

Surveying inner source adoption in

IKEA

By Alexander Malm

Supervisor: Christin Lindholm Examinator: Christian Nyberg

©Alexander Malm, 2023

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

Abstract

Open source has lately been gaining more traction and recognition

in the software industry. The practices are being implemented within

various organisations through an approach known as inner source,

which involves taking the principles and practices that have been

proven effective in open source environments and applying them

within an internal context.

This thesis focuses on an exploration of IKEA's current software

development processes, aiming for assessing the potential of inner

source adoption by surveying several developer teams.

Utilizing the Goal-Question-Metric (GQM) methodology, critical

performance metrics were identified and used to gather the team’s

development metadata from their GitHub code repositories. This data

was then analysed and assessed in combination with the current best-

practices of inner source development.

Recommendations based on the findings include ensuring

comprehensive documentation, fine-tuning testing practices and

adherence to test results, ensuring pull request management processes

and increasing project visibility within the organisation. Addressing

these aspects could help facilitate the adoption of inner source practices

in IKEA, bringing benefits not only to the developer teams but to the

entire organisation.

Keywords: Inner source, GitHub, GrimorieLab, metrics, KPI,

repository analysis

Sammanfattning

Open source-baserad utveckling har senaste åren mött ökat intresse

och erkännande inom mjukvaruindustrin. Dessa metoder anpassas och

implementeras inom olika organisationer, så kallad inner source, vilket

innebär att principer och metoder från open source-utveckling

tillämpas inom en intern kontext.

Detta examensarbete fokuserar på en granskning av IKEAs

nuvarande mjukvaruutvecklingsprocesser genom att undersöka flera

utvecklarteam, med målet att bedöma möjligheten för utveckling med

inner source-metodik

Genom att använda Goal-Question-Metric (GQM)-metodik

identifieras kritiska mätvärden som sedan användes för att samla in

teamens metadata från deras källkod på GitHub. Denna data

analyserades och jämfördes med de nuvarande bästa praxis för inner

source-utveckling efter resultat från litteraturgranskning.

Resultaten leder till en rekommendation för vad IKEA ska ha i

åtanke vid fortsatta inner source-initiativ: säkerställa dokumentation,

finjustering av testrutiner och acceptanskriterier, förbättrad

hanteringen av pull request-processer i delar av utvecklingen, samt

ökat synliggörande av teamens produkter och dess tekniska lösningar.

Med dessa rekommendationer i åtanke har implementering av inner

source-utveckling på IKEA större chans att lyckas, och kan medföra

fördelar för utvecklingsteamen och också för hela organisationen.

Nyckelord: Inner source, GitHub, GrimorieLab, mätvärde, repository

analys

Acknowledgments

Without the invaluable assistance and direction provided by my

supervisors at IKEA, Oihsik Sarkar and Supriya Chatale, along with

the collective efforts of everyone at IKEA who lent a hand throughout

the spring, this bachelor’s thesis would not have been possible. I also

want to thank my supervisor at LTH, Christin Lindholm for providing

critical input and assistance writing the thesis.

Alexander Malm

Contents

1. Introduction ... 1

 Background .. 1

 Purpose .. 2

 Goals .. 2

 Problem definition ... 3

 Delimitations ... 3

 Motivation for thesis ... 3

2. Technical background .. 5

 Inner source and inner source practices 5

 Goal Question Metric-methodology ... 6

 GrimorieLab ... 6

 Docker and Docker Compose .. 7

 Windows subsystem for Linux ... 7

 GitHub REST API .. 8

 GitHub pull request ... 8

 GitHub Actions and GitHub Checks ... 8

 Visual Studio Code ... 9

3. Methodology ... 10

 Thesis work process .. 10

 Information gathering and planning ... 11

3.2.1. Literature review ... 11

3.2.2. Understanding IKEA ... 12

3.2.3. Thesis planning .. 12

 Metric identification and data gathering 12

3.3.1. Interviews with developers ... 12

3.3.2. Identifying development metrics .. 13

3.3.3. Gathering repository metadata ... 14

 Analysing ... 14

3.4.1. Data analysis .. 14

3.4.2. Recommendation .. 15

 Source criticism ... 15

4. Analysis .. 16

 Inner source goals ... 16

 Understanding IKEA ... 17

4.2.1. IKEA’s software development ... 17

4.2.2. Developer teams ... 17

 Identified metrics .. 19

4.3.1. Document availability .. 20

4.3.2. GitHub Check failrate on merge .. 23

4.3.3. Time-to-close ... 25

4.3.4. Visibility ... 26

 Gathering and visualising the data .. 27

4.4.1. Repository and data selection criteria 27

4.4.2. Using GrimorieLab ... 28

5. Results ... 30

 Results from identified metrics ... 30

5.1.1. Document availability .. 30

5.1.2. GitHub Checks failrate on merge .. 33

5.1.3. Time-to-close ... 35

5.1.4. Visibility ... 37

 Recommendation for IKEA .. 38

6. Conclusion ... 41

 Ethical aspects ... 42

7. Future work ... 43

8. Terminology ... 44

9. References ... 45

Appendix A: Extended Material .. 48

1

1. Introduction

This chapters describes the goals and purpose of the bachelor’s

thesis work, as well as the necessary background information needed

to understand the scope and delimitations.

 Background

IKEA is perhaps mostly known for their furniture, warehouses and

Swedish meatballs. A large organisation with stores all over the world.

The technical aspects of such a global organisation require a significant

investment of time and resources and are an essential element to the

organisation's success in a quickly evolving digital landscape [1].

IKEA consists of numerous subsidiary companies. The focus of

this thesis work is on INKA, which is the largest of these subsidiaries

owning a majority of the warehouse locations around the world. In this

thesis work, the term "IKEA" will be used to refer to INKA, in

accordance with the company's practice of using the parent brand name

when further distinction is not necessary.

In large organisations such as IKEA, many teams of developers

might simultaneously be trying to solve the same problems,

unknowingly of other's efforts. To handle this issue, IKEA has

initiatives to promote internal sharing and contribution of the software

development process. This practice is often called inner source and can

be described as the application of open source development practices

within a local context [2][3]. Common practices in open source

development include collaboration, transparency, peer review of code,

and code reuse, providing benefits such as increased code quality,

faster time-to-market, and improved knowledge sharing across teams

[4].

This thesis work will to some extent be conducted in collaboration

with Mandana Khasayar from Blekinge Tekniska Högskola. The

overreaching purpose will be to examine software development teams

2

in the context of inner source but from two distinct viewpoints,

presented in one bachelor's and one master's thesis. The work presented

in this thesis involves the strategy of identifying key development

metrics, obtaining GitHub repository metadata that corresponds to

these metrics, and analysing the data. The goal is to comprehend the

team’s current development practices and ultimately assess their

potential for adopting inner source methodologies. Meanwhile, the

other work will evaluate the teams' maturity and readiness for inner

source by assessing their team environment, culture, and attitudes, and

present the result in another thesis work.

The outcomes of these studies will offer distinct assessments of the

overall state of several IKEA software development teams, using two

different methods. Each will present recommendations based on our

unique findings, proposing potential strategies that IKEA may

contemplate if they decide to pursue inner source initiatives in the

future.

 Purpose

This thesis work will survey the current practices and priorities of

a few developer teams within IKEA, using identified key metrics for

software development goals regarding inner source. The results from

the team’s data will be analysed in order to propose recommendations

for IKEA’s continued inner source initiatives.

 Goals

The goal of this thesis work is twofold. Firstly, an understanding of

the current inner source research will be obtained in a literature review.

With an understanding of IKEA’ software developer processes,

interviews will facilitate identification of metrics relating to inner

source.

Secondly, the gathered metrics will be used to compare the teams

and assess a general state within IKEA’s developer team regarding

inner source. With a literature review of current research, an

assessment will be given for how IKEA can proceed with inner source

initiatives.

3

 Problem definition

This thesis will answer the following questions:

1. What are the general software development processes within

IKEA?
2. What metrics from the repositories’ metadata can be used to

evaluate teams in regard to inner source?

3. What conclusion can be drawn from the gathered metrics

regarding the current state of software development?

4. What recommendations can be given to IKEA consider future

inner source initiatives?

 Delimitations

This work will focus on a select few teams chosen by IKEA to

conduct the survey. IKEA encompasses numerous developer teams

and adheres to relatively lenient guidelines concerning software

development processes, leading to the adoption of various

methodologies across the organisation. Consequently, the repository-

centered approach of this thesis work might not accurately describe the

teams using other tools of some capacity, for example other platforms

for collaboration and communication. Additionally, the development

metrics do not measure the quality or effectiveness of a developer team

or their processes, they are utilised to assess the potential for adopting

inner source practices within the team.

 Motivation for thesis

The advantages of inner source development have become more

well established and seen wider usage with positive outcomes, which

IKEA could potentially benefit from. Benefits such as increased

development time and increased developer satisfaction would benefit

the digital progress within IKEA. An increased knowledge of these

processes in professional and academic contexts will also bring the

benefits to the overall society.

4

For the author of this thesis, being able to engage in the early stages

of inner source adoption was a very exciting prospect. Especially in

and global and stimulating environment such as IKEA.

5

2. Technical background

This chapter explain the tools and software used for gathering the

data from the developer team’s code repositories, as well as some of

the important software development practices and methodologies

which are of importance for understanding this thesis work.

 Inner source and inner source practices

Inner source is a collaborative software development methodology

that applies the principles of open source development to projects

within an organization. It promotes the sharing of knowledge and

expertise across teams, and have been shown to result in improved

efficiency, innovation, and employee engagement [2][4]. It also fosters

collaboration and breaks down silos, meaning isolated development

with low or little external insight and input [5][6].

Although here’s no exact definition of the practices, Inner sourced

development consists of several key components:

1. Open communication and transparency: Encouraging open

communication and sharing of information helps build trust

among team members and fosters an environment beneficial

for collaboration.

2. Code sharing and reuse: Inner source practices promote

sharing code, libraries, and components across teams, thus

reducing redundancies. This enables teams to build upon

each other's work.

3. Peer review: Emphasizing peer review helps maintain code

quality and ensures that contributions adhere to established

standards. For IKEA, GitHub is the source control system of

choice and a platform for code reviews using pull requests.

4. Meritocracy and contribution-driven culture: Recognizing

and rewarding contributions based on merit.

5. Documentation and knowledge sharing: Providing

comprehensive documentation, guidelines, and best practices

helps ensure that team members understand the expectations

and processes involved in inner source development.

6

 Goal Question Metric-methodology

The Goal-Question-Metric (GQM) methodology will be employed

to identify crucial aspects of the teams' software development

processes [7]. Which will be used to identify key development metrics

concerning inner source.

The GQM-approach during the thesis work has been a 4-part

process.

1. Information gathering and planning: Gather information

regarding inner source and IKEA’s software development

practices, as well as planning the course of the survey.

2. Goal: Identifying IKEA’s goals for software development

using inner source practices, from a software developer’s

perspective.

3. Question: Once the goals are defined, the next step is to devise

a set of questions that characterises the current processes of

software development regarding the goals.

4. Metric: The final step involves defining quantitative metrics

that can be used to answer the questions formulated in the

previous step. One metric can correlate to several of the goals.

The metrics provide a means to collect data and assess the

effectiveness of improvement efforts concerning the defined

goals.

 GrimorieLab

GrimoireLab is an open source software tool that is designed to

support the analysis of software development and community activity

data [8]. GrimorieLab is the main method of gathering the data for this

thesis work. It provides a set of integrated tools that enables a range of

analyses on data from various sources, including code repositories.

An important feature of GrimoireLab is modular architecture. One

of the more important tools is Perceval, the component used for

retrieving data from various sources and APIs. Two others of its

modules are built on the open source tools Elasticsearch and Kibana.

Elasticsearch is a search and analytics engine that handles large

volumes of data. It provides near real-time search functionality and

7

event data analysis [9]. Kibana is a tool for visualization and

exploration [10].

The key feature of GrimoireLab is the ability to generate a wide

range of visualizations that can help to gain insights into the patterns

and trends that underlie software development, and will be used in this

work to analyse the teams.

 Docker and Docker Compose

Docker provides a way to build and manage containers using a

simple command-line interface [11]. The interface can then be used to

build an image from a specification called a Dockerfile, which

describes dependencies and configurations for an application. The

resulting image can be run in a container on any system that supports

Docker. Effectively, this makes individual computer’s operational

system (OS) a non-issue, enabling the images to be used without the

need for different configurations.

Docker Compose is a tool that allows developers to define and run

multiple images [12]. With Docker Compose, developers can define a

set of images that make up an application and specify how they should

be configured and connected to each other, facilitating creation and

management of complex applications.

GrimorieLab can be installed locally by cloning the individual

components from the GitHub repositories and setting them up

individually. For this thesis work however, GrimorieLab’s Docker

Compose image was used [13].

 Windows Subsystem for Linux

A prerequisite to run Docker and Docker Compose with a Windows

OS is to use Windows Subsystem for Linux (WSL) [14]. It is a feature

that enables Linux applications to run natively on Windows. It provides

a compatible interface with the capability to run Linux tools and

applications. Essentially, WSL enables developers to access the Linux

command line tools and utilities from within the Windows

environment.

8

 GitHub REST API

The GitHub REST API allows developers to work with many

different resources such as repositories, pull requests and issues by

enabling programmatic interaction with GitHub through HTTP

requests [15].

GrimoireLab’s backend tool, Percival, can gather a wide range of

data, however it doesn't encompass the functionality for supporting the

data gathering needed for this thesis work. To address this, custom

Python scripts accessing the GitHub REST API were developed.

 GitHub pull request

A GitHub pull request (PR) is a process that allows developers to

propose, review, and merge code changes within a repository [16]. The

process starts by creating a new branch of the repository’s code to work

on a feature or fix a bug. Once the changes are made, the branch with

the new code is pushed to the repository which initiates a pull request.

During the pull request, others can review the proposed changes and

provide feedback. If some part of the suggested PR needs to be changed

after review, a new commit will be made on the branch, Once the

review is complete, and any requested changes are made, the pull

request can be approved, and the branch merged with the source code.

The pull request process is an integral part of IKEA’s continuous

integration/continuous deployment (CI/CD)-pipelines [17], a process

of software development practice aiming for frequent releases with

small updates to the source code.

 GitHub Actions and GitHub Checks

GitHub Actions is an automation platform that integrates with

GitHub repositories to enable CI/CD pipeline services and handle tasks

such as executing tests, building, and deploying code. Within the

GitHub Actions platform, a workflow is a predefined series of tasks,

called jobs, that are orchestrated in a specific sequence. Triggered by

events like pull requests, workflows automatically initiate and carry

out the designated jobs such as running tests, building code, and

9

managing other aspects of the pipeline process, such as division of code

reviews [18].

GitHub Checks is an API and user interface integration that allows

developers to view the results of the workflow jobs directly within

GitHub [19]. This simplifies code review and collaboration by

displaying check results in the pull requests menu as shown in Figure

1, a screen dump from GitHub Checks’ official repository [20]. A

check can show a few different statuses on job completion, such as

passed, fail, cancelled and more. For this thesis it’s important to note a

cancelled check counts as a fail when overviewing checks from the PR

menu. A complete log can be found by looking at the individual

commits.

Figure 1. Results from workflow jobs, showing as GitHub Checks on a PR

 Visual Studio Code

The IDE Visual Studio Code (VSCode) was used in the process of

developing Python scripts [21]. It is a free source code editor developed

by Microsoft. It supports numerous programming languages and

provides features like syntax highlighting, code completion, and

debugging. For this work, the necessary scripts were written in Python

using VSCode’s Python extension.

10

3. Methodology

This chapter describes the process and methods used during the thesis

work.

 Thesis work process

The process of this thesis work has been iterative, however there

have been three major phases, with separate steps as seen in Figure 2

[22]. The phases are:

1. Information gathering and planning-phase

2. Metric identification, and gathering-phase

3. Analysis phase

There has been much overlap of the phases due to the iterative

approach. For instance, the comprehension of IKEA's team’s software

development practices has been a continuous learning experience that

extended well into the third phase.

Figure 2. The iterative process for the thesis work

The first phase, information gathering and planning, can be further

divided into three steps: Literature review on inner source, gaining an

understanding of IKEA’s software development practices, and thesis

planning. The planning included choosing the methodology for

identifying development metric.

11

The second phase, identifying and gathering metrics, consisted of

three stages: interviews with developers, identifying the development

metrics, and gathering the data by configuring GrimorieLab and

writing custom scripts.

In the final phase, the analysis phase, the collected data was

combined with an evaluation of the gathered research material to

present the results of the teams, and finally determine

recommendations for IKEAs continuous inner source initiatives.

 Information gathering and planning

The first phase consisted of an information gathering on inner

source, gaining an understanding of IKEA’s software development

processes and company culture, and lastly project planning, including

methodology specification for metric identification.

3.2.1. Literature review

The initial stage encompassed gaining an understanding of the

fundamental principles and practices of inner source. To achieve this,

an information gathering was undertaken. As the concept of inner

source is still new, no books were found. The criteria for choosing the

research are explained in chapter 3.5. The literature review was

conducted by gathering research papers found using Google Scholar

and LUBsearch, or found in reference lists of other papers, 14 papers

were selected based on the criteria. The search words were variations

of “inner source” “inner source practices” and “organisational open

source”. Of the 14 papers, 5 were used for this thesis. While the other

9 fulfilled the criteria, the specific areas of research of the papers were

not aligning with the purpose of this thesis. A significant insight from

the information gathered revealed that although metrics and inner

source have been discussed, such as [2][4], research on inner source

metrics is not yet well-established. Also, no research found mentions

the processes of individual developer teams. This posed a challenge

during the thesis work, as limited guidance was available to determine

the most suitable direction. This situation also granted the flexibility to

explore and experiment with different approaches.

12

3.2.2. Understanding IKEA

This secondary step involved acquiring an understanding of IKEA's

development process, which was partly obtained through accessing

their internal platforms for documentation and communication. Access

to Confluence, IKEA’s main platform for documentation, provided

insight into their internal processes and development guidelines [23].

The company's Slack platform provided valuable insights into various

internal communication channels [24]. This opportunity allowed the

author to gain a deeper understanding of the organizational culture and

dynamics. Moreover, the guidance provided by IKEA supervisors and

others in the organisation greatly contributed to a better understanding

of the day-to-day operations.

3.2.3. Thesis planning

With the initial stages concretised, a project plan was developed

encompassing the major milestones of the thesis work and an

estimation of the time required to complete each stage.

During this stage, the decision of using the GQM-methodology was

also made and planned for, The GQM-approach described in chapter

2.1 was chosen partly because of the author’s familiarity with the

methodology, but also because of practical examples of it being used

for the purpose of identifying inner source metrics [25].

 Metric identification and data gathering

The second phase involves utilizing IKEA’s inner source goals, to

develop questions for the interviews, and using the developers’

answers to identify and gather development metrics. This includes

configuring GrimoireLab, writing necessary scripts and ultimately

collecting data from the development team's repositories.

3.3.1. Interviews with developers

Using the GQM-approach, 7 developers were interviewed.

Typically, they were senior DevOps engineers, and all selected by the

supervisors at IKEA. The interviewees were picked based on their

experience in IKEA or open source-related development. Semi-

13

structured interviews were chosen, which implies the interviews

consist of a series of questions that can be flexibly adjusted based on

the interviewee's responses, allowing for a more in-depth exploration

of the participants' perspectives and experiences [26]. The semi-

structured interview method was selected, in part, due to the author's

limited experience with professional software development, which

would make it challenging to ask relevant questions. Open-ended

questions also allowed to prompt follow-up questions on tangents or

topic that needed clarification. An initial interview guide was

developed as seen in appendix A-1. For each of the inner source goals,

one or more questions were asked, allowing developers to describe the

essential aspects of their development in relation to the respective goal.

As outlined in chapter 1.1, the approach of this thesis work was

partially a joint effort. Questions related to Mandana’s readiness

assessment survey were asked during the same interviews. Although

the primary purpose of these questions aimed at metric identification,

they enhanced the understanding of IKEA's general processes and

facilitated the improvement of the interview guide. After each

interview the answers were reviewed, and the guide was continuously

refined as this work’s author's comprehension of the subject deepened.

The interviews were mostly conducted with single developers face-

to-face, online. In addition to providing crucial information for

identifying metrics, the interviews revealed some vital practices that

aided in determining how to gather the data, for example explanation

of their use of automated tests in their CI-pipeline proved essential for

the GitHub Checks-metric which will be described in chapter 4.

One of the interviewed developer’s team was technically part of

one of IKEA's other subsidiaries, Inter IKEA. As a result of the

organisational structure, access to this team's repositories were not

granted and no repository data could be gathered and analysed from

this team.

3.3.2. Identifying development metrics

To pinpoint the metrics, the open-source community CHAOSS's

metrics were referenced to try to enable the use of industry-established

14

standards [27]. This proved however not to always be possible after

analysing the responses from the interviews, and customised metrics

were needed as will be described in chapter 4. These custom metrics

were based on the interviewed developer’s descriptions of their

processes and 2 internal development guidelines:

Engineering baseline, specifies that every repository should contain a

readme-file, containing information and documentation about the

repository. It also specifies that it should contain a link to additional

documentation of the product.

Repository prerequisites, a document from The Open Source

Program Office (OSPO), a department within IKEA responsible for

overseeing open source projects as well as certain internal source

initiatives. Specifies documents in repos teams should have if aiming

to inner source their products.

3.3.3. Gathering repository metadata

The third step consists of setting up the necessary tools and gather

the repository metadata. GrimorieLab, Docker, Docker Compose and

WSL were used as described in chapter 2, as well as using VSCode to

write scripts. 56 repositories belonging to 6 teams were used for the

analysis, the process of sorting the repositories of the teams is

described in 4.4.1. The repositories were obtained through a custom

Python script.

 Analysing

The last phase consisted of analysing the gathered data and

combined with the findings from the literature review, conclude in a

recommendation for how IKEA can proceed going forward.

3.4.1. Data analysis

The data gathered from the developer team's repositories were

analysed in order to assess team's performance concerning the

identified inner source goals. Both the average team’s data as well as

interesting observations from repositories will be used for this purpose.

GrimoireLab provides gathering and visualisation capabilities of the

visibility and time-to-close metrics used in this thesis, but to ensure

15

consistency and not disclose the team and repository names, scripts

were utilized for generating all graphs and tables shown in chapter 5.

3.4.2. Recommendation

The combination of data from the metrics, information about IKEA

and the development processes, and research findings from the

literature reviews, helps identify critical success factors, potential

obstacles, and best practices for implementing inner source approaches

for the development teams in IKEA.

 Source criticism

The credibility of the sources was based on the following criteria:

First, the credibility of the sources was assessed by assessing the

publisher, prioritising articles that were peer-reviewed. Second, a

preference was given to more recent articles to ensure up-to-date

information.

Sources numbered [8]-[16], [18]-[21], [23]-[24], [27]-[28], and

[32] are directly tied to the respective tools or official documentation

websites, ensuring the accuracy of the information they provide.

Sources [1]-[2], [5], [22], [26], [29] and [31] are valid considering the

publication in peer-reviewed journals, ensuring scholarly merit.

Sources [3]-[4], [6], [14], [17], [33]-[37] are published from

conference papers. Source [7] and [25] are from a book published by a

reputable scientific publisher and a practical, empirical guide. Finally,

the methodologies in references [29]-[30] adhere to the descriptions

provided by their respective originators.

16

4. Analysis

This chapter presents the outcomes and discoveries obtained

through the employed methods, while also providing motivation for the

decisions made throughout the process.

 Inner source goals

The process of the GQM-survey involved determining the

expectations IKEA had for inner source development, and how the

goals could be used to determine development metrics. To pinpoint the

goal, the supervisors in IKEA were questioned regarding their

expectations for software development using inner source practices,

yielding the goals as seen in table 1. The goals are numbered without

inherent prioritization and will be used when motivating the metrics in

following chapters.

Table 1. Description of IKEA's inner source goals

Goal Description

1. Reduce silos Removal of barriers that limit

collaboration between teams

2. Reduce bottlenecks Lessening limiting factors that

impedes development

3. Reduce development time Shorten the duration required to

complete a project.

4. Improve quality Increased quality of the product

and the development process

5. Increase reusability Reuse of code and components

6. Increase knowledge sharing Increased communication, ideas,

and expertise sharing among

teams

17

Using the goals, an initial interview guide was developed, seen in

appendix 1-A, with the aim to allow the developers to characterise their

software development processes regarding the different goals.

 Understanding IKEA

This chapters describes the effort of understanding the processes in

IKEA and the developer teams. It presents the finding from the

interviews and motivates the identification of the metrics.

4.2.1. IKEA’s software development

An understanding of the principles of IKEA’s software

development was gained by taking part of internal documentation as

described in 3.2.2, as well as information from interviews and informal

discussions with people in the organisation. IKEA’s software

development can be characterised as open and inclusive. An example

of this is the use of an internally open GitHub Enterprise cloud, an

organizational platform within GitHub with project management and

team administration features [28]. The teams and their products as well

as the corresponding source code and documentation is open and

accessible for anyone within the organisation.

The developer teams are working very autonomously, with few

restrictions on the tools, languages, and methods they deploy. The

openness and transparency observed among IKEA's developers and

inside the organisation is crucial for embracing inner source practices

[2][3][5]. However, the variety of tools, processes, and the

organisational structures also present difficulties for inner source

development [3]. This diversity is a challenge considering the need to

take into account the unique characteristics of each team and their

preferred methodologies.

4.2.2. Interviews with developer teams

During the interviews, a few key discoveries appeared that were

integral for the decision made during the thesis. One of these was that

every team employed agile development processes, with some utilizing

scrum, others kanban, and some a blend of both [29][30][31].

Furthermore, all teams used Jira, a project management tool, to

18

implement the agile artifacts, such as planning using scrum boards or

retrospectives at the end of sprints [32]. Another significant

observation from the interviews was the widespread use of DevOps

practices such as CI/CD-pipelines.

Generally, a single team has ownership and responsibility to

maintain one or a few related products, often consisting of several

different repositories to support the functionalities, as seen in Table 2.

The repositories used in this thesis were filtered and gathered using the

criteria mentioned in chapter 4.4.1. Some teams, such as team A and

B, has ownership of repositories that are codeveloped with other teams.

Table 2. The number of members and repositories of the interviewed teams

The different challenges the teams faced became apparent from

their answers during the interviews. Some teams produce services for

internal use while other caterers to other businesses, leading to

different requirement. Development within the organisation was

described by one developer to be able to not have the same emphasis

on deadlines. Another challenge was technical dept, mentioned by two

of the teams. This refers to previous shortcuts and compromises that

hinders further maintainability and productivity. One teams, team E,

recently inherited the ownership of their current product, and at the

time of the interview described they were in the process of

understanding the different functionalities and write new

documentation since it was previously severely lacking.

One of the teams interviewed, here designated as Team F, stands

out as being the biggest of IKEA's inner source initiatives. Among the

six repositories identified for team F, one is inherently inner sourced

19

and vigorously promoted within IKEA. It serves as a cornerstone of the

company's initiative to inner source development.

Many developers shared similar objectives and faced comparable

challenges, such as utilizing GitHub for version control and adopting

many Agile and DevOps methodologies. Nevertheless, they employed

a diverse array of tools and methods for testing, processing pull

requests, and managing other aspects of the product development.

Team C for example, used highly automated pipelines in many of their

repositories. Notably, they were using bots to complete tasks such as

automated updates of dependencies in several repositories, and in

another, used a bot to push all commits as PR drafts. These differences

made it challenging to compare the team’s different development

processes and posed difficulties when determining how to gather the

metrics that were not covered by GrimorieLab’s functionalities.

Currently, there are not much collaboration among developer teams

across organizational units within IKEA, unless the team’s products

had some level of interaction. Teams within the same domain did

however collaborate to some extent or shared repositories, as seen in

chapter 4.4.2. Another interesting finding from the interviews was the

prevalent use of workshops for many of the teams, where they

presented or were invited by others to try their product or some related

technical challenge.

 Identified metrics

While determining the metrics, open source metrics from the

organization CHAOSS were used as inspiration as described in chapter

3.2.2. When these were not applicable, the internal specifications

Engineering baseline and OSPO’s inner source documents

specifications were used. The result of the developers' answers during

the interviews, as illustrated in Figure 1, shows how IKEA’s inner

source goal were used to correlate with the 5 identified metrics, which

will be described in following chapters. One metric frequently

corresponds to several of IKEA's inner source goals. The metric can be

used to analyse individual repositories as well as the different teams.

20

Figure 3. Identified metrics relating to IKEA’s inner source goals

4.3.1. Document availability

During the interviews, developers emphasised the significance of

available and up-to-date documentation in relation to questions

concerning IKEA’s inner source goals 1, 2, 5 and 6, seen in Table 1.

This highlights the critical role that comprehensive documentation

plays for the purpose of collaboration and promoting the reuse of code

and resources. They did also mention that documentation is a part of

the development that is often found lacking. Research also notes the

problems with missing and low quality documentation for inner source

initiatives, and the difficulties it brings for such initiatives [3].

21

Document usability was the CHAOSS-metric most closely

correlating to the developers’ answers in the interviews concerning the

importance of documentation. For instance, when describing their

approach of utilising APIs or services from another team, where the

first step was to find and read the documentation to understand the

functionalities. Documentation usability is however a well-defined

metric, measuring requires qualitative methods for effective evaluation

which entails conducting in-depth interviews or monitoring of task

completion [33]. These processes can be time consuming and are

beyond the scope of this thesis.

A model for the metric document availability has been proposed by

Matulevičius et al. [34]. Although this model is not directly applicable

due to differences to IKEA's specified documentation set and the

proposed model’s, it inspired the definition of the metric

documentation availability as used in this thesis.

GrimoreLab lacks the functionality to provide metrics related to

documentation, and a custom Python script was developed using the

internal specifications mentioned in chapter 3.3.1, described below in

Table 3.

Document availability is calculated by searching for the specified

documents in the repositories, for the existence of links in the

README as shown by (1), where dn specifies the found documents

and links.

∑𝑑𝑛

6

𝑛=1

 (1)

For the calculation of a team’s documentation availability, the

scores of all repositories are summed and divided by the total number

of the team's repositories.

22

Table 3. Description of the documents used when assessing documentation

availability.

File name Description

Readme Introduces a repository, often

containing information such as

project purpose, installation

instructions or dependencies.

License Outlines the legal rights and

restrictions associated with the

project.

Code owners Specifies the individuals or

teams responsible for

maintaining and reviewing

changes in specific within a

project.

Contributing Provides guidelines and

instructions for potential

contributors who wish to

participate in the project's

development.

Pull_request_template Template for how a pull request

shall me constructed.

The documentation available on GitHub does however not provide

a comprehensive understanding of the team's documentation, as more

and better detailed documentation usually can be found on the

product’s Confluence page. It does offer an indication of the team's

current prioritisation regarding documentation, and what can improve

should the team want to inner source their development. Also worth

mentioning is that even though the team’s repositories have been

sorted, described in chapter 4.4.1, the result of the metric Document

availability don’t consider the activity or importance of the different

repositories. It can be assumed that repositories serving more core

functionalities are more prioritised and valued for documentation

purposes. Taking this into account, the individual repositories shown

in chapter 5.1.1 are also analysed using the number of PRs for each

23

repository. For the team’s score, the average of all the team’s

repositories is used.

4.3.2. GitHub Check failrate on merge

The significance of different software tests for ensuring software

quality emerged as one of the most evident findings from the

interviews and was mentioned by every team, aligning mostly with

goals 4 and 5.

Test coverage, a metric measuring the degree to which an

application's source code is covered by test suites, initially emerged as

a potential metric to address the goals. However, collecting this metric

proved challenging due to the need to get access to the testing tools

employed by the developer teams, which was made more complicated

by the fact that many teams utilized multiple tools for various testing

purposes.

The developer’s processes of ensuring quality of their products

through automated pipeline testing using GitHub Actions, described in

2.9, was an alternative approach for assessing these goals. The use of

GitHub Checks facilities a quick overview of the results from the

workflow jobs. The ability to differentiate the teams based on the

outcomes of jobs using GitHub Checks presents a new challenge: To

evaluate the results of the individual commits in a PR or to use the final

Check results of merged PRs. Using the results from checks on merged

pull requests was chosen, and is motivated by two factors:

1) It shifts focus from the individual tests to the unofficial

acceptance criteria established by the developer teams, as seen by the

number of failed tests the allow to be merged with the source code.

 2) The optimization and deployment of test suits is an extensive

subject outside the scope of this thesis [35].

Although research on inner source and testing is limited [2]. Test

results have been shown in open source projects to have a significant

impact on the likelihood of a pull request getting merged [36].

Additionally, the size and scope of test suites affects the merge rate of

PRs. Automated testing in pipelines increases both external and

internal contribution. However, while a large test suite can increase the

merge rate of PRs originating from within a team, it can also decrease

24

the number of external PRs getting merged. This suggests that teams

with extensive test suites in the pipelines have a higher barrier of entry,

leading to reduced external contribution, and would not be optimal in

an inner source context.

Another aspect to take into consideration when using this metric is

that the workflows the teams use varies significantly. Many workflows

are dedicated to CI/CD-pipeline maintenance tasks, such as automating

pull request drafts or sending notifications for code reviews, which are

not directly related to quality tests. Several teams incorporate quality-

related testing jobs within the same workflows that facilitates pipeline

maintenance, making it to distinguish the two. The results from the

GitHub checks as used in this thesis will provide a measure of CI/CD-

pipeline's effectiveness in terms of a team’s failrate acceptance.

To calculate the metric GitHub Checks on merge of a single

repository. The number of failed and cancelled jobs are divided by the

total amount of jobs on merged PRs in the last 90 days, as seen in (2).

Where jf and jc represents failed respectively cancelled jobs, and N is

total number of jobs on the PRs.

∑(𝑗𝑓𝑛 + 𝑗𝑐𝑛)

𝑁

𝑛=1

𝑁⁄

(2)

The calculation for an entire team is the sum of all cancelled and

failed jobs in all repositories divided by the number of total jobs. As

described in chapter 2.8, the reason both the number of failed and

cancelled tests are used, is because the PR menu in the GitHub

repositories shows them both as failed.

Merged PRs that have not passed all checks do not necessarily

suggest issues with the code. Within a closed development

environment, it's reasonable to assume that teams comprehend the tests

they implement and their associated significance. A failed test could,

for example, be a failed linting check. Linting, in this context, is a kind

of automated software testing that checks code for stylistic or

formatting errors, as well as certain types of programmatic errors [37].

Not all linting failures indicate functional problems with the code. For

25

instance, a linting failure might be triggered by indentation

inconsistencies or trailing spaces, which do not impact the actual

execution or functionality of the code. Therefore, pull request are often

merged even if linting checks have failed. A failed test can also be the

result of the use workflow jobs not correctly covering the submitted

commit.

Direct comparisons of the number of checks or failure rates is a

complex task due to diverse team circumstances and requirements.

Nevertheless, some factors may signal a team's aptitude for inner

source initiatives. In adherence to inner source principles that

emphasize transparency and efficient information sharing, repositories

should ideally aim for a failure rate of zero or near-zero on merged pull

requests [2][30]. In conclusion, teams with either an abnormally small

or large number of jobs, or those with a high failrate acceptance, may

not be the most suitable candidates for inner source development.

4.3.3. Time-to-close

Time-to-close specifies the amount of time between the creation of

a PR until it is closed. A PR is closed when it either has been merged

or it’s discarded by the team or the submitting developer. Time-to-

close was identified based on the developers' descriptions of their

development using GitHub pull requests, relating to goal 3. Because of

outliners in the data, time-to-close is here calculated as the median

time-to-close of the pull requests.

The metric lead time, the duration between specifying and

designing a feature and putting it into production, was initially

considered after analysing the answers from the interviews. However,

similar to test coverage, collecting the data would require access to the

individual teams' process and planning platform Jira. It can also be

assumed that since team-specific activities such as planning and initial

feature design occurs within a confined context of the team, lead time

is not well-suited as an inner source measurement.

The different challenges and requirements faced by the teams

makes it difficult to draw meaningful conclusions or comparisons

using time-to-close alone. When a team's or repository’s time-to-close

falls within a normal range, not much can be inferred. It can however

serve as a benchmark for monitoring the outcomes of inner source

26

practices over time. In cases when the time-to-close is exceptionally

long or short, some assumptions can be made which highlights

practices of the developers. For example, in some repositories the same

developer both pushes and merges PRs after pipeline tests finished, the

same team also had several repositories where the time-to-close was

extremely small. This indicates code review happens face-to-face or

not at all. For the purpose of inner source, not having a clear review

process indicates lack of transparency. A very long time-to-close could

hint towards a lack of engagement of the GitHub processes or other

development process constraints which likewise would indicate less

inner source compatibility.

The research on inner source mentions time-to-market as one of the

established benefits of inner source development [2][30]. No research

has however been conducted specifically regarding time-to-close or

development increments of similar scale. It is unknown whether the

median time-to-close time in regard to individual PRs would increase,

decrease or stays the same when implementing inner source practices.

4.3.4. Visibility

During the interviews, for questions relating to goal 1, 3 and 5,

developers explained the practice of repurposing code from other

teams, usually by forking a repository with the desired functionality.

Additionally, one of IKEA’s internal guideline documentations,

GitHub Guidelines, encourages developers to use GitHub’s integrated

functionality to interact with repositories as described in table 4.

Table 4. Description of component of the metric visibility

Repository action Description

Fork Creates a personal copy of a repository,

enabling experimentation

Star Serves as a bookmark for easy access and

shows appreciation for a project

Watch Allows users to receive notifications about a

repository's updates and activities

27

The number of forks, stars and watches for a repository can provide

insights into the visibility and activity surrounding the repository and

the team and indicates knowledge sharing in the organisation. A

diversity of stakeholders is necessary for a product to be successfully

inner sourced [3]. These three significators for repositories of the teams

will be equally valued for the calculation of the visibility metric.

However, different aspects of a repository can be inferred depending

on which one that’s analysed. A high number of forks indicates that the

product might have functionality reused in other team’s products as

previously described, pointing to the reusability, while a star and watch

more closely aligns with knowledge sharing.

 Gathering and visualising the data

With the metrics identified the next step was to gather and visualise

the data from the repositories. Grimorielab was the main method for

this purpose, complemented with scripts when the functionalities were

lacking.

4.4.1. Repository and data selection criteria

The repositories belonging to the teams could easily be found on

IKEA’s Enterprise GitHub. However, many repositories belonging to

teams were not used for the functionalities of their products and thus

not suitable for gathering when analysis the metrics. In order to account

for this, two criteria were applied when selecting the repositories. To

only select repositories that had been updates in the past year, and to

only get repositories that were not forks. A script was created that uses

the team’s name to produce a JSON file, which was formatted to be

directly utilized for the configuration of GrimorieLab described in

appendix A. While a better selection of repositories could be made by

asking the developer teams what repositories to choose, the decision

was made to filter the repositories in order to get as much data as

possible and not to be influenced by the developers, for example, if

they knew they had repositories they did not used according to set

procedures, there is a possibility the developers would not want this to

be a part of the analysis.

28

For the metrics Time-to-close and GitHub Checks failrate on

merge, the data that will be analysed follows GrimorieLab’s default

time range of 90 days.

4.4.2. Using GrimorieLab

 In the early stages of the thesis, the intention was to solely employ

Python scripts and GitHub REST API for gathering metrics data from

the team’s repositories. During the information gathering,

GrimoireLab was discovered, and its extensive capabilities seemed

valuable considering the insights it could provide about the team's

development processes. Particularly such as the network graph created

and displayed using Kibana, Figure 3. In the graph, the bots pushing

PRs have been removed in order to show the cooperation between

developers. The graph shows pull request collaboration among the

developer teams. The nodes are the highest producing developers based

on the amount of pull requests made, and the size of the edges signify

collaboration between two developers on pull requests. The graph is

not team-member specific, as it also shows other developers who have

contributed to the team’s repositories. Some of the insights gained in

the interviews can also be inferred from the graph. Team D who are

using bots for most of their PRs, teal in the graph, is because of this

seen as a single node. While there is some collaboration between the

teams, they mostly develop independently of each other. Worth noting

is that while Team F, here in tan, expectedly from an inner source

project have more collaboration with other developers than many

teams. Team B, green, has a lot of cooperation with members

originating from other teams, judging by the number of nodes. Looking

into the data shows this is the result of team B having ownership of a

shared repository with many contributors.

29

Figure 4. Pull request collaboration of the interviewed teams

When installing and configuring GrimorieLab, the docker-

compose images were used as described in 2.3-2.4. And are further

specified in Appendix 1-B.

For the metadata which could not be gathered using GrimoreLab, the

metrics GitHub Check failrate on merge ad document availability,

custom Python scripts were developed using VSCode. The graphs and

tables seen in chapter 5 are not from GrimorieLab, for the purpose of

keeping the name of the teams and repositories confidential in

accordance with a signed nondisclosure agreement. Instead, data was

downloaded from GrimorieLab or accessed directly from Elastiscearch

and visualized with development Python scripts.

30

5. Results

In this chapter, the analysis of the team’s gathered metrics will be

presented and conclude in a recommendation for what steps IKEA may

consider going forward with inner source initiatives.

 Results from identified metrics

As discussed in 4.2.2, the GQM-methodology and interviews with

7 developers in IKEA resulted in the identification of the 4 metrics seen

in Table 5.

Table 5. Description of the identified metrics

Metric Description

Document availability The presence of documents and

links in repository based on

IKEA’s internal guidelines

GitHub Check failcheck on merge The average amount of failed

workflow jobs, seen at GitHub

Checks, in merged PRs

Visibility Number or forks, stars and

watchers

Time-to-close Median time a PR remains open

until it is closed

5.1.1. Document availability

 Figure 5 plots the average rating of the team's repositories’

document availability according to the criteria detailed in chapter 4.2.1.

Looking at the team's overall performance, it is apparent that most have

not incorporated the described inner source-related documents. This is

not unexpected, given that most teams don’t use inner source

31

methodologies in their development processes. However, ReadMe and

associated links were present in most repositories.

Figure 5. Documentation availability scores of the teams

 Worth noting is however in team F, the inner source initiative,

can be seen to have slightly higher Documentation availability than

most of the other teams. Especially in repository 1 shown below in

Figure 6. Colour coding the numbers enables efficient overview of the

importance the repositories have when considering the team’s focus of

development.

32

Figure 6. Documentation availability of team F

 It’s worth mentioning that Team F’s Documentation availability

spread of the repositories is an outliner among the teams. Team B,

shown in Figure 7, is a more representative view of the distribution of

the activity in the repositories of the different teams.

For teams wanting to adopt inner source practices, available and

up-to-date documentation is a key factor as described in chapter 4.3.1.

From this point it can be seen in the data that almost all team have

potential for improvement considering the documentation they provide

on GitHub.

33

Figure 7. Document availability scores team C

5.1.2. GitHub Checks failrate on merge

 Figure 8 presents the results for the team’s Checks on merged

PRs and average number of Check. As discussed in section 4.3.2,

merges that fail tests do not necessarily indicate faulty code. However,

they do reflect a lack of regard or prioritisation to the importance of

clear and transparent test results. While this might be acceptable within

a closed development team who knows the inherent characteristics of

their product and tests, an inner source project should aspire to

maintain a low failure rate, as exemplified by Team F.

34

Figure 8. Average number of checks per PR and failcheck ratio of the

teams

Using only the average number of failrate and jobs, displayed as

Checks, as a comparison across teams will as discussed not provide a

clear view of the team’s processes. The number of jobs do however

point towards certain characteristics of the teams. Team A, C and E for

example, shows a relatively high acceptance to failed tests when

merging PRs, while also employing fewer tests than the other teams.

Figure 9 highlights the results from the repositories of Team D,

which proved to be particularly intriguing. As stated in chapter 4.2.2,

the developer outlined their extensive pipeline, which is clearly

reflected in the data. Repository 3 has a significantly high number of

jobs in workflows within their pipeline, which by far exceed any of the

other repositories in any of the teams. If cancelled jobs were not

categorised as fails, as described in section 2.8, the failure check ratio

would be even lower in this particular repository. As discussed in

chapter 4.3.2, a comprehensive test suite in the CI pipeline could

potentially deter external contributions.

35

Figure 9. Average number of checks per PR and failcheck ratio for team D

In conclusion, the suitable number of tests can as discussed not be

generalised simply to assess the teams. An assumption can however be

made that in the current state, teams A, D, and E might may need to

reconsider the tests they deploy or how they evaluate test acceptance,

particularly with regards to the number of workflow jobs, would they

implement inner source methodologies in their development.

5.1.3. Time-to-close

Figure 10 shows the median time-to-close for the different teams,

based on the PRs from the last 90 days. As mentioned in 4.3.3, without

knowing the specific context of the team’s development

characteristics, these number do not signify much about the projects.

Most pull requests get closed the same day and except for team C, there

is generally no big difference between the teams.

36

Figure 10. Median time-to-close of the teams

Looking into specific repositories sheds some more lights on the

practices of the teams which is of interest. Most teams’ repositories

have a division among their time-to-close as shown by team C, Figure

11. While there is a repository with very high time-to-close, it doesn’t

affect the median value considering the few PRs. However, the over-

all time-to-close would suggest that there may possibly be some

hinderance in the team’s overall development processes.

Looking into the repositories of team A, B, and D highlights some

practices of these teams. Team D uses bots to automatically update

dependencies in the repositories, leading to many PRs with an

exceptionally quick time-to-close. Team A and D have a few

repositories with particularly short time-to-close, which in some

repositories are the results of a single developer pushing PRs without

review. In other repositories there’s only two or very few developers

cooperating on the development and sometimes merges without review

37

having been done. None of these occurrences are as described in 4.3.3

ideal for inner source purposes.

Figure 11. Median time-to-close of team C

In conclusion, the teams with very low time-to-close exhibit

practices in some parts of their development which might not be

suitable for inner source purposes, and in the case of not having code

reviews, not in accordance with IKEA’s requirements. Should these

teams want to inner source their development, they should reevaluate

the development processes in these repositories, which can start by

increasing the cooperation and contribution of the developers within

the team.

5.1.4. Visibility

As table 6 shows, there’s a large difference in the number of forks,

stars, and watchers for the different teams. Notably here is team F, the

inner source initiative who scores highly in all three categories. Team

F having a high visibility goes is line with the previous assumption that

38

increased visibility as defined by the forks, stars and watchers can

signify a project’s inner source potential. Worth mentioning here is that

a large part of the watchers for the team is a result of a repository used

for a coding event, with the purpose of spreading awareness of the

initiative and increase the collaboration.

Table 6. Visibility metric of the teams

Generally, the data shows that a repository with a high number of

watchers also has many stars and forks. Examining a team’s visibility

can yield different insights. A high fork count, as detailed in Chapter

4.2.4, implies potential functionality reuse across different teams'

products. Conversely, a notable number of stars and watches suggests

knowledge sharing of the repositories. Another point previously

discussed is the importance of a range of stakeholder, and as such,

increasing the overall visibility of the teams is something the teams can

try to achieve if they want to inner source their product. This can be

achieved by events such as the one used by team F, or workshops as

described in 4.2.2.

 Recommendation for IKEA

Based on the findings of in this thesis, IKEA will be given a

recommendation for ways to increase the probability of future inner

source initiatives. The scripts for gathering the data as well as an

instruction for configuring GrimorieLab in accordance with this thesis

will be presented to faciliate the analysis of more teams as well as

follow-up of the teams interviewed in this thesis work. Following are

39

a few guidelines, derived from the thesis’ findings, which IKEA can

adopt as a framework when determining the teams to be selected for

future inner sourcing:

1. Improve documentation: The data gathered from the

repositories showed that the Documentation availability in the

repositories was found to be inconsistent across the teams.

Documentation is essential for new team members, or

contributors from other teams, to quickly understand the

project and start contributing. Therefore, IKEA should ensure

that documentation is regularly updated to accurately reflect

the state of the project.

2. Review and adjust test acceptance practices: The findings

suggest discrepancies in the accepted Check failrate on merge

across different teams. Some teams might require a large

number of tests due to the requirements and characteristics of

their products. It is recommended to ensure that results of the

workflow jobs are appropriately addressed, and that the need

for a large number of tests in the pipeline is adequately

justified. Other teams appear to have a higher acceptance

towards test failures, or showcases low numbers of pipeline

tests overall, both of which should be reconsidered.

3. Optimize the PR management process: The data shows

discrepancies in the median time-to-close for different teams.

Teams with very low time-to-close have been seen in some

cases to be skipping important processes such as code

reviews. Almost all teams had repositories with very high

time-to-close, possible indicating lack of engagement or

prioritisation. Therefore, it is suggested that IKEA needs to

further promote proper PR management processes, including

code reviews, to ensure code quality and collaborative

practices.

4. Increase project Visibility: The data and previous research

suggests that teams with higher Visibility, as defined in this

thesis, have a higher potential to be successfully inner

sourced. Teams can increase their project’s Visibility by

organizing coding events, workshops, and other activities that

encourage collaboration, knowledge sharing and information

40

about their product and technical solutions. These activities

will not only promote their projects but also provide

opportunities for developers in different teams to interact and

learn from each other.

In conclusion, IKEA has a strong foundation for adopting inner

source practices due to the transparent and open development

environment. On a developer team level, the key to successful

implementation of inner source strategies lies partly in addressing the

mentioned areas of improvement discovered in this thesis,

documentation, test acceptance practices, PR management, and

project visibility. By focusing on these areas, IKEA will be able to

increase the success rate of developer teams wanting to inner source

their development.

41

6. Conclusion

This thesis has addressed the problem definition described in 1.4,

outlining 4 questions to better understand the software development

processes within IKEA, and by interviewing 7 developer teams,

determine how inner source practices can be assessed and potentially

implemented.

1. What are the general software development processes within

IKEA?

The investigation into IKEA's general software development

processes revealed a transparent and open development

environment, with an emphasis on agile practices and DevOps

methodologies. The teams are operating very much autonomously

and are free to choose the languages, tools and practices when

developing their product. This does however also lead to many

different approaches, making it harder to compare the teams in a

structured manner. The diversity also presents challenges for

inner source adoption.

2. What metrics from the repositories’ metadata can be used to

evaluate teams in regard to inner source?

Several metrics were identified through interviews with

developers as potential indicators of inner source potential: (a)

document availability, (b) GitHub Check failrate on merge, (c)

visibility, and (d) time-to-close. These metrics can serve as a

useful starting point for evaluating the interviewed teams and

other of IKEA’s developer teams' potential for adopting inner

source practices.

3. What conclusion can be drawn from the gathered metrics

regarding the current state of software development?

42

The analysis of the gathered metrics suggests that the current

level of collaboration and co-development between teams at

IKEA is limited. This observation implies that development teams

may not currently be as open to external contributions as they

could be. For instance internal acceptance criteria, as reflected by

the GitHub Check failrate on merge metric, appear to be well-

understood within the teams, but may not be as transparent to

outsiders. Nevertheless, it's evident from the visibility metric that

projects are being acknowledged by others within IKEA,

indicating that there are ongoing efforts to enhance knowledge

sharing across the organization.

4. What recommendations can be given to IKEA consider future

inner source initiatives?

This is answered in chapter 5.2.

 Ethical aspects

A non-disclosure agreement was signed during the start of this

thesis. To comply with the agreement, the supervisor of IKEA was

made aware and agreed to the use of description of the organisation,

teams and internal workings as presented in this report. The developers

were made aware of this and accepted the premise that their answers

during the interview were only to be used for the purpose of this thesis

and within IKEA.

During the interviews, one developer with previous experience

with open source talked about some of the challenges she perceived

with inner sourced development. Not all developers are comfortable to

share and invite others to co-develop their code. It can be because of

fear of scrutiny, or that the developer is ashamed to share the code

because it might have had to be written very quickly to keep up with

project schedule. An implemented inner sourced development needs to

take these aspects and the well-being of the developers into

consideration.

43

7. Future work

This thesis work offers insights into IKEA's software development

processes and potential for inner source practices, but also highlights

areas for further exploration.

The focus was largely on repositories, thereby missing out on the

communication and collaboration occurring on other platforms such as

Slack and Google cloud platform (GCP)-groups, where much

discussion also takes place. Also, IKEA used the documentation

platform Confluence, which in this these could be used for more in-

depth research about the state of the documentation of the teams.

Future work could provide a more comprehensive view by integrating

these platforms into the analysis. The broad filtering of the repositories

can be improved to better reflect the functionalities of the teams.

The advanced functionalities of GrimoireLab could be harnessed in

future work to expand upon the current metrics used. Grimorielab

contains the functionality for integrations the API’s of Slack,

Confluence and Jira, and could as a result be used as a platform for

diverse continuous analysis of selected teams.

The Documentation availability metric could be improved upon by

applying weights depending on the importance of the repositories,

providing a slightly easier overview of the results on a team level.

For the visibility metric, getting the traffic and especially number

of clones of repositories would be another variable to take into

consideration when assessing reusability, similar to forks. Getting

access to the traffic requires a personal access token with write-access,

which wasn’t feasible in for the purpose of this thesis.

44

8. Terminology

Metadata - In the context of this thesis, metadata refers to

information about the data in the repository, which could include

details about commit history, contributors, pull requests, test

results,

DevOps - DevOps is an approach to software development that

integrates development (Dev) and IT operations (Ops), with much

focus on the CI/CD (Continuous Integration/Continuous

Deployment) for small, frequent updates to production.

GitHub Actions - Facilitates CI/CD-pipeline tasks in repositories

GitHub Workflow – Specifies autonomation jobs directly in the

repository, can highly customised, often used to build, test and

deploy code.

GitHub Checks – Feature that integrates with workflow to provide

feedback from jobs.

45

9. References

[1] A. di Vaio, R. Palladino, A. Pezzi, and D. E. Kalisz, "The role of digital

innovation in knowledge management systems: A systematic literature

review" Journal of Business Research, vol. 128, pp. 220-231, Feb. 2021.

[2] H. Edison, N. Carroll, L. Morgan, and K. Conboy, "Inner source software

development: Current thinking and an agenda for future research," Journal of

Systems and Software, vol. 163, May 2020.

[3] Stol, K.-J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B. “A

comparative study of challenges in integrating Open Source Software and

Inner Source Software”. Information and Software Technology, pp. 1319-

1336, Dec. 2011

[4] M. Capraro and D. Riehle, "Inner Source: Adopting Open Source

Development Practices in Organizations”, Proceedings of the 38th

International Conference on Software Engineering Companion, ICSE '16, pp.

472-475, May 2016.

[5] M. Capraro and D. Riehle, "Inner source definition, benefits, and challenge,"

ACM Computing Survey, vol. 49, no. 4, pp. 1-36, 2017

[6] Wan, Z., Xia, X., Zhang, Y., Lo, D., Zhou, D., Chen, Q., & Hassan, A. E.

“What motivates software practitioners to contribute to inner source?” In

Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering pp.

132-144, Nov. 2022.

[7] R. van Solingen et al., "Goal question metric (gqm) approach," in

Encyclopedia of Software Engineering, John Wiley & Sons Inc., 2002

[8] S. Dueñas et al., "GrimoireLab: A toolset for software development

analytics," in Proceedings of the IEEE International Conference on Software

Maintenance and Evolution, ,pp. 679-682, Sep. 2018.

[9] Elastic NV. (2023). Elasticsearch. Available:

https://www.elastic.co/elasticsearch/ [Accessed: April 18, 2023]

[10] Elastic NV. (2023). Kibana. Available: https://www.elastic.co/kibana/

[Accessed: April 18, 2023]

[11] Docker, Inc. (2023). Docker. Available: https://www.docker.com/ [Accessed:

April 16, 2023]

[12] Docker, Inc. (2023). Docker Compose. Available:

https://docs.docker.com/compose/ [Accessed: April 19, 2023]

https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana/
https://www.docker.com/
https://docs.docker.com/compose/

46

[13] GrimoireLab. (2023). GrimoireLab. Available:

https://hub.docker.com/r/grimoirelab/grimoirelab/ [Accessed: April 19, 2023]

[14] Microsoft Corporation. (2023). Windows Subsystem for Linux. Available:

https://docs.microsoft.com/en-us/windows/wsl/ [Accessed: April 19, 2023]

[15] GitHub, Inc., "GitHub REST API," GitHub Developer, 2021. [Online].

Available: https://docs.github.com/en/rest/. [Accessed: April 16, 2023].

[16] GitHub, Inc., "About Pull Requests," GitHub Docs, 2023. Available:

https://docs.github.com/en/pull-requests/collaborating-with-pull-

requests/proposing-changes-to-your-work-with-pull-requests/about-pull-

requests. [Accessed: Apr. 25, 2023].

[17] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, "What is DevOps? A

systematic mapping study on definitions and practices", Proceedings of the

Scientific Workshop Proceedings of XP2016, New York, USA, 2016, pp. 1-

11

[18] GitHub, "GitHub Actions Documentation," GitHub Docs, 2021. Available:

https://docs.github.com/en/actions. [Accessed: April 13, 2023].

[19] GitHub, "GitHub Checks Documentation," GitHub Docs, 2021. Available:

https://docs.github.com/en/rest/reference/checks. [Accessed: Apr. 13, 2023].

[20] L. Brunner, "GitHub Checks." GitHub. Available:

https://github.com/LouisBrunner/checks-

action/pulls?q=is%3Apr+is%3Aclosed, [Accessed: May 20, 2023]

[21] Microsoft Corporation, "Visual Studio Code Documentation," Visual Studio

Code Docs, 2021. Available: https://code.visualstudio.com/docs. [Accessed:

Apr. 19, 2023]

[22] T. Dybå and T. Dingsøyr, "What Do We Know about Agile Software

Development?," in IEEE Software, vol. 26, no. 5, pp. 6-9, Sept. 2009.

[23] Atlassian Corporation Plc, "Confluence: Team collaboration software,"

Atlassian, 2021. Available: https://www.atlassian.com/software/confluence.

[Accessed: 16-Apr-2023]

[24] Slack, Slack Technologies, San Francisco, CA, 2023. Available:

https://slack.com/. [Accessed: May. 10, 2023]

[25] Izquierdo, D., & López, J. M., Managing InnerSource Project, InnerSource

Commons 2018

[26] H. Kallio, A-M. Pietilä, M. Johnson, and M. Kangasniemi, "Systematic

methodological review: developing a framework for a qualitative semi-

structured interview guide" Journal of Advanced Nursing, May 2016

[27] CHAOSS, "About CHAOSS," 2023. Available:

https://chaoss.community/about-chaoss/. [Accessed: May 14, 2023]

https://hub.docker.com/r/grimoirelab/grimoirelab/
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.github.com/en/rest/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/actions
https://docs.github.com/en/rest/reference/checks
https://github.com/LouisBrunner/checks-action/pulls?q=is%3Apr+is%3Aclosed
https://github.com/LouisBrunner/checks-action/pulls?q=is%3Apr+is%3Aclosed
https://code.visualstudio.com/docs
https://www.atlassian.com/software/confluence
https://slack.com/
https://chaoss.community/about-chaoss/

47

[28] "About GitHub Enterprise Cloud." GitHub Docs. Available:

https://docs.github.com/en/enterprise-cloud@latest/admin/overview/about-

github-enterprise-cloud. [Accessed: May 19, 2023]

[29] K. Beck et al., "Manifesto for Agile Software Development," Agile Alliance,

2001. Available: http://agilemanifesto.org/. [Accessed: May 10, 2023].

[30] K. Schwaber and J. Sutherland, "The Scrum Guide," Scrum Guides, 2020.

Available: https://www.scrumguides.org/. [Accessed: May 10, 2023].

[31] M. Lage Junior and M. Godinho Filho, "Variations of the kanban system:

Literature review and classification," Int. J. Prod. Econ., vol. 125, no. 1, pp. 13-

21, May 2010.

[32] Atlassian Corporation Plc, "Jira Software," Atlassian, 2023. Available:

https://www.atlassian.com/software/jira. [Accessed: May 14, 2023]

[33] J. Dumas, "Software Usability: Appropriate Methods for Evaluating Online

Systems and Documentation," in Proceedings of the ACM SIGDOC Annual

International Conference on Systems Documentation, pp. 69-77, Oct. 1990.

[34] R. Matulevicius, F. Kamseu, and N. Habra, "Measuring Open Source

Documentation Availability", Proceedings of the International Conference on

Quality Engineering in Software Technology. pp. 83-102. 2009

[35] M. Kreitz, “Security by design in software engineering,” SIGSOFT

Softw. Eng. Notes, vol. 44, no. 3, p. 23, Nov. 2019.

[36] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, "Quality and

productivity outcomes relating to continuous integration in GitHub”,

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, pp. 805-816, Aug. 2015

[37] C. Vassallo, S. Proksch, A. Jancso, H. C. Gall, and M. Di Penta,

"Configuration smells in continuous delivery pipelines: a linter and a six-

month study on GitLab," in Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pp. 327–337. Nov. 2020

https://docs.github.com/en/enterprise-cloud@latest/admin/overview/about-github-enterprise-cloud
https://docs.github.com/en/enterprise-cloud@latest/admin/overview/about-github-enterprise-cloud
http://agilemanifesto.org/
https://www.scrumguides.org/
https://www.atlassian.com/software/jira

48

Appendix A: Extended Material

A1 Table showing initial interview guide

Goal Question

1. Reduce silos Q1: How do you handle external

ideas or collaboration?

2. Reduce bottlenecks Q1: What are the most common

bottlenecks you encounter in

your development?

Q2: What steps do you take to

avoid bottlenecks?

3. Improve knowledge sharing Q1 How do you help new

developers get acquainted with

your repository/software?

4. Improve quality Q1 What steps are you taking

into consideration to make the

process reusable?

5. Increased reusability Q1 What steps are you taking

into consideration to make the

process reusable?

6. Increase development speed Q1 What are the biggest parts of

your work that slows down

development?

Q2 How do you make sure the

tasks are on schedule?

49

A2) Configuration specification for GrimorieLab docker-compose

setup.cfg Specifies the configuration for the back-end data retrieval by

Percival. It also configures the inclusion of necessary API tokens, and

the default panels for the Kibana dashboards. In this thesis, following

default back-end scripts were configured: Git, Github, Github2:issues,

Github2:pull, and Github:repositories

projects.json Specifies desired repositories to be used. The

repositories belonging to a single team and product are grouped

together to facilitate easier Kibana visualization and analysis. For Git

data, the GitHub token needed to be appended to the URL in the format

"username:token@".

