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Abstract

This thesis project investigates the topic of joint optimization for crest factor
reduction and digital predistortion blocks, which are used for digital correction
of analogue impairments in digital radio front ends. The work first investigates
the effects of joint parameter variation of the above blocks on the global per-
formance and computational cost of the digital chain, given reference CFR and
DPD algorithms. Then it proposes a method for joint optimization of said CFR
and DPD parameters, based on a constrained optimization of a composite target
function. The constraints of this optimization problem ensure that the solution
meets the requirements on out-of-band emissions and signal quality, while the
target function values solutions that outperform these requirements and are
computationally cheaper to implement. The solutions of such an optimization
problem are determined with the help of simulations. The simulations provide
estimated performance metrics on signal quality and out-of-band emissions as
well as estimated computational cost for a given parameter configuration. The
results show that the proposed optimization can guide the selection of param-
eters for multiple blocks of the DFE while ensuring applicability in different
use-cases via an easily configurable target function.
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Chapter 1

Introduction

The strength of a physical object is determined by how strongly its constituent
parts are connected. By analogy one could say that the strength of a society
is determined by the strength of the connections between its citizens. Wireless
communication has revolutionized the speed at which information is shared and
enables people to stay connected to their digital life and their loved ones from
almost anywhere on earth.

This thesis will investigate how a small aspect within the realm of wireless
communications can be improved.

There are countless types and use cases of wireless communication, but they
are all based on the same basic principle. Information is embedded in electro-
magnetic (EM) waves by changing the properties of said wave, be it amplitude,
phase or frequency, via a mechanism called modulation. This wave then trav-
els through a medium from the sender to the receiver who picks up the signal
through an antenna. The case being studied in this thesis is that of modern
base stations used in mobile networks (e.g., in 5G networks).

In order for a radio-frequency (RF) signal to be transmitted with sufficient
power, one or more RF amplification stages are needed. Amplifiers can behave
as nonlinear systems with memory, which means that the behaviour of the sys-
tem depends on the input signal level. Different power amplifiers (PA) have
different amplification properties, but usually they behave linearly in the low-
power region of the input signal and become more nonlinear for higher input
power. To circumvent this, the power of the signal sent to the amplifier could be
reduced so that no samples reach the nonlinear region. This works but is pretty
wasteful since the amplifier is not operated at its optimal efficiency at low input
power levels. If a signal has a high dynamic range, (contains both high and
low power samples), different samples will get amplified with a different factor
leading to increase out of band emissions and signal quality degradation. Both
out of band emissions and signal quality are regulated by rigid requirements
which need to be fulfilled by the radio system [2]. To sum up, there is a trade-
off between efficient PA usage and output signal quality when the power of the
input signal increases.
The Digital Front End (DFE) is the sub-system of the base station that per-
forms a digital correction to the digital signals before they are converted to
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analogue and sent to the analogue front end, which contains the PAs. The DFE
is composed of several blocks. In the specific, the Digital Predistortion (DPD)
and Crest Factor Reduction (CFR) blocks modify the input signal in order to
operate the amplifier in the most efficient manner while minimizing the degrada-
tion of the transmitted signal. This thesis investigates an algorithm that jointly
finds the optimal parameters for the CFR and DPD blocks with respect to the
quality of the output signal and the computational cost of the implementation.

1.1 Thesis outline

This introductory chapter sheds light on the most central concepts of this the-
sis. Chapter 2 analyses some related literature on the subject and identifies
research gaps on the topic of joint parameter optimization in digital front ends.
This thesis proposes an investigation and an optimization method which aims
to fill some of the identified gaps. Chapter 3 presents the proposed solution.
Chapter 4 describes the methodology used to implement and test the proposed
optimization algorithm through simulations. Chapter 5 presents the results
from the simulations and their corresponding parameters in order to ensure re-
producibility. The results will then be used to answer the research question in
the conclusion chapter, which also highlights the limitations of the method and
analysis in this thesis and provides directions for future works.

1.2 Power amplifiers

Power amplifiers can exhibit nonlinear behaviour which is not easy to predict
and counteract. Furthermore, the nonlinear behaviour might include memory
effects. Without the memory effect, any input value would be mapped to a single
output value regardless of when it entered the PA or what inputs preceded it.
With memory effects however, the same input could lead to different outputs
depending on what values preceded it. The root cause of this lies in the electrical
components of the amplifier.
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Figure 1.1: Example of a measured nonlinear input-output AM-AM response
for an RF-PA.

Figure 1.1 shows the normalized amplitude of an unprocessed signal entering
the PA vs the normalized amplitude of the signal at PA output. The first obser-
vation to be made is that there clearly is not a one to one relationship between
input and output. Two samples with the same input magnitude can result in
a range of different output magnitudes depending on the context they arrived
to the PA. Secondly, the amplification decreases with increasing input power.
This form of nonlinearity is called compression. This behaviour is clearly not
acceptable since it will cause the quality of the transmitted signal to deteriorate
and lead to out of band distortion. The goal is to be able to mimic the chaotic
behaviour of the PA well enough that the distortions can be mitigated through
digital predistortion of the input signal.
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Figure 1.2: AM-AM response of a PA modelled with a third order memoryless
polynomial model.

For example, assuming that the PA can be modelled with models based
on memory polynomials (MP) (see Section 1.3), the non-linearities could be
compensated for via estimating appropriate model parameters. Figure 1.2 shows
how MP-model with nonlinearity order 3 and memory depth 1 (memoryless)
would mimic the behaviour of the PA. The overall shape of the compression
resembles the one in Figure 1.1, however the input-output relation is almost
one to one, meaning that the model does not capture the memory effects at all.
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Figure 1.3: AM-AM response of a PA modelled with a fifth order memoryless
polynomial model.

When the nonlinear order is increased from 3 to 5, as shown in Figure 1.3,
the model recreates the nonlinearity slightly better than in Figure 1.2, however
it is obvious that it still does not capture the memory effects due to lack of
memory terms in the model.
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Figure 1.4: AM-AM response of a PA modelled with a fifth order memory
polynomial model (6 memory taps).

In figure 1.4, the PA is modelled via an MP model with a nonlinear order of
5 and with a memory depth of 4. A comparison of Figures 1.1 and 1.4 gives a
visual hint on the benefits of modelling PAs with richer nonlinear models, which
is usually assessed by tracking the mean-squared error of the model.

1.3 Digital pre-distortion

A digital predistorter (DPD) is a digital processing block which compensates for
the nonlinearity of the PA by applying a nonlinear distortion to its input signal.
It can be shown that by selecting adequate nonlinear model and parameters
for the DPD, the overall DPD+PA system behaves as quasi-linear. There are
several DPD techniques and model available in the literature ([3] and references
therein). Section 1.3.1 explains the memory polynomial model, which is part of
the family of Volterra-based models, and it is used in this work.
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Figure 1.5: Example of AM-AM distortion for a memoryless PA and amplitude
response of an ideal predistortion stage.

1.3.1 Memory polynomials

The most general way of modelling nonlinear systems with memory comes from
the theory of Volterra series [4].

A system x(t) → {hn} → y(t), with x(t) and y(t) input and output signals,
is defined by the Volterra series {hn}n≥1 if

y(t) =

∞∑
n=1

∫
Rn

hn(τ1, ..., τn)x(t− τ1)...x(t− τn)dτ1...dτn

This sum of convolutions uses an infinite number of terms originating from past
input values of the signal. This is not feasible in real applications, and we should
also consider that the model is commonly implemented in digital blocks based on
sampled signals (e.g., the DPD). A more practical model used in digital systems
originates from a discretization the sum in the time domain. For example, we
could choose to include in the sum a finite number (M) of previous samples,
which are commonly called memory taps. The equation in discrete time then
becomes:

y(n) =

K∑
k=1

yk(n)

where

yk(n) =

M−1∑
m1=0

...

M−1∑
mk=0

hk(m1, ...,mk)

k∏
l=1

x(n−ml)
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The above can be then used to derive a simplified expression for a memory
polynomial (MP) model as [3]

yMP (n) =

K−1∑
k=0

M−1∑
m=0

akmx(n−m)|x(n−m)|k (1.1)

The (1.1) can be then further extended to the generalized memory polyno-
mials (GMP) model [3] by including cross-memory terms as

yGMP (n) =
∑
k∈Ka

∑
l∈La

aklx(n− l)|x(n− l)|k

+
∑
k∈Kb

∑
l∈Lb

∑
m∈Mb

bklmx(n− l)|x(n− l −m)|k

+
∑
k∈Kc

∑
l∈Lc

∑
m∈Mc

cklmx(n− l)|x(n− l +m)|k

1.4 Crest factor reduction

As described in Section 1.2, signals with very wide dynamic range are undesir-
able as they cause higher peaks in the compression region of the PA for the same
average input power, with respect to signals with lower dynamic range. This
is generally quantified by the peak-to-average power ratio of a signal, which we
describe in Section 1.6. To counteract this, the PAPR of input signals is reduced
using Crest Factor Reduction techniques (CFR).

Figure 1.6: Taxonomy of CFR techniques [1]
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Figure 1.6 is taken from [1] and shows several families of PAPR reduction
techniques categorized into three main groups:

• Signal distortion

• Multiple signalling and probabilistic

• Coding based

While we remind to reference literature for an overview of these techniques,
this investigation assumes a clip-and-filter CFR technique, which falls within
the signal distortion category.

1.4.1 Clip and Filter

The crest factor reduction technique studied in this thesis is Clip and Filter
(CF). This method involves several steps which are sketched in Figure 1.7 below.

Figure 1.7: The steps of the Clip-and-Filter algorithm.

First, a threshold is set which dictates which samples of the signal will be
clipped. In the second step, the samples exceeding the threshold are identified,
then they are extracted in the third step. This extracted signal is then filtered
in the fourth step and finally subtracted from the original signal in the fifth
step.

The output signal will then present reduced peak power compared to the
input signal, while some samples will still be above the threshold due to the
filtering process. This phenomenon is commonly called peak regrowth.

A possible solution to handle the peak regrowth is to cascade multiple clip-
and-filter blocks. The approach is represented in Figure 1.8 and will be used
later in this thesis as the reference CFR technique.
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Figure 1.8: Block diagram of multi-stage clip-and-filter CFR

Figure 1.9 illustrates how the dynamic range of a signal has been reduced
after CFR, compared to the distribution of the input signal that we show in
Figure 1.11. The CFR output signal presents fewer high-energy samples (leading
to a lower PAPR) allowing the PA to operate at a higher, more efficient level.

Figure 1.9: Distribution of signal amplitude after CFR vs. PA input-output
response.

1.5 Signal parameters and performance metrics

The RF signals radiated by the base station are subject to strict requirements
on both signal quality (i.e. the accuracy of the transmitted time domain wave-
form with respect to the wanted one) and out of band emissions. Furthermore,
also the input signal to RF PA needs to be controlled with respect to certain
parameters e.g. the peak envelope power(PEP) in order to operate the unit
within specifications.
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1.5.1 ACLR

The adjacent channel leakage/power ratio (ACLR)/(ACPR) quantifies the ratio
of signal power transmitted in an adjacent channel with respect to the signal
power transmitted in the wanted channel. That is,

ACLR =
Padj

Pch

where Pch is the power radiated in the assigned channel and Padj is the
total power leaked into the adjacent channel. If the channel in question has
two adjacent channels, then the channel experiencing the highest out of band
leakage is used to calculate ACLR.

ACLR is usually indicated in logarithmic units (dBc, dB-carrier). The 3GPP
standard [2] sets stringent requirements on the ACLR, e.g., < −45 dBc for
frequency-range 1 (FR1).

The ACLR can be negatively affected both by PA nonlinearity (i.e., spectral
expansion) and from aggressive signal processing (e.g, hard-clipping the signal).

Figure 1.10: PSD over the main channel and the adjacent channels.

Figure 1.10 shows the center-shifted power spectral density (PSD) of a signal
overlaid with vertical bars. The red and blue bars shows the location of the main
channel and the adjacent channels respectively. The green bars show the limits
between the bands. The guard bands are represented by the distance between
the red and green bars for the main channel and the distance between the blue
and green bands for the adjacent channels.
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1.5.2 Peak-to-average power ratio

Peak-to-average power ratio (PAPR) is a metric quantifying the crest factor of a
signal. It carries information on the relation between the maximum peak power
of the signal and its average value.

PAPR(x[n]) =
max(x[n])2

E(|x[n]|2)
(1.2)

where max(x[n])2 represents the maximum IQ sample power and E(|x[n]|2)
represents the average power of the signal.

Figure 1.11: Power distribution overlaid on PA’s linearity

Figure 1.11 provides an example of the empirical distribution of the mag-
nitude of a complex signal. We can observe that most samples fall within the
0% − 60% region of the largest sample and almost none fall in the top 20%.
In practice those few peaks will result in a high PAPR, which is undesirable in
order to operate the PA efficiently. This is because a high PAPR will result in
high peak-envelope power (PEP), which is defined as the RMS power (in dBm)
in plus the PAPR (in dB). Since RF-PA can tolerate up to a maximum PEP
for the input signal, a high PAPR will force to reduce the input power (power
back-off) which is undesirable as it reduces PA efficiency.

1.5.3 Error vector magnitude

Electromagnetic waves can encode data in several different ways. In this case
binary data is transmitted by modulating the signals phase and amplitude in
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the IQ-plane. A signal can represent different bits depending on where its vector
points in the IQ-plane. An example of this is Quadrature Amplitude Modulation
or QAM. QAM comes in different versions depending on how many points the
IQ-vector can point to. For example, if the constellation is composed by 16
symbols, the modulation is named 16 QAM. Figure 1.12 illustrates these points
and the data they represent.

Figure 1.12: Illustration of 16 QAM constellation.

Distortions and noise that act on the transmitted signal can cause the vector
to point to a different area than intended. The difference between these two vec-
tors is called the compared to the distribution of the input signal that we show
in Figure 1.13. The metric commonly used to compare this type of deviation
is called Error Vector Magnitude (EVM) and simply refers to the length of the
error vector. The EVM is often expressed as a percentage of the length of the
ideal, error-free vector.

EVM% =

√
1
N

∑N−1
n=0 Ierr[n]2 +Qerr[n]2

Rnor

Where n is the signal sample index, N is the total number of samples in the
signal, Ierr is the in-phase error between the reference vector and the actual
vector, Qerr is the quadrature error between the reference vector and the actual
vector, and Rnor is a reference normalization value (e.g., the RMS level of the
signal).
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Figure 1.13: Error vector in the IQ-plane.
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Chapter 2

Literature Review

Throughout this investigation, knowledge has been continuously drawn from
different sources, mainly articles. This section showcases some of the research
that has been done around the topic of this thesis. The aim is to identify what
has been done, but more importantly, what has not been done. This thesis
aims to address some of the gaps that have been identified and described in this
section.

2.1 DPD

The article ”A Comparative Analysis of the Complexity/Accuracy Trade-off in
Power Amplifier Behavioural Models” [5] studies the computational cost of im-
plementing different predistortion techniques on two different power amplifiers.
This computational cost is expressed in terms of FLOPS and weighted against
the error metrics normalized mean squared error (NMSE) and adjacent channel
error power ratio (ACEPR). All the models tested were parameter based, and
the models perform differently depending on how many parameters they were
allowed to have. This study also took the maximum number of parameters into
account and let this number vary from 1 to 1000. It was found that the gen-
eralized memory polynomial model (GMP) had the best complexity/accuracy
trade-off for both amplifiers. However, the MP model resulted in the lowest
error when only few parameters were used. An interesting idea in this paper
was to plot computational cost vs. accuracy for each parameter configuration
and constructing the convex hull [6]. This hull then contains all the best con-
figurations with respect to the complexity/accuracy trade-off.

2.2 CFR

”A Novel Crest Factor Reduction Technique using Memoryless Polynomials”
[7] discusses many topics that tie into this thesis. It compares the effects that
different CFR techniques have on ACLR and EVM, while phenomenon such as
peak regrowth and spurious emission are studied, and an optimization problem
is set up. In this case the PAPR is reduced by distorting the signal using
memoryless polynomials. The convex optimization problem aims to minimize
the PAPR by adjusting the polynomial coefficients of the distortion signal. The
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problem is subject to constraints in EVM and ACLR in that they both must be
lower than a certain limit.

2.3 Combined CFR and DPD

”Impacts of Crest Factor Reduction and Digital Predistortion on Linearity and
Power Efficiency of Power Amplifiers” [8] is probably the article with the closest
area of investigation compared to that of this thesis. This article considers a
joint CFR and DPD optimization with respect to computational cost. The main
investigation begins on how different positions of the CFR block in relation
to the DPD block affect the computational cost (and consequently the power
consumption of the digital part). A merit function is introduced that evaluates
the ability of CFR to improve the PA’s power efficiency. This function has a
weight coefficient included in the computational cost in relation to the output
back-off. The results showed that their joint Modelled Crest Factor Reduction
(MCFR) technique produced improvements compared to concurrent solutions
in the literature in terms of trade-off among linearity, PA power efficiency and
CFR complexity.

2.4 Research Gaps

The solution in [5] does not use CFR to mitigate some of the issues caused by
the power amplifier, instead it uses the power back off technique. This is a lost
opportunity since it means that the PA is operated at a suboptimal level leading
to lower signal range and worse power efficiency.

While [7] formulates a detailed optimization algorithm for the memoryless
polynomial technique, used to perform CFR, it does not cover the clip-and-filter
strategy. The algorithm does not factor in computational complexity which is
also something that could be included in the cost function to be minimized.

The authors of article [8] investigate the effects of putting the CFR block
before or after the DPD, in terms of CFR computational complexity and out-
put back-off (OBO) (how much the signal needs to be backed off before going
through the PA). While the technique obviously contains a DPD block, the
DPD model itself is not considered as part of the investigation. The merit func-
tion only takes into account the OBO and computational complexity. More
performance metrics could be taken into account.

2.5 Proposed investigation

The current thesis proposes an investigation into joint CFR and DPD parameter
optimization. An algorithm selects the feasible solutions from this parameter
space given constraints and selects the optimal solution with the help of a com-
posite and user-tunable cost function. Such a function includes information on
signal quality, out-of-band emissions, and computational cost of the entire DFE
chain.
Differently from the related literature this thesis investigates a method for joint
optimization of CFR and DPD blocks which is not bounded by the specific mod-
els used in the blocks. Furthermore, the extension of the optimization to other
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blocks of the digital front end (DFE) is also investigated. Chapter 3 explains
the details of the proposed solution.
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Chapter 3

Proposed Solution

The problem at hand in a nutshell is: signals passing through the amplifier get
deteriorated because of its nonlinearity and memory effects. There are regu-
lations that impose requirements on the ACLR and EVM of the transmitted
signal [2]. The CFR block mitigates this by reducing the signals PAPR before
it enters the DPD block. The DPD block uses a model of the amplifier to distort
the signal in such a way as to compensate for its imperfections.

The problem is to calibrate the CFR and DPD parameters in a way that
minimizes the EVM and ACLR of the transmitted signal as well as the compu-
tational cost of running the blocks.

3.1 Overview of the proposed solution

There are many parameters that can be tuned in a CFR block, and they depend
on the specific algorithm and implementation. For this investigation we have
chosen to restrict the analysis to some of the most essential parameters of a clip-
and-filter CFR, that are, clip ratio and filter length. The DPD can also have
multiple parameters to calibrate (memory tap selection, internal oversampling)
but we select only two fundamental parameters for the investigation. Those
are the maximum nonlinearity order, and the number of memory taps in the
reference MP model.

Since the input-output relation of the PA is too complex to be expressed
algebraically it is difficult to express ACLR and EVM in terms of the CFR and
DPD variables. A simulation-based approach is therefore used instead. All four
variables are varied at once creating one 4D parameter space for each of the
monitored performance metrics (ACLR, EVM, PAPR) These results will then
be used in the following optimization problem

minimize
p

f(C(p), EVM(p), ACLR(p))

Subject to


EVM(p) ≤ EVMlim

ACLR(p) ≤ ACLRlim

PEP (p) ≤ PEPhigh

Plow ≤ PRMS ≤ Phigh

28



where p = [pD pC ] = [KDPD,MDPD, θCFR, LCFR, . . . ] is a vector of pa-
rameters including different parameters of blocks in the Digital Front End (DFE)
chain, and with f(C(p), EVM(p), ACLR(p)) being the objective function in-
cluding an arbitrary combination of the total computational cost C(p) and the
performance metrics (EVM and ACLR). The employed formulation of the ob-
jective function will be detailed in the next sections.

Figure 3.1: Illustration of the optimizer operating on a DFE chain with DPD,
CFR and related up-sampling blocks.

Figure 3.1 illustrates the role of the optimizer in relation to the DFE chain,
where the blocks containing an upward arrow symbolize up-sampling.

When exploring the parameter space, we might find that several sets of in-
put parameters generate feasible solutions, i.e., solutions which satisfy arbitrary
requirements on performance metrics and/or complexity. The question is then:
How do we compare and rank the feasible solutions? When performing optimiza-
tion, we need a target function to minimize. In this case we want to prioritize
solutions that use fewer floating point operations per second (FLOPS) and solu-
tions that give wider margin between their EVM, ACLR and their corresponding
limits.

3.2 Objective function

The aim the proposed objective function is to reward solutions that are computa-
tionally cheap while leaving a larger margin between the achieved EVM/ACLR
and the worst acceptable EVM/ACLR (the constraints). The objective function
will therefore depend on more variables than just the total number of FLOPS,
that is

CFLOPS
tot = CFLOPS

CFR + CFLOPS
DPD

The proposed cost function below reflects these characteristics

f(C,EVM,ACLR) = a
CFLOPS

tot

C ′
max

+ b
EVM

EVMconst
+ c

ACLR

ACLRconst

were C ′
max is the maximum tolerable computational cost, while the factors a, b, c

assign weights depending on how important the corresponding term is. The
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higher the factor, the more important it is for the corresponding metric to be
minimized.

Let us consider two different cost functions where a = 1, b = 1, c = 1
and a = 1, b = 2, c = 1 to illustrate the effects of the weight factor b. Let
us also consider the set of solutions where ACLR and computational cost are
the same and the EVM is allowed to vary. If there are two solutions in this set,
where 2EVMsol1 = EVMsol2, then plugging in EVMsol1 in the first objective
function where a = 1, b = 1, c = 1 and EVMsol2 in the second where
a = 1, b = 2, c = 1 would generate the same objective value. That means
that the second objective function increases the weight of EVM in the objective
and therefore favours solutions with lower EVM. The same reasoning can be
applied to increase the weight of ACLR, computational cost, or a combination
of these.

3.3 Estimation of computational costs

3.3.1 Estimation of computational cost for the DPD block

This part of the cost function is based on the findings in [5]. The number of
floating point operations per sample is calculated in two parts, the first cor-
responds to when the basis functions are generated Cbasis(K,M) = 3(K + 1),
where K is the nonlinear order and M is the number of memory taps, and the
second part corresponds to the filtering, that is

Cfilter(K,M) = 8 · K + 1

2
· (M + 1)− 2

The total estimated FLOPs per sample is CDPD(K,M) = Cbasis(K,M) +
Cfilter(K,M) , which can therefore be rewritten as

CDPD(K,M) = 3(K + 1) + 8 · K + 1

2
· (M + 1)− 2

= 4(K + 1)(M + 1) + 3K + 1

We now take into account the specific sample-rate of the DPD and express
the estimated computational cost for the DPD in terms of floating points oper-
ations per second (FLOPS), that is

CFLOPS
DPD (pD) = RDPDCDPD(pD)

where RDPD is the sample rate of the DPD block, which is usually higher
than the CFR sample rate. There are two reasons for this: to allow linearizing
desired adjacent channels, and to accommodate wider spectrum for DPD basis
functions. Since RDPD is a function of the maximum nonlinearity order, we
could rewrite the DPD cost as

CFLOPS
DPD = RDPD(K)CDPD =

[
L
BS

Rs

]
CDPD

where BS is the bandwidth and RS the IQ-rate of the digital baseband
signal.
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An observation to the above relation is that it assumes that we are able
to oversample the signal to operate exactly at required DPD rate RDPD(K).
In practice this might change due to integer up-sampling operated at different
stages in the DFE.

3.3.2 Estimation of computational cost for the CFR block.

The computational cost for a generic clip-and-filter CFR can be taken from [8]

CCFR,PF (pC) =

NST∑
n=1

14 +Np(n)(6 +NFIR)

where NFIR = 6W + 2(W − 1) is the number of FLOPS used by a FIR
filter of length W , and Np(n) number of clipped peaks at each of the NST CFR
stages. In terms of FLOPS it becomes:

CFLOPS
CFR,PF (pC) = RCFRCCFR,PF (pC)

where RCFR is the sample rate of the CFR block.
Let us now consider a multi-stage CFR algorithm. For single branch CFR,

the computational cost in terms of FLOP does not depend on the number of
clipped peaks Np, and can be approximated as:

CCFR,MC(pc) = NSTRCFR(NCLIP +NAD +NFIR(pc))

Where NST is the number of clip-and-filter stages, NCLIP is the FLOPs of
the hard-clipper stage, NAD the FLOPs needed for the sample-rate adaptation,
and NFIR(pc) the FLOPs needed for each peak-filtering stage.
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Chapter 4

Methodology

The strategy used to test the proposed approach is based on simulations. The
DFE blocks of interest (CFR, DPD, up-sampler and hard limiters) have been
implemented in a MATLAB-based simulator. An MP-based PA model has been
used to simulate the behaviour of real RF-PA. This chapter provides more details
on the implementation of the aforementioned blocks.

4.1 Simulation and code setup

The programming language used to develop the simulator employed in this thesis
is MATLAB. The simulator implements three main blocks, which are: the CFR
and DPD as part of the simulated DFE, and a modelled PA.

4.1.1 CFR

The CFR part implements a custom clip-and-filter-based algorithm where pa-
rameters such as clipping threshold, number of clip-and-filter stages, etc can be
tuned. The CFR block is preceded by an upsampling stage which adapts the
sample rate of the input signal to a rate suitable for the CFR. The up-sampler
is set to provide an oversampling factor of 3 in order to accommodate for the
distortion at the CFR level. Then error metrics and PAPR were computed and
plotted using separate functions.

4.1.2 DPD

The DPD part is the most central part of the code since it receives input from the
CFR section and applies a memory polynomial model to predistort the signal
in relation to the PA’s behaviour. Several structs are used to store general
parameters and DPD model parameters respectively.

The algorithm used to estimate DPD coefficients estimation works as follows.
The signal is run through the modelled PA and the output is used to estimate
the PA gain and the ideal output. This is then used to generate an ideal pre-
distortion using the iterative learning control (ILC) technique [9] illustrated in
Figure 4.1. The DPD-model coefficients for this ideal predistorted signal are
then estimated via least squares estimation [3] and the target input is then
fed through the adapted DPD-model. Finally, the predistorted signal passes

32



through the PA. The output of the PA with respect to the predistorted input is
measured and relevant metrics (EVM, ACLR) are calculated and stored.

Figure 4.1: Block diagram of the adaptation phase of the DPD block via ILC
algorithm.

4.1.3 PA

The employed PA model is based on a memory polynomial approach, which has
been trained on data measured on a real Doherty-PA [10]. The maximum non-
linearity order used in the MP model is 9 while the number of lagging memory
taps is 6.

4.1.4 Metrics

To begin with, functions to calculate the metrics PAPR, EVM, NMSE and
ACLR, detailed in Chapter 1, were implemented as well as visualization routines
to monitor the metrics during simulation runs.
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Chapter 5

Results and Discussion

This section covers the results of two main investigations. First, the effects
of joint variation of CFR and DPD parameters on performance metrics and
computational complexity of the DFE are investigated in Sections 5.1, 5.2, and
5.3. The investigation is then expanded to the case where a hard-limiter block
is introduced between the CFR and the DPD, which is covered in Section 5.4.

Second, the constrained optimization approach described in Section 3 is
used to optimize an exemplary subset of parameters of the above DFE chains
(with and without hard-limiter block). The results of this optimization are
discussed in Section 5.5. In that section we also show different configurations
of the proposed objective function and their impact on the outcome of the
optimization.

5.1 The effect of varying CFR parameters

In this section of the investigation the parameters in the DPD block are kept
constant while we vary the clipping ratio and number of taps of the FIR filter
used in the clip-and-filter CFR block. Table 5.1 below shows the value of the
variables that are kept constant throughout all the simulations in Sections 5.1,
5.2 and 5.3.

Signal bandwidth 40MHz
CFR: Oversampling ratio 3
CFR: Number of stages 4
DPD: Oversampling ratio Varies with NLO
Number of ILC iterations 5

PA model: Type MP
PA model: Maximum nonlinear order 9
PA model: Number of memory taps 6

Table 5.1: Global simulation parameters (constant).
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5.1.1 Varying CFR clip ratio and filter length

DPD maximum
nonlinear order

DPD number of
memory taps

9 5

Table 5.2: Constant parameters: clip ratio vs. filter length

Figure 5.1: ACLR at PA output as a function of CFR clip ratio and filter length
(LCFR)

Figure 5.1 shows that the lower the clipping ratio, the lower the threshold which
means more peaks are clipped. Starting at a clip ratio of over 10 dB no peaks
are clipped therefore there is no signal to be filtered. If there is nothing to be
filtered, then the filter length has no impact on the ACLR and all the curves
corresponding to different filter lengths overlap in this region. As the clip ratio
is decreased more and more of the signal is clipped therefore there are more
clipped peaks causing ACLR degradation. Filtering mitigates this, and the
longer the filter the better it ”smoothes out” the leakage caused by the clipping.
This is why the overlaping curves diverge. The ones with higher filter lengths
result in better ACLR and vice versa, The only exception being LCFR = 0
which corresponds to no filtering (hard clipping) in the CFR.
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Figure 5.2: EVM at PA output as a function of CFR clip ratio and filter length
(LCFR)

In Figure 5.2 we see that, similarly to the ACLR analysis, the curves of the
different filter lengths overlap when we do not clip the input signal. As the
threshold is lowered, the curves separate and the shorter filters result in better
EVM. The best EVM is obtained when the signal is not filtered at all which
makes sense since no filter means that the clipped signal remains unchanged
until it arrives at the DPD block. Filters with lengths 4-7 are clustered together
while the one of length 3 seems to perform slightly better.
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Figure 5.3: PAPR at PA input as a function of CFR clip ratio and filter length
(LCFR)

Figure 5.3 shows the PAPR of the input signal to the PA, while we take
care of keeping the RMS of the output signal constant (variations within a ±0.1
dB range). As expected, lowering the clip ratio results in an input signal with
lower PAPR. Furthermore, using longer FIR filters leads to a more pronounced
phenomenon of peak regrowth, leading to higher PAPR at the advantage of
better ACLR suppression (see Figure 5.1).
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Figure 5.4: Estimated FLOPS as a function of CFR clip ratio and filter length
(LCFR)

In Figure 5.4 we show the estimated computational complexity for the CFR
and DPD blocks, in terms of floating point operations per seconds (FLOPS)
calculated via the estimation methods detailed in Chapter 3. Since all DPD
parameters are kept constant, the FLOPS originating from that block do not
vary. The FLOPS of the CFR block only depend on the filter length and not
on the clip ratio as motivated in Chapter 3.

5.2 The effects of varying DPD parameters

In this part of the investigation the parameters in the CFR block are kept
constant, and we study the effects of changing the nonlinear order and number
of memory taps in the DPD. Table 5.3 below shows the value of the variables
that are kept constant.

CFR clip ratio
[dB]

CFR filter
length

8.2 8

Table 5.3: Constant parameters: Nonlinear order vs. memory depth analysis
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5.2.1 Varying maximum nonlinear order and number of
memory taps

Figure 5.5: ACLR at PA output as a function of nonlinearity order (KDPD)
and number of memory taps.

Figure 5.5 clearly shows that increasing the NLO drastically improves ACLR
with stagnation for orders 7 and 9. As for the number of memory taps, the
algorithm shows some advantages of using more memory taps, especially for
higher nonlinear orders. The gain flattens out above 4-5 memory taps which
makes sense considering the simulated PA model.
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Figure 5.6: EVM at PA output as a function of nonlinearity order (KDPD) and
number of memory taps.

When the nonlinear order is low, the EVM performance is poor, but it
improves rapidly until order 5, then it stagnates for orders 7 and 9. When it
comes to memory taps, they barely affect the EVM for a number of taps greater
than 2.
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Figure 5.7: PAPR at PA input as a function of nonlinearity order (KDPD) and
number of memory taps.

Figure 5.7 shows the effects of nonlinear order on PAPR, where it is visible
that higher nonlinear order causes larger expansion of the peaks, leading to
higher PAPR, while the number of taps seems to have negligible effects on the
PAPR.
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Figure 5.8: Estimated FLOPS as a function of nonlinearity order and number
of memory taps.

The computational cost originating from the CFR block is constant since
none of those variables are varied. The cost originating from the DPD block
increases with nonlinear order and with the number of memory taps as expected
from the employed computational complexity models.

5.3 Joint parameter exploration for DPD and
CFR
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5.3.1 CFR clip ratio vs DPD nonlinear order

What happens when parameters across the CFR and DPD blocks are varied?
To start of with, the two most impactful variables of each block are studied,
which are clip ratio for the CFR and nonlinear order for the DPD. Table 5.4
below shows the values of the parameters that are kept constant.

DPD number of
memory taps

CFR filter
length

7 8

Table 5.4: Constant parameters: nonlinear order vs. clip ratio analysis

Figure 5.9: ACLR at PA output as a function of DPD nonlinear order (KDPD)
and CFR clip ratio.

The lower the clipping ratio, the more of the signal is clipped, resulting in
more leakage to the adjacent channels, which is shown in Figure 5.9. When
KDPD = 1 (the DPD is behaving like a linear system), and the clip ratio is too
high for any of the signal to be clipped, the leakage is the same as if the signal
were just to be sent straight through the PA without any processing. Increasing
the nonlinear order gives a dramatic improvement to the leakage suppression in
this region until KDPD = 7 where there progress stagnates. This is a sign that
the 9th order nonlinear behaviour of the employed PA model is weak and that
the PA model can be linearized with a 7th order DPD with good performance.
Conversely, if the order of the DPD model is too low compared to that of the PA,
it will fail to linearize the PA. When considering high nonlinear order the main
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source of ACLR comes from the clipping stage, where the clipped signal yields
sharp edges in the time domain. These give rise to higher order terms in the
frequency domain which cause spectral regrowth outside the desired channel,
setting an upper bound on achievable ACLR suppression.

However, sending an incorrectly distorted signal through the PA’s nonlinear
region also causes leakage outside the assigned channel.

Figure 5.10: EVM at PA output as a function of DPD nonlinear order (KDPD)
and CFR clip ratio.

Figure 5.10 shows that the EVM and ACLR show similar behaviour for
KDPD = 1. WhenKDPD = 1, the DPD cannot compensate for any nonlinearity
caused by the PA. Therefore, the lowest error for that curve corresponds to not
applying any nonlinear processing to the signal and just sending it straight
through the PA. Increasing the nonlinear order of the DPD model drastically
improves the EVM with stagnation after KDPD = 7 yet again hinting at the
PA’s nonlinear behaviour being of order 7. Figure 5.10 also shows us the EVM
of the signal before arriving to the DPD block. When there is no clipping, there
is no error, as expected. As the threshold is lowered and the signal starts to
get clipped, the EVM starts to grow. What is noteworthy is that the difference
in EVM between the semi-raw signal after CFR and the curves corresponding
to the EVM of the distorted signals diminishes rapidly as the signal is clipped
more aggressively. For instance even when the modelled nonlinear order is low
(e.g., KDPD = 3), the difference in EVM is negligible especially with more
aggressive clip ratios. This is because the signal has been clipped so hard that
it is mainly distributed within the linear region of the PA and thus has very
little nonlinear behaviour to be modelled by the DPD.
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Figure 5.11: PAPR at PA input as a function of DPD nonlinear order (KDPD)
and CFR clip ratio.

In figure 5.11 it is shown that KDPD = 1 causes no PAPR expansion with
respect to the output signal of the CFR, as expected. The other curves cor-
responding to higher nonlinear orders shows the expansion effects of different
nonlinear models of the DPD on the predistorted signal. As expected, clipping
the signal more aggressively results in a lower PAPR which is the whole purpose
of the CFR block.
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Figure 5.12: Estimated FLOPS as a function of DPD nonlinear order (KDPD)
and CFR clip ratio.

Figure 5.12 shows that the computational cost does not depend on the clip
ratio, but only on the maximum nonlinear order of the DPD model. When
analysing the ACLR, EVM and PAPR performances it is evident that the rel-
ative improvement when going from KDPD = 7 to KDPD = 9 is virtually
nonexistent wheras there is a substantial increase in computational cost. This
hints at the fact that the optimization will favour solutions with KDPD = 7.
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5.3.2 CFR clip ratio vs number of DPD memory taps

Table 5.5 below shows the values of the parameters that are kept constant in
this scenario.

DPD maximum
nonlinear order

CFR filter
length

9 8

Table 5.5: Constant parameters: clip ratio vs. number of memory taps analysis

Figure 5.13: ACLR at PA output as a function of number of memory taps in
the DPD and CFR clip ratio.

In accordance with the previous simulations, the ACLR shows a convex
behaviour which is due to:

• When there is not enough CFR peak reduction, the PAPR of signal ex-
plodes leading to high compression at the PA level, which leads to worse
ACLR. In this region we are also likely to see the effects of the ACLR
degradation due to hard-limiter stage set before the PA.

• When the CFR clipping ratio is too aggressive, the ACLR worsens again
due to increased clipping noise despite the CFR filtering. Increasing the
number of memory taps reduces leakage, but the improvement stagnates
after MDPD = 3.
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When the CFR clipping ratio is too aggressive, the ACLR worsens again due
to increased clipping noise despite the CFR filtering. Increasing the number of
memory taps reduces leakage, but the improvement stagnates after MDPD = 3.

Figure 5.14: EVM at PA output as a function of number of memory taps in the
DPD and CFR clip ratio.

When the signal is clipped harder, the EVM increases, just as expected.
When it comes to memory depth, a small difference can be seen when there is
no clipping where the greater memory depths perform slightly better.

48



Figure 5.15: PAPR at PA input as a function of number of memory taps in the
DPD and CFR clip ratio.

Figure 5.15 shows that, as intended, when the signal is clipped harder, the
PAPR decreases. Looking at the part where there is no clipping, the PAPR
of the signal is the same before and after the CFR block, as expected. After
the signal has passed through the DPD however, the PAPR is worsened. The
discrepancy before and after the DPD block decreases with harder clipping.
This might be due to the fact that fewer samples will reach the PA’s nonlinear
region and therefore fewer samples will need to be distorted in the DPD. It
seems that varying memory depth does not affect the PAPR since all curves
overlap.
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Figure 5.16: Estimated FLOPS as a function of number of memory taps in the
DPD and CFR clip ratio.

Figure 5.16 shows that the computational cost does not vary with clip ratio
and increases with memory depth. Since the ACLR is barely improved past a
memory depth of 3, the optimizer will favour these solutions over higher memory
depths.
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5.3.3 CFR filter length vs DPD memory taps

Table 5.6 below shows the values of the parameters that are kept constant.

DPD maximum
nonlinear order

CFR clip ratio
[dB]

7 8.2

Table 5.6: Constant parameters: filter length vs. number of memory taps
analysis

Figure 5.17: ACLR at PA output as a function of CFR filter length (LCFR)
and number of memory taps in the DPD.

Figure 5.17 shows that the ACLR is improved when the filter length is in-
creased. The dramatic improvement between LCFR = 0 and LCFR = 3 show-
cases the difference in ACLR between not filtering the clipped peaks (hard
clipping) and filtering. When it comes to memory taps, there is a slight im-
provement for the two longest filter with stagnation after the third memory tap.
Other than that, the ACLR remains unaffected by changing memory depth.
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Figure 5.18: EVM at PA output as a function of CFR filter length (LCFR) and
number of memory taps in the DPD.

The number of memory taps has negligible effect on EVM when including
more than 3 taps. Regarding the effect of CFR filter length, when LCFR = 0 it
means that the signal is not filtered, meaning that the values of fewer samples
are changed thus resulting in a lower EVM. The EVM worsens at LCFR = 3
and the rest of the filter lengths result in a similar, higher EVM.
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Figure 5.19: PAPR at PA input as a function of CFR filter length (LCFR) and
number of memory taps in the DPD.

The PAPR is unaffected by the number of memory taps, while there seems
to be a minor impact on the CFR filter length.
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Figure 5.20: Estimated FLOPS as a function of CFR filter length (LCFR) and
number of memory taps in the DPD.

The computational cost increases both with memory depth and filter length
and the increase is slightly steeper in number of memory taps. The fact that
ACLR is more dependent on memory taps than EVM, will be exploited by the
optimizer to minimize the amount of taps to satisfy at least the minimum ACLR
requirements.
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5.3.4 Nonlinear order vs filter length

Table 5.7 below shows what the values of the parameters that are kept constant.

DPD number of
memory taps

CFR clip ratio

5 7

Table 5.7: Constant parameters: nonlinear order vs. filter length analysis

Figure 5.21: ACLR at PA output as a function of nonlinear order and filter
length (LCFR).

Increasing the maximum nonlinear order improves ACLR, in accordance
with the previous investigations. Similarly, there is a stagnation when the non-
linear order is taken past 7. The overall trend when it comes to filter lengths
is that longer filters improve the ACLR. The exception is LCFR = 0 which
performs about as good as LCFR = 4 or LCFR = 5. As the nonlinear order
decreases, the effect of varying filter length on ACLR becomes less and less im-
pactful. It seems like the larger source of ACLR originates from the DPD blocks
ability to correctly model the PA’s nonlinear behaviour, which it fails to do ad-
equately for models with lower nonlinearity order. Having longer filters should
smooth out the sharp edges caused by the clipping and reduce the out of band
spectral regrowth caused by it, thus lowering the baseline ACLR degradation
introduced by the CFR.
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Figure 5.22: EVM at PA output as a function of nonlinear order and filter
length (LCFR).

Figure 5.22 shows that not filtering the signal at all results in the best EVM,
which makes sense since fewer samples are being manipulated. Longer filters
worsen the EVM, but the deterioration stagnates after LCFR = 3. The worst
EVM is when the DPD model only uses linear terms. It then fails to compensate
for the PA’s nonlinearity so bad that the error is worse than if the signal was sent
straight through without being processed at all. When the maximum nonlinear
order is 3 or less, the impact of changing filter lengths is fairly insignificant. For
orders above 3, filter lengths becomes more important though.
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Figure 5.23: PAPR at PA input as a function of nonlinear order and filter length
(LCFR).

The shorter the filter, the lower the PAPR, with the exception of not filtering
at all. Supposedly the unfiltered clipping noise from the CFR causes the clipped
peaks to regrow when predistorted via higher-order DPD models. Increasing the
nonlinear order from 1 to 5 causes the PAPR to increase slightly, while above
that the impact is negligible.
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Figure 5.24: Estimated FLOPS as a function of NLO and filter length (LCFR).

The increase in computational cost is a lot steeper with increasing nonlinear
order than filter length. This means that if increasing the filter length one step
or increasing the nonlinear order one step both improve the performance by the
same amount, the optimizer would choose to increase the filter length.
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5.4 Extended parameter exploration: Hard lim-
iter vs CFR clip ratio

The CFR block is not always perfect meaning that some filtered samples might
exceed the clipping threshold when entering the DPD section. This is due to
the filtering operated at the CFR level, and/or to the interpolation performed
by the up-sampler before the DPD. In order to circumvent this, a hard limiter
is introduced as shown in Figure 5.25 below.

Figure 5.25: Extended DFE chain including hard limiter block and proposed
parameter optimization.

In this investigation, the hard limiter is configured with a threshold that
is relative to the CFR threshold, expressed in dB. Table 5.8 below shows the
values of the parameters that are kept constant.

DPD filter length DPD memory taps DPD nonlinear order
8 7 7

Table 5.8: Constant parameters: Hard-limiter clipping ratio vs. CFR clipping
ratio

In Figures 5.26, 5.27 and 5.28, four curves are plotted representing the rela-
tive clip ratio (CRHL1) of the hard limiter with respect to the one used in the
CFR. These plots have the CFR clip ratio on the x-axis and the performance
metric on the y-axis. A percentage is displayed next to each data point, repre-
senting the share of samples affected by the hard clipper. This value increases
as the signal is clipped more aggressively. This is because the imperfect CFR
block will have to handle a larger share of the samples meaning that it will
leave more samples above the threshold due to peak regrowth. This can also be
mitigated by increasing the number of stages in the multi-stage CFR algorithm.
The purple curve (’off’) represents not having a hard limiter at all. The red
curve (CRHL1 = 0 dB) corresponds to the hard limiter’s threshold being the
same as that of the CFR block. The blue curve (CRHL1 = −1 dB) represents
the case where: θHL = 0.79 · θCFR and the yellow curve (CRHL1 = 1 dB) rep-
resents the case where: θHL = 1.26 · θCFR, with θHL clipping threshold of the
hard limiter and θCFR clipping threshold of the CFR.
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Figure 5.26: ACLR at PA output as a function of CFR clip ratio and relative
clipping ratio of the hard limiter (CRHL1).

The curves of Figure 5.26 overlap almost perfectly as long as no samples
need to be handled by the hard limiter. The blue curve represents having a 1
dB lower threshold than that in the CFR, meaning that the hard limiter will
clip more samples compared to the other cases It also means that the hard
limiter engages earlier when lowering the CFR threshold. Since the hard limiter
cuts more peaks, there are more sharp edges in the time domain which leads
to higher spectral regrowth outside the assigned channel, ultimately resulting
in a higher ACLR. The red curve represents having an identical threshold in
the hard limiter and in the CFR block. The phenomenon of peak regrowth,
causing the 0 dB hard limiter to clip peaks regenerated by the CFR filter and
up-sampler, is visible for CFR clip ratios lower than, 7 dB. Just as before,
more samples clipped by the hard limiter results in a worse ACLR. The yellow
curve corresponds to setting the HL threshold 1 dB higher than that in the
CFR block. This means that the hard limiter will actually let through some
of the samples above the CFR threshold. Regarding the the 1 dB curve, the
phenomenon of peak regrowth has to be large for the hard limiter to be engaged,
and this happens only when the CFR threshold is lowered further. This curve
has significant overlap with the purple one (hard-limiter switched off).
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Figure 5.27: EVM at PA output as a function of CFR clip ratio and relative
clipping ratio of the hard limiter (CRHL1).

The yellow and the purple curves of Figure 5.27 overlap indicating that the
few samples handled by the ”tolerant” limiter do not significantly affect the
EVM. As before, the blue curve represents the ”stricter” limiter, and it results
in the worst EVM performance. The red curve illustrates the EVM caused by
clipping the residual samples above the CFR threshold. This impact is not that
large compared to not having any hard limiter block at all. Few samples are
affected, and their modification is relatively small.
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Figure 5.28: PAPR at PA input as a function of CFR clip ratio and relative
clipping ratio of the hard limiter (CRHL1).

When it comes to PAPR, there is a similar but complementary behaviour to
that of ACLR. The difference here being that more samples handled by the hard
clipper result in lower PAPR, which is as expected. The blue curve represents
the case where the largest share of peaks are clipped, resulting in the lowest
peak-to-average power ratio. The hard limiter represented by the red curve
only clips the residual samples above the CFR threshold, which is far fewer
than the yellow one. The yellow curve overlaps with the purple one the longest
meaning that the limiter is engaged the least and therefore affects the PAPR
the least.
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Figure 5.29: Estimated computational complexity of the DFE blocks (CFR,
DPD, hard limiter)

Figure 5.29 shows the computational complexity of the DFE chain including
CFR, DPD and hard limiter. As only clip ratios are varied, the estimated
complexity stays the same, while we also see that the complexity of the hard
limiter is negligible (barely visible top yellow bars) when compared to the DPD
and CFR.
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5.5 Joint parameter optimization

5.5.1 Exploration of CFR/DPD four-dimensional param-
eter space

In the previous sections the influence of CFR and DPD parameters variation has
been studied for a couple of parameters. In this section they will be varied all at
once. The simulator described in Chapter 4 is used to estimate the performance
metrics and computational cost for each candidate parameter vector. The met-
rics are then compared to a set of constraints, described in the optimization
problem of Section 3.1, to determine the feasibility of the specific solution. The
values used to set those constraints are based on [1] and are: EVMlim = 3.5%,
ACLRlim = −46 dBc, PEPhigh = −8 dB, Phigh = −18.9 dB, and Plow = −19.1
dB.

Finally, the objective function defined in Section 3.2 is used to rank the
feasible solutions and select the best one.
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CFR: Clip ratio (dB) 5-10
CFR: Filter length 0, 3-10

DPD: Nonlinear order 1,3,5,7,9
DPD: Number of memory taps 1-7

Hard limiter off

Table 5.9: Varying and constant parameters for the four-variables analysis

Vizualizing four variables at the same time is tricky since there are only three
spatial dimensions to work with. One variable (CFR filter length) has been
omitted from the figures below since it had limited impact on the performance
metrics during the dual parameter variation.

Figure 5.30: Parameter-space cut with respect to CR, NLO and number of
memory taps.

Figure 5.30 above shows the set of feasible solutions in the parameter space
spanned by the variables memory depth, maximum nonlinearity order of the
DPD model and the CFR clip ratio. If the combination of these three parameter
values leads to a feasible solution, a bubble is plotted in that point in space. The
colour of the bubble represents the computational cost of this solution. If the
parameters generate a result that violates the constraints in Chapter 3.2, it is
marked with a small black dot. The feasible region seems to be compact within a
well-defined range of CFR clip ratios (continuous parameter), and DPD memory
depth/nonlinearity order (discrete parameters). The feasible region gets a bit
thinner as memory depth decreases meaning that shallower memory depths lead
to fewer feasible solutions.
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Figure 5.31: Parameter-space cut with respect to CR, NLO and number of
memory taps, centered on feasible solutions.

Figure 5.31 above is the same as Figure 5.30, only zoomed in on the feasible
solutions. The cross-section for a nonlinear order of 7 is the widest, meaning
that this region the most tolerant to variations in clip ratio and memory depth.
However, these points do not result in the lowest computational cost. The com-
putational complexity increases drastically with memory depth and nonlinear
order as expected.
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Figure 5.32: Performance metrics (EVM, ACLR, PAPR) and associated DFE
computational cost explored over a constrained four-dimensional parameter
space.

The performance metrics of the complete grid-based exploration over the
selected parameter space is plotted in Figure 5.32. The pattern looks a bit like
”hairs blowing in the wind”. The ”hairs” are made up of around 50 dots along
a trajectory. The clip ratio is varied between 5 dB and 10 dB using 50 data
points, which suggests that a ”hair” corresponds to varying the clip ratio and
keeping all other parameters constant. Clusters of ”hairs” or ”locks” can be
identified. These are characterized by a group of ”hairs” that converge to a
point. When zooming in on the dots that make up a hair, it becomes apparent
that each dot is made up of a cluster of individual data points. These small
clusters are probably formed when clip ratio and maximum nonlinear order are
kept constant, and the parameters filter length and memory depth are varied.
The reasoning behind this is that the two latter parameters produce similar
results for most of the values they take (see Section 5.3.3). In other words,
there are many scenarios when varying filter length and memory depth that
produce little to no difference on the performance metrics, and those solutions
are therefore represented by closely spaced points in the parameter space.
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Figure 5.33: Performance metrics (EVM, ACLR, PAPR) and associated DFE
computational cost explored over a constrained four-dimensional parameter
space.

When taking a closer look at the feasible solutions it can be seen that the
best solutions when it comes to computational cost tend to be the one with
worst ACLR and EVM. Nevertheless, there are several feasible solutions with
relatively low computational cost which still satisfy constraints on ACLR, EVM
and PAPR with some margin. In the next chapter, the proposed objective
function is used to find those solutions according to the desired composite cost
metric.
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5.5.2 Joint CFR/DPD constrained optimization in four
dimensional parameter space

If one only valued low computational cost, selecting the best parameters would
be easier, all one needs to do is select the cheapest feasible solution and the
problem would be solved. Doing this however means that the solution would
probably lie just at the edge of acceptable EVM and ACLR with little to no
margin.

In order to take this aspect into account, an objective function is introduced
as explained in Chapter 3. The objective function contains three different pa-
rameters a, b and c, which dictate the importance of low computational cost,
low EVM and low ACLR respectively. An example of how to interpret these
three parameters is given at the very end of Chapter 3.

The tables below contain results from the same simulation, but with different
weight factors in the objective function. The simulation gave 1073 feasible
solutions, over an explored parameter grid composed by 15 751 points, which
are presented in a list sorted by value of the objective function in ascending
order. The limit on EVM is 3.5%, the limit on ACLR is −46 dBc and the
reference level for computational cost is 50 GFLOPS. The first five rows show
the best results (minimum value encountered for the objective function), then
a result from the middle of the list is shown, and, finally the worst solution is
presented.

Cost GFLOPS EVM[%] ACLR[dBc] CR [dB] Fil Len NLO Mem
2.6870 60.549 2.8724 -47.835 7.7551 3 7 2
2.6878 60.549 2.7520 -47.608 7.8571 3 7 2
2.6988 60.549 2.6460 -47.356 7.9592 3 7 2
2.7011 60.549 3.0051 -47.996 7.6531 3 7 2
2.7166 62.761 2.9781 -48.143 7.8571 4 7 2

- - - - - - - -
3.4222 90.902 2.6402 -47.136 8.0612 5 9 3

- - - - - - - -
4.8747 161.26 2.2798 -46.008 8.4694 10 9 7

Table 5.10: Best, mid-range and worst values for the objective function (a =
b = c = 1) for a grid search over the four-dimensional parameter space: clip
ratio, filter length (CFR), and nonlinear order, number of taps (DPD).

The results shown in table 5.10 reflect setting the weight parameters a =
b = c = 1 in the cost function. This will serve as a baseline for comparison when
varying the individual weight parameters afterwards.

A first observation that comes to mind is that the four best solutions all
share the same filter length, maximum nonlinear order and memory depth. The
only DFE parameter that changes is the clip ratio. This is reasonable though
when looking at how the grid for the parameter space is set up. The clip ratio
(CR) is a continuous variable and therefore many more discrete sample points
were used as opposed to the other three which are discrete and only take on
few values in the simulation. The computational cost in GFLOPS has a far
greater range than EVM and ACLR which suggests that its weight factor is
more impactful than the others when it comes to the rank of the results in the
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table. When looking at the entire EVM column, it can be noted that the five
best solutions have a rather average EVM suggesting that its weight factor is
less impactful than the others. This makes sense since the feasible solutions
have a relatively small range in EVM. When it comes to ACLR, it is important
to note that it is expressed in logarithmic units. Therefore since the lowest
ACLR is -46.62 dBc and the worst -46 dBc, their ratio in linear unit is

RatioACLR = 10
−46.001+49.619

10 = 2.300

This is in between the ratios of EVM an GFLOPS as shown in Table 5.11
below. The weight factor in front of ACLR therefore impacts the rank of the
results moderately compared to that of EVM and GFLOPS.

GFLOPS EVM ACLR
Max 161.257 3.4955 -46.001 dB
Min 46.264 2.2933 -49.619 dB
Ratio 3.486 1.670 2.300 (lin)

Table 5.11: Maximum, minimum and maximum ratio = (max/min) of target
function metrics over the feasible solution space.

It is important to remember from Section 3.2 that no solution can have and
EVM or ACLR higher than that set in the constraints, therefore their respective
terms in the objective function will never exceed 1 when a = b = c = 1. The
computational cost however does not determine whether a solution is feasible
or not. The parameter C ′

max can be set pretty arbitrarily. The lower it is set,
the more the term contributes to the cost. If this parameter was defined to be
the largest computational cost, this term would behave more similarly to the
others in that it could never exceed 1 when a = b = c = 1. In the simulation
in question C ′

max is set at 50 GFLOPS which is pretty low since it makes this
term dominate over the other two. This can all be calibrated by changing the
values of a, b and c though.

Cost GFLOPS EVM[%] ACLR[dBc] CR [dB] Fil Len NLO Mem
3.6440 46.264 3.1755 -46.525 7.7551 3 5 2
3.6446 46.264 3.0707 -46.378 7.8571 3 5 2
3.6571 46.264 3.2937 -46.628 7.6531 3 5 2
3.6585 46.264 2.9813 -46.195 7.9592 3 5 2
3.6832 46.264 3.4253 -46.686 7.5510 3 5 2

- - - - - - - -
5.2565 91.515 2.4410 -46.465 8.3673 5 7 5

- - - - - - - -
8.0999 161.257 2.2710 -46.008 8.694 10 9 7

Table 5.12: Best, mid-range and worst values for the objective function (a = 2,
b = 1, c = 1) for a grid search over the four-dimesional parameter space: clip
ratio, filter length (CFR), and nonlinear order, number of taps (DPD).

Setting a = 2, b = 1, c = 1 emphasizes the importance of solutions with
low computational cost, which can clearly be seen in Table 5.12. The five best
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solutions selected by the optimizer all correspond to choosing the lowest possible
computational cost. Comparing this result to that in Table 5.10, it can be seen
that the computational cost for the five best solutions has decreased by roughly
25%. EVM and ACLR on the other hand have worsened and are pushed closer
to the tolerable limit. The solution with the highest cost factor is the one with
the highest GFLOPS as expected. It is noteworthy however that this solution
heavily favours low EVM over low ACLR. The ACLR in this case lies exactly
on the edge of what is tolerable while the EVM has wider margin with respect
to the selected constraint (3.5%).

Cost GFLOPS EVM[%] ACLR[dBc] CR [dB] Fil Len NLO Mem
3.4522 60.549 2.5501 -47.056 8.0612 3 7 2
3.4548 60.549 2.6460 -47.356 7.9592 3 7 2
3.4581 60.549 2.4675 -46.772 8.1633 3 7 2
3.4689 60.549 2.3928 -46.503 8.2653 3 7 2
3.4741 60.549 2.7520 -47.608 7.8571 3 7 2

- - - - - - - -
4.2372 93.727 3.0568 -48.105 7.8571 6 7 5

- - - - - - - -
5.7469 161.257 3.4955 -48.804 7.5510 10 9 7

Table 5.13: Best, mid-range and worst values for the objective function (a =
1, b = 2, c = 1) for a grid search over the four-dimesional parameter space: clip
ratio, filter length (CFR), and nonlinear order, number of taps (DPD).

Increasing b from 1 to 2 results in better EVM. There is an overall improve-
ment in EVM in the top five solutions in Table 5.13 compared to Table 5.10.
The worst solution in this case selects for the highest EVM and is more lenient
on ACLR which makes sense. The computational cost is always the highest pos-
sible in the worst solution due how heavily it weighs in the objective function,
as discussed earlier.

Cost GFLOPS EVM[%] ACLR[dBc] CR [dB] Fil Len NLO Mem
3.2816 62.761 3.2828 -48.642 7.6531 4 7 2
3.2892 62.761 3.1238 -48.436 7.7551 4 7 2
3.3001 62.761 3.4559 -48.768 7.5510 4 7 2
3.3271 62.761 2.9781 -48.143 7.8571 4 7 2
3.3326 60.549 3.0051 -47.996 7.6531 3 7 2

- - - - - - - -
4.1391 80.456 2.4808 -46.407 8.3673 8 7 3

- - - - - - - -
8.8729 161.257 2.2798 -46.008 8.4694 10 9 7

Table 5.14: Best, mid-range and worst values for the objective function (a =
1, b = 1, c = 2) for a grid search over the four-dimesional parameter space: clip
ratio, filter length (CFR), and nonlinear order, number of taps (DPD).

When a = 1, b = 1, c = 2, the optimizer selects for solutions with better
ACLR than those in Table 5.10. The best solutions have a low ACLR and the
optimizer selects for slightly longer filter lengths than before. This makes sense
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since filter length improves ACLR while increasing the computational cost. The
worst solution is one where the ACLR is just on the edge of that is acceptable.
The EVM of the worst solution has a very wide margin to the EVM constraint,
since that term does not contribute that much to the objective function com-
pared to the other two. Therefore, the optimizer causes the solutions with the
worst computational cost and ACLR to populate the bottom of the list.

5.5.3 Constrained optimization in six-dimensional param-
eter space
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So far, the main focus has been put on investigating CFR clip ratio and
filter length and DPD nonlinear order and memory depth. Nevertheless, the
approach can be extended to other arbitrary parameters of CFR and DPD, as
well as parameters of other blocks of the DFE. A possible example of other
parameters to include in the optimization are:

• The number of stages in the clip-and-filter CFR block (see Section 1.4)

• The clip ratio of the hard limiter placed between the CFR and the DPD
(see Section 5.4), when the block is included in the DFE chain (e.g., the
block has been bypassed in the previous 4-parameters optimization).

The parameter grid used for this parameter space exploration is a large one
comprised of 360 000 grid points each one corresponding to a different set of
parameters. 12 238 (i.e., 3.4%) of these parameter configurations produced a
solution that satisfied the constraints on the input/output signals to the PA, as
defined in Section 5.5.1. The size of this simulation presented technical obstacles
to visualize the results in the same way as in Section 5.5.1. Table 5.15 shows
the best solutions selected by the optimizer. A value of 99 in the column for
the hard limiters clip ratio signifies that the hard limiter is not present in the
chain.
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Table 5.15: Best, mid-range and worst values for the objective function(a = 1,
b = 1, c = 1) for a grid search over the six-dimesional parameter space: clip
ratio, filter length (CFR), relative clip ratio (hard limiter), and nonlinear order,
number of taps (DPD).

When the number of CFR stages was allowed to change, the optimizer heav-
ily favoured single-stage solutions. This makes sense since the estimated com-
putational cost is heavily dependent on number of CFR stages (see Section
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3.3.2). The optimizer choses solutions with significantly lower CFR clip ra-
tio and slightly longer CFR filters than in Section (5.5.2). The cost saved by
decreasing the number of CFR stages is spent on increasing the filter length,
which mitigates the ACLR and EVM effects experience when decreasing the clip
ratio (more aggressive CFR). When it comes to the hard limiter, the analysis
in Figure 5.29 shows that it barely affects the estimated computational cost.
Therefore, a relatively large range of hard limiter clip ratio can be seen among
the best solutions. Finally, the optimizer seems to privilege solution where the
block switched off (slight advantage in computational cost) and where the PAPR
reduction is achieved by fine-tuning the CFR and DPD blocks only.
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Chapter 6

Conclusion and Areas of
Future Work

6.1 Conclusion

The thesis has investigated the topic of combined parameter optimization for
crest factor reduction (CFR) and digital predistortion (DPD) blocks which are
commonly used in digital front ends of radio base stations. This thesis started off
by giving a quick introduction to wireless communication and to the problematic
of digital correction of radio impairments, such as the linearization of RF power
amplifiers.

An initial review of the existing research literature covering methods for
combined CFR and DPD was performed. The review has lead to identify a
research gap with respect to a scarcity of methods for optimized co-design of
multiple blocks of the DFE (i.e., the CFR, the hard-limiters, and the DPD
blocks). The research gap has been used as starting point to design a strategy
for parameter-space analysis, and to formulate a joint optimization problem
which takes into account both the complexity of the digital blocks and the
global performance of the DFE chain.

The above two points have been investigated as follows. A subset of the
DPD and CFR parameters were selected and studied in groups of two, which
also included the analysis of the effects of joint CFR and DPD parameters
variation. The analysis gave a better understanding of the effects of such a pa-
rameter variation on the selected performance metrics (i.e., quality of amplified
signal, signal leakage on adjacent channels, and peak envelope power presented
to the PA). The results gave insights on the existence of a significant margin
for operating joint parameter optimization, as CFR and DPD blocks share the
same EVM and ACLR budget, and different parameters can be jointly tuned to
achieve target linearization performance or complexity. An example of this is
the clipping ratio of the CFR block, which directly mapped to reduced PAPR,
and the nonlinear order of the DPD, which causes re-expansion of PAPR of the
distorted signal while also largely driving the computational cost of the DFE
chain.
In the second part of the thesis, the solution of the proposed constrained op-
timization problem, based on grid-search approach has been investigated. The
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effects of different formulations of the proposed objective function have been
also analyzed. Results have shown that, according to the specific weight fac-
tors applied to the terms of the objective function, it is possible to generate
parameter sets which selectively minimize EVM (signal degradation), ACLR
(adjacent channel leakage), computational cost of the DFE, or a weighted mix
of the above. The thesis has also shown that the approach can be extended
and include other blocks in the DFE chain, such as hard clipping stages, and
supplementary parameters from the blocks (e.g., the number of CFR stages)
rendering it a useful tool to guide the joint configuration of DFE blocks.

6.2 Areas of future investigation

The optimization problem studied in this thesis is relatively simplified in the
sense that it is simulation-based, and it refers to an offline optimization of DPD
and CFR parameters, while the best solution is simply selected among a dis-
crete set of simulation results. Moreover, while this grid-search approach works
with a limited parameter space, it is cumbersome to apply when the number of
parameters, or the density of the grid in the parameter space increases.
If the dependencies between the performance metrics and the investigated pa-
rameters could be expressed algebraically, then a rigorous mixed-integer opti-
mization problem could be formulated.

A related line of investigation is a more thorough study of the properties
of the optimization problem and the investigation of alternative formulations
which guarantee an optimal solution. Another possible extension of the thesis
work is the inclusion of more parameters from both CFR and DPD as well as
from different blocks of the DFE, e.g., hard limiters (which has been briefly
analyzed as a use-case), up-samplers, and FIR filters. Two examples of those
parameters are the up-sampling ratio of the signals and different points in the
chain (which also greatly influences computational cost), and the length/type
of FIR filters employed in the various DFE blocks. The investigation as a whole
could also be expanded to include different crest factor reduction algorithms
and different models and algorithms for digital predistortion, as well as more
implementation-close estimations of computational costs and/or required power
of the DFE.

Finally, while the current optimization has mainly targeted parameters that
are used in the design of DFE and CFR blocks, the investigation of a method
for joint optimization of DFE parameters at runtime is also a relevant target
for future investigations, which could use the ideas and results of this work as
an initial step.
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Chapter 7

Populärvetenskaplig
Sammanfattning p̊a Svenska
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Gemensam CFR- och DPD-optimering för 5G sändare

Tänk om man kunde titta ut genom sitt fönster och se det osynliga som gör
v̊art moderna liv möjligt. Blipp!, bussbiljettens utg̊angsdatum är om elva dagar,
grön signal. Swish!, saldo minus 29 kr, betalningen g̊ar igenom i glasskiosken.
Pling!, ”-Ring mig när du kan, jag har n̊agot roligt att berätta!”.

Varje ögonblick färdas oräkneligt m̊anga signaler i ljusets hastighet mitt
framför näsan p̊a oss utan att vi märker n̊agot. Allt som skedde utanför fönstret
möjligjordes genom att elektromagnetiska v̊agor färdades mellan mobiltelefoner
och sändare i master. När en mast sänder ut en signal m̊aste den förstärkas
för att den ska n̊a mottagaren. Problemet är att förstärkare ofta beter sig
oberäkneligt och förvränger signalen. Ju högre spänning förstärkarens insignal
har desto värre blir dessa förvrängningar. Om man har otur försämras sig-
nalens kvalité till den grad att datan den bär p̊a blir oläslig. Bruset den
orsakar kan även störa signaler i grannkanaler, därför m̊aste utsignalen upp-
fylla kvalitétskrav som bestäms av myndigheter. Man skulle kunna undvika
detta genom att mata förstärkaren med en svagare signal, men d̊a försämras
förstärkarens verkningsgrad och räckvidd väsentligt. För att kring̊a denna
avvägning mellan signalkvalité och verkningsgrad kan man manipulera signalen
p̊a ett sätt som kompenserar för förstärkarens brister. Det finns m̊anga metoder
att göra detta p̊a och detta examensarbete har undersökt kombinerad digi-
tal förförvrängning och klippfiltrering. Klippfiltrering sätter ett tröskelvärde
och klipper bort den delen av insignalen vars spänning överskrider det. Dessa
spänningstoppar som klipptes bort var den delen av signalen som orsakade mest
förvrängnining och brus i förstärkaren. Klippandet i sig orsakar ocks̊a brus men
denna bruskällan undg̊as genom att man filtrerar den avklippta delen av sig-
nalen och subtraherar den fr̊an den ursprungliga. Ju lägre tröskelvärde, desto
högre spänning kan man mata förstärkaren med, men är det för l̊agt s̊a kan
signalen förändras s̊a mycket att dess data förstörs. Digital förförvrängning
gör en modell av förstärkarens oberäkneliga beteende och använder den för
att förvränga insignalen p̊a ett s̊adant sätt att den f̊ar en linjär, förutsägbar
förstärkning när den skickas ut i nätet. Sambandet mellan parametrarna i
dessa metoder och olika m̊att p̊a signalkvalité och brus är komplext vilket
gör det sv̊art att kalibrera dem. I denna undersökning utforskades olika dig-
ital förförvrängnings- och klippfiltrerings parametrar systematiskt genom simu-
leringar p̊a en virituell förstärkare. Ett m̊angsidigt optimeringsverktyg skapades
för att kalibrera parametrarna till dess optimala värde. Optimeringsverktyget
rangordnar lösningar baserat p̊a dess signalkvalité och brusutsläpp samt hur
mycket datorkraft det kostar att implementera dem.

-Gustav Olsson
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