
i 
 

 

 

 

 

 

The Impact of Parental Education on the Early Detection 

of Autism Spectrum Disorder in Children. 

 
 

 

 

 

by 

Farahim Suleymanli 

  

 

 

 

 

NEKP01 

Master Essay II 

May 2023 

Supervisor: Simon Reese



i 
 

Table of Contents 
 

1. Introduction .......................................................................................................................... 1 

1.1 Prevalence, complexity, and importance of ASD ............................................................ 1 

1.2 Aim of the study and its structure .................................................................................... 3 

2. Literature review ................................................................................................................. 4 

2.1 Clinical signs and comorbidities ...................................................................................... 5 

2.2 Parental education and early detection of ASD ............................................................... 6 

2.3 Application of double machine learning in health economics ......................................... 7 

3. Methodology ......................................................................................................................... 8 

3.1 Double machine learning ................................................................................................. 8 

3.2 Partially Linear Regression Model (PLR) ...................................................................... 11 

3.3 Interactive Regression Model (IRM) ............................................................................. 13 

3.4 Nuisance function estimation ......................................................................................... 14 

4. Data ..................................................................................................................................... 15 

4.1 Data source and considerations ...................................................................................... 15 

4.1.1 Parental educational attainment ............................................................................... 15 

4.1.2 ASD severity ........................................................................................................... 16 

4.2 Confounding factors ....................................................................................................... 17 

4.3 Descriptive statistics ....................................................................................................... 18 

5. Empirical results and discussion ...................................................................................... 20 

5.1 Results ............................................................................................................................ 20 

5.2 Robustness check ........................................................................................................... 21 

5.3 Discussion ...................................................................................................................... 25 

5.4 Limitations ..................................................................................................................... 26 

6. Conclusion .......................................................................................................................... 27 

7. References ........................................................................................................................... 28 

Appendix 1 .............................................................................................................................. 38 

Appendix 2 .............................................................................................................................. 41 

 

 

 

 

 



ii 
 

 

 

 

ABSTRACT 

 

Utilizing the Double Machine Learning (DML) framework with both Partially Linear 

Regression (PLR) and Interactive Regression Models (IRM), this study examined the crucial 

role of parental education in the early detection of Autism Spectrum Disorder (ASD). 

Analysis was conducted on comprehensive data from the National Survey of Children's 

Health spanning the years 2017 to 2021. A significant negative association was found 

between parental education and the age at ASD diagnosis. This relationship was most notable 

in cases of moderate ASD severity, indicating that higher parental education levels tend to 

expedite ASD detection in this group. For mild and severe ASD cases, however, the 

relationship was less clear, suggesting that parental education's influence varies across the 

spectrum of ASD severity. The study's findings underscore the potential of parental education 

as a key socio-economic factor in ASD detection, highlighting a critical area for future 

research to further elucidate the role of socio-demographic factors across different ASD 

severity levels. 
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1. Introduction 

Autism Spectrum Disorder (ASD) constitutes a multifaceted and pervasive 

neurodevelopmental disorder characterized by a broad spectrum of symptoms impacting an 

individual's social communication, interaction capabilities, and behaviour patterns (ed. 

American Psychiatric Association, 2013). The term ASD encompasses a diverse range of 

disorders, including autistic disorder, Asperger's syndrome, and pervasive developmental 

disorder-not otherwise specified, reflecting the considerable variability in symptom severity 

and manifestation among affected individuals (Volkmar, Reichow & McPartland, 2012). 

In the economic analysis of health outcomes, identifying determinants of early detection, 

particularly in complex disorders like ASD, is integral, given its impact on intervention 

efficacy and subsequent cost implications. Parental education appears to be a salient factor, as 

parents' earliest observations often signal developmental anomalies. However, untangling the 

intricate relationship between parental education and early ASD detection is a challenging 

endeavour, complicated by a myriad of confounding variables. The principal purpose of the 

present study is to elucidate this intricate relationship, leveraging a sophisticated Double 

Machine Learning (DML) approach to yield robust insights. The structure and objectives of 

the research have been explicitly outlined in this section, setting a clear path for further 

investigation. 

1.1 Prevalence, complexity, and importance of ASD 

The prevalence of ASD among adults in the United States is noteworthy, with more than 5.4 

million individuals, or 2.2% of the population, identified as being on the autism spectrum 

(Diament, 2020). Consequently, this escalating prevalence has prompted an increased 

emphasis on early detection and intervention strategies, as research consistently underscores 

the positive long-term outcomes that early intervention facilitates for individuals with ASD 

(Dawson et al., 2010). The latest estimates indicate that roughly 1 in 36 children aged eight 

years in the US were diagnosed with ASD in 2020 (CDC’s Autism and Developmental 

Disabilities Monitoring Network, 2023). Importantly, ASD transcends ethnic and 

socioeconomic boundaries; however, minority groups often experience delayed or incorrect 

diagnoses. The report by CDC’s ADDM Network (2023) revealed that in 2020, for the first 

time among 8-year-olds, Black, Hispanic, and Asian or Pacific Islander children exhibited a 

higher prevalence of ASD than White children. It further revealed that boys were found to be 

approximately four times more likely to be identified with ASD than girls. Additionally, 
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approximately one-third of these children had intellectual disabilities. The data indicated that 

children born in 2016 were 1.6 times more likely to receive an ASD diagnosis or special 

education classification by the age of four, compared to children born in 2012.  

The aetiology of ASD remains enigmatic; however, current evidence points to a complex 

interplay of genetic and environmental factors (Geschwind, 2011). Advances in molecular 

genetics have identified several candidate genes and chromosomal loci associated with ASD, 

corroborating the hypothesis of a robust genetic foundation for the disorder (Gaugler et al., 

2014). Environmental factors, such as prenatal exposure to certain medications, maternal 

infections, and advanced parental age, have also been implicated in ASD risk (Modabbernia, 

Velthorst & Reichenberg, 2017). Hence, the diagnosis of ASD is not a standardized process 

like many other diseases, as each child with ASD exhibits unique characteristics. Detecting 

ASD can be challenging due to the complexity of the disorder and the variability in the 

presentation of symptoms. Symptoms can vary widely in type and severity, and they may not 

become evident until a child reaches school age. Additionally, ASD often co-occurs with 

other neurodevelopmental or psychiatric disorders, which can complicate the diagnostic 

process (Matson & Goldin, 2013). It has been estimated that approximately 78% of children 

with ASD have at least one co-occurring mental health condition (Kerns, Rast & Shattuck, 

2020). 

The average age of ASD diagnosis is often later than it could be. According to the CDC 

(2022), while ASD can sometimes be diagnosed as early as 2 years of age, many children are 

not diagnosed until much older. This delay can be attributed to multiple factors including a 

lack of awareness or knowledge about ASD among parents and healthcare providers, 

variability in clinical practices, or limited access to diagnostic services, particularly among 

disadvantaged or minority populations (Zuckerman, Lindly & Chavez, 2017). The period 

from initial suspicion to final diagnosis is substantial, often in the range of 2.7-3.7 years, and 

can be even longer for children from minority or low-income families (Mandell et al., 2002; 

Shattuck et al., 2009). 

Research has demonstrated that late detection of ASD can lead to a considerable economic 

burden. The costs associated with ASD, including healthcare, education, and supportive 

services, are significant and predicted to increase (Buescher et al., 2014; Leigh & Du, 2015). 

This financial impact extends to family households, influencing parental employment and 

earnings, often requiring adjustments in work schedules or compelling parents to leave the 
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workforce (Cidav, Marcus & Mandell, 2012). It has been shown that early detection of ASD 

can significantly influence these future costs. Chasson et al. (2007) and Ganz (2007) 

demonstrated that early detection and subsequent intervention can substantially reduce the 

societal costs of ASD by improving the trajectory of the disorder. This is corroborated by 

Peters-Scheffer et al. (2011), who show that comprehensive, early intervention programs for 

children with ASD can enhance outcomes, indirectly suggesting a potential reduction in 

future costs. Beyond the financial aspects, ASD also significantly affects the quality of life of 

individuals and their families, leading to increased health service utilization and additional 

stress (Weiss et al., 2018). Thus, these economic and quality-of-life impacts underscore the 

importance of early detection and intervention in ASD, which can potentially mitigate some 

of these challenges. 

1.2 Aim of the study and its structure 

The early detection of ASD holds substantial significance, not only because it can potentially 

alleviate future economic burdens on society, families, and the individuals with ASD 

themselves, but also because it can lead to improved developmental outcomes for those 

affected. However, the inherent complexity of ASD, characterized by a few core symptoms 

and co-occurring conditions, makes its detection particularly challenging. Thus, 

understanding the factors that could expedite detection becomes a critical element in the 

quest for timely diagnosis and intervention. Among these factors, parental education emerges 

as a cornerstone, given that parents often serve as the first line of detection for potential 

developmental anomalies. Hence, the objective of this study is to conduct a comprehensive 

investigation of the intricate and multifaceted relationship between age at diagnosis of ASD 

and parental education. 

Prior research, including Delobel-Ayoub et al. (2015), Fountain et al. (2011), and Shattuck et 

al. (2009), has employed classical econometric techniques to estimate the relationship 

between age at diagnosis and parental education. Nevertheless, these approaches grapple with 

numerous challenges such as confounding variables, selection bias, overfitting, and model 

misspecification, which hinder their capacity to accurately explain the relationship. In 

contrast, this study embraces DML as a superior methodology, utilizing machine learning 

techniques to account for a broad range of observed and unobserved confounding variables, 

effectively mitigating issues like selection bias. Additionally, DML is less vulnerable to 
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overfitting and model misspecification, as it abstains from imposing rigid assumptions about 

the functional form of the relationship between variables. 

By employing DML, this study endeavours to furnish more precise and dependable insights 

into the causal relationship between parental education and early detection of ASD across 

various severity levels. As a result, it contributes to the extant literature by enhancing our 

comprehension of the complexities linked to ASD detection and the significance of parental 

education, ultimately guiding targeted interventions and support programs for affected 

families. 

The remainder of this study is organized into several sections, each addressing a crucial facet 

of the research. The second section offers a comprehensive literature review, examining 

previous research on ASD detection, parental education, and socio-economic status, as well 

as the application of DML methodology in analogous contexts. The third section delineates 

the methodology employed in the study, with a focus on the DML approach and its detailed 

implementation. The fourth section presents the data and variables utilized in the analysis, 

elaborating on the sources, measurements, and descriptive statistics. The fifth section reports 

the results and discusses their implications, encompassing both the overarching effect of 

parental education on ASD detection and the specific effects across different severity levels. 

Finally, the study concludes by summarizing the principal findings. 

2. Literature review 

In unravelling the complex aetiology and progression of ASD, it becomes vital to consider 

not just the core symptoms, but also the diverse comorbidities that often accompany this 

condition. The inclusion of these comorbidities in any analytical framework is crucial, as they 

may hold consequential insights into early detection and provide a more comprehensive 

understanding of the disorder's manifestation. Concurrently, parental education stands as a 

critical socio-economic factor that can greatly influence the timing of ASD diagnosis. The 

level of parental education, potentially impacting awareness of developmental milestones, 

access to healthcare, and advocacy skills, has been associated with earlier detection of ASD. 

Hence, to accurately discern the causal effect of parental education on the early detection of 

ASD, a plethora of relevant explanatory factors necessitates an analytical framework capable 

of managing high-dimensional data and addressing potential confounding factors. In this 

context, DML offers a robust and flexible approach, combining the power of machine 

learning with causal inference, which has been successful in estimating treatment effects in 



5 
 

various domains. This literature review will thus delve into the symptoms and comorbidities 

of ASD, underline the significance of parental education in its early detection, and elucidate 

the relevance of incorporating these elements in the DML framework.  

2.1 Clinical signs and comorbidities 

The core symptoms of ASD involve impairments in social interaction and communication, 

alongside the presence of restricted, repetitive behaviours, and interests (Baio, 2018). Such 

symptoms typically emerge during early childhood and endure throughout an individual's 

lifespan, frequently leading to substantial functional impairments across multiple domains, 

encompassing academic, occupational, and social settings (Lai, Lombardo & Baron-Cohen, 

2014). CDC (2023) delineates additional related characteristics, including delayed language, 

motor, cognitive, or learning skills; hyperactive, impulsive, and/or inattentive behaviour; 

epilepsy or seizure disorders; atypical eating and sleeping habits; gastrointestinal issues; 

unusual mood or emotional responses; anxiety, stress, or excessive worry; and either a lack of 

fear or heightened fear responses. 

Moreover, numerous studies have reported associations between ASD and various health-

related conditions1. Xu et al. (2018) identified a significant positive association between 

common allergic conditions and ASD, while Chua et al. (2021) investigated potential links 

between allergies and neurodevelopmental disorders. Beesley (2020) discovered that children 

with Juvenile Idiopathic Arthritis (JIA) or those with a first-degree relative with JIA are 

significantly more likely to receive an ASD diagnosis. Studies by Wang et al. (2021) and 

Zhao et al. (2021) presented evidence for potential associations between ASD and specific 

blood disorders. Hahn et al. (2020) concluded that early signs of ASD-associated behaviour 

are present and detectable in new-borns with Down Syndrome. Sigmon et al. (2019) 

conducted a case-control study to examine the relationship between Congenital Heart Disease 

(CHD) and ASD, concluding that children with CHD have a higher likelihood of developing 

ASD. Several studies substantiated the notion that ASD is frequently accompanied by a 

diverse array of neurodevelopmental (Höglund Carlsson et al., 2013; Levy et al., 2010) and 

psychiatric comorbidities. These include, but are not limited to, anxiety disorders (White et 

al., 2009), epilepsy (Canitano, 2007), attention deficit hyperactivity disorder (Joshi et al., 

2010), as well as Tourette’s syndrome and tics (Canitano & Vivanti, 2007; Simonoff et al., 

2008). Furthermore, Galvan et al. (2020) found significant links between ASD and birth 

 
1 These confounders were controlled in the study. 
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order, increasing gaps in parental ages, and birth order within the family. The findings of 

Alvarez et al. (2021) demonstrated that higher birth order in children with ASD correlates 

with increased functional and cognitive disabilities. Prematurity has been ascertained as a 

contributory determinant of ASD. The research conducted by Allen et al. (2020) showed that 

the susceptibility to autism associated with prenatal prematurity is more pronounced in 

female individuals. 

2.2 Parental education and early detection of ASD 

The escalating prevalence of ASD has created a global impetus to scrutinize the multifaceted 

contexts surrounding the care of autistic children, with particular attention directed toward 

the impact of socioeconomic status (SES). There is a growing literature in this direction 

where various studies have attempted to determine the relationship between ASD diagnosis 

and various factors such as household SES, ethnic groups, spatial factors, parental 

characteristics, etc. Research has shown that parental education, as a proxy for SES, is 

associated with the timing and likelihood of ASD diagnosis (Durkin et al., 2010). Children 

from families with higher parental education levels are more likely to be diagnosed with ASD 

at an earlier age (Bhasin & Schendel, 2007). This may be due to greater awareness of 

developmental milestones, increased access to healthcare services, and better advocacy for 

their children (Mandell et al., 2009).  

Hrdlicka et al. (2016) conducted an empirical study, involving a sample of 160 children and 

their parents, intending to delineate the relationship between the age at ASD diagnosis and 

family SES. Their findings revealed a positive correlation between early ASD diagnosis and 

higher parental age at birth and higher parental education levels, while no discernible 

association was observed with family SES or the availability of informational resources 

accessible to the family.  Fountain et al. (2011) examined temporal variations in 

characteristics associated with the time of diagnosis in ten cohorts of children diagnosed with 

ASD between 1992 and 2001 in California. According to the study, children with highly 

educated parents were diagnosed with ASD earlier, and this effect grew stronger with time. 

Furthermore, whereas autism was first identified disproportionately among the rich and 

educated, the distribution of diagnoses gradually became more evenly distributed throughout 

the community. Frenette et al. (2013) employed adjusted linear regression techniques to 

discern factors influencing the age of ASD diagnosis within a Canadian population-based 

cohort study from 1992 to 2005. The analysis revealed that maternal age, county of residence, 
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and attention-deficit/hyperactivity disorder diagnostic status emerged as salient determinants 

explaining the variation in age at ASD diagnosis. In their study, Elsabbagh et al. (2012) 

undertook a rigorous systematic review of an extensive collection of 600 epidemiological 

surveys. In contrast to the previous studies, their analysis led to the cogent conclusion that the 

empirical evidence gathered did not substantiate any notable disparities in the prevalence of 

ASD across geographic location, ethnicity, culture, and socioeconomic factors. 

2.3 Application of double machine learning in health economics 

DML is a novel approach that amalgamates the flexibility of machine learning with causal 

inference, thereby enabling the precise estimation of causal effects (Chernozhukov et al., 

2018). It has been used to estimate treatment effects in various settings, including medicine, 

economics, and education (Chuang & Chen, 2023; Dube et al., 2020; Knaus, 2021; 

McConnell & Lindner, 2019). While DML has not yet been applied in any kind of ASD 

research, as per the extant literature, it has been successfully used to study other health-

related outcomes. For example, Sanchez et al. (2022) incorporated Alzheimer's disease as a 

paradigm to elucidate the merits of causal machine learning in clinical contexts. Peet et al. 

(2023) exploited DML to quantify the average treatment effect of The Special Supplemental 

Nutrition Program for Women, Infants, and Children (WIC) on infant health outcomes. The 

researchers posited that the WIC program yields maximum benefits for those at the highest 

risk of adverse infant health outcomes. Oyenubi and Kollamparambil (2023) used a DML 

approach in conjunction with nationally representative data from South Africa, to explore the 

nexus between depressive symptoms and perceived nonadherence to COVID-19 preventive 

measures. Their empirical findings unveil a causal relationship between the perception of 

neighbours’ noncompliance and self-reported depressive symptoms, thereby accentuating the 

deleterious ramifications of noncompliance on the psychological well-being of individuals in 

the context of a virulent pandemic. Drawing upon data from the 2016–17 Multiple Indicator 

Cluster Survey in Nigeria, Skoufias and Vinha (2021) conducted a comprehensive 

investigation into the associations between child stature, maternal education, and early 

childhood development (ECD) indicators, juxtaposing the conventional ad-hoc variable 

selection with the DML approach. Their analysis substantiated the significant influence of 

maternal education and chronic malnutrition on ECD measures. Moreover, the DML 

methodology unveiled a more intricate contextual understanding, elucidating divergent 

effects of maternal education on ECD and child nutrition in rural and urban settings, thereby 
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providing a pragmatic means of bolstering internal validity for policy design and inferences 

grounded in observational data. 

The extant body of literature substantiates a discernible association between parental 

education and the early detection of ASD. Given the successful implementation of DML in 

an array of health-related domains, it is plausible to contend that it may hold substantial 

promise for augmenting our understanding of the role parental education plays in the early 

detection of ASD, through the provision of precise and unbiased estimations of causal effects. 

Consequently, this enhanced comprehension could bear significant implications for the 

formulation of targeted interventions and policy frameworks, thereby facilitating early 

detection and intervention for children with ASD across a broad spectrum of populations. 

3. Methodology 

3.1 Double Machine Learning 

At its essence, DML is an advanced methodology for approximating treatment effects in the 

presence of a multitude of observed, high-dimensional potential confounders. DML is 

predicated upon a foundational econometric theorem, the Frisch-Waugh-Lovell (FWL) 

theorem (Frisch & Waugh, 1933; Lovell, 1963). The FWL theorem, an integral component of 

econometric theory, posits that the influence of a particular variable, once controlled for other 

predictors in a linear regression model, can be calculated by “partialling out” the linear 

impact of the other variables from both the outcome and the variable of interest. This process 

is carried out by calculating the residuals of the variable of interest and the outcome variable, 

and then performing a regression of the former on the latter. DML extrapolates this principle 

to a machine learning context, adeptly handling high-dimensional data and complex, non-

linear interrelationships among variables. This study restates the estimation of the parameter 

of interest in terms of the moment conditions that satisfy the so-called Neyman orthogonality 

condition, within the FWL framework.  

The underlying principle of DML involves partitioning the estimation process into two 

primary phases: (1) estimating nuisance functions through the application of machine 

learning techniques, and (2) approximating the causal effect via orthogonalized moment 

equations. Chernozhukov et al. (2018) demonstrated, in their seminal work, that the 
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implementation of Neyman-orthogonal moments/scores and cross-fitting2 effectively 

counteracts the regularization and overfitting biases that may arise from the integration of 

machine learning algorithms into causal analysis. The authors specifically devised a series of 

straightforward results for achieving root-𝑁 consistent estimation, where 𝑁 denotes the 

sample size, and for making legitimate inferential statements pertaining to a low-dimensional 

parameter of interest, 𝜃0, in the context of a high-dimensional or “highly complex” nuisance 

function. DML utilizes a method-of-moments estimator for the target parameter 𝜃0, which is 

founded on the empirical counterpart of the moment condition: 

𝐸[𝜓(𝑊; 𝜃0, 𝜂0)] = 0             (1) 

Where 𝜓 is a score function, 𝑊 is an observation vector that includes outcome (𝑌), treatment 

(𝐷) and confounding (𝑋) variables, and 𝜂0 = (𝑔0, 𝑚0) is a population value of nuisance 

functions 𝜂 = (𝑔, 𝑚). Nuisance functions are auxiliary functions that, even though they're not 

the primary concern, must be estimated to identify the causal effect of interest.  These 

functions typically encompass the unknown components 𝑔0 and 𝑚0, which represent the non-

linear associations between covariates and the outcome variable. Score functions (𝜓) serve to 

form the orthogonalized moment conditions for the causal effect of interest after the nuisance 

functions have been estimated. Score functions constitute the partial derivatives of the 

likelihood function with respect to the model's parameters and are employed to gauge the 

sensitivity of the likelihood function to alterations in these parameters. They are the 

preliminary key elements of the inference procedure that fulfil the moment condition as 

specified in equation (1), where 𝜃0 identified as the unique solution. Score functions satisfy 

the Neyman orthogonality condition: 

𝜕𝜂𝐸[𝜓(𝑊; 𝜃0, 𝜂0)]|𝜂−𝜂0
= 0               (2) 

Where 𝜕𝜂 denotes the Gateaux derivative operator. The DML framework applies the Neyman 

orthogonality condition and the Neyman orthogonal score function to ensure that moment 

conditions, used to identify the causal parameter of interest, 𝜃0, are locally insensitive to 

small perturbations of the nuisance function around its true value. Consequently, this permits 

the integration of estimates of the nuisance functions, even those characterized by a degree of 

 
2 Cross-fitting is a key step in the DML procedure that helps to mitigate overfitting and to achieve valid 

statistical inference. In the cross-fitting procedure, the data is divided into several folds or partitions (𝐾 folds). 

The nuisance functions are estimated on one part of the data (e.g., 𝑘-th fold), and these estimates are then used 

in the estimation of the parameter of interest on the remaining data (𝐾 − 1 folds). This ensures that the 

estimation of the nuisance functions and the parameter of interest are performed on different data, reducing the 

risk of overfitting, and achieving a valid statistical inference. 
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error — a phenomenon frequently referred to as 'noisy' (Chernozhukov et al., 2018). 

Crucially, this integration does not substantially compromise the accuracy of 𝜃0 estimation 

and it remains root-𝑁 consistent. Such a characteristic paves the way for a more pragmatic 

and achievable estimation procedure, notably in contexts where procuring precise estimates 

of nuisance functions is inherently challenging. This understanding presents significant 

implications for the implementation of statistical models in practical economic research, 

providing opportunities for more resilient and reliable parameter estimation despite inherent 

noise in the data. 

The estimation of causal parameters of interest is facilitated by two DML algorithms, denoted 

as DML1 and DML2 (Chernozhukov et al., 2018). The principal difference between these 

two algorithms stems from the need to perform cross-fitting to remove the overfitting bias. 

DML1 initially computes individual estimates, 𝜃0,𝑘 for each fold 𝐼𝑘 (partition of data, where 

𝑘 is the index of the fold), subsequently averaging these estimates to yield the final 𝜃0 

estimate. In contrast, DML2 directly estimates the causal parameter 𝜃0 by solving one single 

equation incorporating the empirical expectation spanning all 𝐾 folds3. This research adheres 

to the recommendation by Chernozhukov et al. (2018) to utilize the DML2 algorithm over 

DML1, as it potentially yields superior performance in small sample contexts, owing to its 

simultaneous consideration of information from all folds during the causal parameter 

estimation process. Consequently, the causal parameter 𝜃0 is calculated as the solution to the 

following equation: 

1

𝑁
∑ ∑ 𝜓(𝑊𝑖; 𝜃0, �̂�0,𝑘) = 0𝑖∈𝐼𝑘

𝐾
𝑘=1      (3) 

In this equation 𝑁 represents the total number of observations, 𝐾 is the number of folds, 𝑊𝑖 

denotes the 𝑖-th observation, and �̂�0,𝑘 signifies the already provided machine learning 

estimator of 𝜂0. Given that the previously discussed score functions for the DML models are 

linear in 𝜃, equation (3) can be rewritten as: 

     
1

𝑁
∑ ∑ 𝜓(𝑊𝑖; 𝜃0, �̂�0,𝑘)𝑖∈𝐼𝑘

=
1

𝑁
∑ ∑ (𝜓𝑎(𝑊; 𝜂)𝜃 + 𝜓𝑏(𝑊; 𝜂))𝑖∈𝐼𝑘

𝐾
𝑘=1

𝐾
𝑘=1      

                                                           =  
1

𝑁
∑ ∑ 𝜓𝑎(𝑊; 𝜂)𝜃𝑖∈𝐼𝑘

𝐾
𝑘=1 +

1

𝑁
∑ ∑ 𝜓𝑏(𝑊; 𝜂)𝑖∈𝐼𝑘

𝐾
𝑘=1 = 0   

 
3 Although the authors maintain that the choice of 𝐾 holds no asymptotic consequences under the prescribed 

conditions, empirical examples, and simulations indicate that 4 or 5 folds often outperform 2 folds. In the 

present study, the primary 𝐾 value is set at 2, with 4 and 5 folds employed for additional robustness 

assessments. 
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Where 𝜓𝑎 and 𝜓𝑏 are the components of the linear score function 𝜓. To solve for 𝜃, we can 

rearrange the equation above as: 

1

𝑁
∑ ∑ 𝜓𝑎(𝑊; 𝜂)𝜃𝑖∈𝐼𝑘

𝐾
𝑘=1 = −

1

𝑁
∑ ∑ 𝜓𝑏(𝑊; 𝜂)𝑖∈𝐼𝑘

𝐾
𝑘=1   

      𝜃 = −
1

𝑁
∑ ∑ 𝜓𝑏(𝑊;𝜂)𝑖∈𝐼𝑘

𝐾
𝑘=1

1

𝑁
∑ ∑ 𝜓𝑎(𝑊;𝜂)𝑖∈𝐼𝑘

𝐾
𝑘=1

  

Finally, relying on the empirical expectation4 of the linear score functions, the estimated 

causal parameter can be expressed as: 

𝜃0 = −
𝐸𝑁[𝜓𝑏(𝑊;𝜂)]

𝐸𝑁[𝜓𝑎(𝑊;𝜂)]
          (4) 

The asymptotic variance of 𝜃0 is calculated as: 

𝑣𝑎𝑟(𝜃0) = 𝐽0
−2 1

𝑁
∑ ∑ [𝜓(𝑊𝑖; 𝜃0, �̂�0,𝑘)]2

𝑖∈𝐼𝑘

𝐾
𝑘=1             (5a) 

𝐽0 =
1

𝑁
∑ ∑ 𝜓𝑎(𝑊𝑖; �̂�0,𝑘)𝑖∈𝐼𝑘

𝐾
𝑘=1              (5b) 

 

In the present study, two DML models — Partially Linear Regression Model and the 

Interactive Regression Model — have been utilized to estimate the causal effect of parental 

education on the early detection of ASD in children. 

3.2 Partially Linear Regression Model (PLR)  

The PLR model stands as a flexible model structure that broadens the premises of traditional 

linear regression models. Deviating from the conventional practice of presuming specific 

functional forms for the relationships among confounders, the output, and the treatment 

variables, the PLR model adopts a general approach, accommodating more diverse, 

undefined forms. By abstaining from the imposition of these specific assumptions, the PLR 

model facilitates a more precise and realistic representation of variable interactions. This, in 

turn, augments the credibility of the causal estimates extracted from the model. However, the 

model assumes an additive separability between the treatment and the covariates. This means 

that the effect of the treatment on the outcome is assumed to be constant across different 

values of the covariates, an assumption that might not always hold in practice. The PLR 

model is mathematically articulated as follows: 

 
4 Empirical expectation is defined as: 𝐸𝑛,𝑘[𝜓(𝑊)] ≔

1

𝑛
∑ 𝜓(𝑊𝑖)𝑖∈𝐼𝑘

, where 𝑛 is the size of each fold 𝐼𝑘, and 𝑘 ∈

[𝐾] = {1, … , 𝐾}. 
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𝑌 = 𝐷𝜃0 + 𝑔0(𝑋) + 𝑈,      𝐸[𝑈|𝑋, 𝐷] = 0            (6a) 

𝐷 = 𝑚0(𝑋) + 𝑉,      𝐸[𝑉|𝑋] = 0                        (6b) 

In this context, 𝑌 signifies the 

dependent variable, while 𝐷 

embodies the policy or 

intervention variable of interest. 

Other control variables are 

contained in the vector 𝑋 =

 (𝑋1, . . . , 𝑋𝑝), and 𝑈 and 𝑉 are 

respective stochastic error terms. 

The primary equation 

encompasses the first equation, 

with 𝜃0 as the parameter targeted 

for estimation. Provided that 𝐷 is 

exogenous conditional on 

controls 𝑋, 𝜃0 can be interpreted as the average treatment effect parameter. 𝐷 and 𝑌 have a 

unidirectional causal relationship (Figure 1). 𝑋 confounds the identification of the causal 

effect, hence identification can be achieved through 𝑉, which encapsulates the variation in 𝐷 

that remains independent of 𝑋. The second equation characterizes the relationship between 

the treatment and control variables, which helps to remove regularization bias. 

The score function for the PLR model is derived from the Neyman orthogonal score function 

combined with Robinson’s (1988) partialling-out approach: 

𝜓(𝑊; 𝜃, 𝜂) ≔ (𝑌 − 𝜃(𝐷 − 𝑚(𝑋)) − 𝑙(𝑋)) (𝐷 − 𝑚(𝑋))      

                     ∶= −(𝐷 − 𝑚(𝑋))(𝐷 − 𝑚(𝑋))𝜃 + (𝑌 − 𝑙(𝑋))(𝐷 − 𝑚(𝑋))    

                     ∶= 𝜓𝑎(𝑊; 𝜂)𝜃 + 𝜓𝑏(𝑊; 𝜂),     𝜂 = (𝑙, 𝑚)           (7) 

𝜓𝑎 = −(𝐷 − 𝑚(𝑋))(𝐷 − 𝑚(𝑋))               (8a) 

𝜓𝑏 =  (𝑌 − 𝑙(𝑋))(𝐷 − 𝑚(𝑋))                               (8b) 

Figure 1 
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Where 𝑊 = (𝑌, 𝐷, 𝑋), 𝑙 and 𝑚 are 𝑃-square-integrable functions5 mapping the support of 𝑋 

to ℝ. Chernozhukov et al. (2018) showed that in this case, 𝜃0 satisfies the equations (1) and 

(2) for 𝜂0 = (𝑙0, 𝑚0), where 𝑙0(𝑋) = 𝐸(𝑌|𝑋)6 and 𝑚0(𝑋) = 𝐸(𝐷|𝑋). 

3.3 Interactive Regression Model (IRM) 

The PLR model, despite its weak assumptions concerning the influence of control variables 𝑋 

on treatment and outcome variables, demands an additive separability of these two categories 

of variables, as stipulated by Equation (6a). This rigidity in the model's specification is 

attenuated in the IRM, which introduces the capacity for incorporating more complex, 

undefined interactions between the treatment variable 𝐷 and control variables 𝑋 within the 

conditional mean of the outcome variable 𝑌. Nevertheless, such increased flexibility is not 

without its trade-offs. Specifically, the IRM is inherently constrained to the context of binary 

treatment variables. IRM can be expressed in the following form: 

𝑌 = 𝑔0(𝐷, 𝑋) + 𝑈,      𝐸[𝑈|𝑋, 𝐷] = 0         (9a) 

𝐷 = 𝑚0(𝑋) + 𝑉,      𝐸[𝑉|𝑋] = 0          (9b) 

IRM provides a robust approach for estimating the average treatment effect (ATE) and the 

average treatment effect on treated (ATET). Only the estimation of ATE as a target parameter 

has been performed in this study: 

𝜃0 = E[𝑔0(1, 𝑋) − 𝑔0(0, 𝑋)]                 (10) 

𝐷 and 𝑌 are affected by confounding factors 𝑋 through propensity score 𝑚0(𝑋) and the 

function 𝑔0(𝐷, 𝑋) respectively. Hence, the complexity and unknown nature of both functions 

make machine learning methods an attractive option. The score function for ATE estimation 

is: 

                     𝜓(𝑊; 𝜃, 𝜂) ≔ 𝑔(1, 𝑋) − 𝑔(0, 𝑋) +
𝐷(𝑌−𝑔(1,𝑋))

𝑚(𝑋)
−

(1−𝐷)(𝑌−𝑔(0,𝑋))

1−𝑚(𝑋)
− 𝜃    

                                          ∶=  𝜓𝑎(𝑊; 𝜂)𝜃 + 𝜓𝑏(𝑊; 𝜂)              o(11) 

 

                    𝜂(𝑋) = (𝑔(0, 𝑋), 𝑔(1, 𝑋), 𝑚(𝑋)),      𝜂0(𝑋) = (𝑔0(0, 𝑋), 𝑔0(1, 𝑋), 𝑚0(𝑋))   

 

 
5 The term ‘𝑃-square-integrable’ refers to a function that is square-integrable with respect to the probability 

measure 𝑃. In the context of probability theory and statistics, a function is considered square-integrable if the 

integral of the square of the absolute value of the function is finite. 
6 Note that 𝑙0(𝑋) is different from 𝑔0(𝑋) in a way that it is not conditional on 𝐷. 



14 
 

𝜓𝑎 = −1                   (8a) 

𝜓𝑏 =  𝑔(1, 𝑋) − 𝑔(0, 𝑋) +
𝐷(𝑌−𝑔(1,𝑋))

𝑚(𝑋)
−

(1−𝐷)(𝑌−𝑔(0,𝑋))

1−𝑚(𝑋)
               (8b) 

The nuisance function comprises P-square-integrable functions 𝑔 and 𝑚, which map the 

support of (𝐷, 𝑋) to ℝ and the support of 𝑋 to the interval (𝜀, 1 − 𝜀), respectively, with 𝜀 ∈

(0, 0.5). The true values of functions 𝑔 and 𝑚 are given by: 

𝑔0(𝐷, 𝑋) = 𝐸(𝑌|𝐷, 𝑋),       𝑚0(𝑋) = 𝑃(𝐷 = 1|𝑋) 

The propensity score 𝑚0(𝑋), denoting the conditional probability of exposure to the 

treatment given a vector of observed covariates, serves as a crucial statistical device for 

mitigating confounding in observational research. Propensity scores facilitate covariate 

balance, thereby curtailing bias in the estimate of the treatment effect. However, the score is 

susceptible to large variations induced by extreme values, particularly in instances of 

insufficient overlap in covariates across treated and control groups. Consequently, 

Chernozhukov et al. (2018) advance the notion of propensity score trimming, a method of 

excluding observations with propensity scores at extreme ends to ameliorate the issue of 

excessive weights that inflate variance and potentially bias. In the present analysis, trimming 

bounds are applied at 0.05 and 0.95, respectively.  

3.4 Nuisance function estimation 

Given the available sample size and extant literature on DML estimation, this study employs 

four machine learning methodologies: Least Absolute Shrinkage and Selection Operator 

(LASSO), Random Forests (RF), Extreme Gradient Boosting (XGBoost), and an Ensemble 

model. The Ensemble framework amalgamates previously mentioned and already tuned three 

machine learning models by estimating the nuisance functions as weighted averages of 

estimates derived from LASSO, RF, and XGBoost. The estimation procedure encompasses 

both regression and classification tasks for each machine learning methodology, as the 

treatment variable is binary. 

In the machine learning models examined herein, a meticulous hyperparameter optimization 

process was employed, leveraging the grid search algorithm in conjunction with 10-fold 

cross-validation. This methodological decision primarily stems from the fact that grid search 

requires a low computational burden. It provides a thorough exploration of the 

hyperparameter space, ensuring the most suitable combination of values is identified. The 10-
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fold cross-validation technique was utilized to balance the computational complexity and 

reliability of model performance estimates, effectively mitigating overfitting while 

maintaining robust generalization performance. It provides a more robust estimate of the 

model's generalization performance compared to techniques like leave-one-out cross-

validation, which can be computationally expensive and produce high variance estimates 

(Efron, 1983; Kohavi, 1995). Evaluation metrics incorporated Mean Squared Error (MSE) for 

regression-based models and Misclassification Error (CE) for classification-oriented models. 

These metrics are both straightforward and interpretable, thereby precluding the imposition of 

additional computational complexity. The comprehensive tuning procedure for each model is 

delineated in Appendix 2. 

4. Data 

4.1 Data source and considerations 

This study is based on data from the National Survey of Children's Health (NSCH), carried 

out by the United States Census Bureau. The NSCH provides a representative sample of the 

nation's population and is designed to offer valuable insights into children's health and well-

being. It focuses specifically on factors that affect children's physical, emotional, and 

behavioural growth. The survey collects data on various aspects of children's lives, including 

their health status, access to healthcare services, family environment, and parental 

characteristics.  

The data spans the years 2017 to 2021 and includes 175,231 observations of children based 

on a random sampling process. Within this dataset, 5,112 observations are associated with 

children diagnosed with ASD, of which 3,706 data points remain after the data cleaning. A 

detailed description of the variables is given in Appendix 1. The dataset encompasses a total 

of 52 distinct variables7, and primarily, it consists of binary variables that embody all the 

principal ASD signs/symptoms discussed in Section 2. In employing this dataset, two 

cardinal aspects are contemplated: parental educational attainment, and ASD severity. 

4.1.1 Parental educational attainment 

The analysis utilizes the highest education level among all household members as the 

dependent variable, rather than solely parents' education, recognizing the broader family 

 
7 For the implementation of the LASSO model, all categorical variables have been transformed into dummy 

variables. Furthermore, second and third-order polynomial expansions of non-binary variables, along with their 

respective interaction terms, have been incorporated into the analysis. 
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environment's impact on a child's well-being and early detection of ASD. This approach 

accounts for the critical role played by various family members, such as grandparents and 

siblings, in a child's upbringing, sharing knowledge and resources, and supporting parents. 

By incorporating a more comprehensive measure of household education, the study captures 

a wider array of influences on ASD's early detection, reflecting the intricate interplay of 

social, economic, and environmental factors. This leads to a more accurate depiction of the 

relationship between education and early detection of ASD.  

4.1.2 ASD severity 

The relationship between parental education and early detection of ASD is initially estimated 

utilizing the entire dataset, without distinguishing between the varying levels of its severity. 

This approach serves as a foundational analysis to establish a baseline understanding of the 

association between parental education and early ASD detection across the entire spectrum of 

the disorder. 

Subsequently, the data is stratified by ASD severity8, allowing for a more nuanced 

investigation of the relationship between parental education and early detection within each 

severity category. By examining these relationships separately for mild (1,820 observations), 

moderate (1,488 observations), and severe9 (398 observations) ASD cases, the study 

acknowledges the potential disparity in the impact of parental education on early detection 

across the distinct severity strata. 

Higher parental education is expected to positively influence early ASD detection (as 

elaborated in Section 2), as better-educated parents may possess a greater awareness of 

developmental milestones and access to healthcare resources. This effect may vary across the 

ASD severity spectrum, with higher parental education potentially more influential in 

moderate and severe cases. Conversely, the relationship between parental education and early 

detection may be less pronounced for mild ASD cases, as the subtler manifestations of the 

condition might be more challenging to identify, even for well-educated parents. The 

stratification approach employed in this study is useful and more informative, as it 

accommodates variations across the ASD severity continuum. Nonetheless, the study 

 
8 Considering the small sample size for each severity strata, only 3-fold cross-validation has been performed 

during the tuning process for all machine learning models discussed in section 3.4. 
9 It should be noted that, in the estimation process pertaining to severe cases of ASD, only a two-fold cross-
fitting procedure was employed, given the constraints posed by the limited sample size within this specific 
subpopulation. 
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concedes data constraints, particularly with respect to severe ASD cases, which may affect 

the robustness of the findings and necessitate cautious interpretation of the results. 

4.2 Confounding factors 

This study considers a variety of factors that could potentially serve as confounding variables 

in the relationship between parental education and the early detection of ASD in children10. 

Research suggests that the age of the mother at birth could play a significant role. Younger 

mothers may possess lower education levels due to having children earlier in life, which 

could potentially impact the early detection of ASD (Mirowsky, 2017). Conversely, older 

mothers may be more educated and experienced, potentially leading to earlier detection of 

developmental concerns (Goin-Kochel, Mackintosh & Myers, 2006). 

The mental and physical health of the parents may also act as confounding factors. Parents 

experiencing mental health issues might exhibit lower educational attainment (Ettner, Frank 

& Kessler, 1997) and encounter challenges in recognizing early signs of autism in their 

children (Osborne & Reed, 2008). Similarly, parents in poor physical health may have their 

education and capacity to detect autism early affected by their health conditions (Case & 

Paxson, 2006).  

The nativity of parents is another factor considered in this study. Immigrant parents, with 

potentially diverse educational backgrounds, could face language and cultural barriers, thus 

impacting their access to health care services for their children (Weathers et al., 2008). This 

could, in turn, influence their ability to seek early diagnosis and support for children with 

ASD.  

The presence of multiple children with special needs in a household can be a double-edged 

sword. On one hand, it may heighten awareness of developmental milestones and early signs 

of autism (Chavira et al., 2014). On the other, it could strain family resources, possibly 

affecting parents' education and the early detection of autism in other children. 

Geographic location can also influence both parental education (Panizzon, 2015) and early 

autism detection, as studies have identified several spatial ASD hotspots in the US (Bakian et 

al., 2015; Bradshaw et al., 2023). States with better access to educational opportunities and 

autism-related services may exhibit a higher prevalence of well-educated parents and earlier 

autism detection rates. Additionally, differences in state policies, funding, and awareness 

 
10 All of those confounding factors have been included as explanatory variables in the estimation. 
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campaigns can also impact the relationship between parental education and early detection of 

ASD. 

The study also includes the factor of premature birth, as it can be associated with various 

health and developmental issues (Johnson et al., 2010), potentially complicating parents' 

ability to identify early signs of autism. Moreover, parents of premature babies may have 

encountered challenges during pregnancy that could have affected their education and 

capacity to recognize early ASD signs. Okui (2023) and Ruiz et al. (2015) have demonstrated 

this negative relationship between premature birth and parental education. 

Lastly, the size of a household might exert some influence on the early detection of ASD. 

Larger households may possess more diverse educational backgrounds and a broader range of 

experiences, which could influence the early detection of ASD (Sicherman et al., 2018). 

However, larger households might also place greater demands on parents' time and resources, 

affecting their ability to pursue education (Blaabæk, Jæger & Molitoris, 2019) and closely 

monitor their children's development. 

4.3 Descriptive statistics 

The sample under investigation 

comprises 3,706 children 

diagnosed with ASD and their 

respective parents or caregivers. 

As portrayed in Figure 2, a 

striking contrast in the 

conditional probability of 

diagnosis across the three levels 

of ASD severity emerges. 

Regardless of the educational 

background of the parents11, 

children with severe ASD are likely to receive a diagnosis earlier than their counterparts 

diagnosed with moderate and mild ASD. The average ages at diagnosis for mild, moderate, 

and severe ASD stand at 70, 56, and 43 months, respectively. Further examination reveals 

only a marginal discrepancy in the age at detection between mild and severe cases based on 

 
11 The educational attainment of parents should be understood as the highest level of education among 

household members. 

 

Figure 2 
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parental education. However, in moderate cases, a substantial difference of approximately 7 

months becomes evident, with children of highly educated parents diagnosed at 53 months 

and those with less educated parents at 60 months. These observations corroborate the 

assertions in section 4.1.2 and suggest that severe cases might be easier for parents of all 

education levels to recognize due to pronounced symptoms, whereas mild cases could present 

diagnostic challenges without professional assistance. For moderate cases, heightened 

parental awareness possibly underlies earlier detection. 

  

  

Figure 3 

In Figure 3, the general characteristics of children are graphed according to ASD severity and 

the presence of co-occurring conditions. Notably, there are no significant differences in 

experienced life events across all severity strata. However, marked variations appear between 

mild and severe ASD cases concerning parental incarceration (ACE5) and exposure to 

interparental violence (ACE6). These factors could potentially impinge on parental 

attentiveness and timely intervention for autistic children. Gender (SC_SEX) does not seem 

to influence the severity of ASD, while lower birth weight (BIRTHWT_L) and premature 

birth (K2Q05) are slightly more common in severe ASD cases. Interestingly, children from 

non-white racial backgrounds tend to exhibit severe ASD cases more frequently. 
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Additionally, being the only or the oldest child in the family (AGEPOS4) is a more common 

feature of children with mild ASD than with severe condition. 

In the realm of comorbidities, children with severe ASD generally manifest a larger number 

of co-occurring conditions than those with mild ASD. Exceptions are observed in the 

prevalence of asthma (K2Q40A), depression (K2Q32A), and attention deficit disorder or 

attention-deficit/hyperactivity disorder (K2Q31A) which appear to be more common among 

children with mild ASD. Anxiety (K2Q33A) is the sole condition that exhibits a higher 

prevalence in moderate ASD cases. The presence of these comorbidities, influencing the 

frequency of medical consultations, may facilitate an earlier diagnosis for severe cases. 

Finally, it is noted that the mean age of mothers at childbirth is approximately 29 years across 

all severity levels. While the number of siblings does not significantly differ across ASD 

severity levels, children with severe ASD tend to have more siblings with special healthcare 

needs in the household. This observation suggests a potential genetic influence and 

heightened parental alertness that might contribute to earlier detection. 

5. Empirical results and discussion 

5.1 Results 

The results from the DML estimation process, employing both PLR and IRM models, are 

presented in Table 1. The table showcases causal parameter estimates (𝜃) for the effect of 

parental education (having a higher education or not) on the early detection of ASD in 

children (age at diagnosis in months), considering different severity levels (mild, moderate, 

and severe cases) and using Ensemble models based on LASSO, RF, and XGBoost. A 

standard OLS estimate of the relationship has been included to serve as a benchmark. 

The evidence presented in Table 1 underscores the role of parental education as a determinant 

of early ASD detection in children. This relationship is particularly pronounced when 

examining the data through the lens of the OLS and Ensemble-PLR models without 

considering the stratification of ASD severity (𝜃𝑎𝑙𝑙), revealing a statistically significant 

negative relationship at the 5% level. This finding suggests that higher parental education can 

potentially lead to earlier ASD detection. However, with the introduction of heterogeneity in 

the Ensemble-IRM model, the impact of parental education on early detection of ASD 

appears to exhibit greater complexity. In this context, the data does not provide enough 

statistical evidence to definitively reject the null hypothesis, which posits that the effect of 



21 
 

parental education on early detection of ASD could be insignificant. This nuanced 

relationship underscores the multifaceted nature of ASD detection and the integral role 

played by severity classifications in understanding the dynamics of early diagnosis. 

 

Upon disaggregating these findings by severity levels, a nuanced picture emerges. For mild 

and severe ASD cases (𝜃𝑚𝑖𝑙𝑑 and 𝜃𝑠𝑒𝑣𝑒𝑟𝑒), all model findings lack statistical significance, 

suggesting that parental education does not have a substantial influence on the early detection 

of mild and severe ASD cases. Intriguingly, the OLS model shows a positive correlation, 

potentially suggesting its inability to accurately depict the connection between parental 

education and early ASD detection, possibly due to the complex nature of this relationship or 

constraints stemming from insufficient data. This inconsistency suggests that this relationship 

remains an unresolved area of inquiry requiring further exploration. 

Conversely, moderate ASD cases (𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) display a robust and statistically significant 

negative correlation across all models at the 1% level. This implies that parental education 

exerts a significant influence on the early detection of moderate ASD cases, with this effect 

being slightly more pronounced in the Ensemble - IRM (-7.799). This pronounced influence 

illuminates the potent role parental education plays, particularly when confronted with 

moderate manifestations of ASD. 

5.2 Robustness check 

In order to affirm the validity and reliability of the primary findings of this study, a series of 

robustness checks have been implemented. The robustness checks aim to scrutinize the 

consistency of the relationship between parental education and the early detection of ASD 

across varying severity levels. This is achieved by applying three different cross-fitting folds 

and utilizing distinct machine learning models described in section 3.4. The intention is to 

Table 1. DML estimates against OLS benchmark 
 OLS Ensemble-PLR Ensemble-IRM 

 2-fold cross-fitting 

𝜃𝑎𝑙𝑙  -3.379** 

(1.550) 

-3.212** 

(1.532) 

-2.094 

(2.908) 

𝜃𝑚𝑖𝑙𝑑  -1.140 

(2.711) 

-0.479 

(2.795) 

-0.796 

(4.143) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.396*** 

(2.175) 

-6.843*** 

(2.139) 

-7.799*** 

(2.278) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒 2.411 

(3.457) 

-0.698 

(2.817) 

-1.202 

(5.097) 
    

Significance level: ** 5%; *** 1% 
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reinforce the findings by examining their stability under varied model configurations and 

machine learning methods. By exploring the extent to which the observed effects endure 

across diverse specifications, the robustness checks offer a more nuanced and comprehensive 

understanding of the results. 

The robustness-checking procedure initiates with the examination of the PLR model 

estimates in Table 2. The primary focus here is the overarching impact of parental education 

on the early detection of ASD (𝜃𝑎𝑙𝑙), viewed through the lens of various machine learning 

techniques and cross-fitting procedures. The estimates derived from these explorations 

consistently reveal a negative and statistically significant relationship, fortified at the 5% 

significance level. This underscores the potential association between higher parental 

education and advanced detection of ASD, approximated between 3.2 and 3.5 months. Such 

findings bolster the assertion that heightened levels of parental education catalyse the earlier 

detection of ASD in children. 

When considering the severity level, a divergence in the results is observed. For mild ASD 

cases (𝜃𝑚𝑖𝑙𝑑), the estimates across all machine learning techniques and cross-fitting 

procedures are not statistically significant. This indicates an absence of compelling evidence 

to substantiate a relationship between parental education and early detection for this subset of 

ASD cases. 

In stark contrast, moderate ASD cases (𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) consistently yield a negative and 

statistically significant relationship at the 1% level across all machine learning techniques and 

cross-fitting procedures. These estimates are greater in magnitude compared to the overall 

effect, underscoring the pivotal role of parental education in the early detection of moderate 

ASD cases. Indeed, the estimates suggest that higher parental education could expedite the 

detection of moderate ASD cases by approximately 6.5 to 7 months. 

As for severe ASD cases (𝜃𝑠𝑒𝑣𝑒𝑟𝑒), the estimates, derived from the 2-fold cross-fitting 

procedure, do not manifest a statistically significant relationship across all machine learning 

techniques. This precludes the drawing of any firm conclusions concerning the relationship 

between parental education and the early detection of severe ASD cases based on the 

available data. 

In contrast to the PLR estimates, the IRM estimates (Table 3) for the overall effect of parental 

education on the early detection of ASD (𝜃𝑎𝑙𝑙) present less consistent findings. While some  
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machine learning techniques and cross-fitting procedures suggest a negative relationship, a 

majority of the estimates do not achieve statistical significance. An exception to this trend is 

observed in the XGBoost technique, utilizing 5-fold cross-fitting. Here, a statistically 

significant relationship emerges at the 5% level, linking higher parental education to earlier 

detection of ASD by approximately 4.7 months. 

Akin to the PLR findings, the IRM estimates for mild ASD cases (𝜃𝑚𝑖𝑙𝑑) across all machine 

learning techniques and cross-fitting procedures are not statistically significant, suggesting an 

absence of a clear relationship between parental education and early detection for mild ASD 

cases. 

 

Table 2. DML causal parameter estimates - PLR 
 LASSO Random Forest Gradient Boosting Ensemble 

 2-fold cross-fitting 
  

𝜃𝑎𝑙𝑙  -3.358** 

(1.537) 

-3.466** 

(1.527) 

-3.330** 

(1.557) 

-3.212** 

(1.532) 

𝜃𝑚𝑖𝑙𝑑  -0.042 

(2.766) 

-0.385 

(2.778) 

-1.434 

(2.816) 

-0.479 

(2.795) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.943*** 

(2.108) 

-6.920*** 

(2.160) 

-6.598*** 

(2.116) 

-6.843*** 

(2.139) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒 1.954 

(2.643) 

-0.215 

(2.939) 

-1.826 

(2.642) 

-0.698 

(2.817) 
  

 4-fold cross-fitting 
  

𝜃𝑎𝑙𝑙  -3.358** 

(1.537) 

-3.432** 

(1.530) 

-3.342** 

(1.551) 

-3.238** 

(1.533) 

𝜃𝑚𝑖𝑙𝑑  -0.042 

(2.766) 

-1.063 

(2.738) 

-0.674 

(2.772) 

-0.621 

(2.763) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.943*** 

(2.108) 

-6.685*** 

(2.110) 

-6.750*** 

(2.099) 

-6.772*** 

(2.100) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒  - - - - 
  

 5-fold cross-fitting 
     

𝜃𝑎𝑙𝑙  -3.358** 

(1.537) 

-3.194** 

(1.526) 

-3.379** 

(1.548) 

-3.189** 

(1.526) 

𝜃𝑚𝑖𝑙𝑑  -0.042 

(2.766) 

-0.841 

(2.755) 

-0.731 

(2.831) 

-0.415 

(2.781) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.943*** 

(2.108) 

-7.101*** 

(2.100) 

-6.474*** 

(2.112) 

-6.752*** 

(2.103) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒  - - - - 
     

Significance level: ** 5%; *** 1% 

 



24 
 

 

Moreover, for moderate ASD cases (𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒), the IRM estimates consistently show a 

negative and statistically significant relationship at the 1% level, mirroring the PLR findings. 

The estimates propose that children with moderate ASD and highly educated parents are 

diagnosed approximately 6.3 - 7.8 months earlier than their counterparts who do not have 

parents holding higher degrees. 

Lastly, just as with the PLR models, the IRM estimates for severe ASD cases (𝜃𝑠𝑒𝑣𝑒𝑟𝑒) from 

the 2-fold cross-fitting procedure reveal no statistically significant relationship across all 

machine learning techniques. Thus, the available data does not permit us to draw definitive 

conclusions about the relationship between parental education and early detection for this 

subset of cases. 

Table 3. DML causal parameter estimates - IRM 
 LASSO Random Forest Gradient Boosting Ensemble 

 2-fold cross-fitting 
  

𝜃𝑎𝑙𝑙  -3.148 

(2.433) 

-2.105 

(1.718) 

-3.248 

(2.172) 

-2.094 

(2.908) 

𝜃𝑚𝑖𝑙𝑑  -0.225 

(3.354) 

-1.510 

(3.275) 

-2.117 

(3.991) 

-0.796 

(4.143) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.330*** 

(2.225) 

-7.211*** 

(2.557) 

-7.018** 

(3.304) 

-7.799*** 

(2.278) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒 4.385 

(2.913) 

-0.914 

(3.697) 

-2.927 

(8.285) 

-1.202 

(5.097) 
  

 4-fold cross-fitting 
  

𝜃𝑎𝑙𝑙  -3.148 

(2.433) 

-1.915 

(1.697) 

-4.078* 

(2.143) 

-3.454 

(2.458) 

𝜃𝑚𝑖𝑙𝑑  -0.225 

(3.354) 

-1.256 

(3.049) 

-0.375 

(3.836) 

-1.414 

(3.916) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.330*** 

(2.225) 

-7.365*** 

(2.245) 

-7.032** 

(2.904) 

-6.480*** 

(2.334) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒  - - - - 
  

 5-fold cross-fitting 
     

𝜃𝑎𝑙𝑙  -3.148 

(2.433) 

-3.080* 

(1.690) 

-4.688** 

(2.137) 

-2.103 

(2.368) 

𝜃𝑚𝑖𝑙𝑑  -0.225 

(3.354) 

-1.771 

(3.011) 

-2.940 

(3.982) 

-0.519 

(4.320) 

𝜃𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒  -6.330*** 

(2.225) 

-7.455*** 

(2.213) 

-6.608** 

(2.808) 

-6.768*** 

(2.312) 

𝜃𝑠𝑒𝑣𝑒𝑟𝑒  - - - - 
     

Significance level: * 10%, ** 5%; *** 1% 
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In conclusion, our robustness checks, employing both the PLR and IRM models across a 

variety of machine learning techniques and cross-fitting procedures, corroborate the 

significant role of parental education in the early detection of ASD, especially in moderate 

cases. However, the relationship between parental education and the early detection of ASD 

in mild and severe cases remains ambiguous. These findings, though not entirely uniform, 

add credence to the primary results, bolstering the robustness of the study. Future research, 

with perhaps broader or more specific data, may illuminate these areas further, providing 

additional insights into the nuanced role of parental education in the early detection of ASD 

across varying severity levels. 

5.3 Discussion 

The findings of this study, derived from both PLR and IRM models, indicate that parental 

education has a significant impact on the early detection of ASD, particularly for moderate 

cases. The lack of statistically significant results for mild cases, as observed in both models, 

may be attributed to the subtler symptoms associated with this severity level, which could 

make it challenging for parents to identify the early signs of ASD, irrespective of their 

education level. 

The absence of statistically significant results for severe cases, specifically when employing 

2-fold cross-fitting in both PLR and IRM models, may be due to the limited sample size for 

this subpopulation, which could reduce the power of the analysis. Consequently, further 

research with larger sample sizes may be required to elucidate the relationship between 

parental education and early detection of severe ASD cases. An alternative explanation for 

the lack of statistically significant results for severe cases of ASD could be that the symptoms 

associated with severe ASD are more apparent and easier to identify than those of mild and 

moderate cases. Consequently, parents, regardless of their education level, may be able to 

spot the signs of severe ASD in their children more or less at the same time. This could result 

in a relatively equal likelihood of early detection among both highly educated and less 

educated parents, leading to the observed lack of a significant relationship between parental 

education and early detection of severe ASD cases. Lastly, the higher prevalence of 

comorbidities associated with ASD, which often leads to increased medical consultations, 

could also potentially play a role in its detection irrespective of parental education. 

It is crucial to note that the interpretation of these effects as causal (as average treatment 

effect) is contingent on certain assumptions. Both the PLR and IRM models used in this study 
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assume that there is no unobserved confounding, meaning all variables that could affect both 

parental education and early detection of ASD have been accounted for in the models. 

Additionally, the IRM model assumes an additive error structure, meaning that the effect of 

unobserved factors is the same across different levels of parental education. Therefore, while 

the evidence suggests a causal relationship, the possibility of bias due to unobserved 

confounding or violation of the additive error structure cannot be entirely ruled out. 

The profound implications of the current research findings become more discernible when 

contextualized alongside pertinent studies that illuminate the economic implications of ASD. 

Cidav et al.'s (2013) research on ASD-associated expenditures reveals that adjusted mean 

total expenditures grow significantly with each year of age, with a marked 23% increase 

between the age brackets of 3–5 and 6–11. These findings, when juxtaposed with our results, 

gain economic significance. The early detection of moderate ASD cases facilitated by 

increased parental education, estimated to hasten diagnosis by 6-7 months, could potentially 

mitigate these rising costs. Considering that the average age of diagnosis in the present study 

for moderate ASD cases is 56 months (approximately 4.7 years), the impact of early detection 

can be particularly salient in mitigating the significant cost jump associated with the 

transition from 3-5 years to 6-11 years. Additionally, a persuasive argument for Early 

Intensive Behavioural Intervention (EIBI) is presented in the study by Chasson et al. (2007), 

with projections indicating savings of $208,500 per child over an eighteen-year educational 

span in Texas. The implications of our findings, which emphasize the pivotal role of parental 

education in facilitating early ASD detection, suggest an indirect contribution to these 

savings via the potential for earlier access to EIBI. The advancement of diagnosis by 6-7 

months could lead to diminished special education costs, thus aligning with the substantial 

savings proposed by Chasson et al. (2007). Moreover, these are direct cost savings and do not 

account for the additional societal benefits and private savings that may result from earlier 

detection and intervention, such as enhanced productivity for parents, improved quality of life 

for the children, and potential future contributions to society by these children. These 

benefits, although harder to quantify, are nonetheless vital considerations in appreciating the 

full economic value of this study’s findings. 

5.4 Limitations 

While this research offers compelling insights into the influence of parental education on the 

early detection of ASD, it is not devoid of caveats that must be considered. At the outset, it 
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should be noted that the PLR and IRM models employed in the study come with inherent 

assumptions such as the exclusion of unobserved confounders and the presupposition of an 

additive error structure. Secondly, the conclusions drawn for severe ASD cases rest on a 

relatively limited sample size, which might call into question the generalizability and 

statistical power of these findings. Thirdly, while the focus on parental education is justified 

by the findings, it is important to acknowledge that this research does not sufficiently probe 

into the roles of other socio-demographic factors or specific parental awareness about ASD. 

These elements are assumed to be subsumed within the location and education variables. 

Furthermore, the study does not consider the stratification within different subtypes of ASD, 

such as autistic disorder, Asperger's syndrome, and pervasive developmental disorder-not 

otherwise specified. Each subtype may present distinct characteristics and analysing them 

separately could provide more nuanced insights into the relationship between parental 

education and early detection of ASD. Finally, the binary representation of parental education 

— delineating whether a parent has obtained a university-level education or not — poses 

another limitation. This reductionist approach aids in the binary distinction of education 

levels but fails to capture the inherent heterogeneity within these categories. The varying 

impacts associated with different levels of higher education are thereby overlooked. 

However, this binary treatment was dictated by the IRM model's constraints employed in our 

study. Future research could consider exploring a more detailed stratification of parental 

education or alternative model structures that permit a continuous treatment variable. 

Incorporating these considerations could pave the way toward a more nuanced understanding 

of ASD's early detection, contributing to the depth and breadth of this research area. 

6 Conclusion 

Utilizing the DML framework and applying both PLR and IRM methods, this study conducts 

a thorough exploration of the relationship between parental education and the timing of ASD 

diagnosis. 

The findings unveil a noteworthy inverse association between general parental education and 

the age of ASD diagnosis, particularly pronounced in moderate ASD cases. Higher levels of 

parental education — obtained university degree (bachelor’s degree or higher) — lead to 

earlier detection of ASD, underscoring the instrumental role of parental education in 

catalysing early interventions and facilitating appropriate support systems for children with 

ASD. 
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Contrarily, for mild and severe cases of ASD, the evidence presents a less transparent picture 

of the relationship between parental education and early detection. The absence of consistent 

statistical significance in these categories suggests a degree of complexity and variability that 

warrants further investigation. Thus, future research is encouraged to delve into the 

intricacies of how parental education may differentially influence the timing of diagnosis 

across the ASD severity spectrum, specifically with a larger and more detailed data set. 

By highlighting the substantial role of parental education in the early diagnosis of moderate 

ASD cases, this study sheds light on the importance of general education in informing 

parents' ability to facilitate timely diagnosis and intervention. The results of this study 

substantiate the value of broad-based educational attainment as a key factor influencing early 

ASD detection and affirm the utility of deploying both PLR and IRM models in analysing 

complex relationships within health-related research. As efforts to improve early detection 

and treatment of ASD persist, this study contributes a valuable piece to the broader puzzle, 

helping refine our understanding of the influence of parental education on ASD diagnosis 

timing. 
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Appendix 1: Variables used in the study. 

Table 4 

Description of features 

No Feature Description Type 

1 ACE3 Child ever experienced parent or 

guardian divorce or separation. 

Binary  

(1 - yes; 0 - no) 

2 ACE4 Child ever experienced parent or 

guardian death. 

Binary  

(1 - yes; 0 - no) 

3 ACE5 Child’s parent or guardian served time in 

jail or prison (after child’s birth). 

Binary  

(1 - yes; 0 - no) 

4 ACE6 Child ever saw or heard parents or adults 

slap, hit, kick, punch one another in the 

home. 

Binary  

(1 - yes; 0 - no) 

5 ACE8 Child ever lived with anyone who was 

mentally ill, suicidal, or severely 

depressed. 

Binary  

(1 - yes; 0 - no) 

6 ACE9 Child ever lived with anyone who had a 

problem with alcohol or drugs. 

Binary  

(1 - yes; 0 - no) 

7 AGEPOS4 Birth order of selected child in 

household. 

Binary  

(1 - first/only; 0 - 

other) 

8 SC_SEX Sex of selected child. Binary  

(1 - male; 0 - female) 

9 SC_RACE_R Race of selected child. Binary  

(1 - white; 0 - other) 

10 SC_AGE_YEARS Age of a child Integer 

11 BIRTHWT_L Low birth weight (<2500g) Binary  

(1 - yes; 0 - no) 

12 K2Q05 Child was born more than 3 weeks 

before their due date. 

Binary  

(1 - yes; 0 - no) 

13 BLINDNESS Child has blindness or problems with 

seeing, even when wearing glasses. 

Binary  

(1 - yes; 0 - no) 

14 ALLERGIES A doctor or other health care provider 

ever told you that this child has allergies 

(including food, drug, insect, or other) 

Binary  

(1 - yes; 0 - no) 

15 ARTHRITIS A doctor or other health care provider 

ever told you that this child has Arthritis. 

Binary  

(1 - yes; 0 - no) 

16 BLOOD A doctor or other health care provider 

ever told you that this child has Blood 

Disorders (such as Sickle Cell Disease, 

Thalassemia, or Hemophilia). 

Binary  

(1 - yes; 0 - no) 

17 CYSTFIB A doctor or other health care provider 

ever told you that this child has Cystic 

Fibrosis. 

Binary  

(1 - yes; 0 - no) 

18 DOWNSYN A doctor or other health care provider 

ever told you that this child has Down 

Syndrome. 

Binary  

(1 - yes; 0 - no) 

19 GENETIC A doctor or other health care provider 

ever told you that this child has other 

Binary  

(1 - yes; 0 - no) 
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genetic or inherited condition. 

20 HEADACHE A doctor or other health care provider 

ever told you that this child has frequent 

or severe headaches, including migraine. 

Binary  

(1 - yes; 0 - no) 

21 HEART A doctor or other health care provider 

ever told you that this child has Heart 

Condition. 

Binary  

(1 - yes; 0 - no) 

22 K2Q30A A doctor, other health care provider, or 

educator ever told you that this child has 

Learning Disability. 

Binary  

(1 - yes; 0 - no) 

23 K2Q31A A doctor or other health care provider 

ever told you that this child has 

Attention Deficit Disorder or Attention-

Deficit/Hyperactivity Disorder, that is, 

ADD or ADHD. 

Binary  

(1 - yes; 0 - no) 

24 K2Q32A A doctor or other health care provider 

ever told you that this child has 

Depression. 

Binary  

(1 - yes; 0 - no) 

25 K2Q33A A doctor or other health care provider 

ever told you that this child has Anxiety 

Problems. 

Binary  

(1 - yes; 0 - no) 

26 K2Q34A A doctor, other health care provider, or 

educator ever told you that this child has 

Behavioral or Conduct Problems. 

Binary  

(1 - yes; 0 - no) 

27 K2Q36A A doctor, other health care provider, or 

educator ever told you that this child has 

Developmental Delay. 

Binary  

(1 - yes; 0 - no) 

28 K2Q37A A doctor, other health care provider, or 

educator ever told you that this child has 

Speech or other language disorder. 

Binary  

(1 - yes; 0 - no) 

29 K2Q38A A doctor or other health care provider 

ever told you that this child has Tourette 

Syndrome. 

Binary  

(1 - yes; 0 - no) 

30 K2Q40A A  doctor or other health care provider 

ever told you that this child has Asthma. 

Binary  

(1 - yes; 0 - no) 

31 K2Q41A A doctor or other health care provider 

ever told you that this child has 

Diabetes. 

Binary  

(1 - yes; 0 - no) 

32 K2Q42A A doctor or other health care provider 

ever told you that this child has Epilepsy 

or seizure disorder. 

Binary  

(1 - yes; 0 - no) 

33 K2Q43B Does this child have deafness or 

problems with hearing . 

Binary  

(1 - yes; 0 - no) 

34 K2Q60A A doctor, other health care provider, or 

educator ever told you that this child has 

Intellectual Disability (formerly known 

as Mental Retardation). 

Binary  

(1 - yes; 0 - no) 

35 K2Q61A A doctor or other health care provider 

ever told you that this child has Cerebral 

Palsy. 

Binary  

(1 - yes; 0 - no) 



40 
 

36 K2Q35A A doctor or other health care provider 

ever told you that this child has Autism 

or Autism Spectrum Disorder (ASD). 

Binary  

(1 - yes; 0 - no) 

37 K2Q35A_1_YEARS Age of this child when a doctor or other 

health care provider first told you that 

they had Autism, ASD, Asperger's 

Disorder or PDD. 

Integer 

38 K2Q35C Autism ASD Severity Description Categorical 

(1 - mild; 2 - 

moderate; 3 - severe) 

39 FPR Family Poverty Ratio Integer 

40 FAMILY_R Family structure Binary 

(1 - both parents; 0 - 

only one or no 

parents) 

41 HHCOUNT Number of people living or staying at 

this address. 

Integer 

42 HHLANGUAGE Primary language spoken in the 

household. 

Binary 

(1 - English; 0 - other) 

43 HIGRADE Highest Level of Education among 

Reported Adults. 

Binary 

(1 - university; 0 - 

below university) 

44 HOUSE_GEN Parental Nativity Binary 

(1 - all parents born in 

the US; 0 - any other 

combination) 

45 TOTKIDS_R Number of Children in Household Integer 

46 TOTFEMALE Count of Female Children in Household Integer 

47 TOTMALE Count of Male Children in Household Integer 

48 TOTCSHCN Count of Children with Special Health 

Care Needs in Household 

Integer 

49 MOMAGE Age of the mother when this child was 

born. 

Integer 

50 MENTHEALTH Mental health of both parents. Binary 

(1 - good/excellent; 0 

- Fair/poor) 

51 PHYSHEALTH Physical health of both parents. Binary 

(1 - good/excellent; 0 

- Fair/poor) 

52 FIPSST State FIPS Code Categorical 
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Appendix 2: Hyperparameter tuning procedure for each machine learning 

model. 

  

  

  

  
Figure 4 
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A2.1 LASSO 

To ascertain the optimal regularization parameter λ for LASSO models, firstly, both 

regression and classification variants were trained utilizing the complete dataset. A pair of λ 

values were procured: one minimizing cross-validation error and another premised on the 1-

standard error rule (Figure 4). Then, these values delineated the range for the regularization 

parameter during the hyperparameter optimization phase for DML estimation. The algorithm 

scrutinized fifty discrete λ values within the prescribed range, ensuring that the final models 

attain equilibrium between overfitting and underfitting phenomena. 

A2.2 RF 

In the context of the RF algorithm, two principal parameters were subjected to optimization: 

the number of variables examined at each split and the minimum node size. A ±50% range 

surrounding base values was selected for optimization in both parameters. The base value for 

the number of variables at each split adheres to the rule of thumb, which is P/3 for regression 

problems and √P for classification problems. This parameter substantially influences the RF 

model's diversity, performance, and bias-variance trade-off. The base node size, set at 5, 

impacts the intricacy and depth of individual decision trees within the RF model. 

A2.3 XGBoost  

The algorithm is configured to operate for a maximum of 500 iterations, implementing early 

stopping if no enhancement is observed for 10 consecutive iterations. The learning rate η was 

optimized within the range of (0.1, 0.5), while the regularization parameter λ was optimized 

within the range of (0.001, 10). The number of features evaluated at each boosting round was 

optimized in a manner akin to the RF model, utilizing a ±50% range around the rule-of-

thumb values. The maximum depth of individual decision trees, deployed as weak learners 

during training, was optimized within a range of (1, 10). The tuning process contemplated up 

to 20 parallel trees for both regression and classification models. 

A2.4 Ensemble  

The ensemble model incorporates the three above-mentioned models - LASSO, RF, and 

XGBoost - to amalgamate their predictions using a straightforward arithmetic mean (i.e., they 

are given equal weight) (Figure 5). Each data point's predictions are computed individually 

for every model, and subsequently, these predictions are integrated by calculating their 

arithmetic  
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mean, yielding a singular prediction for 

each instance. This process is executed 

independently for both regression and 

classification tasks.  

The combination of multiple models' 

predictions offers a substantial 

enhancement in the ensemble's overall 

performance by capitalizing on the 

strengths of each model while 

simultaneously mitigating their inherent 

weaknesses. This ensemble model is 

capable of delivering more precise and 

robust predictions by attenuating the 

propensity for overfitting the data, a common pitfall associated with the utilization of singular 

models. Furthermore, the combination of predictions emanating from a diverse array of 

models facilitates a more comprehensive representation of the intrinsic data patterns and 

relationships, ultimately contributing to the refinement of the causal effect estimation. 

 

 

 

Figure 5 


