
AN INTRODUCTION TO

P-ADIC ANALYTIC GROUPS

FRIEDER SELISKO

Bachelor’s thesis
2023:K14

Faculty of Science
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M



2



Popular Abstract

There are few concepts that are as integral to our culture, thinking and to
the nature of the universe as the idea of symmetry. From the most fundamen-
tal principles of physics to the simple reflection symmetry of a human face,
symmetry can be found in the smallest of particles and the biggest astro-
nomical objects. When thinking about symmetry the concepts of reflection
symmetry or rotational symmetry immediately come to mind and they sug-
gest that objects are symmetric if they do not change their structure when
a certain action is carried out. We usually think of this action as a rotation
or reflection but in a mathematical sense this action is less restricted. If
we consider four identical objects that are placed in a line we can certainly
perform a reflection and thus exchange the first and the fourth as well as the
second and the third object. However, would not the structure remain the
same if we exchanged the first and the second object for example? Thus, we
have discovered another symmetry. This is just a very simple example of a
symmetry in a mathematical sense, however, symmetries can be extremely
complex.

We can now define, in a very intuitive way, what a group is. Let us say
that we are given a structure with a certain symmetry. This can be something
as simple as the four objects from above. Now we consider all actions that
leave the structure the same, in other words all actions related to a certain
symmetry, let us call these actions symmetry actions. Then this collection of
symmetry actions is a group. Not only that but every group can be seen as
such a collection of symmetry actions for some structure (Frucht’s theorem).

Let us now have a closer look at the structure of four identical objects.
A very important thing to notice is that we can perform two such symmetry
actions successively. Let us consider the action of exchanging the first and
second object and let us denote this symmetry action as (1 2). So what
happens if we first carry out this action and afterwards exchange the second
and third object, (2 3)? Well, the first object gets moved to the second
position and then to the third position. The second objects is moved to the
first position and the third object is moved to the second position. Now,
what happens if we exchange the order of the two symmetry actions that
we have performed? Firstly, we exchange the second and the third object
and secondly, we exchange the first and the second object. Then the third
object ends up in the first position, while the first object moves to the second
position and the second object moves to the third position. In other words,
the outcome is not the same; indeed, (1 2)(2 3) is not equal to (2 3)(1 2)!
Thus, for some groups we can not change the order of the symmetry actions.
However, for many other groups it does not matter in which order we perform
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the symmetry actions. These groups are called abelian groups. In a certain
sense, abelian groups are easier to understand and to work with. For this
reason there is a lot of research about them.

Another property that many groups have is that if we take a symmetry
action and apply it several times we end up where we started. If we exchange
the first and the second object in the example above and then do the exact
same symmetry action again we end up at the starting position. In this case
we needed to apply the symmetry action (1 2) only twice to arrive at the
starting position, we say that (1 2) has order 2. If we consider the symmetry
action of rotating a square 90 degrees, we need to carry out this action four
times to end up where we started. In other words, the symmetry action of
rotating a square 90 degrees has order 4. Let us now consider a certain prime
p. A group where every element, i.e. every symmetry action has order of a
power of p is called a p-group. Those groups are very well understood and
are very important tools when it comes to understanding groups in general.

In this thesis I will introduce different types of groups. In general we want
to study groups that have a useful structure for example to classify certain
types of groups. We also want to achieve a high level of understanding of the
types of groups that we are looking at. For those two reason it is essential
to look at groups with a relatively simple structure and then generalize the
findings to more complex groups. I will do this on two separate occasions in
this thesis.

Firstly, the easiest method to separate ”easy” groups from ”hard” groups
is by dividing them into finite and infinite groups. Looking at a finite amount
of symmetry actions is in most cases an easier job than looking at an infinite
amount of such actions. Having that in mind I will first introduce the concept
of a ”profinite group”. These groups are more or less a combination of finite
groups and a logical generalization of the concept of finiteness.

In a similar manner I will introduce ”powerful” p-groups. These are a
generalization of the well-understood abelian p-groups.

Finally this will lead me to groups that are both profinite and powerful
p-groups. These are called powerful pro-p groups. The p-adic analytic pro-p
groups are a special case of such powerful pro-p groups and of particular
interest to group theoretic research since they have been useful when proving
or disproving certain conjectures.
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Abstract

In this thesis we introduce the concept of a p-adic analytic pro-p group. To do
so we discuss important theorems and concepts connected to more general
types of groups, these include profinite groups, pro-p groups, powerful p-
groups, powerful pro-p groups and uniform groups.
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Chapter 1

Introduction

The research interest of my thesis, p-adic analytic groups, are topological
groups which means they combine two different fields of mathematics, group
theory and topology. Before group theory became an independent research
topic it was introduced separately within two different branches of mathe-
matics.

The great mathematicians Leonhard Euler and Carl Friedrich Gauss en-
countered group theory in their research of number theory, for example in Eu-
ler’s proof of Fermat’s little theorem [7]. In a very different branch of mathe-
matics, when trying to determine the solvability of polynomials, Joseph Louis
Lagrange [19] and Évariste Galois [9] introduced the permutation groups
and their connection to the solvability of polynomials. Furthermore, Galois
linked the topics of group and field theory, thereby creating Galois theory.
The breakthrough of group theory as a stand-alone subject, however, came
towards the end of the 19th century as Camille Jordan published the first
book treating group theory [15]. Around the same time, symmetry groups,
and slightly later Lie groups, were studied systematically [21].

The importance of group theory in modern-day research cannot be under-
stated. Most branches of mathematics such as algebraic geometry, harmonic
analysis and combinatorics, give rise to group theoretic applications. The ap-
plications of group theory has had a big impact on cryptography and physics
as well. Symmetry groups for example have been used to describe many phys-
ical systems such as lattices or atoms. Furthermore, the two most important
models in physics, the standard model and the theory of general relativity
are heavily based on group theory.

The branch of topology on the other hand can be traced back to the
book Analysis Situs (1895) by Henri Poincaré [23], where he corrected and
vastly extended previous works connected to topology by, among others,
Augustin-Louis Cauchy and Bernhard Riemann. The foundation for modern
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day topology was laid by introducing the concepts of a metric space (Fréchet,
1906 [8]) and a topological space (Hausdorff, 1914 [14]). Nowadays, topology
is relatively closely connected to set theory. Topology, especially algebraic
and geometric topology has been applied to many different subjects in order
to understand the structure of certain objects, these objects can be sets in
data analysis or proteins in biology.

This leads us finally to the topic of topological groups which has been
studied extensively since 1925. This subject studies groups that are simulta-
neously topological spaces, thus combining group theory and topology. No-
table applications of topological groups are their connections to integrals and
Fourier series that were established by Alfréd Haar [13] and André Weil [18]
respectively.

Within group theory I want to highlight three types of groups that are
very well understood. Finite groups, abelian groups, where all elements
commute and p-groups where p is a prime and the order of every element is a
power of p. This thesis introduces generalizations to the mentioned groups.

• Profinite groups and pro-p groups which are a generalization of finite
groups respectively finite p-groups.

• Powerful p-groups which are a generalization of abelian p-groups.

• Powerful pro-p groups which combine both generalization above.

The subject of profinite groups builds on the work of Jean-Pierre Serre
[25] and John Tate [27] from the 1960s. Profinite groups are inverse limits
of finite groups and thus closely related to finite groups. For this reason it
is possible to generalize many theorems for finite groups to profinite groups.
The most notable example of profinite groups are (infinite) Galois groups.

In the same sense that our understanding of finite groups carries over
to profinite group we can apply many characteristics of abelian p-groups to
powerful p-groups. Powerful p-groups have been integral to the solution of the
restricted Burnside problem [28] and the classification of finite p-groups using
the coclass conjectures [20]. Finally, powerful pro-p groups and especially p-
adic analytic pro-p groups have been useful to solve long-standing conjectures
and to classify pro-p groups [6].

After introducing basic group theoretic and topological concepts I will
dedicate one chapter of this thesis to profinite and pro-p groups and prove
that they are the inverse limit of an inverse system of finite groups. Then
I will state and prove important theorems connected to powerful finite p-
groups, the lower p-series and the Frattini subgroup. In the last chapter I
will introduce powerful pro-p groups, uniformly powerful pro-p groups and
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p-adic analytic pro-p groups. Here the focus will be on the introduction
of several different (hypothesized) characterizations of p-adic analytic pro-p
groups using for example the concept of manifolds or the Hausdorff spectrum.
In the end I will briefly introduce a conjecture that was disproved using p-adic
analytic pro-p groups.
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Chapter 2

Topological concepts and group
theoretic concepts

The definitions and theorems in this chapter can be found in most introduc-
tory books (see [3] and [22] for further reference).

2.1 Basic concepts

In this section we prepare for the definition of a topological group and intro-
duce important topological and group theoretic concepts.

2.1.1 Group theoretic concepts

We start by introducing basic group theoretic concepts. Examples of those
will be collected below.

Definition 2.1.1. A group (G, ·) (usually just G) is a set G together with
a binary operation · : G × G 7→ G such that the following conditions are
fulfilled.

(i) For any three elements a, b, c ∈ G one has (a · b) · c = a · (b · c).

(ii) There exists an identity element e ∈ G (sometimes written as 1) such
that a · e = e · a = a for any a ∈ G.

(iii) For each element a ∈ G there exists a−1 ∈ G such that a·a−1 = a−1 ·a =
e.

Similarly to other contexts it is possible to omit the ·, i.e. a · b can be written
as ab.
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Definition 2.1.2. A group homomorphism is a map f : A→ B from a group
(A, ·) to a group (B, ∗) such that for all a1, a2 ∈ A we have that

f(a1 · a2) = f(a1) ∗ f(a2).

Definition 2.1.3. A subgroup H of a group G (written H ≤ G) is a subset
of G that forms a group itself with respect to the same operation as in G.
Thus it needs to be closed under products and inverses.

Definition 2.1.4. A normal subgroup N ofG (writtenN ⊴ G) is a subgroup,
where gng−1 ∈ N for all n in N and all g in G. The homomorphism ϕx :
G→ G given by ϕx(g) = xgx−1 is called conjugation.

Definition 2.1.5. A subgroup ⟨S⟩ generated by a subset S of a group G is
the smallest subgroup that contains S. Any element in ⟨S⟩ can be expressed
as a finite product of elements in S and their inverses.

Definition 2.1.6. A coset of a subgroup H of G is the set gH := {gh | h ∈
H} for an element g of G. If g ∈ H we naturally have gH = H.

Definition 2.1.7. A quotient group of a normal subgroup N in G (written
G/N) is the set of all cosets of N in G, i.e. G/N = {gH | g ∈ G}. The
group operation is defined as (aN)(bN) = (ab)N .

Definition 2.1.8. The centre Z(G) of a group G is the set of elements c ∈ G
that commute with all g in G, i.e. cg = gc for all g ∈ G.

Definition 2.1.9. A group G is abelian if the group operation is commuta-
tive, i.e. for all a, b ∈ G we have a · b = b · a.

Lemma 2.1.10. Every cyclic group, i.e a group that is generated by a single
element, is abelian.

Proof. Let G = ⟨g⟩ be cyclic and let gm and gn be elements in G for natural
numbers n and m. Then gmgn = gmn = gnm = gngm.

Groups can be found in many areas of mathematics and physics. Very
simple examples include the symmetric group Sn of permutations of a set
M = {1, 2, . . . , n}, the whole numbers together with the addition operation,
and the rational numbers without zero with multiplication. While the sym-
metric group is not abelian (for n > 2), the other two groups are examples
of abelian groups.

The two trivial subgroups of any group G are the group itself and the
trivial subgroup {e}. These two are naturally normal subgroups. The even
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integers form a subgroup denoted 2Z of the integers Z; indeed the sum of
two even integers is even, and the negative of an even integer is even. This
subgroup is normal as well, as any subgroup of an abelian group will be,
simply because gng−1 = gg−1n = n.

Let us consider the symmetric group Sn. The element that maps a to
b and b to a, we write in the cyclic notation as (a b). Similarly, the el-
ement (a b c) maps a to b, b to c and c to a. The group S3 consists of
the elements (1 2), (2 3), (1 3), (1 2 3), (1 3 2) and the identity element e that
leaves everything unchanged. This group has exactly four proper subgroups
(that are neither S3 nor e). Those are {e, (1 2)}, {e, (1 3)}, {e, (2 3)} and
{e, (1 2 3), (1 3 2)}. It can be easily checked that the first three are in fact
not normal as, for example (1 2 3)(1 2)(1 3 2) = (1 3) is not in {e, (12)}. The
last one, however, is a normal subgroup; here we can simply check for all el-
ements, for example (1 2)(1 2 3)(1 2) = (1 3 2) is indeed in {e, (1 2 3), (1 3 2)},
and so on. Let us call this group N . We can see that the subgroup N =
⟨(1 2 3)⟩ is generated by the element (1 2 3) since (1 2 3)(1 2 3) = (1 3 2) and
(1 2 3)(1 3 2) = e. The quotient group S3/N consists of all the cosets of
N . In this case we have only two cosets as (1 2)N = (1 3)N = (2 3)N =
{(1 2), (1 3), (2 3)}. Thus, the group S3/N has only two elements, the iden-
tity element e = eN = N and the element a = (1 2)N with the property
a2 = e.

Definition 2.1.11. The exponent of a group G is the smallest natural num-
ber n such that for all g in G we have that gn = e.

Lemma 2.1.12. A group of exponent 2 is abelian.

Proof. We have that

ab = ba ⇐⇒ baba = b2a2 = e.

The last equation is true since baba = (ba)2 = e.

Definition 2.1.13. The order |G| of a group G is the number of its elements.
The order of an element g of G however, is the smallest integer n such that
gn = g · g · · · g︸ ︷︷ ︸

n times

= e.

Definition 2.1.14. A p-group is a group G, such that the order of any
element of G is a power of p, where p denotes a prime number. The order of
a finite p-group is necessarily a power of p as well.

The simplest example of a p-group is the cyclic group Cp of order p, a
group that is generated by a single element, i.e. Cp = {e, a, a2, . . . , ap−1}.
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Such a cyclic group is often represented as the quotient group Z/pZ. Infinite
p-groups are relatively meaningful in group theory, apart from the pro-p-
groups that will be discussed in this thesis, the Tarski monster groups are
counterexamples to the well-known Burnside problem and the von Neumann
conjecture. However, relatively simple infinite p-groups do exist as well, for
example the infinite-dimensional vector space of the field {0, 1}.
Lemma 2.1.15. Let G be a p-group and M a maximal subgroup of G. Then
M is normal in G.

Proof. It is clear that a subgroup M is maximal if and only if |G : M | = p.
Indeed, let M be maximal. Then G/M has no proper normal subgroup.
In a p-group this implies that |G : M | = p. Conversely, let |G/M | = p.
Then G/M has no proper subgroups. Let us assume that there exists a
proper subgroup N containing M . Then N/M is a proper subgroup of G/M
contradicting that G/M has no proper subgroups, thus the claim follows.
Now, we will use the fact that the centre of a p-group is non-trivial, which
follows directly from the class equation. Let G be a group of order pn. We
proceed by induction on n, where n = 1 is clear, since the only maximal
proper subgroup is the trivial group. Let M be a maximal subgroup and let
c ̸= 1 be an element of the centre of G. If c ∈M it follows by the induction
hypothesis thatM/⟨c⟩ is normal in G/⟨c⟩ and by the correspondence theorem
it follows that M is normal in G. If c /∈ M , then M⟨c⟩ = G and thus M is
normal.

Lemma 2.1.16. Let G be a finite p-group. Then every cyclic normal sub-
group of order p is contained in the centre.

Proof. Let c be an element of such a cyclic normal subgroup N and g ∈ G.
Then gcg−1 = ck for 0 < k < p, however, since conjugation is a homomor-
phism it is also true that gcℓg−1 = cℓk. Now gℓcg−ℓ = ck

ℓ
. Since G is a

finite group there exists an n such that gp
n
= 1. Hence c = gp

n
cg−pn = ck

pn

.

This requires that kp
n
=
(
kp

n−1
)p
≡ 1 (mod p). Fermat’s little theorem

states that ap ≡ a (mod p) and thus kp
n ≡ k ≡ 1 (mod p). However, since

0 < k < p we have that k = 1 and gc = cg for all g in G.

Lemma 2.1.17. Let G be a p-group of order pn. Then G has a normal
subgroup of order pm for m ≤ n.

Proof. We use induction on n. For n = 1 all subgroups are normal. Let G be
of the order pn and let Z(G) be the nontrivial centre of G. Let us consider a
cyclic subgroup C of order p of Z(G). Then G/C has a normal subgroup of
the order pm which we call N/C. However since N/C ◁ G/C it follows that
N is a normal subgroup of G of order pm.
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Definition 2.1.18. The commutator of two elements a and b of a group G
is the element [a, b] = a−1b−1ab. The commutator of two subgroups A and
B of G is the subgroup [A,B] generated by the set {[a, b] | a ∈ A, b ∈ B}.
The commutator subgroup G′ := [G,G] of G is the subgroup generated
by all the commutators [a, b] where a and b are elements of G. We also
define [a1, a2, . . . , an−1, an] = [[a1, a2, . . . , an−1], an] for elements ai ∈ G and
[H1, H2, . . . , Hn−1, Hn] = [[H1, H2, . . . , Hn−1], Hn] for subgroups Hi of G.

Lemma 2.1.19. The commutator subgroup G′ of a group G is a normal
subgroup and the smallest normal subgroup such that the quotient of G by it
is abelian.

Proof. Every element of the commutator subgroup is a finite product of com-
mutators and their inverses. However [a, b]−1 = [b, a]. Let h = h1 · · ·hn,
where h1, . . . , hn are commutators, then

ghg−1 = gh1g
−1 · · · ghng−1

is in G′ if ghig
−1 is in G′ for all i. This is in fact the case, as for elements

a, b, g of G we have

g[a, b]g−1 = ga−1b−1abg−1 = ga−1g−1gb−1g−1gag−1gbg−1.

Now let b1 = gbg−1 and a1 = gag−1, then

g[a, b]g−1 = a−1
1 b−1

1 a1b1.

Thus G′ ⊴ G.

Let H be a normal subgroup. The quotient group G/H is abelian if and
only if for all a, b in G we have that (aH)(bH) = (bH)(aH). We have

(aH)(bH) = (bH)(aH) ⇐⇒ (ab)H = (ba)H ⇐⇒ a−1b−1ab ∈ H.

Thus G/H is abelian if and only if G′ ⊆ H.

Lemma 2.1.20. For any group G, we have that [G,G] ≤ G2.

Proof. The group G/G2 is either the trivial group if G = G2, in which case
the statement above is true, or G/G2 has exponent 2 since for all elements
in G/G2 we have (gG2)(gG2) = g2G2 = G2. Thus G/G2 is abelian which
implies that [G,G] ≤ G2 by the previous lemma.
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2.1.2 Topological concepts

Definition 2.1.21. A topology T on a set X is a collection of subsets of X
such that

(i) the empty set ∅ and the entire set of X are elements of T ,

(ii) any arbitrary union of members of T is in T ,

(iii) any intersection of a finite number of members of T is in T .

Definition 2.1.22. The ordered pair (X, T ) of a set X and a topology T
on X is called a topological space.

In most literature the topology is omitted in the notation and we would
write a topological space X.

A member U of T is called an open set, whereas the complement X \ U
is called a closed set. This means that ∅ and X are both open and closed.
We might recognize the term of an open set from its standard use within
the real numbers, where the usual open sets, i.e. unions of open intervals,
are the elements of the standard topology on R. Two simple examples of
topologies are the trivial topology, also called the indiscrete topology, which
only consists of the empty set and X itself, and the discrete topology which
is the collection of all subsets of X. To determine whether a collection of
subsets is a topology we just need to check the three conditions above. (For
the trivial topology it is very clear that all three conditions are fulfilled as
the only possible intersection and union are the empty set and X itself.)

Definition 2.1.23. The interior of a subset A of a topological space is
defined as the union of all open sets contained in A, and the closure of A is
defined as the intersection of all closed sets containing A. It follows that the
interior intA is open and the closure A is closed.

If we once again consider the real numbers together with the standard
topology, two simple examples come to mind. Firstly, the interior of the
rational numbers is empty since no open set is contained within the rationals.
However, every open set contains a rational number. This means that every
closed set that contains all rational numbers contains the whole space, in
other words Q = R. We would say that Q is dense in R. Secondly, the
interior of any interval is the corresponding open interval, while the closure
is the corresponding closed interval.

int([a, b]) = int((a, b]) = (a, b)
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Furthermore, the trivial and discrete topology let us make more general
statements about the interior and closure of a set. In the discrete topology,
the interior and the closure are the set itself, since any set is both open and
closed. In the trivial topology, the interior of any set apart from the entire
space X is the empty set, whereas the closure except for the empty set is
always X.

Definition 2.1.24. Let (X, T ) be a topological space and Y a subset of X.
Together with the subspace topology

TY = {Y ∩ U | U ∈ T },

the subset Y is called a subspace of X.

We should remember that the subspace itself is both open and closed,
which means that the interval [a, b] as a subspace of the real numbers together
with the standard topology is in fact open and closed, as a set however it
is naturally closed. Continuing with the real numbers and the standard
topology we can clearly see that the subspace of the whole numbers has
the trivial topology as its subspace topology. This is true since any whole
number a is contained in the open set (a+ 1, a− 1) which does not contain
any other whole number. One might assume that this also applies to the
rational numbers, however, in this case single-point sets are not open, as
any open interval around a point contains an infinite amount of rational
numbers. The open sets are in fact intervals (a, b), where a and b can be
rational or irrational. One has to keep in mind, that if a and b are irrational
the boundary points are not within the subspace and therefore

Q ∩ (a, b) = Q ∩ [a, b],

and thus (a, b) is both open and closed in the subspace topology.

Definition 2.1.25. A basis B for a topology on a set X is a collection of
subsets of X such that

(i) for each x ∈ X there exists a basis element B ∈ B such that x ∈ B,

(ii) if x is in the intersection of two basis elements B1 and B2 then there
exists a basis element B3 containing x such that B3 ⊂ B1 ∩B2.

The topology T generated by a basis B consist of all unions of basis ele-
ments. The usual basis for the standard topology on R consists of all open
intervals. The introduction of a basis is necessary to define the product
topology on a Cartesian product X × Y .
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Definition 2.1.26. Let X and Y be topological spaces. The sets U × V ,
where U is open in X and V is open in Y form a basis for the product topology
of X × Y .

To extend this definition to infinite Cartesian products we need to intro-
duce the notion of a subbasis.

Definition 2.1.27. A subbasis S for a topology on X is a collection of
subsets of X whose union equals X. The topology generated by S consist of
all unions of finite intersections of elements of S.

It is clear that the finite intersections of subbasis elements form a basis.
The semi-finite intervals (−∞, a) and (b,∞) generate the standard topology
on R since the basis elements can be created using the simple intersection
(a, b) = (−∞, a) ∩ (b,∞). It is a bit harder to see that all rational open
intervals generate the standard topology as well. This is true since any open
interval (a, b), where b is irrational, is the infinite union of all open intervals
(a, bi), where bi is rational. This is again due to the fact that the rationals
are dense in the real numbers.

Definition 2.1.28. Let ψi be the projection mapping assigning each element
its ith component. The product topology of the product space

∏
i∈J Xi is the

topology generated by the subbasis consisting of all sets Si = {ψ−1
i (Ui) |

Ui open in Xi}.

The resulting basis elements of the product topology on
∏
Xi are there-

fore all sets of the form
∏
Ui, where Ui is open in Xi for all i and Ui = Xi

for all but finitely many i.

Definition 2.1.29. A map f : X → Y between sets X and Y with their
respective topologies TX and TY is continuous if for any open set U ∈ TY the
set f−1(U) is in TX (and thus open as well).

We can once more examine the standard topology on the real numbers and
compare the above definition with the usual ϵ − δ definition for continuity.
We say that a function is continuous at a point x0, if for a given ϵ > 0
there exists a δ > 0 such that |x − x0| < δ implies that |f(x) − f(x0)| <
ϵ. Naturally the two definitions should be the same. We observe that the
interval U = (f(x0)− ϵ, f(x0) + ϵ) is an open set which implies that f−1(U)
is open as well, thus it is a union of open intervals. Let (x0 − a1, x0 + a2) be
the interval that contains x0. Then |x− x0| < δ := min{a1, a2} implies that
|f(x) − f(x0)| < ϵ. To show the other direction we want to derive from the
ϵ − δ definition that for each open set U the inverse image f−1(U) is open
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as well. Since U is a union of open intervals each x0 ∈ U is contained in
an interval (f(x0) − ϵ, f(x0) + ϵ). We know that there exists a δ such that
|x − x0| < δ implies that |f(x) − f(x0)| < ϵ. In other words the interval
V = (x0 − δ, x0 + δ) is in f−1(U). Thus x is contained in an open interval.
This is true for any point x ∈ f−1(U) and consequentially f−1(U) is open.

Naturally any function f : (X, TX) → (Y, TY ) is continuous if TX is the
discrete topology.

A useful property of continuous functions is that a composite of two
continuous functions is continuous as well. Let f : X → Y and Y → Z be
continuous, if U is open in Z, then g−1(U) is open in Y and f−1(g−1(U)) =
(g ◦ f)−1(U) is open in X. Thus g ◦ f is continuous.

Definition 2.1.30. A homeomorphism is a bijective and bicontinuous func-
tion, i.e a continuous function whose inverse is continuous as well. Two
topological spaces with a homeomorphism between them are called homeo-
morphic.

An easy example of a homeomorphism is the continuous function f(x) =
ax and thus the intervals [0, 1] and [0, a] are homeomorphic in the real num-
bers.

A slightly more advanced function is given below and we leave it to the
reader to show that it is continuous on the interval (a, b). Any real interval
(a, b) is homeomorphic to the real numbers through the homeomorphism

f(x) =
1

a− x
+

1

b− x
.

Definition 2.1.31. For a topological space (X, T ) and a point x ∈ X we
define a neighbourhood of x to be a subset of X that contains an open set U
with x ∈ U .

In the standard topology [0, 2] ∪ Q is not a neighbourhood of zero but
[−1, 1] is.

Definition 2.1.32. A topological space (X, T ) is Hausdorff if any two dis-
tinct points have disjoint neighbourhoods.

Here we can observe the importance of the topology that is chosen for
a given set X. A topological space consisting of any set together with the
discrete topology always has the Hausdorff property, whereas any set (that
contains more then two points) together with the trivial topology does not
have the Hausdorff property.

Lemma 2.1.33. Let f : Y → X be continuous and injective. If X is Haus-
dorff then Y is Hausdorff as well.
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Proof. For two distinct points a and b in Y we know that f(a) and f(b)
have disjoint neighbourhoods U and V in X. Then f−1(U) and f−1(V ) are
disjoint neighbourhoods of a and b.

This theorem is particularly useful since Y can be a subspace of X. This
means that any subspace of a Hausdorff space is Hausdorff as well.

Lemma 2.1.34. Let Xi be nonempty spaces, then
∏
Xi is Hausdorff if and

only if each Xi is Hausdorff.

Proof. If
∏
Xi is Hausdorff we can construct the continuous injection f :

Xj →
∏
Xi, where for each component i ̸= j we define fi = ψif to be a

constant map, where ψi is the projection mapping. For the jth component
we define fj to be the identity map. Thus by Lemma 2.1.33 each Xj is
Hausdorff.

Conversely, let each Xi be Hausdorff and let a and b be distinct points in∏
Xi, in other words at least for one component aj ̸= bj. However, sinceXj is

Hausdorff, there exist two disjoint neighbourhoods A and B of aj respectively
bj. But this implies that for the projection mapping ψj we have that ψ

−1
j (A)

and ψ−1
j (B) are disjoint neighbourhoods of a and b.

Definition 2.1.35. A collection A of open sets is called a cover of X if the
union of the elements of A equals X, i.e.

X =
⋃
α∈A

α.

Definition 2.1.36. A topological space (X, T ) is compact if any cover A of
X has a finite subset {α1, . . . , αn} that is a cover as well,

X =
n⋃

i=1

αi.

Any finite topological space is compact. For any open cover one can
choose a finite subcover consisting of one open set for each point. Again,
the trivial and the discrete topology yield very simple results. A topological
space with the discrete topology is compact if and only if it is finite. Any set
together with the trivial topology is a compact topological space.

The real numbers together with the standard topology are not compact
since the open cover A = {(n− 1, n+ 1) | n ∈ Z} has no finite subcover.

Lemma 2.1.37. A topological space X is compact if and only if for each
family (Ya)a∈A of closed subsets of X with empty intersection there exists a
finite subset {a1, . . . , an} of A such that

⋂n
i=1 Yai = ∅.
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Proof. The intersection of (Ya)a∈A is empty if and only if the open sets X \Ya
cover X. There exists a finite subset {a1, . . . , an} of A such that

⋂n
i=1 Yai = ∅

if and only if X \ Ya has a finite subcover.

Since compactness is closely related to closedness and boundedness we
will briefly introduce the concept of boundedness thereby taking a glance at
metric spaces.

Definition 2.1.38. A metric on a set X is a function d : X ×X → R such
that

(i) d(x, y) ≥ 0 for all x, y ∈ X, equality holds if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

The usual metric of a Euclidean space is given as the square root of the
squares of the difference in each component, i.e. the distance between the vec-
tors (x1, x2, x3) and (y1, y2, y3) is d =

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Given a set X and a metric d on X we can always construct a topological
space using the metric topology:

Definition 2.1.39. Let d be a metric on X. Then the metric topology
induced by d has the basis B = {Bd(x, ϵ) | x ∈ X, ϵ > 0}, where the ϵ-balls
Bd(x, ϵ) = {y ∈ X | d(x, y) < ϵ} are the basis elements. In this case the
topological space X is called a metric space and is denoted by (X, d).

Definition 2.1.40. Let X be a metric space with metric d. A subset A of
X is bounded if there is some real number M such that d(a1, a2) < M for all
a1, a2 ∈ A.

For a finite-dimensional Euclidean space, a subspace is compact if and
only if it is closed and bounded. This is the famous Heine-Borel theo-
rem which we will prove for subspaces of the real numbers below. For an
infinite-dimensional Euclidean space, however, compactness implies closed-
and boundedness but the other direction is not true. The standard example
for this is the closed unit ball. This subspace is closed and bounded but
not compact. One can check for example that the cover consisting of open
balls of radius

√
2 around the points (0, 0, 0, . . .), (1, 0, 0, . . .), (−1, 0, 0, . . .),

(0, 1, 0, . . .), (0,−1, 0, . . .), (0, 0, 1, . . .), . . . has no finite subcover.

Theorem 2.1.41. Subsets of the real numbers together with the standard
topology are compact if and only if they are closed and bounded.
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Proof. Any subset of the real numbers that is not bounded contains an as-
cending (or descending) sequence of numbers ai that goes to infinity (or
negative infinity). Let A be a covering of this subset containing the open
intervals (a0, a2), . . . , (an−1, an+1), . . .. Furthermore, all other elements of A
should be bounded, let us call the bound b. We can clearly see that any
subset of A that is a cover as well needs to contain all intervals (an−1, an+1)
for n > b. This shows that no finite subcover can exist and any unbounded
subset of the real numbers is not compact. Similarly one can construct such
a cover for any subset that is not closed. This space contains an interval [a, b)
(or (b, a]) but not b. Let A be such that the only elements that cover [ b−a

2
, b)

are of the form (a, b − b−a
n
) for n ∈ N. Such a cover has no finite subcover

which shows that subsets of the real number line that are not closed are not
compact. Thus compactness implies closed and boundedness.

We will now show that every closed and bounded subset U of the real
number line is indeed compact. Such a subset is the union of closed intervals.
Let us denote the lower and upper bound of U as a and b. Let us consider
a cover of U and extend it by the open set [a, b] \ U = (a, b) ∩ R \ U , where
(a, b) and R \U are both open sets, then if [a, b] is compact it follows that U
is compact as well. Thus if we can show that [a, b] is compact it follows that
U is compact as well. We prove by contradiction. Let us assume that there
exists a cover A that does not have a finite subcover. And let [a, x] (a ≤ x)
be the largest interval that can be covered by finitely many elements of A.
However the element of A that covers x needs to be an open set. Thus it
contains an element that is greater than x. This contradicts the assumption
that [a, x] is the largest interval. In conclusion, there does not exist a largest
interval and any closed interval is compact.

For completeness the Tychonoff theorem is stated here, even though we
will not prove it, since it is a rather complex proof that can be found in most
topology books.

Theorem 2.1.42 (Tychonoff theorem). The (possibly infinite) Cartesian
product

∏
Xi of compact spaces Xi is compact.

Definition 2.1.43. A topological space (X, T ) is connected if there does not
exist a pair of disjoint nonempty sets U and V whose union is X. Such a
pair of open sets of (X, T ) is called a separation. Observe that U and X \U
is a separation if and only if U is both open and closed.

Lemma 2.1.44. If X is connected and f : X → Y is continuous, then f(X)
is connected.
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Proof. Let A,B be a separation of f(X) then f−1(A), f−1(B) is a separation
of X.

Theorem 2.1.45. Let Xi be topological spaces. Then
∏
Xi is connected if

and only if each Xi is connected.

Proof. (⇒) Let
∏
Xi be connected. There exists a continuous map f :∏

Xi → Xi, which implies that Xi is connected as well.

(⇐) Let each Xi be connected. Suppose that A ⊆ X =
∏
Xi is both

open and closed and nonempty. We will show that A = X. Otherwise, A
and X \ A would form a separation. Let a ∈ A with components ai. We
define the map ψ : Xj → X such that for i ̸= j it is the constant map
ψi : Xj → Xi, where every element x ∈ Xj gets mapped to ai and for the
jth component it is the identity map on Xj. Since ψ is continuous and Xj

is connected it follows that ψ(Xj) is connected as well. We also have that
a ∈ ψ(Xj), thus A∩ψ(Xj) is nonempty. Since A is open and closed in X we
can conclude that A∩ψ(Xj) is open and closed in ψ(Xj). However ψ(Xj) is
connected which implies that A ∩ ψ(Xj) = ψ(Xj), hence ψ(Xj) ⊆ A. This
means that any point b that differs from a in the jth component is in A.
However since j was chosen arbitrarily we can conclude that any point that
differs from a by a single component is in A. By induction it follows that
any point that differs from a by a finite amount of components is in A.

Since A is open in X it needs to contain a basis element
∏
Ui of the

product topology that contains a. Thus Ui = Xi for all but finitely many i.
But this means that given a point x ∈ X we can get a point in

∏
Ui (and

thus A) by changing only finitely many components which implies that x ∈ A
and thus A = X.

Definition 2.1.46. A topological space (X, T ) is totally disconnected if every
subspace is disconnected, except for one-point sets.

Here we can observe that the trivial topology always leads to a connected
space whereas a topological space with the discrete topology is always totally
disconnected. Another example of a totally disconnected topological space
would be the rational numbers together with standard topology. It is possible
for any subspace containing more than two numbers to find a separation.
Let the numbers be called a and b with a < b, then there exists an irrational
number r such that a < r < b and (∞, r), (r,∞) is a separation.

Lemma 2.1.47. Any interval [a, b] of the real number line is connected in
the standard topology.
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Proof. First of all we need to observe that the real numbers fulfill the order
property, i.e. that for any x < y ∈ R there exists a z ∈ R such that
x < z < y. For the real numbers this is relatively easy to show, since z = x+y

2

fulfills this property. Let us assume towards a contradiction that there exists
a separation of [a, b] consisting of the two nonempty sets A and B and let
a ∈ A and b ∈ B with a < b. Now let us consider the supremum x = supA
of A. Since A and B are a separation their union needs to be the interval
[a, b]. For this reason x needs to belong to either A or B. However, since A
itself is an open set, if x ∈ A there exists an interval [a, c) that contains x
and which is open in A. However since R fulfills the order property we can
find a number x1 in A such that x < x1 < c. But then x is not the supremum
of A. Conversely, if x ∈ B there exists an open set (d, b] in B that contains
x. Note that (d, b] does not intersect A. Consequentially, d < x would be a
smaller supremum of A which is a contradiction.

It is clear that this proof can be applied to open intervals and the en-
tire real number line as well. One might recognize the connection to the
intermediate value theorem of calculus.

Corollary 2.1.48 (Intermediate value theorem). Let X be a connected space
and let f : X → Y be a continuous map, where Y is a subspace of the real
number line together with the standard topology. If a and b are two points in
X and r is a point in Y such that f(a) < r < f(b) then there exists a point
c in X such that f(c) = r.

Proof. We recognize that the sets

A = f(X) ∩ (−∞, r) and B = f(X) ∩ (r,∞)

are open in f(X). If there does not exist a number c such that f(c) = r then
the sets A and B form a separation of f(X). However, since X is connected
and f is continuous f(X) is connected as well, a contradiction.

Corollary 2.1.49. Let Xi be nonempty topological spaces, then
∏
Xi is to-

tally disconnected if and only if each Xi is totally disconnected.

Proof. If a single Xj contains a connected subspace U ̸= Xj that contains
more than one point, then

∏
i ̸=j xi×U contains more than one point, for single

points xi. Thus, if
∏
Xi is totally disconnected, so is each Xi. Conversely,

let A be a connected subspace of
∏
Xi and let ψi be the projection mapping

assigning each element its ith component. Then ψi(A) is connected as well. If
each Xi is totally disconnected ψi(A) is a single point and thus A as well.
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2.2 Topological groups

Definition 2.2.1. A topological group is a group which is also a topological
space such that the maps

f1 : G→ G,

f2 : G×G→ G,

g 7→ g−1

(g, h) 7→ g · h
for g ∈ G
for g, h ∈ G

are continuous.

First of all, every group together with the discrete topology but also
with the trivial topology forms a topological group. The latter is clear since
f−1
1 (G) = G and f−1

2 (G) = G × G. The real numbers with the standard
topology form a topological group under addition. The real numbers without
zero, R \ {0}, also form a topological group under multiplication.

We will now look at some properties of topological groups.

Theorem 2.2.2. Let G be a topological group.

(i) Then for each g ∈ G the maps x 7→ gx, x 7→ xg and x 7→ x−1 are
homeomorphisms.

(ii) If H is a subgroup of G and H is open (respectively closed), then every
coset of H is open (respectively closed).

(iii) Every open subgroup of G is closed.

(iv) The group G is Hausdorff if and only if {1} is a closed subset of G.

(v) If H is a subgroup of G and H contains a nonempty open subset U of
G then H is open in G.

Proof. (i) The given maps are all bijective. They are also bicontinuous since
their inverse functions x 7→ g−1x, x 7→ xg−1 and x 7→ x−1 are continuous.

(ii) This follows from the fact that any coset of H can be written as gH
and x 7→ gx is a bicontinuous function

(iii) Let H be an open subgroup, then gH is open as well. Furthermore⋃
e̸=g∈G

gH

is open too. Thus H is closed.
(iv) In a Hausdorff space every point distinct from {1} is contained in

an open set that does not contain {1}. The union X \ {1} of those sets
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is therefore open as well. This is true for any single point and thus in a
Hausdorff space one-point sets are always closed.

Conversely, if {1} is closed, so are all other one-point sets as they are
cosets of {1}. Consequentially, let x ̸= y, then U = X \ {xy−1} is open.
Let us now consider the map f : (a, b) 7→ a−1b. This map is continuous,
which can be easily seen if one considers it as a composition of the maps
(a, b) 7→ ab and x 7→ a−1a−1x. We know that {1} ∈ U and since U is open
the set f−1(U) is open as well. Furthermore the point (1, 1) ∈ f−1(U). Now
this point needs to be in a basis element of the product topology, in other
words, there exist two open sets V1 and V2 such that {1} ∈ V1, {1} ∈ V2
and V −1

1 · V2 ⊆ U . Then V1x and V2y are two disjoint neighbourhoods of x
respectively y. This can be easily checked; indeed, let us assume that the
neighbourhoods are not disjoint, i.e. there exist a ∈ V1 and b ∈ V2 such that
ax = by, then xy−1 = a−1b and thus xy−1 ∈ U , a contradiction. Hence the
neighbourhoods are disjoint and X is Hausdorff.

(v) Let h ∈ H and let g : x 7→ xh−1, then g−1(U) = Uh is open. However⋃
h∈H

Uh = H.

Thus H is open.
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Chapter 3

Profinite groups and pro-p
groups

The proofs and definitions of this chapter are based on Chapter 1 and Ap-
pendix B of [5].

3.1 Profinite groups

3.1.1 Inverse system and inverse limits

In preparation for the different definitions of profinite groups we need to
introduce some concepts from category theory.

Definition 3.1.1. A directed set is a nonempty partially ordered set (I,≤)
such that for i, j ∈ I there exists some k ∈ I such that i, j ≤ k.

It is important to notice, that two elements of a directed set do not need to
be related. Let us consider the subsets of the set {a, b, c} ordered by inclusion,
for example {a} ≤ {a, b}. Then {a, b} ≰ {a, c} but also {a, c} ≰ {a, b}.

Definition 3.1.2. An inverse system of sets over a directed set I is a family
of sets (Gi)i∈I together with maps ϕij : Gi → Gj for i ≥ j such that ϕii is
the identity map and ϕijϕjk = ϕik, whenever i ≥ j ≥ k. We will denote such
a system by {Gi, ϕij, I}.

This definition usually varies for different types of sets. If the sets Gi are
topological spaces the maps ϕij are defined to be continuous, for groups they
need to be homomorphisms. Hence, an inverse limit of topological groups
over a directed set I is a family of sets (Gi)i∈I together with continuous
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homomorphisms ϕij : Gi → Gj for i ≥ j such that ϕii is the identity map
and ϕijϕjk = ϕik, whenever i ≥ j ≥ k.

Let A be a family of normal subgroups Ai of a given group G, such that
for i ≥ j we have that Ai ⊆ Aj. We can obtain the inverse system G/Ai,
where the maps are the natural epimorphisms, i.e. surjective homomorphisms
G/N → G/M for N < M .

Definition 3.1.3. An inverse limit or projective limit of the inverse system
{Gi, ϕij, I} is a subgroup of the Cartesian product of the Gi’s defined as

G = lim←−
i∈I

Gi =

{
g⃗ ∈

∏
i∈I

Gi | gj = ϕij(gi) for all i ≥ j ∈ I

}
.

The inverse limit provides maps ϕi : G→ Gi, which are called projections.

Lemma 3.1.4. Let G be the inverse limit lim←−Gi of topological groups Gi.
Then if all the Gi are

(i) compact, so is G;

(ii) Hausdorff, so is G;

(iii) totally disconnected, so is G.

Proof. Since G is a subgroup of
∏
Gi and each Gi is (i) compact, (ii) Haus-

dorff, respectively (iii) totally disconnected it follows that G is (i) compact,
(ii) Hausdorff respectively (iii) totally disconnected by the Tychonoff theorem
as well as Lemmas 2.1.34 and 2.1.49.

3.1.2 Definitions

There are many equivalent definitions for profinite groups, the simplest is
given below.

Definition 3.1.5. A profinite group is a compact Hausdorff topological
group that is totally disconnected.

However, in the literature, there are two prevalent definitions. A formal
definition using neighbourhoods of the identity and a more applied definition
using the inverse limit of an inverse system of finite groups.

Definition 3.1.6. A profinite group is a compact Hausdorff topological
group whose open subgroups form a base for the neighbourhoods of the
identity, i.e. every set containing {1} contains an open subgroup.
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Definition 3.1.7. A profinite group is the inverse limit

G = lim←−
i∈I

Gi

of an inverse system {Gi, ϕij, I} of finite groups Gi, where each group Gi has
the discrete topology.

3.1.3 Equivalence of the definitions

In this section we will show that the definitions given above are indeed equiv-
alent. We will do this by showing that 3.1.5 implies 3.1.6, 3.1.6 implies 3.1.7
and 3.1.7 implies 3.1.5. We start by proving the following lemma.

Lemma 3.1.8. If G is a profinite group then G is topologically isomorphic
to lim←−(G/N)N◁oG.

Proof. Let us consider the homomorphism τ : G →
∏
G/N given by g 7→

(gN)N◁oG for all N being open and normal subgroups of G. We will show
that τ is a bijective continuous homomorphism, i.e. a homeomorphism and
thus G and lim←−(G/N)N◁oG are topologically isomorphic. It is important
to notice that in the construction of τ the element g is fixed. Elements of
lim←−(G/N)N◁oG, however can have different coset representatives for each nor-
mal subgroup, thus τ(G) ≤ lim←−(G/N)N◁oG. Since ∩N◁oGN = 1 the map τ is
injective. Let (gNN) ∈ lim←−(G/N)N◁oG. Then every finite collection of cosets
gNN has a nonempty intersection. This is true since the normal subgroups
form a directed set. Thus for a finite set of cosets gNN there exists a coset
gMM that is contained in all gNN because all G/N map surjectively onto
G/M . The translation map x 7→ gNx from N to gNN is a homeomorphism.
This implies that since N is open all cosets gN are open as well. Since the
cosets are equivalence classes we conclude that they are closed as well. Since
the group G is compact it follows from Lemma 2.1.37 that ∩N◁oGgNN is
nonempty as well. Let g ∈ ∩N◁oGgNN . Then τ(g) = (gNN) and thus the
map τ is bijective.

We will now show that it is also continuous. For an open subgroup M of
G and open subgroups N of G we define the subgroup

U(M) =
∏
N<M

G/N
∏
N≥M

{1} ≤
∏
N◁oG

G/N.

We observe that τ−1(U(M)) = M and that every set containing 1 contains
a subgroup U(M) for a given open subgroup M . The subgroups U(M) ∩
lim←−(G/N)N◁oG form therefore a base for the neighbourhoods of 1. Here we

33



use the property that through translation we can transfer the properties of
the base for the neighbourhoods of 1 to any other element which implies
that τ−1(B) is open for any basis element B and thus for of any open set as
well.

Theorem 3.1.9. Definitions 3.1.5(1), 3.1.6(2) and 3.1.7(3) are equivalent.

Proof. (3 ⇒ 1) As each Gi gets assigned the discrete topology all of them
are totally disconnected and Hausdorff. Since they are finite it follows that
they are compact as well. Thus lim←−Gi is a totally disconnected, compact
Hausdorff topological group.

(1 ⇒ 2) Suppose that V is a neighbourhood of {1}. Since G is compact
the closure V is compact as well. Let U be an open set contained in V . Since
G (and also V ) is Hausdorff we can find for any point x in V \U an open set
K(x) ⊂ V such that x ∈ K(x) and 1 /∈ K(x). Furthermore, we can choose
the K(x) to be closed as well. Let D be the intersection of all closed sets
K ⊆ V containing x. D is nonempty since V ⊆ D. We claim that D is
connected. Indeed, suppose that X, Y is a separation of D and x ∈ X. Then
X is a closed set that contains x. And hence Y ⊆ D ⊆ X which implies
that Y is empty. Hence D is connected and thus the one-point set {x}, i.e.
there exists an open and closed set K(x) that contains x but not 1. Since V
is compact we can find finitely many xi such that

V = U ∪K(x1) ∪ · · · ∪K(xn)

for some xi ∈ V \ U . Thus

W := U \
n⋃

i=1

K(xi) = V \
n⋃

i=1

K(xi)

is both open (intersection between the open sets U and G \
⋃n

i=1K(xi)) and
closed (intersection between the closed sets V and G\

⋃n
i=1K(xi)) and hence

W is a compact open neighbourhood of 1.
It remains to be shown that every compact open neighbourhood K of

1 contains an open subgroup. In other words, we want to find a subset
H of K such that H = H−1 = H2, where H−1 = {h−1 | h ∈ H} and
H2 = {h1h2 | h1, h2 ∈ H}. Let X = K2 \K, as K and hence K2 are compact
we can conclude that X is compact as well. It is clear that K ⊆ G\X, where
G \X is open.

The next step is to show that there is an open neighbourhood U of 1 such
that KU ⊆ G \X. Let µ : G × G → G be the continuous map (a, b) 7→ ab.
This implies that µ−1(G \X) is open and thus

µ−1(G \X) =
⋃

Aα ×Bα,
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where Aα and Bα are open sets. Now K × {1} ⊆ µ−1(G \X) is compact, so
we can find a finite subcover

K × {1} ⊆
n⋃

i=1

Ai ×Bi,

where for all i we have that 1 ∈ Bi. If we now take the set U = ∩ni=1Bi we
have

K × U = K × ∩n
i=1Bi ⊆

n⋃
i=1

Ai ×Bi ⊆ µ−1(G \X).

This givesKU ⊆ G\X. Furthermore, K(K∩U) ⊆ (G\X)∩K2 ⊆ K. This is
true sinceG\X = G\(K2\K) = (G\K2)∪K. Now let V = K∩U∩(K∩U)−1,
which is constructed in such a way to fulfill the condition V = V −1. Also
KV ⊆ (G \ X) ∩ K2 ⊆ K. Hence KV n ⊆ K for all n ≥ 1. Now let
H = ∪∞i=1V

i. Then H ⊆ K, H−1 = H = H2. Thus H is the wanted open
subgroup contained in the set containing 1.

(2⇒ 3) This step follows from the above lemma.

3.2 Pro-p groups

Definition 3.2.1. A pro-p group is a profinite group in which every open
normal subgroup N has index equal to some power of p.

Similarly to profinite groups it is possible to define pro-p groups using an
inverse limit.

Proposition 3.2.2. A topological group G is a pro-p group if and only if G
is isomorphic to the inverse limit of finite p-groups.

Proof. Every pro-p group G is per definition profinite which means that

G ∼= lim←−(G/N)N◁oG.

However, since |G : N | = pn it follows that G/N is a p-group. For the
converse, suppose that G = lim←−(Gi)i∈I , where every Gi is a finite p-group.
Then G is profinite and every open subgroup contains a subgroup

H(S) = G ∩

(∏
i/∈S

Gi ×
∏
i∈S

{1}

)
for some finite subset S of I. Now the index of H(S) in G divides

∏
i∈S |Gi|.

But since the order of each Gi is a power of p this implies that |G : H(S)| is
a power of p as well. Thus, every open subgroup of G has index p.
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3.3 Examples

Profinite groups can be viewed as an extension of finite topological groups and
many theorems that apply for finite groups can be generalized to profinite
groups. For this reason it is logical that finite groups equipped with the
discrete topology are profinite groups as well.

When talking about profinite groups two prominent examples have to be
highlighted. Firstly, the group of p-adic integers and secondly the Galois
groups. We will briefly introduce both concepts but omit some details. For
a more complete picture see [12] and [26] respectively.

Within the usual decimal system we describe a real number r using integer
coefficients 0 ≤ ai < 10 in the power series

r = ±
n∑

i=−∞

ai10
i,

where the series extends from minus infinity to a finite integer n. This is
certainly not restricted to using powers of 10. The familiar binary number
system and the hexadecimal system come to mind. In general we can write
a real number using the equation

r = ±
n∑

i=−∞

aik
i,

where k can be any positive integer and 0 ≤ ai < k. However, it is also
possible to define a power series in such a way that it extends from a certain
integer m ≥ 0 to positive infinity. Those are the p-adic integers Zp, given
that k in this case is a prime. Let s be a p-adic integer then

s =
∞∑

i=m

aip
i,

where once again the 0 ≤ ai < p are integer coefficients. This series is a
formal series which means that we are not interested in the actual value that
this series converges to (which in most cases would be infinity). We define
a different norm which depends on the divisibility by p. Let s be a p-adic
integer and let r be the highest exponent such that pr divides s. This is
equivalent to saying that s =

∑∞
i=r aip

i. Then the norm equals |s|p = p−a.
To conclude this definition we have to define |0|p = 0. Note that a norm
immediately defines the metric d(x, y) = |x− y|p.

We can observe that a minus sign is not necessary when using the p-
adic numbers. Let us for example say p = 7 then in the usual notation we
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have 17 + . . . 66667 = 07, where the numbers extend towards the left, thus,
−17 = . . . 66667. Similarly, we can find for any (positive) p-adic integer a
another positive p-adic integer b such that a+ b = 0.

Let us have look at the finite cyclic groups Z/pnZ together with the
homomorphisms fij : Z/piZ → Z/pjZ for i ≥ j given by the reduction
modulo pi−j. Thus the family of groups Z/pnZ is an inverse system. Taking
the inverse limit we get the profinite group

G = lim←−Z/pnZ =
{
g⃗ ∈

∏
Z/pnZ | gj = f(gi)

}
.

Since the groups Z/pnZ are finite p-groups G is in fact a pro-p group. An
example for an element of this group given p = 5 could be g⃗ = (1, 21, 46, . . .,
where 1 ≡ 21 (mod 5), 21 ≡ 46 (mod 52) and so on. In general we have
that g⃗ = (a0, a0 + a1p, a0 + a1p + a2p

2, . . .). As we can see, this is just a
different notation for the p-adic integers, which is why the p-adic integers
form a pro-p group. They are not only the most important example of such
a group but have historically been the origin of the study of pro-p groups.
In addition to forming a pro-p group the p-adic integers form a ring as well.
They are an abelian group together with addition and are associative (and
also commutative) when it comes to multiplication. The element . . . 001 is
the multiplicative identity. Finally, the p-adic integers are also distributive.
However, even though many p-adic integers have multiplicative inverses the
ones that end in zero obviously do not. Thus the p-adic integers Zp are
not a field. Below we show the multiplicative inverses of 00027 and 00035
respectively. One can see those as equivalent to the fractions 1/2 in the 7-adic
numbers and 1/3 in the 5-adic numbers.

. . . 33347 · . . . 00027 = . . . 00017

. . . 131325 · . . . 00035 = . . . 00015.

Secondly every profinite group is a Galois group and vice versa. A Galois
group Gal(L : K) is the group consisting of all the K-automorphisms of
a field extension L : K. We essentially have two fields K ⊆ L such that
the operations of K are the same as the operations of L restricted to K.
An example could be the fields K = Q and L = R. A K-automorphism
is an isomorphism ϕ : L → L such that ϕ restricted to K is the identity
map. Now let us consider the Galois group Gal(F : K), where F is an
intermediate field, i.e L ⊇ F ⊇ K. It is possible that Gal(F : K) is infinite.
However, if we consider all possible finite Galois groups Gal(F : K), where
F is an intermediate field we get an inverse system of finite groups with
i ≥ j for groups Gal(Fi : K) and Gal(Fj : K) if Fi ⊇ Fj. The mappings are
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constructed by restricting the automorphisms, i.e. if Fi ⊇ Fj then the map
fij : Gal(Fi : K) → Gal(Fj : K) is defined by g 7→ g|Fj

, the automorphism
g restricted to Fj. The inverse limit of such an inverse system is in fact the
Galois group Gal(L : K) together with a certain topology which is called the
Krull topology.
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Chapter 4

Powerful p-groups

In the following chapters we will use the notation Gp = ⟨gp | g ∈ G⟩ for the
subgroup generated by the pth powers of the elements of G.

This Chapter is based on Chapter 2 of [5]. Some of the proofs regarding
the Frattini subgroup have been based on Chapter 5 from [24]. In this chapter
we will focus our attention on finite p-groups and introduce the concept of
a powerful finite p-group. We will see in the next chapter that most of the
results that we discuss in this chapter can be transferred to pro-p groups.

Definition 4.0.1. A powerful p-group G is a finite p-group, where G/Gp is
abelian for p ̸= 2. The case p = 2 is different, here a finite 2-group is powerful
if G/G4 is abelian.

One could also describe a powerful p-group using the commutator sub-
group.

Definition 4.0.2. A powerful p-group G is a finite p-group, where the com-
mutator subgroup [G,G] is contained in Gp respectively in G4 for p = 2.

We know that the commutator subgroup is the smallest subgroup H such
that the quotient group G/H is abelian, it follows immediately that a quo-
tient group G/A is abelian if and only if the subgroup A contains the com-
mutator subgroup. And hence the definitions are equivalent.

Definition 4.0.3. A subgroup N is powerfully embedded in a finite p-group
G if [N,G] ≤ Np except for p = 2, where [N,G] ≤ N4 is required.

We can see that G is powerful if and only if G is powerfully embedded in
G. Also, if N is powerfully embedded in G it follows that N is powerful as
[N,N ] ≤ [N,G]. An important result is that N is normal in G as well.
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Proposition 4.0.4. Let N be powerfully embedded in G. Then N is normal
in G.

Proof. This proposition follows directly from the fact that [N,G] ≤ Np ≤ N .
Thus for elements n1, n2 ∈ N and g ∈ G we have that n−1

1 g−1n1g = n2 and
thus g−1n1g = n1n2 ∈ N .

It is interesting to ask, why p = 2 is treated differently than the odd
primes. To understand why this is the case we need a better intuition for
the powerful property. We can recognize that this property gives a notion of
how small the commutator subgroup is. For abelian groups the commutator
subgroup is the trivial subgroup, thus any abelian p-group is powerful. In
this sense we can understand powerful p-groups as a generalization of abelian
p-groups. In fact, powerful p-groups have many properties of abelian groups.

We can see that [G,G] ≤ Gp gives us control over the size of the commu-
tator subgroup for p ̸= 2. For p = 2 however, we get no further information
as [G,G] ≤ G2 is true for any group. The logical conclusion is therefore to
say that a 2-group is powerful if [G,G] ≤ G4, such that we still have control
over the size of the commutator subgroup.

There are many examples for powerful p-groups since most simple ex-
amples of p-groups are abelian and thus powerful. We can also easily find
examples of groups such as the dihedral group D8 or the quaternion group
Q8 that are neither abelian nor powerful. A good example of a p-group for
p ̸= 2 that is neither powerful nor abelian is the Heisenberg group modulo p
consisting of all the matrices 1 a b

0 1 c
0 0 1

 ,

where a, b, c are elements of Z/pZ. For this group one can check that Gp = 1
which implies that it is not powerful. Apart from the Heisenberg group there
exists another non-abelian group of order p3 [4] for p ̸= 2 which turns out to
be powerful. This is the group

H =

{(
1 + pa b

0 1

)
| a, b ∈ Z/p2Z

}
.

We leave it to the reader to check that [H,H] = Hp is a cyclic group of

order p consisting of the elements

{(
1 pb
0 1

)
| b ∈ Z/p2Z

}
.

To exemplify the similarity between abelian p-groups and powerful p-
groups we will introduce the Frattini subgroup.
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Definition 4.0.5. The Frattini subgroup Φ(G) of a group G is the inter-
section of all maximal subgroups, i.e. all subgroups H ̸= G that are not
properly contained in any other proper subgroup K ̸= G.

An important property of the Frattini subgroup and a second definition
is the fact that it consists of all the non-generators.

Lemma 4.0.6. The Frattini subgroup Φ(G) of a group G is the set of all
non-generators, where g ∈ G is a non-generator if for all ⟨X, g⟩ = G it holds
that ⟨X⟩ = G.

Proof. Let g ∈ Φ(G) and suppose that ⟨X, g⟩ = G but ⟨X⟩ ≠ G then g is
not in ⟨X⟩ and ⟨X⟩ is contained in a maximal proper subgroup M . But
then ⟨X, g⟩ ⊆ M ≤ G which is a contradiction. Conversely, let g be a non-
generator. And let us assume that there exists a maximal subgroup M that
does not contain g. Then G = ⟨M, g⟩ =M which is a contradiction.

Lemma 4.0.7. The Frattini subgroup of an abelian group is Φ(G) =
⋂
Gp

for all p that divide the order of G.

Proof. (Φ(G) ⊆ ∩Gp) This statement follows if Φ(G) ⊆ Gp for all p. If
Gp = G the statement is trivial. Otherwise, the group G/Gp is an elementary
abelian group which means that each of its elements has the same order p;
indeed (aGp)p = apGp = Gp. This implies that G/Gp is a vector space over
the prime field of order p and has a basis. Each subset of this basis missing
a single basis element generates a maximal subgroup. This implies that the
intersection of the maximal subgroups, Φ(G/Gp), is trivial. Now letMi be the
maximal subgroups of G/Gp and Mi the corresponding maximal subgroups
in G. We have Gp ⊆ Mi ⊆ G. Since ∩Mi = {1} we have ∩Mi = Gp. Thus
Φ(G) ⊆ Gp and hence Φ(G) ⊆ ∩Gp.

(Φ(G) ⊇ ∩Gp) Let g ∈ ∩Gp. We want to show that g is contained in
every maximal subgroupM which would prove the statement. Let us assume
towards a contradiction that g /∈ M . Since M is maximal the set {M ∪ g}
generates G and there exists a prime q such that gq ∈ M . Indeed, if that
was not true and the smallest number n such that gn ∈ M was a composite
number, i.e. n = qm, where q,m > 1, then the group ⟨{M ∪ gq}⟩ would be
greater than M but would not contain g and thus M would not be maximal.
Thus gq ∈ M for some prime q. However, since g ∈ ∩Gp we can find an
element h in G such that g = hq. Since G = ⟨{M ∪ g}⟩ we have h = mgk for
0 < k < q. Then g = hq = mqgkq, but gq ∈ M and thus g ∈ M which is a
contradiction.

The logical conclusion is now, that the Frattini subgroup of a powerful
p-group G is given by Φ(G) = Gp.
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Lemma 4.0.8. A finite p-group G (with p ̸= 2) is powerful if and only if
Φ(G) = Gp.

Proof. In Lemma 4.0.15 we will show that for every powerful p-group has
the property Φ(G) = Gp. For the reverse direction we want to show that
if Φ(G) = Gp then G is powerful. The commutator subgroup [G,G] of a
p-group is contained in every maximal subgroup M and thus in the Frattini
subgroup. Indeed, we observe that since M is maximal G/M is cyclic of
order p and thus abelian. Hence for a, b ∈ G we have

(a−1b−1ab)M = (a−1)M(b−1)M(a)M(b)M =M.

Thus, every commutator a−1b−1ab is inM and therefore [G,G] ≤ Φ(G) = Gp

and G is powerful.

Lemma 4.0.9. Let G be a finite p-group and let N , K and W be normal
subgroups of G with N < W .

(i) If N is powerfully embedded in G then NK/K is powerfully embedded
in G/K.

(ii) If K ≤ Np (respectively K ≤ N4) then N is powerfully embedded in G
if and only if N/K is powerfully embedded in G/K.

(iii) If N is powerfully embedded in G and x ∈ G then ⟨N, x⟩ is powerful.

(iv) If N is not powerfully embedded in W , then there exists a normal sub-
group J of G such that

• for p is odd Np[[N,W ],W ] ≤ J < Np[N,W ] and |Np[N,W ] :
J | = p,

• for p = 2 accordingly N4[N,W ]2[N,W,W ] ≤ J < N4[N,W ] and
|N4[N,W ] : J | = 2.

Proof. (i) It is helpful to recognize that the elements of NK/K are of the
form nK, where n ∈ N . And since (nK)p = npK it follows that (NK/K)p =
NpK/K. We want to show that [NK/K,G/K] ≤ (NK/K)p (respectively
(NK/K)4). Observe that [NK/K,G/K] = [NK,G]K/K, thus

[N,G] ≤ Np =⇒ [NK,G] ≤ NpK =⇒ [NK,G]K/K ≤ (NpK)/K

=⇒ [NK/K,G/K] ≤ (NK/K)p.

(ii) We have that

[N,G] ≤ Np ⇐⇒ [N,G]K/K ≤ Np/K ⇐⇒ [N/K,G/K] ≤ (N/K)p.
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(iii) Let us start by verifying the commutator identities [ab, c] = b−1[a, c]b[b, c]
and c−1[a, b]c = [c−1ac, c−1b]. We have that

[ab, c] = b−1a−1c−1abc = b−1a−1c−1acbb−1c−1bc = b[a, c]b−1[b, c]

and

c−1[a, b]c = c−1a−1b−1abc = c−1a−1cc−1b−1cc−1acc−1bc = [c−1ac, c−1b].

Let H = ⟨N, x⟩. Since N is normal in G it follows that N is normal in H.
Thus for n1 ∈ N we have that xn1x

−1 = n2 ∈ N . Hence xn1 = n2x, which
implies that each element h in H can be written as h = nxs for some integer
s. Hence for elements h1 = n1x

b and h2 = n2x
a of H we can write

[h1, h2] = [n1x
a, n2x

b] = x−a[n1, h2]x
a[xa, n2x

b].

Since x−a[n1, h2]x
a = [x−an1x

a, x−ah2x
a] and N is normal in H it follows

that x−a[n1, h2]x
a ∈ [H,H]. Furthermore, [xa, n2x

b] = [n2x
b, xa]−1 and

[n2x
b, xa] = x−b[n2, x

a]xb[xb, xa] = [x−bn2x
b, xa] which implies that due to

normality [xa, n2x
b] and therefore [h1, h2] as well are in [N,H]. Thus [N,H] =

[H,H]. Therefore [H,H] = [N,H] ≤ [N,G] ≤ Np ≤ Hp.
(iv) Since N is not powerfully embedded in W we know that [N,W ] is

not contained in Np, thus Np < Np[N,W ]. LetM = Np[N,W ], since N and
W are normal we conclude that Np and M are normal as well. The group
G/Np has a normal subgroup J such that |M/J | = p (Lemma 2.1.17) and
Np ≤ J . Thus M/J is in the centre of G/J (Lemma 2.1.16), hence

Np[[N,W ],W ]J/J = Np[[N,W ]J/J,WJ/J ] = NpJ/J = J/J

since all the elements in [N,W ]J/J and G/J commute and Np is contained
in J . The case p = 2 allows a similar argument and is left to the reader.

Proposition 4.0.10. Let h and g be elements of a group G and n a positive
integer. Then

[hn, g] = h−(n−1)[h, g]hn−1h−(n−2)[h, g]hn−2 · · · [h, g].

Proof. We have that

h−(n−1)[h, g]hn−1h−(n−2)[h, g]hn−2 · · · [h, g] = h−(n−1)[h, g]h[h, g]hn−2 · · · [h, g]
= h−ng−1hgh[h, g]hn−2 · · · [h, g]
= h−ng−1h2ghn−2 · · · [h, g]
= h−ng−1hng = [hn, g].
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Theorem 4.0.11. Let G be a finite p-group and N < G. If N is powerfully
embedded in G then Np is powerfully embedded in G.

Proof. We will show this for p ̸= 2. The case p = 2 can be constructed
in a similar manner. Since N is powerfully embedded in G it is given that
[N,G] ≤ Np. Furthermore, N and thus Np are normal in G which implies
that J = (Np)p[Np, G,G] is normal in G as well. Let us define a new G
and Np. We will now show that Np := Np/J is powerfully embedded in
G := G/J and thus the result follows. In this case (Np)p = [Np, G,G] = 1.
Thus [Np, G] is in the centre and [N,G,G] ≤ [Np, G] ≤ Z(G). For any given
n ∈ N and g ∈ G we can construct the homomorphism x 7→ [n, g, x] from G
into Z(G). We have that

p−1∏
j=1

[n, g, nj] =

p−1∏
j=1

[n, g, n]j = [n, g, n]p(p−1)/2 = 1,

since

[n, g, n]j = ((g−1n−1gn)n−1(n−1g−1ng)n)j

= (g−1n−1gn)n−1(n−1g−1ng)((g−1n−1gn)n−1(n−1g−1ng)n)n

· ((g−1n−1gn)n−1(n−1g−1ng)n)j−2

= (g−1n−1gn)n−2(n−1g−1ng)n2((g−1n−1gn)n−1(n−1g−1ng)n)j−2

= (g−1n−1gn)n−j(n−1g−1ng)nj = [n−1g−1ng, nj] = [n, g, nj].

Hence

[np, g] = n−(p−1)[n, g]np−1n−(p−2)[n, g]np−2 · · · [n, g] =
p−1∏
j=0

[n, g][n, g, nj]

= [n, g]p
p−1∏
j=0

[n, g, nj] since [n, g, nj] is in the centre

= [n, g]p[n, g, n]p(p−1)/2 = [n, g]p.

Thus [Np, G] = [N,G]p ≤ (Np)p = 1. Returning to the original notation and
using the fact that [Np, G,G] ≤ (Np)p we get that [Np, G]J/J ≤ (Np)p/J = 1
implies that [Np, G] ≤ (Np)p and thus Np is powerfully embedded in G.

Lemma 4.0.12. Let G be a finite p-group then Φ(G) = Gp[G,G].

Proof. For any maximal subgroup M we know that |G : M | = p and M ◁ G
which implies that G/M is cyclic and thus abelian. Therefore [G,G] ≤ M .
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Furthermore, since G/M is cyclic of order p we have that Gp ≤ M . Thus
Φ(G) ≥ Gp[G,G]. Conversely, the group G/Gp[G,G] is abelian and has
exponent p and thus Φ(G/Gp[G,G]) = 1. Let H ◁ G and H ≤ Φ(G). Since
H is normal in all maximal subgroups of G we can conclude that for a
maximal subgroup M of G the quotient group M/H is a maximal subgroup
in G/H. Thus, Φ(G/H) = Φ(G)/H. Now let H = Gp[G,G] then 1 =
Φ(G/Gp[G,G]) = Φ(G)/Gp[G,G] which implies that Φ(G) = Gp[G,G].

For the next lemma we need to prove a rather technical proposition.

Proposition 4.0.13. Let G be a group and let [G,G] ≤ Z(G) then

(xy)n = xnyn[y, x]n(n−1)/2.

Proof. We prove this by induction on n. Since [G,G] ≤ Z(G) we can change
the position of [x, y]. The case n = 1 is clear. We want to show that if
(xy)n = xnyn[y, x]n(n−1)/2 holds (xy)n+1 = xn+1yn+1[y, x](n+1)n/2 is true as
well. We observe that

(xy)n+1 = (xy)nxy = xnyn[y, x]n(n−1)/2xy = xnyn[y, x](n+1)n/2[x, y]nxy.

In other words it suffices to show that xnynxy[x, y]n = xn+1yn+1. We now
insert every [x, y] between the x and y such that

xnynxy[x, y]n = xnynx[x, y]y[x, y]n−1 = xnyny−1xy2[x, y]n−1

. Continuing this process by now inserting [x, y] between x and y2 and so on
we get xnynxy[x, y]n = xnyny−nxyn+1 = xn+1yn+1.

Definition 4.0.14. Let G be a finite p-group. We define recursively P1(G) =
G and Pi+1(G) = Pi(G)

p[Pi(G), G] for positive integers i. We will shorten
the notation to Gi = Pi(G). The series G ≥ G2 ≥ · · · is called the lower
p-series of G.

Lemma 4.0.15. Let G be a powerful p-group.

(i) Then Gi is powerfully embedded in G and Gi+1 = Gp
i = Φ(Gi) for all i.

(ii) The map x 7→ xp induced a homomorphism from Gi/Gi+1 to Gi+1/Gi+2

for all i.

Proof. (i) We will prove this by induction. Firstly, it is clear that G1 = G
is powerfully embedded in G. Suppose that Gi is powerfully embedded in
G, then [Gi, G] ≤ Gp

i . Thus Gi+1 = Gp
i [Gi, G] = Gp

i . Since Gi is powerfully
embedded it follows thatGi+1 = Gp

i is powerfully embedded as well (Theorem
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4.0.11). Since Gp
i [Gi, Gi] = Φ(Gi) we have that Gp

i ≤ Φ(Gi) = Gp
i [Gi, Gi] ≤

Gi+1, where the last inequality follows because [Gi, Gi] ≤ [Gi, G]. However,
since Gp

i = Gi+1 we can conclude that Gi+1 = Φ(Gi).
(ii) From part (i) we use that Gi+1 = Gp

i = Φ(Gi). Since every Gi

is powerful and Pk(Gi) = Gi+k−1 we can just look at the group Gi and set
G1 = G := Gi. Furthermore, we have that G/G3 is powerful as well and if we
let G := G/G3 then G3 = 1. We have that [G2, G] ≤ G3 = 1 which implies
that G2 is in the centre. Thus [G,G] ≤ G2 ≤ Z(G). Now the previous
proposition shows that for x, y ∈ G we have (xy)p = xpyp[y, x]p(p−1)/2. If
p ̸= 2 then p divides p(p − 1)/2 and thus [y, x]p(p−1)/2 ∈ Gp

2 = G3 = 1.
If p = 2 we have [G,G] ≤ G4 ≤ (G2)2 = G3 = 1. So in both cases we
have that (xy)p = xpyp. In other words the map x 7→ xp from G/G2 to
G2/G3 = G2 = Gp is a homomorphism.

Lemma 4.0.16. Let G = ⟨a1, . . . , an⟩ be a powerful p-group, then Gp =
⟨ap1, . . . , apn⟩.

Proof. Let θ : G/G2 → G2/G3 be the homomorphism given by Lemma
4.0.15. We have that G/G2 = ⟨a1G2, . . . , anG2⟩ and thus

G2/G3 = ⟨θ(a1G2), . . . , θ(anG2)⟩ = ⟨ap1G3, . . . , a
p
nG3⟩

which gives G2 = ⟨ap1, . . . , apn⟩G3. Now G2 = Gp and G3 = Φ(G2) and thus
Gp = ⟨ap1, . . . , apn⟩Φ(Gp). As Φ(Gp) consists of all nongenerators of Gp the
set {ap1, . . . , apn} needs to generate Gp.

Lemma 4.0.17. Let G be a powerful p-group, then each element in Gp is a
pth power in G.

Proof. Let g ∈ Gp, as x 7→ xp induces a homomorphism from G/G2 to G2/G3

the coset xG2 gets mapped to xpG3 which implies that g can be written as
g = xpy, where x ∈ G and y ∈ G3. Since G

p is powerfully embedded Lemma
4.0.9 shows that H = ⟨Gp, x⟩ is powerful. Also g ∈ Hp as g = xpy, where
y ∈ G3 = (Gp)p. If H = G then G = H = ⟨Gp, x⟩ = ⟨Φ(G), x⟩ = ⟨x⟩ is
cyclic, in this case Gp = ⟨xp⟩ and every element is trivially an element of pth
power. The cyclic case gives the smallest possible order of G and thus the
base case for induction on |G|. If H < G then the induction hypothesis gives
that g is a pth power in H and thus also in G.

The following theorem summarizes the results of this section.

Theorem 4.0.18. Let G = ⟨a1, . . . , an⟩ be a powerful p-group and let i, k ≥ 1
be integers. Then
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(i) Gi+1 = Gpi = {gpi |g ∈ G} = ⟨ap
i

1 , . . . , a
pi

n ⟩;

(ii) the map x 7→ xp
k
induces a homomorphism from Gi/Gi+1 to Gi+k/Gi+k+1;

(iii) Gi+k = Pk+1(Gi) = Gpk

i and thus Gi+1 = Gpi.

Proof. (i) From Lemma 4.0.17 it follows by induction that Gi = {gp
i | g ∈

G} and similarly Lemma 4.0.16 gives Gi = ⟨ap
i

1 . . . , a
pi

n ⟩. The first equality
follows from (iii).

(ii) We can just repeatedly take the homomorphism from Lemma 4.0.15(ii).
(iii) This result follows from induction as Lemma 4.0.15(i) states that

Gi+1 = Gp
i . Also,

Pk+1(Gi) = Gpk

i = {gp
k

i | gi ∈ Gi} = {gp
i−1+k | g ∈ G} = Gi+k.

Corollary 4.0.19. Let G = ⟨a1, . . . , an⟩ be a powerful p-group, then G is the
product of its cyclic subgroups, G = ⟨a1⟩ · · · ⟨an⟩.

Proof. Let i be maximal such that Gi is not the trivial group, i.e. Gi >
Gi+1 = 1. By induction on the order of G we can assume that G/Gi is the
product of its cyclic subgroups and thus G/Gi = ⟨a1Gi⟩ · · · ⟨anGi⟩. Hence,
G = ⟨a1⟩ · · · ⟨an⟩Gi. Using Theorem 4.0.18(i) and induction we get Gi =

⟨ap
i−1

1 ⟩ · · · ⟨api−1

n ⟩, where Gi is in the centre of G, since [Gi, G] ≤ Gi+1 = 1.
Thus all elements of G commute with elements of Gi. Hence

G = ⟨a1⟩ · · · ⟨an⟩Gi = ⟨a1⟩ · · · ⟨an⟩⟨ap
i−1

1 ⟩ · · · ⟨api−1

n ⟩ = ⟨a1⟩ · · · ⟨an⟩.

Definition 4.0.20. The rank of a groupG is the minimal number of elements
that can generate G is denoted by d(G). For a finite p-group G we have that
G/Φ(G) has the dimension d(G) as a vector space over the field Fp = Z/pZ =
{0, 1, . . . , p− 1}.

Theorem 4.0.21. Let G be a powerful p-group and H ≤ G then d(H) ≤
d(G).

Proof. We prove this theorem by induction on the order |G| of G. Let K =
G2 ∩H. Since G2 is powerful and strictly smaller than G we assume by the
induction hypothesis that d(K) ≤ d(G2). The map θ : G/G2 → G2/G3 given
by x 7→ xp is a surjective homomorphism. Thus the dimension of the kernel
of θ as a vector space over the field Fp is given by dim(ker θ) = d(G)−d(G2).
It follows that dim(ker θ∩HG2/G2) ≤ d(G)−d(G2). For any homomorphism
ϕ : V → W we know that dim(W ) = dim(kerϕ) + dim(Im ϕ), where Im ϕ
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denotes the image. Applying this to HG2/G2 we get that dim(HG2/G2) =
dim(ker θ ∩HG2/G2) + dim(θ(HG2/G2)). Thus,

dim(HG2/G2)− d(G) + d(G2) ≤ dim(θ(HG2/G2)).

Let e = dim(HG2/G2) and let h1, . . . , he be elements of H such that HG2 =
⟨h1, . . . , he⟩G2.

Since Φ(K) ≤ Kp = (H ∩G2)
p ≤ G3 we have that

dim(⟨hp1, . . . , hpe⟩/Φ(K) ≥ dim(θ(HG2/G2)) ≥ d(G2)− (d(G)− e)

and thus
dim(⟨hp1, . . . , hpe⟩/Φ(K) + (d(G)− e) ≥ d(G2).

Since d(K) ≤ d(G2) there exists s = d(G)− e elements y1, . . . , ys of K such
that

K = ⟨hp1, . . . , hpe, y1, . . . , ys⟩Φ(K).

Since the Frattini subgroup is the group of all nongenerators it follows that
K = ⟨hp1, . . . , hpe, y1, . . . , ys⟩. We can conclude that

H = H∩HG2 = H∩⟨h1, . . . , he⟩G2 = ⟨h1, . . . , he⟩K = ⟨h1, . . . , he, y1, . . . , ys⟩.

Thus d(H) ≤ d(G).

Definition 4.0.22. The subgroup rank (sometimes also just referred to as
the rank) of a finite group G is defined as

rk(G) = sup{d(H) | H ≤ G}.

Thus the subgroup rank is the maximum of the ranks of all the subgroups of
G.

It might be confusing that there are two different definitions for the rank
of a group. The reason is that the subgroup rank has the useful property
that the subgroups of a group G can never have a greater subgroup rank
than G itself. If we just consider the cardinality of the minimal generating
set it is possible that the rank of a subgroup of G is indeed greater than the
rank of G.

Let us consider the free group G generated by two elements a and b, in
other words, the group containing all distinct words that can be construct
using a, b, a−1 and b−1. The identity element is the empty word, with no
letters. Let us take the subgroup H generated by the set {anbn}, where n is
in N. We can see that for ℓ ̸= k the subgroup generated by {aℓbℓ} does not
contain akbk which implies that H is infinitely generated.
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Chapter 5

Powerful pro-p groups and
p-adic analytic groups

5.1 Powerful pro-p groups

During the last two chapters we have introduced the concepts of a pro-p
group and a powerful p-group. Powerful pro-p groups are now defined in
the same manner as powerful p-groups applying a slightly altered powerful
property to pro-p groups. In most cases, when we apply a result from Chapter
4 to powerful pro-p groups we take into consideration the closure of certain
groups.

Definition 5.1.1. A powerful pro-p group is a pro-p group, where G/Gp (for
p ̸= 2), respectively G/G4 (for p = 2), is abelian.

Definition 5.1.2. An open subgroup N is powerfully embedded in a pro-p
group G if [N,G] ≤ Np, respectively [N,G] ≤ N4 for p = 2.

We can observe that if N is powerfully embedded in G it follows that N
is powerful as well.

Lemma 5.1.3 ([5, 3.3 Corollary]). A topological group G is a powerful pro-p
group if and only if G is the inverse limit of an inverse system of powerful
finite p-groups in which all the maps are surjective.

Proof. Let G be a powerful pro-p group. Then G is a pro-p group and
thus isomorphic to lim←−G/N , where N runs over the normal subgroups of
G and each G/N is finite. However G is also a powerful p-group and thus
all the G/N are powerful p-groups as well since [G,G] ≤ Gp implies that
[G/N,G/N ] = [G,G]N/N ≤ GpN/N = (G/N)p.
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Conversely, suppose that G is the inverse limit of powerful finite p-groups
Gλ. Then G is a pro-p group and since all the maps are surjective the
group G/N for an open normal subgroup N is isomorphic to a quotient
group Gλ/K of some Gλ and thus G/N is powerful (Lemma 4.0.9). Since
all G/N are powerful we conclude that G is powerful as well. This is true
since [G,G]N/N = [G/N,G/N ] ≤ (G/N)p = GpN/N implies that [G,G] ≤
∩GpN = Gp.

The above theorem explains why powerful pro-p groups are very similar
to finite powerful p-groups. This similarity is especially relevant concerning
the results connected to the lower p-series and the minimal generating set.

The most important results that are analogous to Chapter 4 are listed
below for completeness but we will not prove them. For further detail we
refer the reader to Chapter 3.1 in [5]. The following theorems are analogous
to Theorem 4.0.18, to Corollary 4.0.19 and to Theorem 4.0.21.

Theorem 5.1.4. Let G = ⟨a1, . . . , an ⟩ be a finitely generated powerful pro-p
group and let i, k ≥ 1 be integers. Then

(i) Gi+1 = Gpi = {gpi |g ∈ G} = ⟨api1 , . . . , a
pi
n ⟩;

(ii) the map x 7→ xp
k
induces a homomorphism from Gi/Gi+1 to Gi+k/Gi+k+1;

(iii) Gi+k = Pk+1(Gi) = Gpk

i and in particular Gi+1 = Φ(Gi).

Proposition 5.1.5. If G = ⟨a1, . . . , an⟩ is a powerful pro-p group, then
G = ⟨a1⟩ . . . ⟨an⟩.

Theorem 5.1.6. Let G be a powerful finitely generated pro-p group and H
a closed subgroup. Then d(H) < d(G).

5.2 Uniform groups

In Chapter 4 we introduced the concept of a powerful p-group and the simi-
larities that arise between abelian p-groups and powerful p-group. For pro-p
groups it is possible to define a slightly stronger condition, the ”uniformly
powerful” pro-p groups or simply ”uniform” groups. In fact it can be shown
that one can construct a homeomorphism between any uniform group and
Zn

p , a finitely generated Zp module, where Zp is the group of the p-adic in-
tegers. A module is a generalization of the notion of vector space in which
the underlying field is replaced by a ring. In other words it is an algebraic
object that represents n copies of Zp.
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Definition 5.2.1 ([5, 4.1 Definition]). A pro-p group G is uniformly powerful
(or uniform) if

(i) G is finitely generated,

(ii) G is powerful,

(iii) |Pi(G) : Pi+1(G)| = |G : P2(G)| for all i.

The third condition could be phrased differently since we already know
that there exists a surjective homomorphism fi : Pi(G)/Pi+1 → Pi+1(G)/Pi+2

given by x 7→ xp. Thus the third condition is fulfilled if and only if all
homomorphisms fi are isomorphisms.

It turns out the group of the p-adic integers is not only a pro-p group
but a uniform group as well. Let us check that this is indeed the case. Let
G be the group of the p-adic integers. Then G is indeed finitely generated
since, similarly to the usual integers, 1 is a generator. Furthermore, G is not
only powerful but also abelian. And lastly, since G is powerful we have that
Pi(G) = Gpi . In other words, all coefficients are shifted i positions to the left
and Pi(G) is a copy of G. Hence |Pi(G) : Pi+1(G)| = |G : P2(G)| is true as
well.

Similarly, finite direct products of the p-adic integers are uniform as well.

5.3 p-adic analytic pro-p groups

The study of p-adic analytic pro-p groups has been useful for proving or dis-
proving long-standing conjectures. An integral part of the research that has
been conducted towards the better understanding is the search for equivalent
descriptions of p-adic analytic pro-p groups. Several equivalent definitions
have been found. In this section we will introduce three such definitions, an-
other hypothesised characterization and inspect a conjecture that has been
disproved using p-adic analytic pro-p groups.

5.3.1 Definitions and examples

We will start with two standard definitions.

Definition 5.3.1 (compare [5, Interlude A]). A p-adic analytic pro-p group
is a pro-p group of finite subgroup rank.

Definition 5.3.2 (compare [5, Corollary 8.34]). A p-adic analytic pro-p
group is a pro-p group that contains an open normal uniform subgroup of
finite index.
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We may construct a p-adic analytic pro-p group considering the second
definition. Let us consider a uniform group G. Now the direct product
between G and a finite p-group Gf is a p-adic analytic pro-p group. The
group Gf needs to be finite but it can be abelian or not abelian. If Gf is not
powerful then G⊗Gf is p-adic analytic but not uniform.

5.3.2 p-adic analytic manifolds

An interesting property of p-adic analytic pro-p groups is their close relation
to manifolds and analytic functions. We will just briefly mention this concept
without going into detail and refer the reader to Chapter 8.1 of [5] for further
reference as well as the Appendix.

Intuitively one can understand analytic functions as smooth functions,
i.e. functions that have a convergent Taylor series at every point. We recall
that Zn

p is a module over the ring of the p-adic integers. We now define
a certain structure on a topological space X for open sets U consisting of
triples (U, ϕ, n), where ϕ is a homeomorphism from U onto an open subset
of Zn

p for some positive integer n. These triples need to cover X and the

maps ϕ1 ◦ ϕ−1
2 need to be analytic functions for any two ϕ1, ϕ2. Simplifying

we can say that if we can define such structures on X then it is a p-adic
manifold. Furthermore, a pro-p group that is a p-adic analytic manifold is a
p-adic analytic pro-p group.

5.3.3 The Hausdorff spectrum of p-adic analytic pro-p
groups

When it comes to p-adic analytic pro-p groups the concept of Hausdorff
dimension has been of particular interest. This concept is usually known
from fractal geometry and generalizes the idea of the dimension of geometric
objects to non-integer dimensions. It is defined on a metric space X using
the concept of an outer measure which might be known from the definition
of the Lebesgue integral. However, it is not necessary to understand the
underlying concepts of measure theory to understand the definition of the
Hausdorff dimension which is why we will not introduce the concept of an
outer measure.

Definition 5.3.3. Let (X, ρ) be a metric space and S ⊆ X. Let diam U :=
sup{ρ(x, y) | x, y ∈ U} be the diameter of a set U . Let d ≥ 0 be a real
number. The d-dimensional Hausdorff measure of the set S is defined as

Hd(S) = lim
δ→0

{
∞∑
i=1

diam Ui | ∪∞i=1Ui ⊇ S, diam Ui < δ

}
.
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Thus, in a certain sense we are looking for the smallest countable cover
of S, where the sizes of the elements Ui of the cover tends towards zero.

Definition 5.3.4. The Hausdorff dimension hdim(S) of S is defined as

hdim(S) := inf{d ≥ 0 | Hd(S) = 0}.

The next step is to apply the concept of Hausdorff dimension to profinite
groups. In other word we need to find a metric such that a profinite group
is a metric space. This metric is given by

d(x, y) = inf{|G : Gn|−1 | xy−1 ∈ Gn},

where the Gn for n being a natural number are a filtration, i.e. a descending
chain of normal finite-index subgroups with ∩Gn = 1. The natural choice of
such a filtration for finitely generated pro-p groups is the p-power series given
by Gn = Gpn (another possibility is the lower p-series given by Definition
4.0.14). It has been shown [1] that for a closed subgroupH ofG the Hausdorff
dimension can be expressed in a simpler way,

hdim(H) = lim inf
n→∞

log |HGn/Gn|
log |G/Gn|

.

We now present a small part of a recently published paper [17]. The
hypothesis is that the order of the Hausdorff spectrum

hspec(G) = {hdim(H) | H ≤ G,H is closed} ⊆ [0, 1]

of a finitely generated pro-p groupG is finite if and only ifG is p-adic analytic.
The Hausdorff spectrum of p-adic analytic pro-p groups is well understood,
it consists of finitely many rational numbers [2]. Conversely, it is still an
open problem if for a finitely generated pro-p group G a finite Hausdorff
spectrum implies that G is p-adic analytic. In [17] it has been shown that
this is the case under the condition that G is solvable, i.e. that the series
G ▷G(1) ▷ G(2) ▷ · · · reaches the trivial subgroup. Here G(i+1) = [G(i), G(i)] is
defined recursively.

5.3.4 Automorphism conjecture

The conjecture we will briefly introduce claims that the order of a non-abelian
finite p-group G divides the order of the automorphism group Aut(G) of G.
It has been shown that this is the case for p-groups of order p7 or smaller
[10]. However, this is not true in general. In fact the conjecture mentioned
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above was disproved using p-adic analytic pro-p groups [11]. The key is to
construct an infinite uniform group U such in a certain sense U is greater
than its automorphism group. As we have seen in this thesis, U can be
written as the inverse limit U = lim←−Ui of finite p-groups. At the same time
Aut(U) = lim←−Aut(Ui). This suggests that for sufficiently large i the finite
p-group Ui could be greater than Aut(Ui). In [11] it was shown that this is
indeed the case an thus the conjecture was disproved.
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Chapter 6

Conclusion and Outlook

The p-adic analytic pro-p groups are a useful tool in understanding pro-p
groups. In this thesis we have built up to the definition of p-adic analytic
pro-p groups by generalizing the concept of finiteness to profiniteness and the
concept of abelian p-groups to powerful p-groups. The research into p-groups,
pro-p groups and p-adic analytic pro-p groups is extensive and we have just
scratched the surface. For instance, the classification of these groups is an
integral step towards a better understanding of them and could be part of
a more complete introduction to p-adic analytic pro-p groups. One classi-
fication of p-groups and pro-p uses the coclass conjecture [6]. Additionally,
solvability and p-adic analytic groups can be used to classify just infinite
pro-p groups, and furthermore there are links between pro-p groups and Lie
groups [16].
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Appendix A

Definitions p-adic manifold

Definition A.0.1. Let X be a topological space and U a non-empty open
subset of X. A triple (U, ϕ, n) is a chart of dimension n on X if ϕ is a
homeomorphism from U onto an open subset of Zn

p for some positive integer
n.

Definition A.0.2. Two charts (U, ϕ, n) and (V, ψ,m) on a topological space
X are compatible if the maps ψ ◦ ϕ−1 and ϕ ◦ ψ−1 are analytic functions on
ϕ(U ∩ V ) and ψ(U ∩ V ) respectively.

Definition A.0.3. An atlas on a topological space X is a set of pairwise
compatible charts that covers X.

Definition A.0.4. Two atlases A and B are compatible if every chart in A
is compatible with every chart in B.

Definition A.0.5 (compare [5, Definition 8.8]). Let X be a topological
space. A p-adic analytic manifold structure on X is an equivalence class
of compatible atlases on X. If such a structure exists, X is a p-adic analytic
manifold.

Now we are able give another definition of a p-adic analytic pro-p groups.

Definition A.0.6. A p-adic analytic pro-p group is a p-adic analytic mani-
fold which is also a group.
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