, can be expanded as a sum of Gaussian potentials [9]. Furthermore, we
will consider a set of shifted particle densities of Gaussian type

ρn(x) = ρ0 exp

[
−1

a
(x− xn)

2

]
, (2)

where ρ0 is the maxima of the density, xn sets the center of the distribution and a determines
the width. Each density can be interpreted as the density of a system of several particles,
consequently, the integration of ρn(x) will be equal to the total number of particles. For
example, the densities could be the distribution of nucleons within a nucleus.

Each density will have a corresponding local Hartree potential Γ
(2)
n (x) which is given by

Γ(2)
n (x1) =

∫
V

(2)
G (x1, x2)ρn(x2)dx2. (3)

This is the potential experienced by a particle at x1 due to all the other particles at x2,
described by the density ρn(x2). Lastly, the potential energy of a set of particles represented
by the density ρn(x) is

1

E(2)
n =

∫
V

(2)
G (x1, x2)ρn(x1)ρn(x2)dx1dx2. (4)

2.1.1 Finding an Orthonormal Basis for the Space

The densities ρn(x) together with their corresponding Hartree potentials Γ
(2)
n (x) forms a space

of states given by the, possibly non-orthogonal, set

Φ = {Φi(x)} = {ρ1(x), ρ2(x), . . . , ρn(x),Γ(2)
1 (x),Γ

(2)
2 (x), . . . ,Γ(2)

n (x)}. (5)

We wish to orthonormalize this set using the canonical orthonormalization procedure [10],
where the end result will be a set of orthonormal natural states Λ = {Λk(x)}.

To begin with, let the sets Λ andΦ be represented by column and row vectors respectively

1To be precise, the energy is given by 1
2 of this due to double counting, but for the sake of simplicity, this

will be ignored.
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Λ(x) = [Λ1(x) Λ2(x) . . . Λk(x)]
T

Φ(x) = [Φ1(x) Φ2(x) . . . Φi(x)].
(6)

The natural states are then given by

Λ(x) = Φ(x)A, (7)

where A is a matrix such that

∫
Λ(x)TΛ(x)dx =

∫
(Φ(x)A)T (Φ(x)A) dx =

∫
ATΦ(x)TΦ(x)Adx

= AT

(∫
Φ(x)TΦ(x)dx

)
A = ATOA = I,

(8)

and the elements of the overlap matrix O are given by

Omn =

∫
Φm(x)Φn(x)dx. (9)

Eq. (8) has the general solution A = O−1/2U, where U is an orthogonal matrix that
diagonalizes the overlap matrix UTOU = D. Since O is symmetric and positive definite,
all eigenvalues of O must be both real and non-negative [11]. We can therefore replace the
elements of the diagonal matrix D by their square-root, giving us D1/2. This in turn lets us

define the square-root of the overlap matrix as O1/2 = UD1/2UT , where O−1/2 =
(
O1/2

)−1
=

UD−1/2UT . We thus have that A = O−1/2U = UD−1/2.
If the orthogonal matrix U consist of the normalized eigenvectors of O, D−1/2 will have

the inverse square root of the corresponding eigenvalues along its diagonal. Note that the
eigenvalues of O are sorted in order of decreasing value λ1 ≥ λ2 ≥ ... ≥ λk, and that the
number of eigenvalues different from zero will be equal to the number of natural states Nnat.
Finally, the solution to Eq. (7) is then

Λ(x) = Φ(x)UD−1/2, (10)

or in component form

Λk(x) =
1√
λk

∑
i=1

UikΦi(x), (11)

where Uik is the i’th component of the k’th eigenvector of O with eigenvalue λk and the sum
runs over all the elements of Φ. Furthermore, the natural states span the smallest possible
space that contains all the initial states in Φ. This space is refereed to as the collective
subspace [12]. Moreover, while the set Φ consists of localized particle densities and Hartree
potentials, the set Λ instead consists of functions that are delocalized over the entire system,
somewhat similar to Bloch wavefunctions describing a solid state system [10].

6



By studying the overlap between the natural states and the elements of Φ, one can infer
the physical significance of the eigenvalues of O. Let ωk denote the overlap between the
natural state Λk(x) and all the elements of Φ, from Eq. (11) we then have that

ωk =

∫ ∑
j

Φj(x)Λk(x)dx =
1√
λk

∑
j=1

∑
i=1

Uik

∫
Φj(x)Φi(x)dx

=
1√
λk

∑
j=1

∑
i=1

UikOji.

(12)

The final sum on the right hand side is just the overlap matrix times its k’th eigenvector,
which is just equal to eigenvector itself times the k’th eigenvalue. Squaring on both sides and
using the fact that the eigenvectors are normalized we then have that ω2

k = λk. Therefore,
the eigenvalues are a measure of the overlap between the initial space Φ and the natural
states. Accordingly, the natural state corresponding to the largest eigenvalue will be the
most important since it overlaps the most with Φ. Hence, why the eigenvalues are sorted in
order of decreasing value.

For computational purposes it is also important to limit the number of eigenvalues con-
sidered to be non-zero since, from the numerical point of view, arbitrarily small eigenvalues
will be regarded as non-zero. It is therefore common practice to impose a threshold ε such
that only the eigenvalues satisfying λ > ε are retained.

2.1.2 Expansion of the Two-Body Interaction In the Collective Subspace

The set of natural states Λ, truncated to Nnat elements, is a linearly independent basis for
the space. As such, the initial particle densities and corresponding Hartree potentials in Φ
can be expressed as a linear combination of the natural states,

ρn(x) =
Nnat∑
i=1

cni Λi(x), (13)

where

cni =

∫
Λi(x2)ρn(x2)dx2, (14)

and

Γ(2)
n (x) =

Nnat∑
j=1

dnjΛj(x). (15)

We can use this fact in order to expand the two-body interaction in the collective subspace.
Consider the form of the Hartree potentials as given in Eq. (3)

Γ(2)
n (x1) =

∫
V

(2)
G (x1, x2)ρn(x2)dx2. (16)

We replace Γ
(2)
n (x1) by its expansion in the natural state basis
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Nnat∑
j=1

dnjΛj(x1) =

∫
V

(2)
G (x1, x2)ρn(x2)dx2. (17)

Using the orthogonality of the natural states we then multiply both sides by Λk(x1) and
integrate over x1 to solve for the coefficients dnj

Nnat∑
j=1

dnj

∫
Λk(x1)Λj(x1)dx1 =

∫
V

(2)
G (x1, x2)Λk(x1)ρn(x2)dx1dx2. (18)

Since the integral on the left hand side is only non-zero for j = k we have that

dnk =

∫
V

(2)
G (x1, x2)Λk(x1)ρn(x2)dx1dx2. (19)

We then proceed by also expanding ρn(x2) in the collective subspace, resulting in

dnk =
Nnat∑
k′=1

cn
k′

∫
V

(2)
G (x1, x2)Λk(x1)Λk′ (x2)dx1dx2. (20)

Introducing

χkk′ =

∫
V

(2)
G (x1, x2)Λk(x1)Λk′ (x2)dx1dx2, (21)

we can write this as

dnk =
Nnat∑
k′=1

cn
k′
χkk′ . (22)

Observe that χkk′ = χk′k, which is a direct consequence of the spatial exchange symmetry of
the interaction. Furthermore, inserting the formula for the coefficient cn

k′
into the equation

above yields

dnk =
Nnat∑
k′=1

χkk′

∫
Λk′ρn(x2)dx2. (23)

Inserting this back into the expansion of Γ
(2)
n (x1) in the natural state basis we get

Γ(2)
n (x1) =

Nnat∑
k=1

Nnat∑
k′=1

χkk′

∫
Λk′ (x2)ρn(x2)dx2

Λk(x1). (24)

Since χkk′ is just a number and Λk(x1) is independent of x2, we can move them inside the
integral

Γ(2)
n (x1) =

∫ Nnat∑
k=1

Nnat∑
k′=1

χkk′Λk(x1)Λk′ (x2)

 ρn(x2)dx2. (25)
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Comparing this with the definition of Γ
(2)
n (x1) as given by Eq. (16), we then have that the

expression within the square brackets is equal to V
(2)
G (x1, x2), that is

V
(2)
G (x1, x2) =

Nnat∑
k=1

Nnat∑
k′=1

χkk′Λk(x1)Λk′ (x2). (26)

This is then the expansion of VG(x1, x2) in the collective subspace. Moreover, consider per-
forming singular value decomposition (SVD) on the Nnat×Nnat matrix X with elements χkk′ .
This matrix is clearly symmetric since χkk′ = χk′k and the SVD therefore takes the following
form

X = UΣVT =
(
UΣVT

)T
= VΣUT =⇒ X = UΣUT . (27)

This can be written in terms of components as

χkk′ ≈
N∑
s=1

UksσsUk′s where N ≤ Nnat. (28)

If N < Nnat, χkk′ is compressed, whereas if N = Nnat, χkk′ is retrieved exactly. Consequently,
the interaction is given by

V
(2)
G (x1, x2) ≈

Nnat∑
k=1

Nnat∑
k′=1

N∑
s=1

UksσsUk′sΛk(x1)Λk′ (x2)

≈
N∑
s=1

[
Nnat∑
k=1

√
σsUksΛk(x1)

]
×

Nnat∑
k′=1

√
σsUk′sΛk′ (x2)

 .

(29)

We then define

Qs(x) =
Nnat∑
k=1

√
σsUksΛk(x), (30)

allowing us to write

V
(2)
G (x1, x2) ≈

N∑
s=1

Qs(x1)×Qs(x2), (31)

which is a highly convenient representation of a two-body interaction. Note that the total
number of singular values is equal to the number of natural states, and in the limit as N
approaches Nnat the representation is exact in the collective subspace.

Furthermore, in order to quantitatively study the performance of this representation, we
must first properly introduce what compression actually entails in our context. If we want to
simulate the interaction of a set of particle densities on a one dimensional interval of length
L, we would first have to partition this interval into a sequence of M equally distant points
P = {xk}Mk=0. To compute the two-body interaction we would then have to perform M2
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calculations, namely, Eq. (1) would have to be evaluated for all the points in P . However,
Eq. (31) only involves M ·N computations, M times the number of unique Qs(x) functions
that is, and the compression in units percent is therefore equal to 100(1−N/M).

2.2 Representation of Three-Body Interactions

While the derivation of the representation of a generic three-body potential is similar to that
of a two-body potential, there are some major differences. We begin with presenting the form
of the three-body potential of interest, which is a finite-range Gaussian in one dimension

V
(3)
G (x1, x2, x3) = ±V

(3)
0 exp

{
1

a(3)
[
−(x1 − x2)

2 − (x1 − x3)
2 − (x2 − x3)

2
]}

. (32)

Though the shifted densities ρn(x) remain unchanged, the corresponding Hartree potentials
are instead given by

Γ(3)
n (x1) =

∫
V

(3)
G (x1, x2, x3)ρn(x2)ρn(x3)dx2dx3. (33)

They are similarly interpreted as the potential experienced by a particle at x1 due to the
average density of particles integrated over x2 and x3. The potential energy is 2

E(3)
n =

∫
V

(3)
G (x1, x2, x3)ρn(x1)ρn(x2)ρn(x3)dx1dx2dx3. (34)

Naturally, the deformed densities and Hartree potentials as given in Eq. (33) also forms
a space, from which we then can obtain the collective subspace by the same procedure as
above.

2.2.1 Expansion of the Three-Body Interaction In the Collective Subspace

Let Ω = {Ωi(x)} denote the collective subspace in the three-body formalism. We can then
likewise expand the initial states in terms of the natural states as expressed in Eq. (13) and
Eq. (15). Doing so for the Hartree potential in Eq. (33) we then get

Nnat∑
i=1

eni Ωi(x1) =

∫
V

(3)
G (x1, x2, x3)ρn(x2)ρn(x3)dx2dx3. (35)

Solving for the coefficient eni as we did before results in

eni =

∫
V

(3)
G (x1, x2, x3)Ωi(x1)ρn(x2)ρn(x3)dx1dx2dx3. (36)

We continue by also expanding ρn(x2) and ρn(x3) in the natural basis

2More specifically, a factor of 1
6 would have to be included for this to be the actual energy, but this will

be ignored in order to simplify matters.
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eni =
Nnat∑
j=1

Nnat∑
k=1

fn
j f

n
k

∫
V

(3)
G (x1, x2, x3)Ωi(x1)Ωj(x2)Ωk(x3)dx1dx2dx3, (37)

where we choose to denote the integral by χijk and the coefficients fn
j and fn

k are as previously
defined in Eq. (14). Hence,

eni =
Nnat∑
j=1

Nnat∑
k=1

χijk

[∫
Ωj(x2)ρn(x2)dx2

]
×
[∫

Ωk(x3)ρn(x3)dx3

]
. (38)

Plugging this into the expansion of Γ
(3)
n (x1) then results in

Γ(3)
n (x1) =

Nnat∑
i=1

[
Nnat∑
j=1

Nnat∑
k=1

χijk

[∫
Ωj(x2)ρn(x2)dx2

]
×
[∫

Ωk(x3)ρn(x3)dx3

]]
Ωi(x1). (39)

Rearranging, while taking into account that Ωi(x1) is independent of both x2 and x3 and
that χijk is just a number, yields

Γ(3)
n (x1) =

∫ [
Nnat∑
i=1

Nnat∑
j=1

Nnat∑
k=1

χijkΩi(x1)Ωj(x2)Ωk(x3)

]
ρn(x2)ρn(x3)dx2dx3. (40)

From which it is apparent that

V
(3)
G (x1, x2, x3) =

Nnat∑
i=1

Nnat∑
j=1

Nnat∑
k=1

χijkΩi(x1)Ωj(x2)Ωk(x3). (41)

Now, let χijk be the elements of a third-order cubical tensor X ∈ RNnat×Nnat×Nnat , that is, it
has three so-called modes of equal size. Modes being the same as dimensions, or equivalently,
ways. This tensor is supersymmetric in the sense that it is invariant under permutations of
its indices

χijk = χikj = χjik = χjki = χkij = χkji ∀i, j, k ∈ {1, ..., Nnat}. (42)

We would like to decompose this tensor using higher order singular value decomposition
(HOSVD). This method is analogous to that of ordinary SVD but for tensors of arbitrary
order. However, when the tensor is of order three, though not necessarily cubical, HOSVD is
usually referred to as Tucker decomposition. Simply put, it entails decomposing the tensor
into a core tensor which is multiplied by three matrices along each mode. This necessitates
the introduction of two important concepts. First, the notion of matrix unfoldings, which is
the process of reordering the elements of a tensor such that they form a matrix. Second, the
n-mode product, which is the multiplication of a matrix along one of the modes of a tensor
[13]. We begin with matrix unfoldings as it will be necessary to understand the n-mode
product.

Let A ∈ RI1×I2×...×IN be an arbitrary N -th order tensor, the n-mode matrix unfolding
relocates the tensor element ai1i2...iN to the matrix element (in, j) of the matrix A(n) ∈
RIn×I1I2...IN , where
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j = 1 +
N∑

k ̸=n

(ik − 1)
k−1∏
m̸=n

Im. (43)

Even though the definition is somewhat involved, the concept in itself is rather straightfor-
ward. For instance, consider a third-order tensor with dimensions 3 × 2 × 1, it can then be
unfolded into three different matrices with dimensions 3× 2, 2× 3 and 1× 6, corresponding
to the 1-mode, 2-mode and 3-mode unfolding respectively (see Appendix A). Moreover, and
most importantly, if the tensor is cubical and supersymmetric, the unfoldings will all be equal
[14]. This fact will be of great significance for us, as will be seen later.

We are now able to understand the n-mode product. Let A be the same tensor as
above, the n-mode product of this tensor and a matrix U ∈ RK×In is a new tensor M ∈
RI1×...×In−1×K×In+1×...×IN and is denoted by

M = A×n U, (44)

or in component form

Mi1...in−1kin+1...iN =
In∑

in=1

ai1...iNukin . (45)

This can also be expressed using matrix unfoldings

M(n) = UA(n), (46)

that is, the matrix product of U and the n-mode unfolding of A is equal to the n-mode
unfolding of the tensor M, which is given by the n-mode product between U and A. Ad-
ditionally, it is also possible for a tensor to be multiplied by several matrices in a series of
n-mode products. If the modes are different, it does not matter in which order the products
are evaluated. To get better acquainted with these two concepts, please refer to Appendix A
where explicit examples involving the n-mode product and matrix unfoldings are given.

Having introduced the n-mode product as well as matrix unfoldings, we are now in a
suitable position to perform Tucker decomposition on X . The Tucker form of X is given by

X = G ×1 A×2 B×3 C, (47)

where G is the core tensor and A, B and C are orthogonal matrices. These matrices can
be obtained by performing ordinary SVD on the three matrix unfoldings of X , where the
acquired U matrices are orthogonal matrices. In fact, since X is supersymmetric, the three
matrix unfoldings will be the same. Consequently, we have that A = B = C =: U and the
Tucker form of X is therefore given by

X = G ×1 U×2 U×3 U. (48)

The core tensor can then be solved for as follows

G = X ×1 U
T ×2 U

T ×3 U
T . (49)
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Observe that G has the same dimensions and supersymmetry as X . Moreover, the Tucker
decomposition can be expressed in terms of components as

χijk ≈
NI∑
I=1

NJ∑
J=1

NK∑
K=1

GIJKUiIUjJUkK where NI , NJ , NK ≤ Nnat (50)

and similarly for the core tensor

GIJK =
Nnat∑
i=1

Nnat∑
j=1

Nnat∑
k=1

χijkUiIUjJUkK . (51)

If the summation bounds NI , NJ and NK are equal to Nnat, the left and right hand side in Eq.
(50) are exactly equal. Though, if NI , NJ , NK < Nnat the tensor X is said to be compressed.
At last, we now insert the Tucker form of χijk into Eq. (41), which results in

V
(3)
G (x1, x2, x3) ≈

Nnat∑
ijk

NI∑
I=1

NJ∑
J=1

NK∑
K=1

GIJKUiIUjJUkKΩi(x1)Ωj(x2)Ωk(x3)

≈
NI∑
I=1

NJ∑
J=1

NK∑
K=1

[
Nnat∑
i=1

G
1/3
IJKUiIΩi(x1)

]
×

[
Nnat∑
j=1

G
1/3
IJKUjJΩj(x2)

]

×

[
Nnat∑
k=1

G
1/3
IJKUkKΩk(x3)

]
.

(52)

We then define

QIJK(x) =
Nnat∑
i=k

G
1/3
IJKUkKΩk(x), (53)

which is invariant under permutations of its first two indices due to the supersymmetry of
the core tensor. This lets us write the interaction as

V
(3)
G (x1, x2, x3) ≈

NI∑
I=1

NJ∑
J=1

NK∑
K=1

QIJK(x1)×QJKI(x2)×QIKJ(x3). (54)

Once again, it is interesting to study how many terms that needs to be included without
any substantial loss of information. Also, when NI = NJ = NK = Nnat the representation is
exact in the collective subspace.

Moreover, due to the exchange symmetry of the two first indices in QIJK(x), the number
of unique QIJK(x) functions that has to be calculated for NI = NJ = NK = N will be equal
to N2(N + 1)/2. Computing the interaction on a mesh line consisting of M points with the
representation above would then require M · N2(N + 1)/2 computations. In contrast, the
standard form in Eq. (32) would instead require M3 computations. The compression in unit
percent is therefore be given by 100(1−N2(N + 1)/2M2).
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3 Results

3.1 Convergence of the Representation of a Two-Body Interaction

3.1.1 Constructing The Collective Subspace

We begin with defining the space by using 60 shifted densities together with their correspond-
ing Hartree potentials. The shifted densities are evenly spaced over an interval of length 10
fm and, consequently, so are the Hartree fields. This particular choice of space is motivated
by its simplicity and was chosen such as to make the examination of the method as direct
as possible. The space could be interpreted as the interaction of a set of one dimensional
particle densities along a line. However, this rather unrealistic scenario carry no real physical
significance and no useful predictions could be derived from it beyond what pertains to the
performance of the method.

Furthermore, the interval was sub-divided into a mesh line consisting of 500 points. The
space thus contains 120 elements, all of which are shown in Fig. (1). Note that some of the
densities are abruptly discontinued at the ends of the interval, these are included in order to
demonstrate that the method also works with discontinuous functions. The parameters used
in the construction of the space are shown in Tab. (1).

Table 1: Parameters used to define the space.

ρ0 [fm−3] a [fm2] V
(2)
0 [MeV] a(2) [fm]

0.316 1.716 300.86 0.7

With these values for ρ0 and a, the shifted densities correspond to the matter distribution
in alpha particles with an rms radius of 1.61 fm [15]. The potential depth and range of the
two-body interaction is adopted from [5].
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Figure 1: The space is defined by 60 shifted densities evenly spaced over a interval of length 10 fm
together with their corresponding Hartree potentials. Top: the shifted densities ρn(x). Bottom:

Corresponding Hartree potentials Γ
(2)
n (x).

By diagonalizing the 120×120 overlap matrix and retaining the eigenvalues above ε = 10−13,
the collective subspace was constructed. These eigenvalues were then sorted from largest
to smallest before using Eq. (11) to build the collective subspace, which resulted in a total
of 61 natural states. In Fig. (2) the natural states for k = 1, 2, 3 and 4 are plotted. We
observe that these are indeed delocalized over the entire interval, as mentioned earlier, in
contrast to the inital shifted densities and Hartree potentials, which are not. We also see
some interesting trends in their shapes, for instance, the first state has one anti-node, the
second has two and so on. In fact, their characteristics very much resembles those of simple
standing waves. There is no actual explanation for this, though, it is not too surprising since
any function can be expressed as a sum of sinusoidal functions in a Fourier sum.
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Figure 2: The first four natural states corresponding to the four largest eigenvalues.

3.1.2 Convergence of the Two-body Interaction In the Collective Subspace

Equipped with the collective subspace, we proceeded by solving for χij using Eq. (21) and
stored the values in a Nnat ×Nnat (61 × 61) matrix X. We then performed SVD on X and
expressed it in component form using Eq. (28), which then allowed us to construct the Qs(x)
functions needed to expand the interaction in the collective subspace in the form of Eq. (31).
In Fig. (3), Qs(x) have been plotted for s = 1, 2, 3 and 4. It is apparent that there are a lot
of similarities between the natural states shown in Fig. (2) and the set of Qs(x) functions
shown in the figure below. This is a consequence of Uks in Eq. (30) having very small values,
except along the diagonal, such that Qs(x) filters out most of the natural states, beside the
one corresponding to the index s.

Let us now analyze the performance of the decomposition as given by Eq. (31). In Fig.
(4) the root-mean-square-logarithmic error (RMSLE), see Appendix B for definition, of the
average energy is plotted for different values of N in Eq. (31). From this figure it is evident
that the energy converges towards the exact value. The RMSLE also decreases linearly with
N , first with one inclination and then with another more steeper. It then settles around
N = 27, above which higher precision is unattainable. It is therefore unnecessary to consider
terms above N = 27 since these do not reduce the error by any margin.
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Figure 3: The first four Qs(x) functions corresponding to s = 1, 2, 3 and 4.

Figure 4: The root-mean-square-logarithmic error (RMSLE) of the average energy against the
number of terms N in Eq. (31). In this figure all 61 natural states are used.

Moreover, in Fig. (5) the RMSLE of the average energy has been plotted against the amount
of compression of the two-body interaction. From this figure, we see that a compression of
around 95 % results in the interaction being fully retrieved, within the numerical precision of
the algorithm, in the collective subspace. Generally, an error of around 10 keV is acceptable
in practical calculations, which would correspond to a compression of about 97 %. Moreover,
the time it takes to run many-body calculations is, for many methods, proportional to the
information content of the interaction representation. Therefore, the obtained reduction in
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information to about 3 % should correspond to the reduction in run time of full calculations
applying the compression method.

Figure 5: The root-mean-square-logarithmic error (RMSLE) of the average energy against the
compression of the two-body interaction.

Lastly, in order to minimize the number of terms needed in Eq. (31) to attain the highest
possible precision, it is fruitful to study the interplay between N and the number of natural
states used, that is, Nnat. Hence, in Fig. (6) a heat map of the RMSLE of the average energy
is shown with N on the vertical axis and Nnat on the horizontal axis. From this figure we
observe some interesting features. Firstly, the upper triangular part is all yellow, signifying
the fact that the maximum number of singular values is equal to the number of natural
states. Secondly, for all values of Nnat, the minimum RMSLE is given by Nnat = N . In fact,
increasing Nnat, while keeping N fixed, actually increases the RMSLE until it saturates, most
notably so in the lower black region where the RMSLE is smallest. This is possibly due to the
natural states deviating from their orthogonality as a result of numerical faults. To remedy
this, it has been argued that choosing natural states based on their orthogonality, rather
than discarding eigenvalues below a certain limit ε, is a more numerically stable method for
constructing the collective subspace [16]. Lastly, we see that Nnat = N = 25 minimizes the
number of terms needed in order to achieve the highest possible precision. Note, however,
from Fig. (4) we previously got N = 27. This discrepancy is most definitely due to the
collective subspace being inadequate, consisting of 61 natural states. Indeed, looking at Fig.
(6), we see that for Nnat > 38 we can not enter the region where the RMSLE reaches its
smallest value.
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Figure 6: The root-mean-square-logarithmic error (RMSLE) of the average energy for different
values of N and Nnat.

3.2 Convergence of the Representation of a Three-Body Interac-
tion

3.2.1 Constructing The Collective Subspace

The space was built from 35 shifted densities, together with their corresponding Hartree
potentials, and is shown in Fig. (7). The densities and Hartree potentials were defined over
an interval of length 5 fm, which was sub divided into a mesh line consisting of 250 points.
This somewhat smaller space was used such as to make computations less demanding. Fur-
thermore, this space was chosen for the same reasons as in the two-body case, its simplicity.
It also analogous to the space used in the two-body case, justifying the comparison between
the performance of the representation of a two and three-body interaction respectively. The
same values for ρ0 and a as shown in Tab. (1) were used to construct the densities. The
potential depth and range of the three-body interaction is shown Tab. (2) and was likewise
adopted from [5].

The collective subspace, Ω, was similarly constructed by first diagonalizing the 70 × 70
overlap matrix, keeping only the eigenvalues greater than ε = 10−10, and then applying Eq.
(11). This resulted in a total of 38 natural states, the first four of which are plotted in Fig.
(8). Their shapes can be seen to imitate those in Fig. (2), although, their amplitudes are
slightly larger and their characteristics somewhat deviates from ordinary standing waves.
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Table 2: Parameters used to define the three-body interaction.

V
(3)
0 [MeV] a(3) [fm2]

600 1.25

Figure 7: The space is defined, on a interval of length 5 fm, by 35 shifted densities and their
corresponding Hartree potentials. Top: the shifted densities ρn(x). Bottom: the Hartree potentials

Γ
(3)
n (x).
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Figure 8: The first four natural states corresponding to the four largest eigenvalues of the overlap
matrix.

3.2.2 Convergence of the Three-body Interaction In the Collective Subspace

We then continued by solving for the coefficients χijk and stored the result in a 38× 38× 38
tensor X . The 1-mode matrix unfolding of this tensor was then calculated, resulting in a
38× 1444 matrix X(1). The orthogonal matrix U was then formed from the eigenvectors of
the 38×38 matrix X(1)X

T
(1). The core tensor was thereafter calculated using Eq. (51), which

ultimatedly allowed us to express χijk in its Tucker form, namely, as in Eq. (50). Lastly,
the QIJK(x) functions was computed using Eq. (53) and the three-body interaction was
represented as Eq. (54). In Fig. (9) a subset of QIJK(x) functions are shown for different
values of I with J = K = 0.

Figure 9: The QIJK(x) functions for different values of I with J = K = 0.
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In Fig. (10), the logarithmic absolute error (LAE) of the potential energy of the density
centered at xn = 5/4 has been plotted for different values of NI = NJ = NK . The behavior
of this error is not as evident as for the two-body interaction. The error decreases somewhat
linearly until it reaches a plateau, where it momentarily stops decreasing, and after this
plateau is surpassed, the error starts decreasing again. In Fig. (10) two such plateaus can be
seen, after which the error saturates at NI = NJ = NK = 15. Note that the number of terms
in Eq. (54) is equal to NI ·NJ ·NK , and so, for the interaction to be exact in the collective
subspace it appears that a total of 3375 terms would have to be included. In reality, since
QIJK(x) is symmetric under permutations of its first two indices, some of these terms would
be equal and therefore unnecessary to compute more than once. Instead, one would only
have to compute 1800 terms, which are unique, to reach the smallest error.

The ability of the representation in Eq. (54) to reduce the amount of numerical calcula-
tions is better appreciated by Fig. (11), where the LAE of the same density as in Fig. (10) is
plotted against the compression of the interaction. We then see that a compression slightly
above 97 % corresponds to the interaction being exact in the collective subspace, and with
an error of around 10 keV, the interaction is compressed by almost 99.9 %.

Figure 10: The logarithmic absolute error (LAE) of the potential energy of the density with xn = 5/4
for different values of NI = NJ = NK . Observe that the number of terms in Eq. (54) is equal to
NI ·NJ ·NK .
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Figure 11: The logarithmic absolute error (LAE) of the potential energy of the density centered at
xn = 5/4 against the compression of the interaction for NI = NJ = NK .

4 Outlook

In conclusion, the performance of the symmetry adapted representation of a two-body inter-
action was analyzed in a system of one dimensional Gaussian particle densities. The results
shows that the interaction under consideration could be compressed by about 94 % while still
remaining exact in the collective subspace. It was also found that in order to optimize the
resolution of the interaction, the number of singular values should be equal to the number
natural states spanning the collective subspace. It is, however, unclear whether this applies
more generally or if it is just the case in this particular instance.

Moreover, the corresponding representation of a three-body interaction was derived using
Tucker decomposition and was similarly shown to be very proficient in compressing the inter-
action. A compression by about 97 % then resulted in the interaction being fully recovered
in the collective subspace.

To put things in perspective, by a rough estimate, assume that the time it takes to
run a realistic computation involving two and three-body interactions is proportional to the
number of unique Q(x)s and Q(x)IJK in Eq. (31) and Eq. (54) respectively. For Eq. (31),
the number of unique Q(x)s is simply equal to the upper bound in the sum. In Eq. (54),
however, there will be N2(N + 1)/2 unique Q(x)IJK for NI = NJ = NK = N . We are then
able to appreciate how much longer computations involving three-body interactions would
take compared to two-body interactions if the same resolution is desired. For instance, in
Fig. (4) we have that N = 9 is necessary in order to achieve an error of around 100 keV for
two-body interactions. Likewise, by Fig. (10), an error slightly below 100 keV is attained
for NI = NJ = NK = 3 in the three-body case. This translates into 18 unique Q(x)IJK , and
so, comparatively, the three-body calculation would roughly take twice as long. Similarly,
an error of 10 keV requires 13 unique terms for the two-body case and 40 for the three-body
case. Consequently, in this instance, the three-body calculation would take about 3 times
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longer.
The method does, however, suffer from limitations in its current state. The symmetry

adapted representation of a three-body interaction is not yet fully developed in three di-
mensions, neither is spin or isospin taken into account. Nevertheless, the results looks very
promising and extending the method beyond these limitations is therfore highly warranted.
Furthermore, the method could most likely be developed even further as to include higher-
body interactions. After all, higher-body forces can equivalently be expanded in a collective
subspace and tensors of arbitrary order can likewise be decomposed using HOSVD.
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Appendix A

Let X be a (I1 = 2)× (I2 = 2)× (I3 = 2) tensor with the 3-mode slices

Xi1i21 =

[
1 2
3 4

]
(55)

and

Xi1i22 =

[
5 6
7 8

]
. (56)

We wish to calculate the 1-mode unfolding of this tensor, which will result in a I1 × (I2I3) =
2× 4 matrix X(1). The tensor element x111 = 1 will map to the matrix element (1, j), where
by Eq. (43)

j = 1 +
3∑

k ̸=1

(ik − 1)
k−1∏
m ̸=1

Im = 1 + (i2 − 1) · 1 + (i3 − 1) · 2 = 1. (57)

The tensor element x221 = 4 will map to the matrix element (2, j), where

j = 1 +
3∑

k ̸=1

(ik − 1)
k−1∏
m̸=1

Im = 1 + (i2 − 1) · 1 + (i3 − 1) · 2 = 2. (58)

Performing the same operation on the 6 other tensor elements will then result in the matrix

X(1) =

[
1 2 5 6
3 4 7 8

]
. (59)

Furthermore, consider the 1-mode product of this tensor with the 2× 2 matrix

U =

[
2 2
2 2

]
. (60)

This will result in a new tensor M, also of size 2 × 2 × 2, and by Eq. (45) its elements are
given by

M1i2i3 =
2∑

i1=1

xi1i2i3u1in = x1i2i3u11 + x2i2i3u12 = 2x1i2i3 + 2x2i2i3 (61)

and

M2i2i3 =
2∑

i1=1

xi1i2i3u2in = x1i2i3u21 + x2i2i3u22 = 2x1i2i3 + 2x2i2i3 . (62)

Hence, its 1-mode slices, which in this case incidentally are the same, are thus equal to

M1i2i3 ,M2i2i3 =

[
8 24
16 30

]
. (63)
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Appendix B

The RMSLE of the average potential energy is defined as

RMSLE = log

√∑N
i=1(Êi − Ei)2

N
, (64)

where N is the number of densities, Êi is the actual potential energy and Ei is the potential
energy calculated using the representation. The LAE of the potential energy of a single
density centered at xn is given by

LAE = log |Ên − En|. (65)
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