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Abstract

Different models were developed with the aim of nowcasting inflation at a

daily basis with high frequency variables, while using real-time data to avoid

look ahead bias. Both popular machine learning models such as Random

Forest and XGBoost, and more traditional models such as UMIDAS and

Almon distributed lag models were used to make the nowcasts. The MIDAS

framework was utilized as a way of handling predictors sampled at mixed

frequencies and variations of LASSO were used to select the best variables

and features for the model.

The main analysis considers the performance of the models compared to each

other and a simple benchmark AR(1) model. It can be concluded that the ML

models outperform all other models, with XGboost at the top. UMIDAS and

Almon were slightly outperformed by the AR(1) model which could probably

be explained by overparametrization and that the LASSO did not do a good

enough job to remove enough features. Further, other topics related to the

nowcasting of inflation was investigated. It was concluded that inflation has

become harder to nowcast during the recent years. However the variables

used have stayed relatively constant throughout time. The inclusion of higher

frequency variables, such as daily, improved the nowcasts compared to the

more traditional approach of only using monthly released macro variables.

Keywords: Inflation, Machine Learning, Nowcasting, MIDAS, Almon dis-

tributed lag models, Real-Time data, Random Forest, XGBoost
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Definitions and acronyms

The following is a list of useful acronyms that will be used throughout the

paper.

• AGL - Adaptive Group LASSO

• AL - Adaptive LASSO

• ASGL - Adaptive Sparse Group Lasso

• GL - Group Lasso

• LASSO - Least Absolute Shrinkage and Selection Operator

• MIDAS - Mixed Data Sampling

• MoM - Month-on-month

• OLS - Ordinary Least Squares

• PCA - Principal Component Analysis

• YoY - Year-on-year

The following are useful definitions and terms used throughout the paper.

• Flow variable - A variable whose value that referees to a period of

time, e.g. Industrial production



• Horizon - The number of days until the next inflation number is re-

leased

• Lag - Value from a previous timepoint

• Nowcasting - Nowcasting is a contraction of now and forecasting,

meaning forecasting the present or near future

• Observation date - A simplification of observation period, only re-

ferring to the first date in the observation period

• Observation period - Referring to the period for which the data

applies

• Release date - When the data is released and made available

• Stock variable - A variable whose value that referees to a specific

point in time, e.g. Oil price

• Variable selection - The act of reducing the number of variables by

selecting the most important ones by some criterion
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Chapter 1

Introduction

Accurately assessing the current economic situation is crucial for predicting

the future and ensuring that the right actions are taken. One important

measurement to keep track of is inflation. Central banks are tasked with

ensuring price stability, and therefore rely on monitoring inflation to design

policies and adjust yields to ensure stability. On the other hand, market

actors use it to predict the markets’ direction and to adjust their trading

strategies.

A challenge when keeping track of inflation and the consumer price index is

the publication lag. The delay in publishing means that a month’s official

inflation is not available until approximately two weeks after the month is

over. If this information was available sooner, the right actions could be

taken earlier, both from the perspective of both market actors and central

banks.

During a target month, several data points containing valuable informa-

tion regarding consumer prices are released. Some are released daily, others

weekly, and some are monthly variables released on different dates spread

throughout the month. By using the information in these data points, it is

1



possible to estimate the inflation in real-time by nowcasting. Nowcasting is

a concatenation of now and forecasting, and describes the act of forecasting

the present or near future.

There are a variety of approaches for dealing with the nowcasting challenge.

The approach chosen in this master’s thesis is a combination of variable

selection using Least Absolute Shrinkage and Selection Operator (LASSO)

and Mixed Data Sampling (MIDAS), in an attempt to take advantage of data

released at different frequencies. The model will use a large set of predictive

series and choose which are to be included. A main feature of the model is

that it can deal with real-time data and can therefore be used daily to create

new estimates.

1.1 Nowcasting

The problem of nowcasting is formulated as follows:

ŷt|τ = E[yt|Ωτ ], (1.1)

which in words means the expected value of a variable at observation time

t, given available information at evaluation date τ , denoted Ωτ . Here τ is

assumed to be close to t in time, in the sense that we are interested in short-

term nowcasts rather than long-term equilibrium relations.

We aim to provide an accurate estimation of inflation, from the perspective

of a market actor, by nowcasting the official release value. This is the value

that the market watches and reacts to. Our nowcasting approach involves

estimating the inflation until the official number is released, after which we

repeat the process for the subsequent release. For instance, when we estimate

the inflation of January 2023, we begin estimating it on January 12-th (when

December’s inflation is released) and stop estimating it on February 14-th
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(when January’s inflation is released). Technically it is not nowcasting when

estimating January’s inflation in February since it is something that has

already happened, but just not been released. For consistency throughout

the thesis, the process of estimating inflation between official releases will be

denoted as nowcasting.

1.2 Consumer price index and inflation

Consumer price index (CPI) is an index which tracks the average price urban

customers pay for a market basket of consumer goods and services. Measure-

ments of prices are done monthly by the Bureau of Labor Statistics in the U.S.

Measurements begin the first day of the month and end the last day of the

month. The market basket consists of 12 categories, which are the following:

Food & non-alcoholic beverages, Alcohol & tobacco, Clothing & footwear,

Housing & household services, Furniture & household goods, Health, Trans-

port, Communication, Recreation & culture, Education, Restaurants & ho-

tels, Miscellaneous goods & services. Some prices are measured by conduct-

ing surveys, others by observing prices in stores. Changes in the CPI is

therefore a representation of the change in cost of living in the U.S. The Bu-

reau of Labor Statistics began measuring CPI in 1913 and the period between

1982 and 1984 is set to the index level of 100. (Bureau of Labor Statistics,

2023b)

Inflation is defined as the change in the CPI from the previous period, which

can be previous month, previous quarter or previous year. The most common

choice is to measure inflation on a yearly basis. For example, say that the

CPI for January 2022 is 500 and the CPI for January 2023 is 550. This means

that the inflation on a year-on-year basis in January 2023 is 10 percent.

Since some items in the CPI basket can be volatile, for example energy

and food, there exists sub-indexes where these are excluded. There are also
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sub-indexes for different population groups. CPI-U covers urban customer,

which make up approximately 93 percent of the U.S. population. CPI-W on

the other hand, covers urban wage earners and clerical workers, which make

up 29 percent of the population. The CPI measurement of interest in this

master’s thesis is the CPI for all urban consumers and all items, since it is the

broadest and the one most actors focus on. For more information about how

CPI is measured and its sub-indexes, see Bureau of Labor Statistics (2023a).

1.3 Purpose

Inflation is, as mentioned before, a key variable for both central banks and

market actors to keep track of as it can provide an overview of the current

state of the economy. In recent times U.S. inflation has become both harder

and easier to nowcast, depending on how you view it. Stock and Watson

(2006) shows that the inflation is less volatile today than it was during the

late 20th century, making it easier to forecast. But at the same time it is

shown that commonly used models are inferior to the näıve 12-month aver-

age inflation, indicating inflation is becoming harder to capture in standard

models such as the backward-looking Phillips curve. The Phillips curve was

one of the first models used to model inflation, see e.g. Phelps (1967) for

more information about the Phillips curve. In the last two years, the inflation

in the U.S. and other parts of the world has risen sharply and affected the

global economy. The U.S. inflation which in the beginning was commented

on as transitory by leading experts proved to stick around, proving once more

how hard it is to capture the inflation. (Tretina, 2022)

Our goal is to nowcast the inflation from the perspective of a market actor.

This means estimating on a short horizon and focusing on predicting the

next inflation number that is to be released. The model should be able to

create nowcast at any given horizon and select variables to use from a large

data set with real time data.
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The MIDAS framework has previously mostly been used for predicting Gross

Domestic Product (GDP), see Kitchen and Monaco (2003) or Kuzin et al.

(2011) for examples. But the MIDAS framework has also been used for

predicting inflation with monthly and daily variables as input. Often a lag

structure with few parameters, like exponential Almon, is enforced on the lags

to simplify estimation of the parameters. An alternative method of reducing

how many parameters that need estimation is to use feature selection, for

example sparse LASSO.

Our contribution to the previous work is combining variable selection using

adaptive sparse group LASSO and the MIDAS framework with data of dif-

ferent frequencies and models. Further, the nowcasts will be produced on a

daily basis which is uncommon in previous papers, where only a few horizons

are usually selected.

To measure the effectiveness of our proposed solution to the nowcasting chal-

lenge, two key questions must be answered. These are presented below.

Are the models successful in estimating the release value of the U.S.

inflation evaluated at daily frequency? This is evaluated in the model’s

performance relative to a simple AR model. It is also evaluated in observing

how the model updates its estimate as more information is made available

closer to the release date. By examining this we can also answer the question

regarding how well standard regression models stand up against the two very

popular machine learning models XGBoost (XGB) and Random Forest (RF).

When investigating the model’s performance, it is also interesting to evaluate

if they perform differently depending on the horizon and how much data is

available. It is also interesting to see the effect of tuning the hyperparameters

for the machine learning models.

What variables are important when nowcasting inflation, and has

this changed? By using algorithms to select variables it is possible to see

which ones are frequently selected and thus more important for the now-
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casts. The frequency of which the variables are selected will be compared

over different periods to determine if this has changed over time. Another

topic related to this which can be investigated is if the addition of higher

frequency variables is necessary for the model. If higher frequency variables

such as daily and weekly are not included after variable and feature selection

is performed, there is no purpose in using the MIDAS framework since its

sole purpose is to combine mixed frequency data. Therefore, the importance

of daily and weekly variables is evaluated to see if the model structure could

be simplified.

1.4 Previous work

1.4.1 Nowcasting inflation

Nowcasting is not a new concept, and has been used for a long time within

areas such as meteorology (Mass et al., 2011). In more recent times however,

the concept has been applied in economics (Giannone et al., 2008) to nowcast

variables such as GDP or inflation. This has resulted in a wide range of ap-

proaches and models ranging from simple bridge equations, to more complex

machine learning algorithms. GDP is the most common variable to now-

cast. This is mainly due to the fact that it is released on a quarterly basis,

allowing to use monthly released macroeconomic variables in the nowcast-

ing approach. The topic of this thesis, nowcasting inflation, is also popular.

However, as opposed to GDP, inflation is released on a monthly basis and

the use of higher frequency variables is therefore more common (Modugno,

2013). Other attempts at nowcasting inflation have been made by Knotek II

and Zaman (2022), Knotek and Zaman (2017), Clark et al. (2022), Xu et al.

(2019) and Monteforte and Moretti (2013), along with many others.
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1.4.2 Commonly used models for nowcasting

Below is a brief introduction of some models, beyond the already mentioned

Philips curve, that are commonly used for nowcasting.

Bridge equations

Due to its simple estimation approach and low technical requirements, bridge

equations have for a long time been widely used within policy organizations,

primarily central banks (Schumacher, 2014). The idea behind the bridge

equations is to use a few high frequency predictive variables to predict a lower

frequency variable through single equation regressions. The high frequency

variables are aggregated to the frequency of the predicted variable through a

set of transformations and can, after being forecasted, be used to predict the

variable of interest. See Rünstler and Sédillot (2003) or Baffigi et al. (2004)

for more information on the use of bridge equations in nowcasting.

MIDAS with lag structure

The downside of using bridge equations is the large amount of parameters

that need to be estimated (Dauphin et al., 2022). The MIDAS approach

address this issue by using a non-linear polynomial structure and also handles

time series sampled with a varying frequency, see e.g. Ghysels et al. (2006).

Factor models

There are also many models that are built upon the state-space representa-

tion, where the DFM is the most popular one. In one of the first models,

Stock and Watson (1989) extracted a single common factor from a set of

variables such as employment and industrial production. The models were

soon able to handle a larger number of variables and factor models are now

widely used to nowcast economic variables. Giannone et al. (2008) created

a model to nowcast GDP, which has now been refined and implemented by
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various central banks.

Machine learning

With the recent developments, machine learning has become more popular

among economists. The area of nowcasting is no exception, and several

techniques utilizing machine learning has emerged. For example, Dauphin

et al. (2022) show that ML models work well to nowcast GDP during times

of high volatility. The fast development is partly due to new data becoming

available through for example Google trends. Choi and Varian (2012) showed

that by using specific keywords in Google trends, it is possible to nowcast

economic conditions.

1.5 Model overview

The model and overall nowcasting approach will be briefly presented below.

The models that will be used in this master’s thesis all utilize the MIDAS

framework to handle data but use different techniques to form estimates. The

first model is MIDAS with Almon lag structure, the second is unrestricted

MIDAS, the third RF and the last XGB. The two first are classical regression

models commonly used with the MIDAS framework while the latter two are

machine learning models.

To begin, it is necessary to gather a data set of predictive time series that

accurately reflect the various aspects of the economy using relevant economic

variables. After the data set is gathered, it is time to model. The modelling

is done in four steps. The first step is to perform frequency alignment on the

data and arrange it according to the MIDAS framework. See Chapter 4 for

details about frequency alignment and the MIDAS framework. The second

step is to conduct variable selection to reduce the number of variables in the

model. Chapter 5.1 will discuss this in more detail. Then the third step
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is to perform feature selection on the remaining variables. See Chapter 5.2

for details regarding this process. The fourth and final step is to run and

evaluate the models daily on an expanding window, and this will be covered

in Chapter 7.

1.6 Structure of paper

This master’s thesis is structured as following. The next Chapter will intro-

duce all the necessary theory for the models used and variable and feature

reduction. Chapter 3 will present the data set and details regarding transfor-

mations. In Chapter 4 the methodology behind frequency alignment will be

in explained. Chapter 5 explains the procedure used for selecting variables

and features. Chapter 6 explains how the models are used while Chapter 7

covers the estimation approach. Chapter 8 presents the results and Chapter

9 concludes.
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Chapter 2

Theory

This Chapter presents the theory behind the models that will be used further

in the paper.

2.1 K-Fold Cross validation

Cross validation is a procedure that can be used to select the best hyper-

parameters for a model (Brownlee, 2018). K is an important parameter to

specify, and it refers to the number of groups that the data is split up into

prior to evaluation. When a value for K is selected, it is often referred to in

the model name, for example 5-fold cross validation. The general procedure

is as follows:

1. The data set is randomly shuffled

2. The data set is split up into K groups

3. For every group the following is done:

(a) Set the data in the group as test data

(b) Set the data in the remaining groups as train data
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(c) Fit a model on the training data and evaluate it on the test data

(d) Retain the score of the model

4. Take average of the scores.

Using 5-folds cross validation, it is possible to evaluate many models with

different combinations of hyperparameters and eventually select the one with

the best score or lowest error. It is important that every sample is put into

one group, and stays in that group throughout the process. Thus, each

sample is used once to evaluate the model and K-1 times to train the model.

The fact that all samples are used to both train and evaluate the model often

leads to models with less bias, making it a popular method.

2.2 Ordinary least squares

Suppose a linear regression model:

Y = Xβ + ϵ, (2.1)

where the variable of interest, Y , is to be explained by p covariates X =

(X1, . . . , Xp)
T . The β vector can be estimated by the OLS methods by

solving:

β̂OLS = min
β


n∑

i=1

(
yi −

p∑
j=1

xijβj

)2
 . (2.2)

It can be shown that the best linear unbiased estimator can be formed as

following:

β̂OLS = (XTX)−1XTY (2.3)
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Equation 2.3 is the so-called Normal Equation, see Eric Ghysels (2018) for

more details.

2.3 Least Absolute Shrinkage and Selection

Operator

The original Least Absolute Shrinkage and Selection Operator (LASSO) was

first introduced in 1996 by (Tibshirani, 1996), with the aim to improve upon

the OLS estimates which are obtained by minimizing the residual squared

error. Two of the alternative techniques are the subset selection and ridge

regression, both have some drawbacks. Subset selection is a discrete process

and either keeps or drops the regressors. Therefore small changes in the

data can lead to very different models, and thus high variability (Tibshirani,

1996). Ridge regression (Hoerl and Kennard, 1970) is instead a continuous

process and shrinks coefficients, making it more stable. However, since no

coefficients are set to zero, the resulting model is harder to interpret, as well

as risking keeping irrelevant regressors in the model. LASSO tries to retain

the good features of both subset selection and ridge regression by shrinking

some parameters and setting some to zero. Further, LASSO is more efficient

and thus able to handle problems of higher dimension, which can be a big

problem with the previously mentioned methods. Below, the theory behind

the original, as well as some variations of LASSO will be presented.

2.3.1 LASSO

It is common for linear regression models, such as Equation 2.1, to include

some covariates that are more or less irrelevant. If this is the case, the β

vector is sparse and the model could be improved by finding the important

covariates, and thus discarding the irrelevant ones. One common way to

do this is to impose restrictions on the number of included variables by
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adding some constraint on the regular OLS problem (2.2) introduced earlier

by Tibshirani (1996).

The constraint could be formulated in several ways. LASSO proposes a

L1 penalization in Equation 2.2, aiming to perform variable selection and

reduce the dimension of the problem. By adding the L1 penalty, the OLS

is transformed, keeping the convex properties, to the following optimization

problem:

β̂LASSO = min
β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2}
,

s.t.
∑p

j=1 ||βj||1 ≤ t,

(2.4)

where t is a tuning parameter. Finally, Equation 2.4 can be rewritten as:

β̂LASSO = min
β

{
||y −Xβ||22 + λ||β||1

}
. (2.5)

The sparsity of the solution of the β vector is decided by the shrinkage

parameter (λ ≥ 0). For greater values of λ, the β coefficients are more

penalized leading to a greater number of elements being shrunken to zero

and thus a more sparse solution. If λ is set to 0, the original OLS solution is

returned.

2.3.2 Group LASSO

In some regression problems the predictors have a natural grouped structure.

Sometimes the variables within a group all originate from the same variable,

in the form of for example a transformation or time lag. Other examples of

group structures are groups of genetic pathways in the field of genetics or

groups of technical indicators in finance (Méndez Civieta et al., 2021). For

these problems, variable selection typically amounts to selecting important

13



groups of variables rather than individual variables.

Yuan and Lin (2006) propose a variant of the LASSO, group LASSO (GL),

to deal with regression problems where the predictors have a grouped struc-

ture. Suppose there are m groups. The new β-vector then becomes β =

{β(1), β(2), . . . , β(m)} where β(l) is the part of β corresponding to the l-th

group. The same is done for X and X(l) represents the submatrix of X with

columns corresponding to group l. The optimization problem becomes:

β̂GL = min
β

{
||y −

m∑
l=1

X(l)β(l)||22 + λ
m∑
l=1

√
pl||β(l)||2

}
, (2.6)

with pl being the number of weights in β(l), or equivalent to the number of

variables in the l-th group. GL thus works similarly to LASSO, but while

LASSO penalizes every individual predictor, GL penalizes entire groups.

This results in group sparse solutions, either keeping or setting entire groups

of variables to zero.

2.3.3 Sparse Group LASSO

GL does not introduce sparsity within the groups. To do this, Friedman et al.

(2010) propose the Sparse Group LASSO (SGL), defined as a linear combina-

tion between LASSO and GL. This results in solutions that are sparse both

between and within groups. The penalization problem is the following:

β̂SGL = min
β

{
||y −

m∑
l=1

X(l)β(l)||22 + αλ||β||1 + (1− α)λ
m∑
l=1

√
pl||β(l)||2

}
,

(2.7)

where β = {β(1), β(2), . . . , β(m)} is the entire parameter vector. For α = 1

the problem reduces to that of LASSO and for α = 0, it reduces to GL.
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2.3.4 Adaptive LASSO

All previously presented versions of the LASSO apply a constant penaliza-

tion rate. Zou (2006) shows that this results in biased estimates, which in

turn leads to reduced quality of the variable selection as well as increased

forecasting error. To solve this problem and to improve upon the original

versions of the LASSO, he introduced the Adaptive LASSO (AL). Simply

put, the idea behind AL is to introduce additional weights on the penaliza-

tion. AL fulfills the oracle property, meaning it has the probability of 1 to

find the correct model.

Adaptive Sparse Group LASSO

Based on the original paper (Zou, 2006) on AL, the adaptive idea has been

applied to the other versions of LASSO. Mendez-Civieta et al. (2021) intro-

duced the Adaptive Sparse Group LASSO (ASGL) defined as follows:

β̂ASGL = min
β

{
||y −

m∑
l=1

X(l)β(l)||22 + αλ

p∑
j=1

ω̃j||β||1 + (1− α)λ
m∑
l=1

√
plṽl||β(l)||2

}
,

(2.8)

where ω̃ and ṽ are predefined weight vectors. It should also be mentioned

that AL and Adaptive Group LASSO (AGL) can be defined similarly by

adding weights to the previously defined LASSO and GL respectively.

With ASGL the weights can be set to adjust how variables or groups of

variables should be penalized before running the optimization. Therefore,

the weights for important variables (or groups of variables) should be small

to reduce the penalization and the opposite for less important variables.
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2.3.5 Weight calculation for Adaptive LASSO

Since the weights ω̃ and ṽ are to be set before the optimization, it is necessary

to investigate how they should be specified for best results.

Zou (2006) originally proposed to define the weights ω̃ based on the results

of a non penalized model according to:

ω̃i =
1

|β̃i
γ|
, (2.9)

where β̃ is the solution received from unpenalized linear regression and γ

is a non-negative constant. By looking at Equation 2.9 it is clear that a

larger β coefficient, meaning that the variable is more important, results in a

smaller weight which results in less penalization. The opposite goes for less

important variables with smaller β, leading to an increased weight as well as

heavier penalization.

The original weight definition (2.9) works fine in lower dimensions when

the number of samples is greater than the number or features (n > p).

However, when dealing with regression models of higher dimension (p ≫ n)

it is not feasible to solve an unpenalized model, making Equation 2.9 hard

to use. Mendez-Civieta et al. (2021) introduce other ways of calculating

the weights for AL for higher dimensional frameworks. Further, Mendez-

Civieta et al. (2021) finds that out of all proposed methods, PCA based on

a subset of components yielded the best results and therefore suggests using

it when faced with a higher dimensional problem. PCA stands for Principal

Component Analysis.

PCA based on a subset of component

The matrix of principal components Q is defined in a way such that the first

principal component has the largest variance and each succeeding one having
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the maximum possible variance under the constraint that it is orthogonal

to the preceding components. Mendez-Civieta et al. (2021) propose taking

advantage of the low dimensional framework defined by the PCA scores Z =

XQ. Further consider the submatrix Qd = (q1, . . . , qd)
t where the d can

be selected to explain a certain amount of the variability. Finally solve the

unpenalized model:

β̃ = min
β

{
1

n

n∑
i=n

ρτ (yi − ztiβ)

}
, (2.10)

where Zd = XQd.

This solution, β̃, is then used to estimate the higher dimensional solution,

β̂ = Qdβ̃, which is then used to compute the adaptive weights as follows,

ω̃ =
1

|β̂j|γ1
and ṽ =

1

||β̂(l)||γ22
, (2.11)

where β̂(l) is the vector of components related to the l-th group and β̂j is the

j-th component of β respectively. γ1 and γ2 are constants which needs to be

selected.

2.4 Distributed lag models

Distributed lag models is a class of models where the target variable is a sum

of lags of the exogenous variable.

yt = a+ w0xt + w1xt−1 + ...wnxt−net (2.12)

Here yt is the target variable, xt is the exogenous variable at time t and w0

its associated parameter, often called weight in this context. The weights

can easily be estimated with ordinary least squares (OLS). If one has n lags
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included in the model n+1 parameters must be estimated as it also has an

intercept a. This can in some cases lead to numerous parameters needing to

be estimated, which can be troublesome if the amount of data is limited.

Since lagged variables often have strong multicollinearity, it may not be nec-

essary to estimate one weight per lag. Instead, one can use the assumption of

multicollinearity to perform a structured estimation using finite distributed

lag structures. This leads to that the number of parameters requiring estima-

tion is reduced. Distributed lag structures enforce a parameterized structure

upon the lags. These structures often only depend on two parameters and by

estimating them, weights for all lags are found. Two commonly used finite

distributed lag structures used in economics are the Exponential almon lag

and the Beta lag. These are often used together with the MIDAS framework

where multiple lags of variables are included, see Eric Ghysels (2018).

2.4.1 Almon lag

The most common lag structure is the Exponential almon lag, which is a

modification of the original almon lag introduced by Shirley Almon. Here

the lag distribution is fitted using two parameters. It has been proved many

times that the exponential almon lag works well in econometrics and is a

common choice, see Bokati and Kreinovich (2022).

w(k, θ) =
exp(θ1k + ...+ θQk

Q)∑K
k=0 exp(θ1k + ...+ θQkQ)

(2.13)

Here k denotes index of lag. See Almon (1965) for a full explanation of the

Almon lag.
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2.4.2 Beta lag

The other common choice is the Beta lag, where the Beta distribution is used

w(k, θ) =
f( k

K
, θ1; θ2)∑K

k=0 f(
k
K
, θ1; θ2)

(2.14)

f(x, a, b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)
(2.15)

where Γ(a) =
∫∞
0

e−xxa−1dx is the Gamma function.

A common specification of the Beta polynomial is setting θ1 = 1 and estimat-

ing θ2 with the requirement that it must be larger than one, see Eric Ghysels

(2018) for more details regarding the Beta lag.

2.5 Machine Learning models

2.5.1 Decision tree

Decision trees are a popular machine learning technique used for solving

classification and regression problems. They work by recursively partitioning

the input space based on a set of decision rules, which are derived from

the training data. A popular version is Classification and Regression Tree

(CART) introduced by Breiman (1984). It uses Gini’s impurity index to

decide when to split the data.

The process of building a decision tree begins with selecting a feature that

best splits the data based on some criterion, such as maximizing information

gain or minimizing impurity. This feature is then used to partition the data

into two subsets, with each subset containing only those samples that satisfy

the decision rule associated with that feature.

The process is repeated for each subset, and a new feature is selected to
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partition the data into smaller subsets. This process continues until some

stopping criterion is met, such as reaching a maximum depth, achieving a

minimum number of samples per leaf node, or achieving a minimum reduction

in impurity.

Once the decision tree is constructed, it can be used to make predictions by

traversing the tree from the root node to a leaf node. At each internal node,

the decision rule associated with the corresponding feature is evaluated, and

the traversal proceeds to the child node that satisfies the rule. This process

continues until a leaf node is reached, which corresponds to a predicted class

or value.

Decision trees have several advantages, such as being interpretable, easy to

understand, and able to handle non-linear relationships between the features

and target variable. However, they can also suffer from overfitting, where

the tree becomes too complex and memorizes the training data rather than

learning the underlying patterns. To mitigate this, techniques such as prun-

ing, regularization, and ensemble methods are commonly used. (Sun and

Zhou, 2018)

2.5.2 Random forest

RF is an algorithm which builds on the decision tree algorithm by combining

multiple decisions trees in a clever way to lower the risk of overfitting. The

idea is to generate multiple decision trees trained on a randomly selected

subset of features and aggregate the result. The name forest comes from

using multiple trees. This method was developed by Breiman (2001)

The first step when creating a RF model is to create new data sets with

the same number of samples as the original data set. The new data sets are

generated by random sampling with replacement from the original samples,

bootstrapping the data. Then a random subset of features is selected for each

decision tree and it is on these features each tree learns its decision nodes.
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When the forest is used to predict, the new sample is passed through each

tree and the result is aggregated to form the prediction. See Figure 2.1 for

an illustration of how a new sample is passed through each tree in the forest

and then aggregated into a final result.

Figure 2.1: Illustration of RF and how it works. Source: Tibco software inc.

When training a RF, it is important to specify a couple of hyperparameters:

number of trees in the forest, maximum number of features used in the deci-

sion trees, maximum depth of the decision trees, number of samples to use in

the decision trees, the minimum number of samples to split an internal node

and lastly the minimum number of samples required to be at a leaf node.

The number of trees to use depends on the size of the dataset, but there

often exists an upper limit after which adding more trees has a diminishing

effect. The number of trees often ranges from hundreds to thousands. Both

the number of features used in the trees and the maximum depth of these

trees are important to avoid overfitting. Too many features used, and the

model might overfit the data since it becomes too complex. The same goes

for maximum depth: the deeper the tree, the more complex and specific it
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gets. The number of samples to use in the trees can lead to overfitting if set

too high or under-fitting if set too low, since it affects how many samples

each tree can model on. The minimum number of samples required to split

a node also affects overfitting. A low value can lead to excessive splitting of

the tree and make it more complex than necessary. Finally, the minimum

number of samples required to be at a leaf node controls the complexity of

the tree. A high number forces the tree to be small and under-fit, while a

low number of minimum samples can lead to overfitting. For more details

regarding parameters and tuning, see Sharoon (2020).

2.5.3 XGBoost

XGB is an algorithm which also builds on decision tree’s. The goal here

is also to use multiple tree’s to increase performance and lower the risk of

overfitting. For all details regarding XGB, see Chen and Guestrin (2016).

In XGB decision trees are built additive in series, using the residual from the

other tree’s. The predicted output is formed using K additive functions.

ŷi = ϕ(xi) =
K∑
k=1

fk(xi) (2.16)

where fk are the decision trees.

Let L denote the regularized objective. The goal is then to minimize L.

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

where Ω(f) = γT +
1

2
λ||w||2

(2.17)

Here l is a differential convex loss function that measures the distance be-

tween the prediction and the true value. Ω is a term that penalizes the
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complexity of the tree structure. T is the number of leaf in the tree, w is the

leaf weights and γ and λ are coefficients.

Since the equation above includes functions as parameters, it can not be

optimized using traditional methods and is instead trained in an additive

manner. Let ŷ
(t)
i be the prediction at the t-th iteration of the i-th instance.

The goal is to add ft to minimize the equation below.

L(t) =
n∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (2.18)

This means that the ft that improves Equation 2.17 is added. By using a

second order approximation it is easy to optimize the objective in a general

setting.

L(t) ≈
n∑

i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) (2.19)

where gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1)l(yi, ŷ
(t−1))

Similar to RF, XGB also requires specifying hyperparameters. These are:

number of trees to use, maximum depth of the decision trees, subsample

ratio of observations to use per iteration, subsample ratio of features to use

per iteration and finally the learning rate. Learning rate controls how much

the model adapts is response to new information when training.

For details regarding number of trees to use and maximum depth, see Chap-

ter 2.5.2 as it uses the same hyperparameters. The subsample ratio is an

important hyperparameter in XGB and is typically set to a value between

0.5 and 1, although it can be as low as 0. Lower values prevent over-fitting

and makes the model more conservative, but too low of a value can lead to

under-fitting. The same is true for the subsample rate of features. Valid

values for the learning rate range from 0 to 1, but they typically end up at
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around 0.01 to 0.2. A high learning rate might lead to over-fitting. It’s im-

portant to find the right balance between the learning rate and the number

of trees to get the best performance from the XGB model. For details about

the parameters and tuning, see Brownlee (2016) and Prashant (2023),

2.6 Auto Regressive models

2.6.1 AR(p)

The autoregressive (AR) model is a model where the output variable depends

on lags of the variable itself and a stochastic term. An AR model of order p

is defined as follows:

yt = ϕ1yt−1 + ...+ ϕpyt−p + ϵt, (2.20)

where ϵt is white noise, meaning it has a mean of zero, constant variance and

is uncorrelated to the innovations of yt.

By adding a constant it is possible to rewrite Equation 2.20 as:

yt = c+

p∑
i=1

ϕiyt−i + ϵt (2.21)

In order to use the model for forecasting the parameters ϕi and c need to be

estimated, which can be done by using a maximum likelihood estimator. For

more in-depth details, see Lindgren et al. (2013).
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Chapter 3

Data

3.1 Data set

The data set used in this master’s thesis consists of 100 time series with

varying frequencies. The set contains a variety of macroeconomic variables

such as: measurements of money and credits, measurements of economic

activity but also commodity prices and different yields.

The starting point for the data set is the commonly used database FRED-

MD. FRED-MD is a database with macroeconomic monthly variables and

is provided by Federal Reserve of St. Louis, see Michael W. McCracken

(2015) for details. This data set was chosen due to it being a recognized

starting point in many articles conducting big data analysis and because it

contains a mix of variables representing many aspects of the economy in the

U.S. FRED-MD collects its data from the database Archival Federal Reserve

Economic Data (ALFRED). ALFRED provides an even broader spectrum

of data series than FRED-MD and with varying frequencies. All series in

FRED-MD available at a higher frequency from ALFRED is replaced with

its higher frequency counterpart, since we want to use data of varying fre-
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quencies. Higher frequencies in this case is weekly or daily. In addition to

the series from FRED-MD and ALFRED, daily commodity prices are col-

lected from Bloomberg. These are included since it has been showed that

daily and weekly financial data can improve short- to medium-term forecasts.

(Andreou et al., 2013) (Pettenuzzo et al., 2016) (Adrian et al., 2019)

The monthly and weekly variables are so-called flow variables, whose value

refer to a period of time, for example January. The other kind of variable

to exists are stock variables and refer to a value associated with a specific

point in time. For example, Industrial production is a measure of an entire

month’s industrial production and is therefore a flow variable. Oil price on

the other hand refers to the price at a specific time and is therefore a stock

variable. Due to the definition of a stock variable, its value is available at

the time of the observation date. The same does not hold for flow variables;

their value is often available a couple of days after the observation period

ends. This difference between observation period and publication date is

called publication delay, and is important to keep track of when dealing with

flow variables.

3.2 Dealing with dates

For every value in the data set, two dates were gathered: the observation

period and the publication date. The observation period represents the pe-

riod of time to which the data point applies, and can be a range of time

such as a week or a month. To maintain consistency in our notation, we

denote the observation period with a single date, which we refer to as the

observation date. For stock variables, the observation date and the publica-

tion date are the same. However, for the flow variables which are weekly or

monthly, the publication date differs from the observation date. For weekly

data, the observation date is set to the Monday of the referenced week, while

for monthly data, the observation date is set to the first day of the referenced
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month. For example, the U.S. initial claims for unemployment insurance is

released weekly, and the data point for initial claims for the sixth week of

2023 has an observation date of February 6, 2023, since it is the Monday of

that week.

3.3 Real time data

Using the publication date associated with every value it is possible to create

data sets for each evaluation date. These data sets only include data available

up until the evaluation, allowing us to only model on data that is available

at the date of evaluation.

Macroeconomic variables are often subject to revisions as time goes, and

more measurements become available. This introduces the concept vintage,

which refer to the latest revisions at a certain date. Since data series can

undergo re-indexing or changes in how measurements are done, even values

far back in the data set may differ between different vintages.

We use the values from the most current vintage, e.i. the latest revision of

the data. Primarily due to limited availability of vintage data, but also to

avoid having to deal with re-indexing of data and changes in measurement

over time. Revisions are often small between vintages and therefore the most

current vintage is used to get coherent data with long history. The alternative

to using the latest vintage is to use the vintage available at the specific time

point. This would lead to different data sets depending on vintage since

past values are often revised multiple times. As discussed by Monteforte

and Moretti (2010), the difference of using vintage data or the latest revision

might be minimal.
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3.4 Missing data

3.4.1 Daily data

The daily data set contains missing values on weekends, holidays, and on

some random dates. Since exchanges are closed on weekends, all weekends

are removed from the data set, since no information is gained from these

missing values.

For the remaining missing values occurring on weekdays, there are several

ways to deal with them, such as forward filling, interpolation of the adjacent

data points, or curve-fitting on past values. Since the data is real-time, it is

not possible to use future data points for interpolation without introducing

look-ahead bias. To avoid this, the forward fill method is used to fill the

missing values. Forward filling means to replace missing values with the

latest available value, and is chosen for its simplicity over the more complex

curve-fitting method.

3.4.2 Weekly and monthly data

Similarly, the weekly and monthly data also has missing values, probably due

to errors in reporting or re-indexing, and are forward filled with the same

reasoning as the daily data.

Some monthly values lack release dates, as records are not kept for all vari-

ables and with varying history. This is handled by finding an average publi-

cation date for every series and applying the same delay to those values that

lack a publication date.

Due to the varying publication delay for flow variables, there is a jagged edge

in the data panel as not all variables are released at the same time. This can

be a problem in other models that cannot handle jagged edges with missing

values. However, using the MIDAS framework, this is not a problem since it
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only uses the available values at the date of evaluation. It does not require all

variables to have values at a certain date and instead uses the latest available

values for each variable at that date.

3.5 Transformations and standardization

After all missing values and missing release dates are removed or replaced,

the data panel needs to undergo a sequence of transformations to ensure

stationary. While it is most common for inflation to be reported as yearly

percentage change, see the official reporting at Bureau of Labor Statistics

(2023a), monthly percentage change is also used from time to time. Both

transformations yield sufficiently stationary processes, and therefore both

were tested in modeling to determine which one to use. For the rest of the

monthly, weekly and daily variable’s percentage change from previous value

is used in an attempt to capture short term movement.

To find what kind of transformation to use on the inflation series, a test was

conducted. Two models were constructed using the methodology described

in Chapter 7, which means variables and feature selection using ASGL. To

evaluate the performance on out of sample data, XGB with default hyper-

parameters was used. The choice landed on XGB due to it being a fast

and reliable model. Monthly percentage change yielded the lowest RMSE,

meaning it performs better and is therefore selected as the transformation to

use going forward. For details about RMSE, see Chapter 7.2 and for details

about the performance with the different transformations, see Table 8.1

After transformations are performed, the data set is also standardized, en-

suring zero mean and unit variance. This is achieved by removing the mean

and dividing with the standard deviation for each data series.
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Chapter 4

Frequency alignment

Using higher frequency variables to forecast lower frequency variables is not

always an easy task, and there are several ways to do it. This paper utilizes

the MIDAS framework, which was first presented by Ghysels et al. (2006),

and has since been one of the most prominent approaches to handle mixed

frequency data. The first step when estimating a MIDAS regression model is

to make sure that all variables observed at different frequencies and different

lag lengths are aligned. Ghysels et al. (2016) denotes this the frequency align-

ment process. After the frequency alignment, Ghysels et al. (2006) presents

further steps to finalize the model. These steps will be covered later in Chap-

ter 6, together with the other models applied. In this paper, the MIDAS

frequency alignment step is combined with not only the MIDAS regression

model, but also other models. The frequency alignment step is therefore

presented separately in this Chapter, as well as other alternatives to handle

mixed frequency data.
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4.1 The MIDAS framework as a feature en-

gineering process

For simplification, the frequency alignment step will be demonstrated with

examples in matrix notation. Suppose we want to explain the behavior of yt,

observed monthly, with another variable x
(1)
t which is observed at a higher

frequency, weekly. The model assumes that each month has 4 weeks and the

frequency is thus set to m = 4 to illustrate how many observations of x
(1)
t

that are available for each observation of yt. In practice, months do not have

exactly 4 weeks and one can think of the model as simply taking a fixed set

of weekly lags. This basically means that instead of including the previous

month of weekly lags, a fixed amount of the most recent available lags are

included. Assuming further that the weekly data in the past 2 months has

explanatory power. This implies that for each month t, yt is modeled as

a linear combination of the observations of x
(1)
t during month t and t − 1.

More specifically, x
(1)
4t , x

(1)
4t−1, x

(1)
4t−2 and x

(1)
4t−3 are observed during month t

and x
(1)
4(t−1) = x

(1)
4t−4, x

(1)
4(t−1)−1 = x

(1)
4t−5, x

(1)
4(t−1)−2 = x

(1)
4t−6 and x

(1)
4(t−1)−3 = x

(1)
4t−7

are observed in the previous month t− 1. In matrix notation the frequency

aligned MIDAS model for this example can be written as:


y2
...

yn

 =


x
(1)
8 . . . x

(1)
1

...
...

...

x
(1)
4n . . . x

(1)
4n−7



β
(1)
1
...

β
(1)
8

+


ϵ2
...

ϵn

 . (4.1)

It can now be seen that the high frequency variable x
(1)
t has been transformed

into a lower frequency vector [x
(1)
4n , . . . , x

(1)
4n−7]

T . Thus, all variables are ob-

served at the same frequency making it possible to accommodate variables

sampled at different frequencies and transform the problem into a normal

time series regression. In essence, this is what the frequency alignment is

about.
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This process can be repeated for all other variables that are to be included

in the model. Suppose another variable x
(2)
t observed at daily frequency,

is added to the model and that only values from the previous month are

considered to have explanatory power. For month t, yt is now modeled as

a linear combination of the variables x
(1)
4t , x

(1)
4t−1, x

(1)
4t−2, x

(1)
4t−3 and x

(2)
30n, . . . ,

x
(2)
30n−29 observed in month t, and the variables x

(1)
4(t−1), x

(1)
4(t−1)−1, x

(1)
4(t−1)−2,

x
(1)
4(t−1)−3 observed in month t–1.


y2
...

yn

 =


x
(1)
8 . . . x

(1)
1

...
...

...

x
(1)
4n . . . x

(1)
4n−7



β
(1)
1
...

β
(1)
8

+


x
(2)
60 . . . x

(2)
31

...
...

...

x
(2)
30n . . . x

(2)
30n−29



β
(2)
1
...

β
(2)
30

+


ϵ2
...

ϵn


(4.2)

The second example illustrates the flexibility of the frequency alignment pro-

cess. First, it shows how variables with 2 different frequencies (weekly and

daily) easily are incorporated into the framework and used to describe a

variable with a third frequency (monthly). Second, it shows the flexibility

in terms of the number of lags that are included for each variable with the

weekly variable including the past 2 months and the daily variable only in-

cluding the past month. As earlier mentioned, the number of weeks and days

every month varies and in practice the model takes a fixed number of lags

for each variable instead of a time period.

In the general case, a high frequency variable xt is frequency aligned by

transforming it to the low frequency vector [x
(i)
tmi

, x
(i)
tmi−1, . . . , x

(i)
tmi−l]

T . The

model can then be written in matrix notation as:


yl
...

yn

 = Σk
i=0X

(i)


β
(i)
0
...

β
(i)
l

+


ϵl
...

ϵn

 (4.3)
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where

X(i) =



x
(i)
umi x

(i)
umi−1 . . . x

(i)
umi−l

x
(i)
(u+1)mi

x
(i)
(u+1)mi−1 . . . x

(i)
(u+1)mi−l

...
... . . .

...

x
(i)
tmi

x
(i)
tmi−1 . . . x

(i)
tmi−l

...
... . . .

...

x
(i)
(n−1)mi

x
(i)
(n−1)mi−1 . . . x

(i)
(n−1)mi−l

x
(i)
nmi x

(i)
nmi−1 . . . x

(i)
nmi−l


and u is the smallest integer so that the following holds:

umi − l > 0,

u > p.

4.2 Keeping track of lags

The model will be used on real time data, meaning it will only use data

that is available at the time of the estimation. This means that the latest

daily, weekly and monthly variables are used when forming the estimate.

Depending on how many lags the model uses and at what day the model

is evaluated at, the variables might belong to the target month, the month

before, the month after or a combination. This is not always something

desired. Values that have an observation date past the target month should

not have any effect on the inflation, since all measurements for the target

month are done. For example, when estimating the inflation for January

2023 commodity prices with observation dates in February should not have

any effect, neither should unemployment numbers for February. Here it is

important that the observation date should be in the target month while

there is no restriction on publication date. See Chapter 3.2 for definitions of
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publication date and observation date.

Therefore a limit is set on lags to only include values with observation dates

in the target month or the month before. For example, say that the evalua-

tion date is February 9, 2023, which means that January’s inflation is being

estimated. Then only variables with observation date in January or Decem-

ber are included. The last lag of daily variables will have observation date

January 31.

4.3 Variables and features

Throughout this paper, the terms variables and features will be used a lot,

and might require a brief explanation to improve understanding. Specific

data series, such as the unemployment, are referred to as variables. After

the feature engineering process, each variable is transformed into a lower

frequency vector. This vector contains time lags of the variable and each

time lag will be referred to as a feature. In the previous Chapter 4.1, the

variable would be xi
t, while the low frequency vector, containing the features,

would be [x
(i)
4n, . . . , x

(i)
4n−7]

T .

4.4 Alternative approaches

There are several ways to handle mixed frequency data. One common way

to solve the problem is to pre-filter the data which in essence means that

the frequency of the high frequency data is transformed to that of the low

frequency one. The most straightforward way of pre-filtering the data is to

aggregate the high frequency data and take their average (Asimakopoulos

et al., 2013).

Pre-filtering is a very simplistic approach and fails to exploit all useful in-

formation that may be contained in the high frequency data. Therefore, to
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avoid pre-filtering, numerous alternative methods have been developed with

MIDAS, bridge equations and factor models being some of the most com-

mon ones. See (Foroni and Marcellino, 2013) for more detailed information

on approaches to handle mixed frequency data.

Another method for dealing with mixed frequency is to model at multiple

frequencies and then use temporal aggregation to combine them. Here, long-

term forecasts are combined with short-term forecasts to utilize information

carried in the time series at the different frequencies. For an example of how

this approach can be used, see Nystrup et al. (2021).
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Chapter 5

Dimensionality reduction

Today, there is a lot of data available, which has made high dimensional

frameworks, in which the number of variables p exceeds the number of obser-

vations n, more common. This increases the need to select the best variables

in a systematic manner to be able to create the best model. This issue is

often referred to as the curse of dimensionality (Venkat, 2018).

In this paper, frequency alignment using the MIDAS framework, explained

further in Chapter 4, is used to incorporate data with mixed frequencies.

When doing so, each time lag of each variable will be presented to the model

as a unique feature, which can lead to a high dimensional framework. For

example, if 10 variables, each with 30 time lags are to be used, the model

is presented with 300 features. The dimensionality problem in this paper is

handled by first removing redundant variables, and then using two different

techniques to reduce the number of features from the remaining variables.

How this is done will be the focus of this Chapter.
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5.1 Variable selection

The purpose of this Chapter is to describe the initial variable selection pro-

cess, which aims to reduce the number of variables in the original data set

while retaining the most explanatory ones.

To achieve this, the variable selection method must work well with the MI-

DAS framework and recognize groups of features that belong to the same

variable. Additionally, it should be a sparse method, which can set coeffi-

cients to zero, as a single lag may be important while the others may not

contribute much. For daily variables with multiple lags, this is especially

critical. This paper uses LASSO (2.3) for variable selection. Combining the

MIDAS framework with some variant of LASSO has been shown to work well

before, see the papers by Mogliani and Simoni (2021a) or Babii et al. (2022).

5.1.1 Selection of LASSO variant

Since there are several variants of LASSO, an important part of performing

the best possible variable selection and thus achieving the best result, is to

select the best variant for the problem at hand. The original LASSO (2.3.1)

can sometimes have problems with estimation bias and a lack of selection

consistency (Mogliani and Simoni, 2021b). The adaptive versions of LASSO

(2.3.4) mitigates this problem, making it more attractive. To apply the

adaptive versions of LASSO, it is crucial to calculate the weights properly.

Mendez-Civieta et al. (2021) propose using the method PCA based on a

subset of components, further described in Chapter 2.3.5, and this is also the

proposed method in this paper.

Mogliani and Simoni (2021b) further argues that the group penalty, described

in Chapter 2.3.2, works well in combination with the MIDAS framework.

This is mainly because one can assign all lags of a particular variable to

a single group. Shrinkage can then be performed over the entire variable.
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The fact that the lags within a variable by construction have a very high

correlation can cause problems if a version of LASSO without group structure

were to be applied. For example, the estimator would likely randomly select

one or very few of the lags from each variable and shrink the remaining

(potentially relevant) ones to zero, since they are all highly correlated. For

more theoretical details, please see the papers by Efron et al. (2004) and Zou

and Hastie (2005) that discusses similar problems.

For these reasons, the proposed method for variable selection in this paper

is ASGL (2.3.4). AGL would also be a valid alternative. However, since the

sparse version is a linear combination of AGL and AL, AGL can be obtained

simply by setting α to 0 in Equation 2.8. Further, since the hyperparameters

are to be optimized (more on this in Chapter 5.1.2), the sparse version seems

to be the more flexible version out of the two and was thus selected.

5.1.2 Selection of ASGL hyperparameters

The selection of the optimal hyperparameters is very important since small

changes can have a big impact on what variables are selected.

ASGL takes four hyperparameters, two of which (α and λ) are found in

Equation 2.8 and the remaining two (γ1 and γ2) are used to calculate the

adaptive weights in Equation 2.11. As described earlier, ASGL is a linear

combination between AGL and AL. The degree to which each version will be

included is decided by α and setting it to 0 yields AGL while setting it to 1

yields AL. Further, λ decides the amount of penalization and γ1 and γ2 are

non-zero constants.

To select the optimal values for the hyperparameters, 5-fold cross validation,

described in Chapter 2.1, was used. While this method works well, it relies

on the researcher initiate a reasonable grid to optimize on, not missing any

potentially better values for any parameter. Further, the process is quite

time-consuming and initiating a grid with too many values would not be
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feasible with the available computing power for this project. To solve this,

the cross validation process was divided into steps, where the goal of each

step was to narrow down the range of the parameters. First, an equally

distanced coarse grid was defined, making sure most potential values for each

hyperparameter were inside the limits of the grid. The values for the initial

grid were determined according to recommendations by Méndez Civieta et al.

(2021). By optimizing over this grid, initial estimates of the parameters were

found. By then adjusting the grid to center around the initial estimates and

increasing the resolution, the parameters found will be closer and closer to

the optimal ones. This process was repeated until the estimations converged.

5.1.3 How variables are selected

The idea behind selecting variables with ASGL is very simple. After finding

the optimal hyperparameter, the model is run and a vector of parameters is

obtained. Then all variables with at least one of its time lags not shrunken

to zero, are kept in the model.

5.2 Feature reduction

Depending on the amount of time lags that are to be incorporated, each

variable can result in many features for the model to handle. Therefore, an

important part of reducing the dimension of the problem is to reduce the

number of features from the remaining variables after the variable selection

step. Two alternative methods, ASGL and Almon lag, are proposed to handle

this.

Due to high risk of over-fitting when using multiple lags where there might

be high correlation between lags, feature selection is conducted. Even though

machine learning models work well in high dimensional settings, it is often

useful to remove redundant features.
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5.2.1 ASGL for feature reduction

ASGL can be used to select the most desired features and reduce the di-

mension of the problem. The process is very similar to the one described in

Chapter 5.1.3. However, instead of then just removing the variables of which

all parameter values are shrunken to 0, all features with a parameter value

of 0 were removed. This way not only variables but also individual features,

or time lags, are removed.

5.2.2 Almon lag for feature reduction

An alternative to using ASGL for feature reduction is to use a distributed lag

model. As mentioned in Chapter 2.4 the lag structures often only depend on

one or two parameters, and therefore reduces the number of parameters that

need estimation. It does not reduce the number of features but accomplishes

the same goal, reduce the number of parameters that need estimation. The

choice falls on using Almon lag over Beta lag due to the Almon lag’s proven

effectiveness.

5.3 Alternative methods

5.3.1 Principal Component Analysis

PCA is a commonly used technique to reduce the dimensionality of data

while preserving its underlying information. PCA achieves this by identifying

the directions, or principal components, in which the data varies the most.

These principal components are determined by calculating the eigenvectors

and eigenvalues of the covariance matrix. Transforming the original data to

a new coordinate system using the eigenvalues and eigenvectors results in

factors that represent the information in the original data in an optimal way.

For further explanation and details, see Abdi and Williams (2010).
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However, PCA requires a balanced data panel with values for each variable

at every time point, which is not always feasible in real-time datasets due to

publication lags. One solution is to use forward-filling or prediction methods

to fill in missing values to get a balanced data panel. While this could work,

PCA was cast aside as variable selection tool due to poor synergy with the

MIDAS framework. PCA reduces variables to factors, instead of selecting

factors and would have required filling out missing values.

5.3.2 Manual selection

Another approach to variable selection is to manually choose the variables to

include in the model, allowing for more control over the degree of reduction.

It has been shown that a model with carefully selected variables can perform

well, see Bańbura et al. (2013). However, manually selecting variables can be

challenging, as two selected variables may have a high correlation, rendering

one of them redundant and making the choice suboptimal. Since the dataset

used in this study is large and the manual selection process can be complex,

this method of variable selection was not pursued.
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Chapter 6

Models

Five different models will be compared in this thesis, with one of them being

an AR(1) model used as benchmark. The other four use feature selection

in someway to reduce dimensionality and to remove excess features. Three

models: UMIDAS, XGB and RF use ASGL as feature reduction method

while the Almon model will use an Almon lag structure as feature reduction

method.

6.1 AR(1)

The autoregressive (AR) model is a commonly used model and will be used

as reference model in this master’s thesis. Since the AR model does not use

any exogenous variables, there is no need for neither variable nor feature

selection. The choice falls on an AR(1) since the model will only be used

as benchmark and a model of higher order is deemed unnecessary for this

purpose.

When using the model for forecasting the parameters are first trained on the

training data set. Then these parameters are used to form an estimate on
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the test data set. When examining the model estimates are created using

the following equation:

ŷt = ĉ+

p∑
i=1

ϕ̂tyt−i, (6.1)

where yt−i are known values.

6.2 MIDAS - Almon

With the Almon lag model feature reduction is part of the estimation step

of the model. See Chapter 2.4.1 for details.

To use the Almon model, one must first estimate θ̂ by solving a minimization

problem. Using the Almon lag structure with weights w as described in

Chapter 2.4.1, the minimization problem takes the following form:

min
t∈n

yt −
K∑
k=1

wt(k, θt)x
(k)
t , (6.2)

where n is the number of observations, K is the number of lags and θt =

(θ1, θ2).

The Almon lag structure takes two parameters per variable θ1, θ2. By solving

the non-linear regression problem using the Levenberg-Marquardt algorithm,

optimal θ1, θ2 can be found for each variable. For more information regarding

the implementation and theory of the Levenberg-Marquardt algorithm, see

Moré (1978).

After finding θ̂ all that is left is to create estimates using the following equa-

tion:
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ŷt =
K∑
k=1

wt−1(k, θ̂t)x
(k)
t−1 (6.3)

The steps for using the model is as following:

• Initiate Almon weights on the lags for each variable

• Optimize θ1, θ2 for each variable

• Create estimates using the found parameters

6.3 ASGL - UMIDAS

The most simple parameter estimation for a model built with the MIDAS

framework is the unrestricted-MIDAS (UMIDAS) approach. Here one pa-

rameter is estimated for every lag for every variable, compared to Almon

where a structure is enforced on the lags.

After the number of feature as been reduced, all that remains is to solve a

normal multivariate regression with ordinary least squares.

Y = Xβ + ϵ, (6.4)

Here Y is a column vector with the inflation values, β a column vector with

unknown coefficients and X a matrix containing the remaining features. To

repeat, these features are the selected lags of the selected variables which

remain after variable selection and feature selection. See Chapter 2.2 for

details of estimating β̂.

The steps for using the model is as following:

• Find optimal hyperparameters for ASGL with 5-fold cross validation
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and perform feature selection with these parameters

• Find β̂ using OLS on Equation 6.3

• Create estimates using the found parameters

6.4 ASGL - XGBoost

To use XGB to its full potential, it is important to optimize its hyperparam-

eters. Poorly chosen hyperparameters can lead to suboptimal performance

and over-fitting. Therefore 5-fold cross validation is performed to select pa-

rameter values.

The steps for using the model is as following:

• Find optimal hyperparameters for ASGL with 5-fold cross validation

and perform feature selection with these parameters

• Find optimal hyperparameters for XGB using 5-fold cross validation

• Create estimates using the found parameters

6.5 ASGL - Random forest

The steps for RF are exactly the same as for XGB, except hyperparameters

for RF are optimized instead of XGB.
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Chapter 7

Estimation approach

7.1 Selection of included lags

When using the MIDAS framework to build a model, a crucial decision is

how many lags to include. Including too few lags might result in a model

that fails to capture the dynamics of the target variable, while including

too many lags may lead to an overly complex model that is prone to over-

fitting. Although variable and feature selection can help mitigate the risk

of over-fitting, including as many lags as possible is not efficient from both

computational and logical perspectives.

To strike a balance between using enough lags and maintaining computa-

tional efficiency, we focus on lags that are close in time. For monthly vari-

ables, we include 12 lags; for weekly variables, we also include 12 lags; and

for daily variables, we include 31 lags. The daily limit of 31 lags is set to

avoid incorporating values from other months that should have no impact on

inflation. This selection of lags strikes a good balance between using enough

lags and keeping computation time within a reasonable span.
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7.2 Nowcasting strategy

First, the data was prepared according to Chapter 3 and frequency aligned

as described in Chapter 4. Then, the nowcasting strategy employed for this

paper can be described in the following five steps:

1. Splitting data into periods

2. Variable selection

3. Hyper parameter tuning

4. Model estimations and out of sample nowcasts

5. Model evaluation

A more in depth description of each step can be found below.

1. Data preparation

First, the data was standardized and transformed according to Chapter 3

and then frequency aligned as described in Chapter 4.

The data set was then split into two periods to investigate how they differ

and to re-estimate parameters. The first period spans 2014-01-01 – 2019-

01-01 and the second period spans 2019-01-01 – 2023-01-01. In both

cases data from 1992-02-01 until the start of the period is used as training

data while the period itself is used as out of sample data.

2. Variable selection

The ASGL approach (described in Chapter 5.1) was used to remove redun-

dant variables as a first step to reduce the dimensionality of the data set.

For this step to work properly, the data was standardized in accordance with

the original paper (Tibshirani, 1996). Then, 5-fold cross validation was per-

formed to find the optimal values for all hyperparameters. The ASGL was
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then run with these parameters and a vector of parameters was obtained.

Since the purpose of this step is to select variables, and not select single time

lags, the value of the parameters are not important, and only if they were

either 0 or greater than 0. Basically, all variables with at least one time lag

with a parameter value not shrunken to 0 by the ASGL, was kept since this

means that there might be valuable information in any of the variables time

lags. Thus, only variables with all time lags deemed irrelevant by ASGL were

completely removed for the rest of the project.

3. Hyperparameter tuning

Based on the training data, the optimal hyperparameter values were de-

cided using 5-fold cross validation. Theoretically, this step could be repeated

continuously as more data gets available. For example, after every out of

sample nowcast of the inflation, one could potentially improve upon the pre-

viously selected hyperparameters before nowcasting the following month, by

including the new data and performing another cross validation. However,

this would be very time-consuming and the hyperparameter values were thus

only selected twice throughout the estimation process. First, based on the

training data and then once again right before performing out of sample now-

casts on the second out of sample period. This is also the reason for why the

out of sample period was split into two separate ones.

The hyperparameters that were tuned in this step are the ones required for

feature reduction, explained in Chapter 5.2.1, as well as the ones required

for the machine learning models RF (6.5) and XGB (6.4). It is also worth

mentioning that for each horizon, separate hyperparameters were selected.

More on this later in Chapter 7.3.
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4. Model estimations and out of sample nowcasts

To estimate the models described in Chapter 6, a growing window approach

was deployed. Basically, this means that all models were initially fit with all

data from the training period. These fit models are then used to nowcast

the inflation of the first month of the first out of sample period. All models

are then fitted once again, this time including the data from the month

previously nowcasted. This means that all models are continuously fitted

on the most recent data available at the time of the nowcast. This process

is repeated until the end of the first out of sample period. At this point,

the hyperparameters were re estimated (according to step 3 above) and the

process continues until the end of the second out of sample period.

5. Model evaluation

To compare models, root-mean-square error (RMSE) is used, defined as:

RMSE =

√√√√ 1

N

M∑
m=1

D∑
d=1

(ym − ŷm|d)2, (7.1)

where N is the number of days in the test period,m = 1, ...,M are the months

of the test period, d = 1, ..., Dm are the days in month m. The residual of

the current-month nowcasted at a specific day is therefore yd − ŷm|d.

The model forms a nowcast on a daily basis and it is therefore possible to

evaluate it daily. To answer the questions asked in the purpose, we focus

on evaluating two things, how RMSE changes as more information becomes

available (the horizon lowers) and how RMSE compares between the two

periods. For details about horizons see the next Chapter. Since each day is

associated with a horizon, it is possible to select all days with the same hori-

zon and compare RMSE. RMSE is also compared between the two periods

by selecting all nowcasts with dates in the specific period.
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7.3 Horizons

Simply put, the horizon (h) is the number of days until the release of the

inflation, at the day of the nowcast. If for example, the nowcast of the

January inflation is being conducted on the 29th of January and the actual

value is due to be released on the 15th of February, the horizon would be h

= 17.

To be able to predict at different horizons, the models need to be trained on

different data sets. For example, depending on the horizon, different data

may be released and available. This means that every model presented in

Chapter 6 needs to trained separately for every horizon to be able to perform

daily predictions. This further means that many of the other steps presented

earlier needs to be repeated for every horizon in order to produce the best

results. For example, the hyperparameters were tuned separately for every

horizon. Looking at the ASGL feature selection, it could be the case that,

at different horizons, different lags of the variables are needed and it makes

a lot of sense to repeat this step for every horizon.
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Chapter 8

Results & Discussion

In this Chapter the results from the experiment will be reported. If nothing

else is mentioned, the results refer to the entire out of sample period, starting

in 2014-01-01 and continuing until 2023-01-01. Further, the plots including

results for specific horizons will only be displayed for horizons up to and

including 30. The reason for this is that nowcasts at horizons above 30 are

not occurring on a regular basis, since it is less common for it to be more

than 30 days between two inflation releases. All results are transformed to

year-on-year percentage change for easier comparisons with other papers and

official reporting. Results are presented in percentage points.

8.1 Model performance overview

During the process of writing this report, many different variations of the

models have been tested to find the final ones. In Table 8.1, all models as

well as their specifications are presented. Below is a brief description of what

the columns describing the models means.

• Model - Describes what type of model being used.
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• Transformation - What transformation that were used for the yearly

variables. Either year-on-year percentage difference or month-on-month

percentage difference. See Chapter 3.5.

• Feature selection - What method, if any, was used for feature selec-

tion. Either Almon lag (5.2.2) or ASGL (5.2.1).

• Optimized - If the hyperparameters were tuned or if the standard

values were used for the ML models.

• Variables - What variables that were included when creating the

model.

Table 8.1 presents a selection of model configurations and their RMSE. Some

results that are worth noting are: Yearly percentage change transformation

on the inflation series has a RMSE that is double that of monthly percentage

change. Optimizing hyperparameters for XGB and RF lowers the RMSE in

both cases, but more for XGB.

Table 8.1: RMSE for several models that have been evaluated. Model name is
derived from the specification used. The models in bold letters are the main
models of this thesis

Name Model
Trans-

formation
Feature-
selection

Optimized Variables RMSE

AR AR MoM ASGl - All 0.379
XGB-default-YoY XGB YoY ASGl No All 0.881
XGB-default XGB MoM ASGl Yes All 0.304
XGB-optimized XGB MoM ASGl Yes All 0.269
XGB-reduced XGB MoM ASGl Yes Monthly 0.349
RF-default RF MoM ASGl No All 0.298
RF-optimized RF MoM ASGl Yes All 0.295
UMIDAS UMIDAS MoM ASGl - All 0.472

Almon-ASGL ALMON MoM
ASGl &
Almon

- All 0.442

Almon ALMON MoM Almon - All 0.745
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The models marked in bold in Table 8.1 will be examined in more detail and

compared to each other. Going forward, these will be simply referred to as the

XGB, RF, UMIDAS and Almon models. The first intention was to include

Almon, instead of Almon - ASGL, but since the performance of Almon-

ASGL was much better, it was selected instead. The other models will often

be used as benchmarks to investigate and explain different topics. Further

investigations regarding optimization of the hyperparameters for XGB and

RF will be done in Chapter 8.2.4.

8.2 Performance of models

8.2.1 In depth performance of models

A key objective of this thesis is to evaluate if the models are successful in

estimating the release value of the U.S. inflation evaluated at daily frequency.

To make this evaluation easier, they are put in relation to the simple AR

model. Hence, the results will focus on comparing the different model’s

performance relative to the performance of the AR model.

Below follows plots of the true inflation and the models nowcasts at daily

resolution (Figure 8.1-8.3), a scatterplot of the true value compared to the

nowcasts (Figure 8.4) at horizon one and a table showing each model’s rela-

tive RMSE to the AR model (Table 8.2).

Due to having multiple models, the result is presented in three separate plots

for easier viewing. The first plot shows only AR, XGB and RF, while the

other shows AR, UMIDAS and Almon. The AR model is included in both

to act as a guide to simplify comparisons. The last plot shows all models,

and shows only nowcasts made between 2019 and 2020 for a more detailed

view of how the models compare.
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Figure 8.1: Nowcasts of the AR, XGB and RF models compared to the actual
year-on-year percentage change over the two periods.

Figure 8.2: Nowcasts of the AR, UMIDAS and Almon models compared to
the actual year-on-year percentage change over the two periods.
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Figure 8.3: Nowcasts of all models compared to the actual year-on-year per-
centage change over the two periods. Zoomed in on nowcasts made between
2019 and 2020.

From comparing Figure 8.1 and 8.2 it can be seen that XGB and RF do

a better job at nowcasting the inflation compared to UMIDAS and Almon.

Overall, all models follow the inflation but UMIDAS and Almon have higher

variance and deviates a lot at some points while XGB and RF tends to stay

closer. Neither of the models are able to keep up when the inflation starts to

rise heavily in 2021 and also have a hard time when the inflation begins to

fall in the middle of 2022.

Looking at Figure 8.3 it is easier to see how the models compare to the AR

model. The AR model is slow moving and updates only when a new value

is released. The UMIDAS and Almon models behave similar and are fast
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moving, but this comes with the cost of high variance. The XGB and RF

models are also faster moving, but does not tend to overshoot as much. An

explanation for the model’s tendency to vary from day to day is that each day

corresponds to a different horizon and for every horizon the data available

differs since feature selection is done on a per-horizon basis. From the plots it

is hard to see if the models improve closer to the release of the next inflation

value, but more on this in Chapter 8.2.2.

Figure 8.4 shows performance of the models as a scatter plot where the x-

axis is the actual yearly percentage change in inflation and the y-axis is the

nowcasted value. The plot only includes the nowcast made the day before

the release of the next inflation value. This means that the models have as

much information as possible available.

Looking at Figure 8.4, is can be observed that models do a good job of

nowcasting on horizon one, with an even spread of too high and too low

nowcasts. Each of the models performs the best when the actual value is

around 2%, which is also the most common true year-on-year percentage

change inflation. Looking at the bottom left and top right, it is seen that

the models tend to systematically underestimate the actual value when it is

either very low or very high.

Table 8.2: Relative RMSE for the models compared to the benchmark AR
model.

Modell RMSE Relative RMSE
AR 0.379 1.00
XGB 0.269 0.71
RF 0.295 0.78
UMIDAS 0.472 1.25
Almon 0.442 1.17

To summarize the relative RMSE between models is presented in Table 8.2.

There it can be seen that the best model is XGB with a relative RMSE of
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Figure 8.4: Scatter plot of nowcasts (y-axis) made at the day before the release
of the next inflation value, horizon 1, against actual inflation value (x-axis).
The diagonal line represents a correct estimation.

0.71 compared to the AR model. UMIDAS has the highest relative RMSE

and is 25% worse than the AR model. An possible explanation for UMIDAS

and Almon’s poor performance is that they are over parameterized and might

have benefitted from a lower number of features. This theory is supported

by the fact that Almon performs better than UMIDAS and Almon has fewer

parameters.

Overall XGB and RF are successful in estimating the release value of U.S.

inflation evaluated at daily frequency, with XGB being the best model.
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8.2.2 How does the performance vary on different hori-

zons?

Since this thesis is using real time data, more data gets available for the

models when the nowcasting date is approaching the release date of the

inflation. It is thus expected that the models improve over time. Further,

since the models are evaluated on a daily basis, it is possible to investigate

if this is actually the case. This is shown in Figure 8.5, where the RMSE for

every specific horizon is shown.

Figure 8.5: RMSE for horizons one to 30 for the models, showing how the
models’ accuracy changes over time

The ML (XGB, RF) model’s RMSE increase only slightly as the horizon

increases. The slight increase supports the expected result that the model
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should improve, the more it gets available. However, since the increase is

quite small, there is probably room for improvement in terms of how new

data is incorporated.

While the RMSE of the econometric models (UMIDAS, Almon) is changing

quite significantly at different horizons, there seems to be a more pronounced

difference between higher and lower horizons compared to the ML models.

Further, it is also interesting to see how some horizons perform very poorly.

This could possibly partly be explained by the fact that these models seem

to be slightly overparametrized. Another explanation could be that at each

horizon, a separate ASGL feature selection is performed, meaning that dif-

ferent features could be selected and for some horizons this selection process

could have been less successful. Looking at for example horizon 20, all models

including the ML models perform slightly worse. However the performance

decrease on UMIDAS and Almon is much larger and the ML models seem to

be able to handle this much better.

Finally, the AR model exhibits a constant RMSE throughout all horizons.

This is expected since each nowcasting period is between two releases of the

inflation. Since the AR model does not incorporate any high frequency data,

this means that it has the same data available throughout all horizons and

will thus make the same nowcast.

To get an overview, the average RMSE of horizon 25-30 are compared with

the average of horizon 1-5. This result is presented in Table 8.3 where it

is clear that all models improve. Even the ML models which seemed to be

constant throughout the period in Figure 8.5 now proves to actually improve

between 5-10%. UMIDAS improves the most with 27%. However, UMIDAS

is also the most volatile model and only looking at the improvement between

the first and last 5 days, does not display the slightly worse performance on

the horizons 10-20 that can be seen in Figure 8.5.
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Table 8.3: Average RMSE as well as improvement for nowcasts at horizon
1-5 compared with horizon 25-30

Model Improvement
RF 10%
XGB 5%
Almon 9%
UMIDAS 27%

8.2.3 Has US inflation become harder to nowcast?

As can be seen in Figure 8.1 and 8.2, the US inflation has been increasing a

lot during the past years, 2021-. It is therefore interesting to investigate if

the inflation has become harder to nowcast during these past years compared

to the more stable period between 2014 and 2019. To do this, the RMSE

between two periods are compared for four models. The result is displayed

in Table 8.4.

Table 8.4: RMSE for models during the period 2014-2019 as well as 2019-
2023.

Modell RMSE 2014-2019 Rank RMSE 2019-2023 Rank
AR 0.252 3 0.491 3
XGB 0.194 1 0.338 1
RF 0.220 2 0.371 2
UMIDAS 0.328 5 0.602 5
Almon 0.315 4 0.558 4

It is clear that the second period, between 2019 and 2023, is much harder

for all models to nowcast. Since all models agree, it can be concluded that

inflation has become harder to nowcast. It can also be seen that the models

keeps their mutual rank even as the period changes.
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Table 8.5: RMSE for ML models with optimized as well as standard hyper-
parameter values as well as the percentage improvement

Model Standard (RMSE) Optimized (RMSE) Improvement
XGBoost 0.304 0.269 12%
Random Forest 0.298 0.295 1%

8.2.4 Does hyperparameter tuning improve the ML

models

Today, many ML models are very accessible and relatively easy to imple-

ment using available packages. However, the models can still be improved by

for example finding better hyperparameters and thus create a model more

suited for the data at hand. This process can sometimes be time consum-

ing, since there are often both many parameters, and many values for each

parameter to try which results in a lot of different combinations to evaluate.

For example, when implementing RF using scikit-learn in Python, there

are 17 hyperparameters that can potentially be tuned. The standard values

are carefully selected and often work well. It is thus interesting to see what

potential improvement that may arise when actually tuning the parameters

of the models, compared to using the standard ones.

Both XGB and RF were evaluated using its standard hyperparemeter values,

as well as the resulting values after being tuned by cross validation. For more

information about the standard values used, see the documentation for RF

(Scikit-learn, 2023) and XGB (XGBoost, 2023). The results for can be seen

in Table 8.5.

The result vary a lot between the two models. With an improvement of

only around 1%, RF does not seem to improve a lot when optimizing the

hyperparameters. Instead, XGB improves 12% which can be considered a

lot. While this result indicates that hyperparameter tuning is probably not

worth doing for RF and very important for XGB, there are many factors that
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affect and should be considered.

First, the hyperparameter tuning is dependent on the researcher to select

the best hyperparemeters to tune and to find a grid suitable for the problem,

and is thus very sensitive to human error. It could for example be the case

that some important hyperparameters were not tuned which could explain

the scarse increase for RF.

A potential explanation for the result is the fact that RF has been around

for a longer time and is more established. This means that it has been tested

more and the standard parameters could be selected in a better way. Scikit-

learn has also developed ways to select the standard parameters to be suited

to the data set at hand, instead of always using the same value. For example,

the important hyperparameter max depth is selected in a dynamic way for

RF (Scikit-learn, 2023) while it is defaulted to 6 in XGB (XGBoost, 2023).

Finally, the result is specific to the problem of nowcasting inflation and could

be different for other data sets. However, the results should still give some

guidance and inspiration to what could work for future problems.

8.3 What variables are important when now-

casting inflation?

Another interesting topic to investigate is what variables that are actually

included in the final model, and thus considered relevant by ASGL. A variable

is considered included if any of its time lags were included as a feature. Since

a separate ASGL was performed for each horizon, features are selected once

for every horizon. It is therefore possible to look at the results for all horizons

and see what variables are selected. While horizons over 30 are less common,

the ASGL was performed for horizons up until 43 to include all special cases.

The maximum number of times a variable can be included is thus 43. The top
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10 occurring variables for all horizons are displayed in Table 8.6 for 2014-2019

and 8.7 for 2019-2023.

Table 8.6: Ten most used variables and how many
horizons they are used in for the period between 2014
and 2019.

Code Occurrences
CPI-U: All Items in U.S. 43
Conventional Gasoline Prices 43
Cass Freight Index: Shipments 41
U.S. National Home Price Index 41
Dow Jones Index 40
WTI oil 39
CPI: Final Finished Goods 36
CPI: Metals and Metal Products 32
Corn Price 30
Federal Funds Effective Rate 30

Table 8.7: Ten most used variables and how many
horizons they are used in for the period between 2019
and 2023.

Code Occurrences
CPI-U: All Items in U.S. 43
Conventional Gasoline Prices 43
Cass Freight Index: Shipments 42
U.S. National Home Price Index 39
WTI oil 39
Dow Jones Index 38
CPI: Metals and Metal Products 37
Corn Price 34
CPI-U: All Items Less Food 31
Bank Prime Loan Rate 30

Both the inflation itself and the gasoline price were selected by ASGL at all

horizons. Inflation is of course a good predictor of itself and this result was

very expected. Further, other sub-indexes of inflation are included, which

also makes sense. Then both oil and gasoline prices are included as well

and these are often used in models for nowcasting inflation. U.S. Home price

index is also used in both periods, and this is logical since cost of living makes

up a large proportion of the CPI. More surprising results are the inclusion

of corn price and shipment index. Many commodity prices were available for

the model to select from, so the choice of corn was unexpected. Shipment

index was not a variable we expected to have high explanatory power but

seems to been helpful for the models. Overall the selection of varaibles were

expected and it seems like ASGL does a good job. For an overview of all

variables, see Appendix A.

Looking at Table 8.6 and 8.7 it seems like the same variables are important

for nowcasting inflation indepent of which period is the focus.
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8.3.1 Is the inclusion of high frequency variables valu-

able for the model?

Another question to answer is if the addition of higher frequency variables is

necessary for the model. Necessary for the model can be interpreted in two

ways: are higher frequency variables used in the model (and thus considered

relevant according to ASGL) and do they affect the performance. If higher

frequency are unnecessary, the model can be simplified by not using the

MIDAS framework. The following two figures showcase the total number

of variables used per horizon, but also the mutual split between different

frequencies.

As can be seen in Figures 8.6 and 8.7 neither period utilizes a large number of

weekly variables, often only one but sometimes none and two weekly variables

are used for a single horizon in period two. Looking at daily variables, the

story is different. The first five horizons use few daily variables, but after this

point almost as many daily and monthly variables are used. Here it is worth

remembering that the information contained in daily variables in lag one to

around 15 is the same, since only daily variables from the target month is

used. Another interesting observation is that few variables are used in the

first horizons to then grow and reach a maximum and then decline afterward.

By looking at Figure 8.6 and 8.7, one can draw the conclusion that higher

frequency variables are of use to the model, allegedly the weekly variables

may be omitted since so few are used.

A test is conducted to determine the higher frequency variables role in the

models’ performance. Two models are used for this test: the first being

XGB with default hyperparameters using the full dataset and the second

being XGB with default hyperparameters using a dataset with only monthly

variables. The RMSE for the models can be seen in Table 8.8

As can be seen in Table 8.8, the addition of higher frequency variables in-
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Figure 8.6: Plot showing the total number of variables used on each horizon
and the mutual split between frequencies for the first period.

Figure 8.7: Plot showing the total number of variables used on each horizon
and the mutual split between frequencies for the second period.
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Table 8.8: RMSE for 2 XGB models, where one is able to use all variables
available, and the other is limited to variables released at monthly frequency.

Variables available RMSE
All 0.304
Only monthly 0.349

creases the model’s performance with around 13%. This result combined

with what is shown in Figure 8.6 and 8.7 helps us draw the conclusion that

the addition of higher frequency variables is necessary for the model’s per-

formance. If it is worth implementing the MIDAS framework to reach these

extra percent in performance is left to the reader to decide upon.
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Chapter 9

Conclusion

In this section the main results and conclusions of Chapter 8 above will be

summarized. It also attempts to answer the questions posed in Chapter

1.3 regarding the model’s performance and used variables. Finally, some

suggestions on further research and improvements will be made.

9.1 Performance of models evaluated at daily

frequency

Based on the results of this thesis, the ML models outperforms the AR

model, while the econometric models do not. Both machine learning models

accomplices to produce a RMSE that is lower for both periods, with XGB

being the better model. XGB produces a RMSE that is 29% lower than

that of the AR model while RF produces a RMSE that is 22% lower. For

UMIDAS and Almon the RMSE is 25% respectively 17% higher than for the

AR model. Visual inspection of the models in Figure 8.1 and 8.2 shows how

the machine learning models have a lower variance compared to UMIDAS

and Almon. Nevertheless, none of the models are able to keep up with the
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rapid increase beginning in 2021. A possible explanation of UMIDAS and

Almons shortcomings is that they are overparameterized and would have

benefitted from using fewer features.

When comparing XGB and RF with and without optimized hyperparameters

in Table 8.5, it is observed that optimization is more important for XGB than

RF. XGB improves its RMSE by 12% after optimization, while it is only an

1% increase for RF.

The third part of evaluating the model’s success is their ability to incorpo-

rate real-time data releases and improve their estimation as more data is

available. If the models are successful in incorporating real-data and using

it, the model’s RMSE should increase as the horizon increases and have its

lowest value for horizon 1. This behavior is not clearly showcased when ex-

amining the models. Only RF showcases a clear linear increase in RMSE

as the horizon increases. XGB has a linear increasing trend, but at specific

horizons the RMSE is lower than compared to previous horizons. RMSE for

Almon and UMIDAS changes a lot between horizons, but a linear trend can

be observed for horizons between 1 and 20. UMIDAS performs almost the

same at horizon 1 and 30. All models except XGB has its lowest RMSE at

horizon 1, for XGB it is horizon 11.

In a simplified explanation, it can be said that the models do an ok job

incorporating real-time data and improving nowcast as more data becomes

available, since a majority of the models have their lowest RMSE at horizon

1 and some linear trends can be observed.

The results of this thesis suggest that variable and feature selection with

ASGL followed by estimation with XGB is a good approach for nowcasting

inflation in the U.S. It outperforms the benchmark AR model and the other

models.
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9.2 Selected variables

Another importance area of investigation for this thesis is also which data

series are deemed valuable for the model and if it has changed over time.

As seen in Table 8.6 and 8.7 the top ten used variables are almost the same

for both periods, suggesting that some variables are always important when

nowcasting inflation. A possible explanation for this is that inflation is a

measurement of changes in prices, and the selected variables all have an

important connection to prices in the U.S. For example, Pasaogullari and

Waiwood (2014) shows that oil prices have predictive importance on short-

term movements in inflation.

Regarding the importance of higher frequency variables, it is shown that

at least the daily variables bear high importance. As seen in Figure 8.6

and 8.7 almost as many daily variables as monthly variables are used for

most horizons. Higher frequency variables also play a role in obtaining lower

RMSE, as seen in 8.8 where a model limited to only monthly data performs

worse than one with both monthly and higher frequency data.

To summarize, using the MIDAS framework to incorporate higher frequency

data and allowing the use of real time data is important for the model’s

success. It is also shown that the variables deemed important for nowcasting

inflation are almost constant throughout time.

9.3 Further research

When writing this thesis, multiple ideas have come up that would be inter-

esting to investigate but were not persuaded due to them being out of scope

or due to limitations in time. Some are possible improvement on the models,

while others are stand-alone ideas.

• Construct a web-scraper that collects daily price data from large retail
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stores and websites with housing costs. Something along the lines of

Cavallo and Rigobon (2016) and see if this data would help the now-

casts. In general, finding new data that might improve the nowcast

could be interesting since most models use standard economic vari-

ables.

• Investigate if daily variable selection instead of doing it once per pe-

riod would have improved performance. This was not conducted by

us due to limitations in time and computational power. By using an

implementation of ASGL supporting warm start it would be feasible.

• Test if the performance of the Almon and UMIDAS could be improved

through careful selection of predictive series and using fewer features

in an attempt to avoid overparameterization. An idea would be to use

the most selected variables found in this thesis.

• Investigate if the models could be improved by creating separate models

for some of the input variables as well. For example, if a variable is

not released at a given date, a separate model could give an estimate

of that variable which could then be used in the inflation nowcast.
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Appendix A

Data

A.1 Data set

Table A.1: The complete data set used in the predictive models. Including
code, description, frequency and source for each series

Index Code Description Freq Source

1 T1YFF 1-Year Treasury Minus Federal Funds Rate Day A

2 T10YFF 10-Year Treasury Minus Federal Funds Rate Day A

3 T5YFF 5-Year Treasury Minus Federal Funds Rate Day A

4 DFF Federal Funds Effective Rate Day A

5 DGS1 Market Yield on U.S. Treasury Securities at 1-Year Day A

6 DGS10 Market Yield on U.S. Treasury Securities at 10-Year Day A

7 DGS5 Market Yield on U.S. Treasury Securities at 5-Year Day A

8 DGS3MO Market Yield on U.S. Treasury Securities at 3-Month Day A

9 DAAA Moody’s Seasoned Aaa Corporate Bond Yield Day A

10 DBAA Moody’s Seasoned Baa Corporate Bond Yield Day A

11 JO1 Comdty Orange juice Day B

12 LC1 Comdty Kettle Day B
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Table A.1: The complete data set used in the predictive models. Including
code, description, frequency and source for each series

Index Code Description Freq Source

13 DJITR Index Dow Jones Index Day B

14 KC1 Comdty Coffe Day B

15 HG1 Comdty Copper Day B

16 C 1 Comdty Corn Day B

17 CCMP Index Nasdaq Index Day B

18 SPXT Index S&P 500 Index Day B

19 LB1 Comdty Lumber Day B

20 CL1 Comdty WTI oil Day B

21 DGASUSGULF Conventional Gasoline Prices: U.S. Gulf Coast, Regular Day A

22 CUUR0000SEHA CPI-U: Rent of Primary Residence in U.S. City Average Month A

23 CSUSHPINSA & S P/Case-Shiller U.S. National Home Price Index Month A

24 TB3SMFFM 3-Month Treasury Bill Minus Federal Funds Rate Month A

25 TB6SMFFM 6-Month Treasury Bill Minus Federal Funds Rate Month A

26 USCONS All Employees, Construction Month A

27 DMANEMP All Employees, Durable Goods Month A

28 USFIRE All Employees, Financial Activities Month A

29 USGOOD All Employees, Goods-Producing Month A

30 USGOVT All Employees, Government Month A

31 MANEMP All Employees, Manufacturing Month A

32 CES1021000001 All Employees, Mining Month A

33 NDMANEMP All Employees, Nondurable Goods Month A

34 USTRADE All Employees, Retail Trade Month A

35 SRVPRD All Employees, Service-Providing Month A

36 PAYEMS All Employees, Total Nonfarm Month A

37 USTPU All Employees, Trade, Transportation, and Utilities Month A

38 USWTRADE All Employees, Wholesale Trade Month A

39 CES2000000008 Avg Hourly Earnings of Production, Construction Month A

72



Table A.1: The complete data set used in the predictive models. Including
code, description, frequency and source for each series

Index Code Description Freq Source

40 CES3000000008 Avg Hourly Earnings of Production, Manufacturing Month A

41 AWHMAN Avg Weekly Hours of Production, Manufacturing Month A

42 AWOTMAN Avg Weekly Overtime Hours of Production, Manufacturing Month A

43 UEMPMEAN Avg Weeks Unemployed Month A

44 CUMFNS Capacity Utilization: Manufacturing (SIC) Month A

45 CLF16OV Civilian Labor Force Level Month A

46 BUSLOANS Commercial and Industrial Loans, All Commercial Banks Month A

47 DTCOLNVHFNM Consumer Motor Vehicle Loans Owned by Finance Companies Month A

48 CPIAUCNS CPI-U: All Items in U.S. City Average Month A

49 CPIULFSL CPI-U: All Items Less Food in U.S. City Average Month A

50 CUSR0000SA0L5 CPI-U: All Items Less Medical Care in U.S. City Average Month A

51 CUSR0000SA0L2 CP-U: All Items Less Shelter in U.S. City Average Month A

52 CPIAPPSL CPI-U: Apparel in U.S. City Average Month A

53 CUSR0000SAC CPI-U: Commodities in U.S. City Average Month A

54 CUSR0000SAD CPI-U: Durables in U.S. City Average Month A

55 CPIMEDSL CPI-U: Medical Care in U.S. City Average Month A

56 CUSR0000SAS CPI-U: Services in U.S. City Average Month A

57 CPITRNSL CPI-U: Transportation in U.S. City Average Month A

58 CE16OV Employment Level Month A

59 FEDFUNDS Federal Funds Effective Rate Month A

60 INDPRO Industrial Production: Total Index Month A

61 M2SL M2 Month A

62 ACOGNO Manufacturers’ New Orders: Consumer Goods Month A

63 DGORDER Manufacturers’ New Orders: Durable Goods Month A

64 ANDENO Manufacturers’ New Orders: Nondefense Capital Goods Month A

65 AMDMUO Manufacturers’ Unfilled Orders: Durable Goods Month A

66 BOGMBASE Monetary Base; Total Month A
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Table A.1: The complete data set used in the predictive models. Including
code, description, frequency and source for each series

Index Code Description Freq Source

67 AAAFFM Moody’s Aaa Corporate Bond Minus Federal Funds Rate Month A

68 PERMIT New Privately-Owned Housing Units Authorized: Total Units Month A

69 HOUST New Privately-Owned Housing Units Started: Total Units Month A

70 NONREVSL Nonrevolving Consumer Credit Owned and Securitized Month A

71 PCEPI Personal Consumption Expenditures: Chain-type Price Index Month A

72 DDURRG3M086SBEA Personal consumption expenditures: Durable goods Month A

73 DNDGRG3M086SBEA Personal consumption expenditures: Nondurable goods Month A

74 DSERRG3M086SBEA Personal consumption expenditures: Services Month A

75 WPSFD49207 CPI by Commodity: Final Finished Goods Month A

76 WPSFD49502 CPI by Commodity: Final Personal Consumption Month A

77 WPSID61 CPI by Commodity: Intermediate Processed Goods Month A

78 WPSID62 CPI by Commodity: Intermediate Unprocessed Goods Month A

79 PPICMM CPI by Commodity: Metals and Metal Products Month A

80 REALLN Real Estate Loans, All Commercial Banks Month A

81 M2REAL Real M2 Money Stock Month A

82 DPCERA3M086SBEA Real personal consumption expenditures Month A

83 RPI Real Personal Income Month A

84 W875RX1 Real personal income excluding current transfer receipts Month A

85 BUSINV Total Business Inventories Month A

86 ISRATIO Total Business: Inventories to Sales Ratio Month A

87 DTCTHFNM Total Consumer Loans and Leases Month A

88 UNRATE Unemployment Rate Month A

89 UMCSENT University of Michigan: Consumer Sentiment Month A

90 STICKCPI Sticky Price Consumer Price Index Month A

91 FRGSHPUSM649NCIS Cass Freight Index: Shipments Month A

92 WTB3MS 3-Month Treasury Bill Secondary Market Rate, Discount Week A

93 WTB6MS 6-Month Treasury Bill Secondary Market Rate, Discount Week A
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Table A.1: The complete data set used in the predictive models. Including
code, description, frequency and source for each series

Index Code Description Freq Source

94 WPRIME Bank Prime Loan Rate Week A

95 ICSA Initial Claims Jobs Week A

96 SBCACBW027SBOG Securities in Bank Credit, All Commercial Banks Week A

97 MORTGAGE30US 30-Year Fixed Rate Mortgage Average in the United States Week A

98 DFII10 Market Yield 10-Year, Inflation-Indexed Day A

99 DFII30 Market Yield 30-Year, Inflation-Indexed Day A

100 DFII5 Market Yield 5-Year, Inflation-Indexed Day A

A.1.1 Source

A = ALFRED (Archival FRED provided by FED St. Louis).

B = Bloomberg
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Méndez Civieta, Á., Aguilera-Morillo, M. C., and Lillo, R. E. (2021). Asgl: A

python package for penalized linear and quantile regression. arXiv e-prints,

pages arXiv–2111.

Michael W. McCracken, S. N. (2015). Fred-md: A monthly database for

macroeconomic research. Journal of Business & Economic Statistics.

79



Modugno, M. (2013). Now-casting inflation using high frequency data. In-

ternational Journal of Forecasting, 29(4):664–675.

Mogliani, M. and Simoni, A. (2021a). Bayesian midas penalized regressions:

Estimation, selection, and prediction. Journal of Econometrics, 222(1,

Part C):833–860.

Mogliani, M. and Simoni, A. (2021b). Bayesian midas penalized regres-

sions: estimation, selection, and prediction. Journal of Econometrics,

222(1):833–860.

Monteforte, L. and Moretti, G. (2010). Real time forecasts of inflation: the

role of financial variables. Temi di discussione (Economic working papers)

767, Bank of Italy, Economic Research and International Relations Area.

Monteforte, L. and Moretti, G. (2013). Real-time forecasts of inflation: The

role of financial variables. Journal of Forecasting, 32(1):51–61.
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