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Abstract

This thesis explored the application of pre-trained transformer models in detect-
ing suicidal ideation in social media posts. We leveraged social media data from
platforms like Reddit and Twitter and applied a robust hyperparameter random
search strategy to fine-tune and evaluate existing transformer models. Despite noise
in the fine-tuning data, the models demonstrated high performance in identifying
posts about suicidal ideation. However, performance as measured by F1 and av-
erage precision scores decreased when the models where applied to more realistic
scenarios, indicating the need for inclusion of more general social media data during
fine-tuning. Despite this, most models retained high recall scores, capturing a ma-
jority of true suicidal ideation cases. Practical implications of these findings could
influence the methods used by social media organizations and mental health profes-
sionals in identifying suicidal ideation, leading to faster interventions. To advance
this research, future work should aim at obtaining more robustly annotated data,
expanding the hyperparameter search range, and exploring other efficient model
architectures.
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1

Introduction

Suicide is one of the leading causes of death worldwide, with more than 700,000
attributed deaths each year (World Health Organization, 2021). One strong indi-
cator of lifetime risk of suicide is suicidal ideation (henceforth referred to as SI),
which generally refers to contemplation or preoccupation with suicide and/or death,
although it does not have a formally accepted definition (Harmer et al., 2023). Both
suicide and SI are multifaceted issues and their risk factors include both individual
attributes such as internal and external psychopathology (Harmer et al., 2023) as
well as socioeconomic, environmental and cultural factors (Zhang et al., 2022).

In recent years the rapid development of the Natural Language Processing (NLP)
field of research has sparked a growing interest in analyzing the linguistic patterns
of electronic health records (EHR), electronic messages, and social media posts in
order to identify early signs of mental health concerns, such as depression, PTSD,
anxiety, and SI (Greco et al., 2023). This evolving area of study has potential to
assist mental health professionals in evaluation and diagnosis, as well as enabling
quick and efficient targeted actions. Early detection of people at risk for suicide
is identified as a central component in World Health Organization (2018)’s suicide
prevention strategies, and one of the E’s in their LIVE LIFE model approach. The
application of NLP tools for mental health indicators could prove instrumental in
identifying expressions or indications of SI that may otherwise go unnoticed or un-
derreported.

The utilization and analysis of text posted to social media in particular has been
given a lot of attention, in large part owing to the vast amounts of such data avail-
able (Zhang et al., 2022). Regarding the relevancy of such data, Park et al. (2012)
found evidence that the language used on social media can help identify users with
depression and might be suitable for clinical studies and Balani and De Choudhury
(2015) found that users on social networks (Reddit in particular) had a high rate
of self-disclosure related to mental health, where self-disclosure is described as “the
process of making the self known to others” (Joinson and Paine, 2009, p. 235).
Balani and De Choudhury (2015) notes that higher levels of self-disclosure helps fa-
cilitate identification of mental health issues. Regarding suicide and SI in particular,
emergency room assessments by Belfor et al. (2012) found that adolescents, in ad-
dition to communicating suicidality verbally, sometimes do it by electronic means,
including direct messages and social network posts. The authors also report an
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increase in the number of electronic communications of suicidality over the period
studied, and further notes that the majority of such communications only lead to an
emergency room assessment because a peer of the adolescent makes the communi-
cation known to an adult. As such, it is likely that many adolescents do not receive
the care they require or receive such care late.

At the same time as the NLP field’s rapid development to enable the detection of
mental health issues, AI generated text has increasingly become a viable option
to provide responses to people seeking or in need of support. According to Dr.
Cheri McDonald (personal communication, 17 April 2023), tailored AI generated
support messages could provide more effective empathetic support to the receiver,
especially compared to a standardized message that simply states where mental
health resources can be found. In fact, a study evaluating responses given to users
in the Reddit community “AskDocs” found that evaluators graded responses by
chatbots higher in both quality and empathy dimensions as compared to answers
from actual physicians (Ayers et al., 2023).

While there is a growing interest in leveraging advancements in language models,
especially transformer-based models, for mental health applications, comparison and
evaluation of different models has been somewhat problematic in the literature. A
comparison study by Casola et al. (2022) notes that 80% of papers looked at in
the pre-trained transformer model literature lack a clear and comprehensive model
selection process. Furthermore, a quarter of the papers fail to mention a model
selection strategy or final configuration, and while 38% of the articles reviewed do
show the optimally tuned configuration, Casola et al. (2022) report that they fail
to explain the search strategy or search spaces used. These gaps highlight the need
for more systematic and transparent reporting of the training, fine-tuning, evalua-
tion and application processes of transformer-based models in general, including in
mental health research.

This study seeks to advance the intersection of natural language processing and
mental health by using robust and reliable methods to fine-tune and evaluate sev-
eral high-performing transformer models applied to the specific task of identifying
suicidal ideation in social media posts. To ensure robust and reliable results, we
employ random search to optimize the models’ hyperparameters and utilize stable
and replicable methods throughout the process.

The study will involve the collection and preprocessing of several datasets of social
media posts, both with and without expressions of SI. In this study, we focus on
examining data extracted from two prominent social media platforms, Reddit and
Twitter. We are further focusing on English posts, as while detection in other
languages is important, the current landscape of pre-trained transformer models is
predominantly centered around the English language. The performances of these
models will be compared against each other to identify the most effective models for
detecting suicidal ideation in social media posts.

By exploring and evaluating the capabilities of pre-trained transformer models in
this context, this study aims to contribute to the development of more accurate
and efficient tools for identifying individuals at risk, hopefully leading to improved
mental health care and support.
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2

Data

2.1 Overview

Social media data is the focus of this study and the data used comes from the social
media sites Reddit and Twitter.

The data used in this study originally came in several different forms, however only
two main features are used to train and fine-tune the different models. Those two
are the text message (e.g. the social media post) and the assigned label of suicidal
ideation (SI) or non-suicidal ideation (non-SI) for each observation. No identifying
features such as usernames, ages, or gender identities were used or inferred in this
study.

The total data observations obtained for this study come from a combination of
different data sources, some being open-source, others being obtained from previous
research authors and institutions.

2.2 Reddit Data

Reddit is a free social media that is publicly available and is structured into differ-
ent communities, known as subreddits, where people are free to post about different
areas of interest, Reddit has over 100,000 “Active Communities” and more than 13
billion “Posts & Comments” (RedditInc, nd). There are communities that focus
on mental health topics such as those relating to major mood disorders, including
suicidal thoughts, anxiety, and depression; it is from a select few of these commu-
nities that the Reddit data comes from. The number of monthly users of Reddit is
estimated to be around 1.66 billion (Turner, 2023b). Users of Reddit tend to be in
younger age ranges, with 36% reported in the age bracket of 18-29, going down to
3% in the 65+ age bracket, as seen in figure 2.1 (Pew Research Center, 2021).

2.2.1 Suicide and Depression Detection

One of our sources comes from the website “Kaggle” which hosts the publicly avail-
able dataset titled “Suicide and Depression Detection”. The dataset was published
by the user “Nikhileswar Komati” and contains N=232,072 Reddit posts from the
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Figure 2.1: This figure depicts the age demographic distribution of the social media site
“Reddit”. The data comes from the Pew Research Center and is based on a survey of U.S.
adults conducted from January 25 to Feb. 8, 2021. Figure source: Pew Research Center
(2021)

Table 2.1: Overview information about the Reddit Suicide and Depression Detection
dataset

Label
Number of

Posts
Percentage of
Total Posts

non-SI 116,035 50.00
SI 116,037 50.00

communities “SuicideWatch” and “depression”. The posts were collected by Komati
using Pushift API. The collection timeline from the community “SuicideWatch” was
from December 16th, 2008, to January 2nd, 2021; the collection timeline from the
community “depression” was from January 1st, 2009, to January 2nd, 2021 (Komati,
2021).

The method for labeling “SI” or “non-SI”, while not explicitly stated, is assumed to
be observations from the community “SuicideWatch” being labeled as “SI” and posts
from the community “depression” being labeled as “non-SI”. A subsection of the
dataset consisting of 50% “SI” and 50% “non-SI” observations were professionally
evaluated by Dr. Cheri McDonald (personal communication, 8 May 2023) as a part
of this thesis and the assigned labels were determined to be 83% accurate, with a
margin of error on the full dataset of roughly 10%.

Table 2.1 above contains information regarding the distribution of the two different
class labels for the Reddit posts.

2.2.2 Reddit SuicideWatch andMental Health Collection

Another utilized Reddit dataset comes from the group of researchers Ji et al. (2021)
who kindly allowed us to use the Reddit dataset they collected. The dataset is
named as “Reddit SuicideWatch and Mental Health Collection for Suicidal Ideation
and Mental Disorder Detection” and will be referred to in the rest of this study
as “SWMH”. The dataset is made up of N=46,085 text posts from several differ-
ent communities within Reddit relating to different areas of mental health, specif-
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Table 2.2: Overview information about the Reddit SWMH dataset

Reddit
Community

Number of
Posts

Percentage of
Total Posts

depression 18,739 34.47
SuicideWatch 10,181 18.73

Anxiety 9,549 17.56
bipolar 7,616 14.01

ically suicidality, depression, bipolar, and anxiety. The dataset was collected by
the research group using the Reddit official API and a web spider created by the
researchers (Ji et al., 2021). The collection timeline was not specified by the re-
searchers. Similar to the previous dataset, when used in this thesis posts from
“SuicideWatch” are assumed to be expressions of SI while posts from other Reddit
communities are labeled as non-SI. Due to the agreements signed, the dataset was
not shared with outside professionals, but it’s label accuracy was evaluated by the
authors of this thesis to be 89% with a margin of error around roughly 10%.

Table 2.2 contains the specific Reddit communities the posts came from as well as
the number of posts collected from each community.

2.2.3 Reddit Self-Post Classification Task Dataset

A final Reddit dataset was collected which contains posts from communities that
represent a broader spectrum of topics to simulate a more generalized social media
context. The dataset, hosted on Kaggle by the user Mike Swarbrick Jones, is titled
“Reddit Self-Post Classification Task” or RSPCT and contains about 1.013 million
posts from 1,013 different Reddit communities, each with 1,000 examples per com-
munity (Jones, 2018). The post were collected from a two year period, beginning
from June 1st, 2016 and ending June 1st, 2018 (Kwasny et al., 2023).

2.3 Twitter Data

Twitter is also a free social media platform where users post, or “tweet” into the
public space. Unlike with Reddit posts, tweets are limited to a maximum of 280
characters. As of 2022, Twitter has an estimated 450 million monthly active users
(Turner, 2023a). Similar to Reddit, the age demographics follow the pattern of
a larger number of users falling into younger age ranges. Of a group of people
surveyed by the Pew Research Center, 42% of people belonged to the 18-29 year old
age bracket while 7% of people belonged to the 65+ year old age bracket, as seen in
figure 2.2 (Pew Research Center, 2021).

2.3.1 Twitter Suicidal Intention Dataset

One of the Twitter datasets used is publicly available and contains a total of N=8,786
observations, each consisting of a tweet and a label indicating the absence or presence
of suicidal intent. The dataset was obtained from the Github user Laxmi Kant who
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Figure 2.2: This figure depicts the age demographic distribution of the social media site
“Twitter”. The data comes the Pew Research Center from a survey of U.S. adults con-
ducted January 25 to Feb. 8, 2021. Figure source: Pew Research Center (2021)

Table 2.3: Overview information about the Twitter Suicidal Intention dataset

Label
Number of

Posts
Percentage of
Total Posts

non-SI 4,828 54.95
SI 3,958 45.05

has the data hosted in a public github repository named “twitter-suicidal-intention-
dataset” (Kant, 2020). The timeline of tweet collection is not stated and the method
of classifying the tweets was not mentioned. As part of this thesis a subsection
of observations, 50% labeled “SI” and 50% labeled “non-SI”, were professionally
evaluated by Dr. Cheri McDonald (personal communication, 8 May 2023) and the
assigned labels were determined to be accurate in 85% of instances. Applied to the
whole dataset this comes with a margin of error of roughly 10%.

Table 2.3 contains the number and ratio of observations in each class.

2.3.2 Twitter IMHR Dataset

The second of our Twitter datasets comes from the data collected by Dr. Zachary
Kaminsky for the study conducted by Roy et al. (2020) and provided by the Univer-
sity of Ottawa’s Institute of Mental Health Research (IMHR). The dataset consists
of N=4,126,811 twitter posts, originally collected for the task of predicting future
suicidal risk among individual twitter users.

The tweets were originally collected by accessing the Twitter API (Roy et al., 2020).
The authors state that collection of the tweets took place over several years, be-
ginning in September of 2016 and continued until June 2019, and was conducted
through weekly keyword queries (Roy et al., 2020). During the collection period,
the data was professionally evaluated and labeled. For further information about
the data collection and processing, we advise to look over the methods section in
the original paper.

Table 2.4 contains further information about the label distribution of the tweets.
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Table 2.4: Overview information about the Twitter IMHR dataset.

Label
Number of

Posts
Percentage of
Total Posts

SI 1,481 0.0359
non-SI 4,125,330 99.9641

2.4 Data Security

Given the sensitive nature of this project and the data used, while publicly available,
the data was handled with security measures to ensure the privacy of the users
behind the messages. These security measures include storing the data in password
protected environments on local memory systems, with limited access given only to
the authors. It is important to note that no user identification, location, or date-
time information features were collected and no attempt was made to identify the
users based on the posts. During the processing of the social media data, care was
also taken to ensure no extraneous processing of the data occurred beyond what was
needed to prepare the data for the language models. Upon completion of this work
and its relating processes, the data will be permanently deleted from the memory
systems used.

Additionally, this thesis was designed to adhere to the guidelines for ethical research
in the context of health research using social media data put forward by Benton et al.
(2017) to the greatest possible extent. This includes, among other things, protection
of sensitive data, de-identifying messages and posts for analysis if applicable, avoid
sharing of sensitive or personal information and restricting data access. The research
methodology and data handling processes have been carefully crafted to ensure
compliance with these guidelines as well as relevant EU law, while at the same time
striving to generate meaningful insights that contribute to the field.

Agreements for the handling of data where signed in the cases of the SWMH and
IMHR datasets, and consultation sessions with University experts in the field of
data processing were had in order to ensure legal and ethical compliance. While
necessary, as a consequence of these procedures, the initiation of data processing
and model training was substantially delayed within the thesis timeline, thereby
influencing the scope and methodologies employed.
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3

Theory

3.1 Suicidal Ideation

The term suicidal ideation (SI) is used to describe contemplations, preoccupations
and thoughts about death (Harmer et al., 2023) and is an immediate and clinical
precursor to suicide (Bruce et al., 2004; Nock et al., 2008). The literature generally
makes difference between two types of SI, called “active” or “passive” SI. Active
SI refers to ongoing and specific thoughts of suicide where the ideator has a desire
to self harm and has a non-zero level of intention or expectation for death to be
the outcome (Harmer et al., 2023). Passive SI on the other hand refers to a wish
for death but without the acute intent or desire for self harm, although it includes
indifference towards actions that might lead to accidental deaths (Harmer et al.,
2023). Harmer et al. (2023) notes that although a common misconception, the
risk of suicide is not greater for individuals with active SI than for those of passive
SI.

The possible risk factors that lead to suicidality has been a topic for research for over
50 years, but despite this there is no proven predictor that reliably preforms better
than chance when it comes to predicting who will end their life (Harmer et al., 2023).
In meta-analysis only two factors out of several thousand, hopelessness and previous
SI, showed some promise but are in general weak predictors (Harmer et al., 2023).
Other studies researching the risk factors for SI also report socio-demographic factors
such as employment status and age, as well as previous history of mental illnesses
(Borges et al., 2008) as predictors for SI. Additionally, studies using the WHO-5
questionnaire for assessment of mental well being have found that individuals with
suicidal ideation score significantly lower than individuals without (Awata et al.,
2007). The landscape is complex, and Harmer et al. (2023) states that current
theories generally suggest SI and suicidality arise from intricate interplays among
many different factors.

According to Nock et al. (2008), the cross-national lifetime prevalence of suicidal
ideation is 9.2%, and among these the conditional probability of a suicide attempt
is 29%. The authors also found that risk of attempts was at its highest the first year
of ideation. Yet, previous studies in the US have found that only about a third of
those who attempt sought healthcare beforehand (Harmer et al., 2023), and a similar
sentiment was reported by Belfor et al. (2012), who in regards to adolescents who
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communicated suicidality via electronic means noted that a large portion might not
get the help they need in time if no peer notifies an adult or professional. These
findings underscore the potential benefits of implementing efficient early detection
mechanisms, for example on platforms like social media, to identify and support
individuals exhibiting signs of SI quickly. This, in turn, could potentially mitigate
the risk of attempts, particularly within the critical first year of ideation.

3.2 Natural Language Processing andMental Health

Natural language processing (NLP) is a subsection of computer science and AI
research and an umbrella term for the various techniques that focuses on the in-
teraction between humans and computers through the medium of language. It
aims to enable machines to understand, interpret, and generate text in a manner
that resembles human-like comprehension and communication. In recent years NLP
techniques have gained significant traction due to advancements in machine learning
algorithms, vast data availability, and increased computational power. NLP tech-
niques can facilitate various tasks as it relates to the analysis of textual data, such
as feature extraction, emotion and sentiment analysis, text classification, translation
and much more. A growing area of research within psychology and mental health is
concerned with the screening and detection of mental illnesses based on text data,
such as social media posts, electronic health records (EHR) or interviews (Roy et al.,
2020; Zhang et al., 2022).

In their review paper, Zhang et al. (2022) explores studies relating to the detection
of mental illnesses using natural language processing between the years 2012 and
2021. The authors found that traditional machine learning techniques have been
dominant for the majority of this period, but that deep learning based approaches
have become more popular in recent years, with more papers utilizing deep learn-
ing approaches being published in 2021 than papers relying on traditional machine
learning strategies.

As explained by Minaee et al. (2021), traditional machine learning approaches to
text classification typically extracts features from the text, such as statistical prop-
erties of words, or otherwise present the text in an easier way for the model to
process using techniques like Bag-Of-Words, N-gram, Term Frequency-Inverse Doc-
ument Frequency (TF-IDF), GloVe and word2vec. The authors further state that
such methods traditionally follow a two-step approach, which starts with extracting
of designed features that are then fed into classification algorithms. This two-step
approach however has some drawbacks, such as requiring a lot of work with feature
engineering and analysis to achieve good performance, being harder to adapt to new
tasks due to the importance of domain knowledge and being unable to fully capi-
talize on vast training data, as the features or feature templates are predetermined
(Minaee et al., 2021).

Minaee et al. (2021) further provides a short history of deep learning approaches
to text classification, such as feed-forward networks handling text like bag-of-words,
RNN-based models such as Long Short-Term Memory (LSTM) models viewing the
text like a sequence and enabling capture of long term dependencies and CNN-based
models that looks for text patterns in space rather than sequential time. The authors
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notes the emergence of models incorporating the concept of attention and hybrid
models as well as Graph and Siamese neural networks.

Lately however, the standard approach for many NLP tasks have been the trans-
former models (Vaswani et al., 2017) (described in section 3.3), applicable for tasks
such as translation, sentiment analysis and sequence classification (Casola et al.,
2022). Transformer models addressed computational bottlenecks faced by both
RNNs and CNNs, allowing for more parallelization, and enabling the training of
large models on previous impossibly big datasets through the utilization of GPUs
(Minaee et al., 2021). This enables the utilization of language models pre-trained on
large amounts of data in order to learn contextual text representations. The most
common and widely applied such models are BERT (Devlin et al., 2019) (described
in section 3.3.1) or BERT derivatives such as RoBERTA (Liu et al., 2019) or Distil-
BERT (Sanh et al., 2020) (described in sections 3.3.2 and 3.3.3 respectively).

Reviewing the type of data used for NLP studies in the mental health sphere, Zhang
et al. (2022) found that the most common type of datasets are social media texts,
accounting for roughly 80% of the data used by the reviewed studies. These findings
were corroborated by other empirical studies (Greco et al., 2023). Other popular
data sources found were EHRs and interviews. In regards to evaluation of model
performance, Zhang et al. (2022) found the most common metrics used in the
context of NLP and mental health to be accuracy, recall, precision and F1-score.
These metrics are the most utilized for text classification in general, including for
deep learning and transformer based models (Minaee et al., 2021).

In regards to detection of suicidal ideation, previous studies have indicated that
BERT models outperform more conventional Deep Learning approaches like BiL-
STM (Bidirectional Long Short- Term Memory) (Haque et al., 2020). These studies
mainly utilize the base models and not models pre-trained for the purpose, recently
however models adapted to the field of mental health have begun to emerge. For
example, Ji et al. (2021) further developed transformer models in the field of mental
health and created models pre-trained on mental health data. These models were
shown to perform well in a wide variety of downstream mental health tasks, in-
cluding classification of several mental illnesses, suicidal ideation among them, with
improved performance compared to many existing models.

3.3 Transformers

The genesis of contemporary transformer models can be traced back to a seminal
paper published in 2017. The paper is titled “Attention is All You Need” and was
created by Vaswani et al. (2017) who primarily consist of Google researchers, where
they unveiled the transformer neural network architecture. This method facilitated
training on extensive and varied corpora, yielding high-performance on NLP tasks,
even with a limited amount of task-specific fine-tuning data.

Transformer models are based on the concept of self-attention, which is used to
relate the various positions of a single sequence, such as the words in a sentence
or paragraph, to generate a representation of the sequential space (Vaswani et al.,
2017). In short, attention enables the model to understand the relationships between
words in a sentence by making them “pay attention” to other words, considering
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Table 3.1: This table, originally from Vaswani et al. (2017), compares various layer types
in terms of maximum path lengths, per-layer complexity, and the minimum number of
sequential operations required. The variables ’n’, ’d’, ’k’, and ’r’ represent sequence length,
representation dimension, kernel size of convolutions, and the size of the neighborhood in
restricted self-attention, respectively. Table source: Vaswani et al. (2017)

Layer Type Complexity per Layer Sequential
Operations

Maximum Path
Length

Self-Attention O(n2 ∗ d) O(1) O(1)

Recurrent O(n ∗ d2) O(n) O(n)

Convolutional O(k ∗ n ∗ d2) O(1) O(logk(n))

Self-Attention (restricted) O(r ∗ n ∗ d) O(1) O(n/r)

their importance when generating a meaningful representation. This helps the model
capture context and inter-word relationships better, improving the models ability
to understand and generate human-like text.

This transformer architecture addresses the previous limitation that constrained
traditional RNN, CNN, and LSTMmodels that were used for similar NLP tasks such
as text classification. The previous models could not compute tasks in parallel and
as a result ran into memory constraints when working with longer sequential tasks
whereas these transformer models can handle larger amounts of data (Vaswani et al.,
2017). This is done through the utilization of self-attention to compute attention
scores for every word in parallel, modeling the influence of each word against all
other words. This feature allows for greater parallelization compared to CNNs and
RNNs, enabling efficient training of large models on substantial data using GPUs
(Minaee et al., 2021). As a result, transformer models are more computationally
efficient, reducing computational time compared to RNNs and CNNs through a
reduction in maximum path length, as shown in table 3.1 (Vaswani et al., 2017).
This allows for transformers to create stronger context connections across longer
distances, increasing its predictive capabilities.

The architecture of transformers is depicted in figure 3.1 (Vaswani et al., 2017) and
works as follows. The structure is divided into an encoder stack and a decoder
stack. The encoder stack first takes in an input sequence which is tokenized into an
embedding representation space, where words with similar meanings have similar
vector representations, and then a positional embedding is added to the tokenized
input embeddings (Vaswani et al., 2017). From there the tokenized sequence is then
passed first into the multi-head attention layer where the attention mechanism takes
place across multiple attention heads where different attention heads learn different
relations within the same sequence, in our case a social media message. An example
of this is can be seen in figure 3.2 (Vaswani et al., 2017). The output of these multi-
head attention layers are then concatenated together and normalized where they
are then fed into the second sublayer of the encoder, a fully connected feed forward
neural network. The outputs from the neural network are then added together from
each encoder stack layer and normalized to produce an output which can then be
fed into the decoder stack. Throughout the encoder process, residual connections
are made around the multi-head attention layer and the feed forward layer (Vaswani

16



Figure 3.1: This figure depicts the transformer model architecture. The encoder stack
makes up the left portion and the decoder stack makes up the right portion. Figure source:
Vaswani et al. (2017)

et al., 2017). Residual connections were first seen in He et al. (2015)’s paper and
works to alleviate the vanishing gradient problem by allowing the neural network
to bypass layers during backpropagation. The reason for normalizing after each
sublayer is not stated, however based on the work done by Ba et al. (2016), layer
normalization increases training stability and can considerably decrease training
time.

The overall purpose of the decoder stack is to generate a response based on what was
originally input into the encoder stack. The decoder generates one output token at
a time, using softmax to select the most probable token, to create a sequence; after
each token generation the decoder auto-regressively utilizes the previously generated
output tokens as an input into the decoder stack at each step (Vaswani et al.,
2017). The decoder stack follows a similar structure, changing outputs into an
embedding representation with a positional encoding feature. The decoder, however
contains three sublayers, a masked multi-head attention layer, a standard multi-head
attention layer, and a feed forward neural network layer, with concatenation and
layer normalization after each sublayer in the decoder, as well as residual connections
around each sublayer; this process is depicted in figure 3.1 (Vaswani et al., 2017).
The masked multi-head attention layer is different from the standard multi-head
attention layer in that it is not able to attend to tokens in subsequent positions,
which is done to ensure predictions on only “known outputs” at each step (Vaswani
et al., 2017).

These transformer models utilize the self-attention mechanism through multi-head
attention layers as depicted in figure 3.3 (Vaswani et al., 2017). These multi-headed
attention layers are primarily comprised of a form of attention Vaswani et al. (2017)

17



Figure 3.2: This figure depicts the isolated attention for just the word “its” from two
different attention heads. The word “its” has a learned relation to the word “Law” in one
attention head, and to the word “application” in another attention head. Figure source:
Vaswani et al. (2017).

describe as “Scaled Dot-Product Attention”. The attention operation essentially
maps a query and a key-value pair to an output, all of which are structured into
vector space for each token. The formula for how attention is calculated is shown
in equation 3.1 below.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (3.1)

The Q, K, and V matrices are the query, key and value matrices and dk is the
dimension of the queries and keys. They are derived by applying three linear trans-
formations (by weight matricesWnxk) to the embedding matrix of the input sequence
(Xmxn). The dot-product Q ∗KT yields the attention score matrix, where a larger
value means more attention since a higher dot product indicates more similar vec-
tors. This is then scaled by dk in order to avoid vanishing gradients before being
compressed into the [0,1] space by the softmax function. Finally it is multiplied by
the value matrix V which yields new adjusted embedding for the tokens. By forcing
the tokens to consider each other we adjust the value matrix to better represent the
whole sequence. By having multiple attention heads the model can apply multi-
ple transformations to the embeddings, each with its own parameters and semantic
focus.

The user “dontloo” on the Cross Validated forum gives an intuitive explanation to
this attention mechanism.

The key/value/query concept is analogous to retrieval systems. For ex-
ample, when you search for videos on Youtube, the search engine will
map your query (text in the search bar) against a set of keys (video ti-
tle, description, etc.) associated with candidate videos in their database,
then present you the best matched videos (values). (dontloo., 2019)
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Figure 3.3: Composition of the Scaled Dot-Product Attention process (left) and the Multi-
Head Attention process (right). Figure source: Vaswani et al. (2017).

Additionally, transformers utilize positional encoding to register the location of each
token in the original input and output sequence. This is fundamental to the trans-
former architecture because they do not contain recurrent properties such as those
that exist in recurrent neural networks (RNNs) and long short-term memory neu-
ral networks (LSTMs). The recurrent process for RNNs, and by relation LSTMs,
is depicted in figure 3.4 (Goodfellow et al., 2016). These positional encodings, as
described by Vaswani et al. (2017), insert information regarding the relative and
absolute location of each token in the sequence.

It is this transformer architecture that forms the foundation of today’s large language
models such as OpenAI’s ChatGPT and Google’s Bard, as well as the pre-trained
BERT models that make up the base of the models used in our study.

3.3.1 BERT

Bidirectional Encoder Representations from Transformer, known by the acronym
BERT, was developed by Devlin et al. (2019) at Google AI Language and utilizes
the transformer architecture and attention mechanism that was created by Vaswani
et al. (2017). The key mechanism that makes BERT a versatile and computation-
ally powerful model is its bidirectional ability to learn the context of text documents
using transformers in combination with word embeddings. BERT is able to learn
from left-to-right word contexts as well as right-to-left word contexts, which be-
fore ELMo (Peters et al., 2018) and its preceding paper by Peters et al. (2017),
was a novel concept, with traditional methods only learning from left-to-right pre-
trained embeddings. BERT advanced the NLP field because previous methods such
as ELMo used bidirectional LSTMs which were “not deeply bidirectional” (Devlin
et al., 2019) whereas the transformer framework allows for long distance word de-
pendencies and contextual relations. BERT out performed previous state-of-the-art
NLP methods and models on 11 standard NLP benchmark tasks, becoming the go
to state-of-the-art model for a wide variety of NLP tasks.
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Figure 3.4: This figure depicts the “computational graph” of the recurrent process that
make up the foundation of recurrent neural networks. Here x represents the input sequence
values, W represents the weight matrix, h represents the hidden units, o represents the
output values, L represents the Loss of each output, and y represents the target value.
Figure source: Goodfellow et al. (2016).

Figure 3.5: This figure depicts the processes that transforms the input sequence into the
embedding representation that BERT then acts upon. Figure source: Devlin et al. (2019).

In addition to the position encoding of input tokens, BERT also includes the special
pre-defined tokens “[CLS]” and “[SEP]” (Devlin et al., 2019). The [CLS] token
is placed at the beginning of every sequence and is used as a way to aggregate
knowledge for classification tasks (Devlin et al., 2019). The [SEP] token on the
other hand is used to separate sentence pairs which are packed into a single sequence
(Devlin et al., 2019). This process of adding and transforming the input sequence
before the transformer stacks of BERT is illustrated in figure 3.5 (Devlin et al.,
2019).

BERT is able to be applied to a variety of tasks because it has been pre-trained on
a large dataset and because of its ability to be easily fine-tuned. BERT was pre-
trained using English Wikipedia which contains 2,500 million words (Devlin et al.,
2019) and BookCorpus which contains 800 million words that come from a large
corpus of books collected by Zhu et al. (2015) (see Devlin et al., 2019). BERT was
pre-trained to perform well on two tasks, the first being predicting masked words
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Figure 3.6: A high level perspective of the process of pre-training and fine-tuning for BERT.
Excluding the output layers, the same architecture based on the transformer architecture
by Vaswani et al. (2017) is used in both processes of BERT. Figure source: Devlin et al.
(2019).

and the other being next sentence prediction (Devlin et al., 2019). However, it is
important to note that during the pre-training process, unlabeled sentences were
used so that BERT can be used as a generalized pre-trained model (Devlin et al.,
2019). The pre-trained BERT model can be further fine-tuned for specific tasks by
plugging “the task-specific inputs into BERT and fine-tune all the parameters end-
to-end” (Devlin et al., 2019, p.5) with a relatively inexpensive amount of compute
using a TPU or a GPU because of the transformer’s ability to run tasks in parallel.
An illustration of the pre-training and fine-tuning processes of BERT is depicted in
figure 3.6 (Devlin et al., 2019).

In total, the base BERT model put forward by Devlin et al. (2019) is made up
of 110 million parameters. Those parameters come from 12 transformer blocks,
a hidden size of 768, and 12 self attention heads (Devlin et al., 2019). Based on
this architecture, the base BERT model outperformed previous state-of-the-art NLP
methods and models on benchmark tasks including the General Language Under-
standing Evaluation (GLUE), the Stanford Question Answering Dataset (SQuAD)
v1.1 & v2.0, and the Situations with Adversarial Generations (SWAG) dataset (De-
vlin et al., 2019).

3.3.2 RoBERTa

Submitted in July 2019, Liu et al. (2019) at Facebook AI created an improved
version of BERT under the name RoBERTa, standing for Robustly optimized BERT
approach. The Facebook team sought to optimize Google AI’s large BERT model
which is made up of 24 transformer layers, a hidden size of 1024, and 16 attention
heads for an approximate 355M parameters. They concluded that performance could
be improved by

...training the model longer, with bigger batches over more data; remov-
ing the next sentence prediction objective; training on longer sequences;
and dynamically changing the masking pattern applied to the training
data (Liu et al., 2019, p.10).
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Facebook AI experiments with larger batch sizes of 8K rather than the original
BERT’s 256, finding success in performance improvements while keeping total train-
ing quantity the same (Liu et al., 2019). Along with this, RoBERTa experimented
with step sizes of 100K, 300K, and 500K compared BERT’s original step size of 1M
(Liu et al., 2019). The authors found performance improvements in the increasing
of step size from 100K to 500K, while using a batch size of 8K for each step.

Specifically, RoBERTa trains using 160GB of uncompressed text data compared
to the original 16GB of uncompressed text data. In addition to BookCorpus and
English Wikipedia, the datasets CC-News (76GB) , OpenWebText (38GB), and
Stories (31GB) are used for a larger training dataset, which respectively adds English
news, general web, and story-like content (Liu et al., 2019).

As described by Liu et al. (2019), RoBERTa was trained using mixed precision
floating point arithmetic. The reason is not stated, however mixed precision train-
ing can speed up computation while maintaining performance (Micikevicius et al.,
2018).

In Devlin et al. (2019)’s pre-training of BERT, the masking of words was done once
in a static manner, where each epoch of training saw same words masked repeatedly.
Liu et al. (2019) found that masking words in a new pattern every time a sequence
was introduced into the model resulted in a slight improvement and so was used to
pre-train RoBERTa.

3.3.3 DistilBERT

A smaller, lightweight variant of BERT named DistilBERT was created by Sanh
et al. (2020) at Hugging Face in October 2019. In short, Sanh et al. (2020) were
able to distill BERT down in size by 40% (down to a total of 66 million parameters)
and increase computational efficiency by 60% all “while retaining 97% of its language
understanding capabilities”. This was done through knowledge distillation, reducing
architecture size, teacher-student initialization, and by applying best practices for
pre-training BERT (Sanh et al., 2020).

DistilBERT was pre-trained using a technique known as knowledge distillation (Bu-
cilu et al., 2006; Hinton et al., 2015) as discussed in Sanh et al. (2020) where a
smaller student model (e.g. DistilBERT) learns from a larger teacher model (e.g.
BERT). This is achieved through the introduction of a triple loss training combi-
nation. The first loss, Lce, is created by distilling the “loss over the soft target
probabilities of the teacher”:

Lce =
∑

ti ∗ log(si) (3.2)

where ti refers to the teacher and si refers to the student (Sanh et al., 2020). During
training, softmax-temperature is used:

pi =
exp(zi/T )∑
j exp(zj/T )

(3.3)

which uses T to adjust the smoothness of the output distribution and the model
score (zi) for class i; where T is set to 1 when the model is used for testing and
inference (Sanh et al., 2020). Along with Lce, the loss of predicting masking words
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(masked language modeling) Lmlm as used by BERT in Devlin et al. (2019), and
a cosine embedding loss Lcos which causes the student and teacher hidden state
vectors to become more equivalent, were used together to create the triple loss
training combination for DistilBERT (Sanh et al., 2020).

The architecture of DistilBERT is shrunk by reducing the number of layers by
a factor of 2 as compared to the general architecture of BERT. Along with this,
token-type embeddings and the pooler were also removed to increase computational
efficiency (Sanh et al., 2020). Additionally, BERT is also leveraged as a teacher
network by adapting every other layer as an initialization for DistilBERT (Sanh
et al., 2020).

Training of DistilBERT is also done using the best practices discovered during the
creation of RoBERTa: using large batch sizes, dynamic masking, and excluding next
sentence prediction loss (Liu et al., 2019; Sanh et al., 2020).

3.4 Transfer Learning

Transfer learning is the process of applying (transferring) knowledge gained by solv-
ing one task when solving other, similar, tasks. Transfer learning has become more
and more prevalent within NLP research, where large language models like BERT
or GPT are pre-trained by preforming various tasks on vast amounts of unlabeled
data and then fine-tuned for more specific downstream tasks. When fine-tuning, the
training process is continued with the parameters learned during pre-training but
with a smaller, more task specific, and generally labeled data sets. When it comes
to transformer based models like BERT, this fine-tuning process can be relatively
fast due to the good internal representation of language the model gained during
pre-training. Leveraging pre-trained models has been shown to yield superior per-
formance across a variety of Natural Language Processing tasks (Houlsby et al.,
2019).

3.5 Hyperparameter Optimization

Hyperparameter optimization is the process of tuning the hyperparameters of ma-
chine learning models to increase performance, especially when it comes to the wide
range of options that exist in neural network based models (Feurer and Hutter,
2019). Hyperparameter optimization has a number of practical implications, includ-
ing reducing the burden of manually researcher hyperparameter tuning, improving
performance of models, and “improving the reproducibility and fairness of scientific
studies” (Feurer and Hutter, 2019).

3.5.1 Random Search

Random search is a specific type of hyperparameter optimization method which ran-
domly explores different combinations of hyperpameters within a predefined search
space defined by the researcher. An illustration of random search compared against
grid search is depicted in figure 3.7 (Bergstra and Bengio, 2012). The benefit of
random search is that it is a simple, easily implemented process that serves as a
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Figure 3.7: A depiction of grid search versus random search for hyperparameter opti-
mization. Nine trials are performed where the grid layout searches equally across both
hyperparameters where as the random layout randomly divides the trials across both hy-
perparameters. The results demonstrate the failure of grid search in higher dimensions, as
compared to random search which is able to capture the important region of the hyperpa-
rameters because of its ability to explore. Figure source: Bergstra and Bengio (2012).

baseline hyperparameter optimization algorithm because it does not consider any
assumptions about the model it is optimizing and will eventually reach a point of
performance very close to the overall optimum (Feurer and Hutter, 2019). This is
due to the fact that it is able to explore across higher dimensions due to its ability
act in a random manner, additionally giving it the benefit of being computationally
more efficient than a traditional grid search (Bergstra and Bengio, 2012).
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4

Methods

4.1 Models

Previous studies have shown that further pre-training of transformer models that is
domain or task relevant improves its performance on downstream tasks (Sun et al.,
2020). For this reason, it’s of interest to look at models pre-trained in the mental
health domain to compare their performances at the specific task of classifying
suicidal ideation. In this paper we fine-tune and evaluate a total of four pre-trained
language models (PLMs), developed by Ji et al. (2022), Naseem et al. (2022) and
Vajre et al. (2021). Additionally we evaluate DistilBERT, a smaller version of
BERT which has not received domain or task relevant pre-training.

In their paper titled “MentalBERT: Publicly Available pre-trained Language Models
for Mental Healthcare”, Ji et al. (2022) develop and release two pre-trained language
models (PLMs), MentalBERT and MentalRoBERTa, with the goal of benefiting
machine learning in the mental health research space. The authors state that the
models were additionally pre-trained using mental related Reddit data. The authors
goes on to show that the released models preform better in mental health detection
and classification tasks when compared to other pre-trained language models. We
here explore the uncased versions of MentalBERT and MentalRoBERTa for fine-
tuning, hyperparameter optimization and testing. Both of the models evaluated
here are based on the same base BERT architecture which is discussed in the theory
sections 3.3.1 and 3.3.2. Due to limitations in time and computational resources,
all models developed by Ji et al. (2022) cannot be evaluated. Specifically, neither
the cased nor the larger version of the MentalBERT variants will be fine-tuned and
evaluated.

Naseem et al. (2022) developed and made available the PLM PHS-BERT, a pre-
trained version of BERTlarge and the largest model used in this study. The model
was developed for use in social media related public health surveillance (PHS) and
benchmarked against existing PLMs. The authors state that PHS-BERT was ad-
ditionally pre-trained using health related tweets using keywords related to disease,
symptom, vaccine, and mental health. Some of the downstream tasks the model
was fine-tuned and evaluated on included suicidal risk detection, stress detection
and identification of depression in users. In all tasks the PHS-BERT showed im-
provement in F1 scored compared to the PLMs it was compared to. The models
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performance on the detection of latent suicide risk was benchmarked against Men-
talBERT by Ji et al. (2022) using the R-SSD dataset by Cao et al. (2019) and
showed better performance. Our data set, context, and specific problem is however
different from the benchmarked task as the task here is to classify expressions of
suicidal ideation and not latent suicide risk.

Finally we also evaluate the performance of the PLM PsychBERT, introduced by
Vajre et al. (2021) as a BERT model pre-trained on both formal academic texts as
well as informal text from social media regarding mental health. The model showed
top performance in classification tasks related to mental health sequences but was
not benchmarked against any of the other models in this study. PsychBERT was
developed to improve interpretability and explainability compared to other classifiers
in the field.

In addition to the PLMs outlined above, the DistilBERT model introduced by Sanh
et al. (2020) is also included in this evaluation. The performance of DistilBERT in
relation to the rest is of extra interest both because it’s not pre-trained in the mental
health domain and because it’s much smaller in terms of memory occupied and is
faster to train than the models described above. As such, should the model perform
comparably well in detecting suicidal ideation it might be preferred for deployment
in situations where computational resources are scarce, or perhaps serve as a basis
for future, smaller, PLMs.

4.2 Metrics

The main metrics used to evaluate and test the models are accuracy, F1-score, which
consists of recall and precision, and the average precision (AP) metric. The metrics
are based on the models performance in correctly predicting true positive and true
negatives, with an example of a true positive (SI) case being “I feel so alone, I just
want it to stop. I don’t plan on being around I just want to end it all” and an
example of true negative (non-SI) being ”This pizza is to die for!”. Note that these
examples are created by the authors for the sake of illustration and are not actual
social media posts.

Precision is calculated by taking the number of true positive predictions and dividing
it by all positive predictions, its formula presented in equation 4.1 below.

Precision =
TruePositives

TruePositives+ FalsePositives
(4.1)

A high precision value therefore means that the model is not producing a large ratio
of false positives, which in our case means labeling non-SI posts as SI.

Recall is a complementary measure to precision, and is calculated by taking the
number of positive predictions and dividing it with the number of observations
which should have been predicted as positive. As such, recall measures the models
ability to correctly identify positive cases, and a high recall value means that a high
number of the positive (SI) observations are correctly classified. The formula for
recall is presented in equation 4.2 below.
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Recall =
TruePositives

TruePositives+ FalseNegatives
(4.2)

As neither precision or recall is enough alone to determine performance of a model,
the F1 metric is commonly utilized. The F1 metric is the harmonic mean of both
recall and precision, combining both aspects into one metric. The formula for the
F1 metric is shown in equation 4.3 below.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(4.3)

An alternative way to evaluate the models performance with one number is the
average precision (AP) score. The AP score can be particularly useful in cases when
the positive class (in this case, sequences expressing SI) may be rare compared
to the negative class. Because it takes into account the ranking of the predicted
probabilities that each sequence is an expression of SI, it provides a more informative
measure of performance than just looking at overall accuracy. The equation for the
AP score is listed below (4.4), which is the formula used by scikit learn, the module
we employ for the metrics.

AP =
∑
n

(Rn −Rn−1) ∗ Pn (4.4)

The notations Rn and Pn are the recall and precision at the nth threshold respec-
tively (Scikit-Learn, nd).

4.3 Robust Random Search

In order to avoid issues regarding reproducibility and to avoid using unstable meth-
ods that are otherwise prevalent in the PLM literature (Casola et al., 2022), a robust
approach to hyperparameter optimization was taken for the models included in this
study. Specifically we preform a random search strategy for hyperparameter opti-
mization, wherein each randomized hyperparameter combination is fine-tuned three
times with different (random) seeds. As such, the performance of the model across
the chosen metrics can be more reliably ascertained, and the results are reported
with standard deviations.

A random search strategy is utilized as Bergstra and Bengio (2012) found the ap-
proach to be more computationally efficient than pure grid search, while still finding
better models in a majority of the tested circumstances. The authors found the ran-
dom approach especially efficient when search space is high-dimensional or where
the impact of certain hyperparameters is much larger than others. Because each
separate trial (evaluation of a combination of hyperparameters) in a randomized
search are independent and identically distributed, meaning every individual trial is
considered separate and doesn’t depend on the outcome of the others, it’s easy to
add new trials, to stop and continue later or to utilize several units to parallelize the
process (Bergstra and Bengio, 2012). These properties are valuable when working
with limited resources.
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Random search works by randomly drawing hyperparameter values from defined
search space(s) or distribution(s) for a set number of iterations (trials). While
there are pre-built, efficient modules available to perform these types of searches for
transformer models, due to complications between versions of python, CUDA and
these modules, as well as the time constraint of the project, a custom random search
solution was instead implemented.

The hyperparameters explored are learning rate, weight decay, batch size, dropout
rate, and precision type. They were selected based on their acknowledged impact
on the performance of transformer models. There exist several additional hyperpa-
rameters such as optimizers, learning rate schedulers or warmup-ratios, but due to
time and computational constraints we limit the parameters explored.

4.3.1 Search Space

A search space, which refers to the range of possible values that can be assigned to
each hyperparameter, was defined for each of the selected hyperparameters. These
search spaces were kept small due to limitations in both time and computational
resources, and additional focus was instead put on making the results robust and
replicable.

Learning Rate

The available options for the learning rate is set to the discrete finite space [5e-6,
1e-5, 5e-5]. Previous studies regarding BERT and its variants have generally kept
to the 1e-5 to 5e-5 range when fine-tuning for downstream tasks (see Devlin et al.,
2019; Liu et al., 2019 & Lan et al., 2020) and the papers the above models come from
have stayed this course (see Ji et al., 2022; Naseem et al., 2022 & Vajre et al., 2021).
Initial testing revealed that higher learning rates generally led to poor performance,
but the case was not as clear for lower learning rates. As such, 5e-6 is also included
in the search range.

Weight Decay

This hyperparameter specifies the decoupled weight decay (Loshchilov and Hutter,
2019) to apply to every layer in AdamW, excluding bias and layernorm (Hugging-
Face., nd). Appropriate weights vary per task and dataset; Devlin et al. (2019)
employs a rate of 0.01 when fine-tuning BERT for downstream tasks while Liu et al.
(2019) uses 0.1 or 0.01 depending on the context. We define the discrete search
space to be [0.001, 0.01, 0.1].

Batch Size

Batch sizes are known to influence fine-tuning results and is one of the most com-
mon hyperparameters to tune. Previous studies have generally utilized batch sizes
between 16-64 for fine-tuning BERT or BERT derived models for downstream tasks
(Devlin et al., 2019; Liu et al., 2019; Sun et al., 2020), with some going so high as
128 (Lan et al., 2020). Here we employ a search space defined by [16, 32, 128], in
order to try the most common choices as well as a larger than typical size. Larger
batch sizes may also affect training time of the model.
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It is important to note, however, that the search space defines effective batch size.
Due to limitations in GPU memory, batch sizes over 8 can’t be loaded simultaneously
on the GPU. Larger effective batch sizes are achieved through gradient accumulation
where, instead of updating the model weights after every batch, the gradients are
accumulated over multiple smaller batches before performing an update. This allows
for larger batch sizes than would otherwise be allowed by the GPU memory limit
(HuggingFace, 2022). As such, the batch size on the GPU was always kept at 8 in
order to maximize GPU utilization, except for PHS-BERT where the batch size on
the device was set to one with similar effective GPU utilization, and larger effective
batch sizes were achieved through gradient accumulation.

Dropout Rate

Dropout is a regularization technique that works to counter overfitting of models
and to improve generalized performance by randomly turning off a certain fraction
of neurons during each iteration (Srivastava et al., 2014). For BERT-related models,
a dropout rate of 0.1 is very common (Devlin et al., 2019; Liu et al., 2019) but other
rates are also prevalent and the rate is largely context dependent (Srivastava et al.,
2014). We utilize a search space of [0.1, 0.3, 0.5] which covers a relatively wide range
compared to existing approaches.

Precision type

Precision type refers to the format in which numbers are stored and processed during
training and fine-tuning the models. Floating point 32-bit, or FP32, allocates as the
name suggests 32-bits for storing each number which results in a large range of pos-
sible numbers and a high degree of precision and is generally the standard precision
used. Floating point 16-bit (FP16) allocates half as many bits for storing numbers,
leading to a lower range of available numbers and lower precision in exchange for a
smaller memory footprint. Put simply, if you do not require the range of numbers
and precision offered by FP32, FP16 is a viable option which offers faster transfer
operations through memory bandwidth and faster mathematical calculations due
to the reduced precision (particularly on GPUs) (NVIDIA., 2023). The concept of
mixed precision training, first put forward by Micikevicius et al. (2018), applies
this idea by storing as many variables as prudent in half-point (FP16) format for
the calculations and converting them back to FP32 for the optimization step (Hug-
gingFace, nd). Mixed-precision training yields significant computational speed-ups,
especially if using newer versions of NVIDIA GPUs (NVIDIA., 2023).

While rarely explicitly mentioned, FP32 is seemingly the default precision used
also in the space of language models, however mixed precision training is explicitly
utilized for RoBERTa (Liu et al., 2019). Initial testing for this thesis saw little to
no difference in accuracy between FP32 and mixed precision training, and follow
up tests performed on the fine-tuned models showed similar results (see Appendix
A.1). As such, the precision options available during the hyperparameter search
were limited to mixed precision training, using either FP16 or BF16. B-Float 16
or BF16 also utilizes 16-bits but is not as precise as FP16, instead using those bits
to provide a much larger dynamic range and can therefore be valuable for avoiding
overflow problems which can plague FP16.
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Issues between hardware and software versions caused Tensor Float 32-bit (TF32),
also known as “the magical data type” (HuggingFace, nd) due to its tendency to
speed up operations, to be unavailable for the computation. TF32 has been shown
to increase throughput in several contexts compared to FP32 and can be used in
conjunction with FP16 or BF16 for the computation of the optimization step.

Other Hyperparameters

We train using the default HuggingFace optimizer AdamW, a version of the adaptive
gradient method Adam (Kingma and Ba, 2017) where the weight decay has been
decoupled from the gradient updates (Loshchilov and Hutter, 2019). In short, L2
regularization adapts the sums of the loss function’s gradient and the regularizer’s
gradient, while decoupled weight decay only adapts the loss function’s gradients,
keeping the weight decay step separate. Loshchilov and Hutter (2019) showed that
implementing weight decay with Adam instead of L2 regularization significantly
improved its generalisation performance.

Additionally, a linear learning rate scheduler with a warm-up period was used to
gradually reduce the learning rate during training, helping the optimization process
to converge more effectively, a common practice (Goodfellow et al., 2016). The
linear scheduler is a common choice (Vaswani et al., 2017; Devlin et al., 2019; Liu
et al., 2019; Goodfellow et al., 2016). The warm-up ratio was set to 5%, meaning
for the first 5% of estimated steps the learning rate increases from zero to the
maximum learning rate (chosen by the random hyperparameter choice) to then
decrease linearly. The warm-up ratio is a hyperparameter and appropriate values
vary depending on the task and dataset, although rules of thumb exist (Ma and
Yarats, 2021). Rates in previous studies have varied; Vaswani et al. (2017) used a
warmup ratio of 4% while Liu et al. (2019) had a warm-up ratio of approximately
6%.

Given additional computational resources, these hyperparameters could have been
fine-tuned as well instead of being fixed for the random search procedure.

4.3.2 Early Stopping

When fine-tuning the models during the robust hyperparameter random search,
we also employed early stopping, meaning the fine-tuning process was stopped if
the model did not show improvement in a certain metric during a limited training
period. Early stopping has been shown to be equivalent to L2 regularization, but as
described by Loshchilov and Hutter (2019), decoupled weight decay is not the same
as L2 regularization and combinations of weight decay and early stopping are not
uncommon (see, for example, Liu et al., 2019).

The metric chosen to base the early stopping procedure was the loss from the eval-
uation dataset. The loss function used is Cross Entropy-loss, which measures the
difference between the predicted probability and the true label. As such, if the model
predicts a high probability (higher confidence) for the correct label the loss will be
smaller, while lower probability in correct predictions will yield larger loss values.
The reverse is true when the model produces incorrect predictions. Put differently,
a lower cross-entropy loss value implies that the model’s predicted probabilities are
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closely aligned with the true class labels, indicating greater confidence in the models
predictions.

The patience of the early stopping procedure, meaning how many iterations can
pass with no improvement in evaluation loss before the training is stopped, was
set with evaluation steps to be equal to 1.5 epochs. Thus, if the model did not
improve for 1.5 epochs the training was interrupted, the best model achieved during
the training in terms of evaluation loss was retrieved and recorded. The patience
was chosen to provide the model with enough leeway to bounce back based on the
relatively low number of epochs expected, while also not increasing computational
time unnecessarily.

4.3.3 Sequence Length

The sequence limit for the standard BERT, DistilBERT and RoBERTa models is
512 tokens. This does not, however, mean that the maximum length of a submitted
sequence is 512. Due to [CLS] and [SEP] tokens, as well as special tokens for certain
word forms, the actual word limit is lower and dependent on the input in question.
Utilizing 512 as the upper limit however, we can get a feeling of the number of our
observations which will be truncated, meaning cut-off to fit the 512 maximum token
sequence.

In figure 4.1 below we can see that while a majority of the inputs contain less than
512 words, a few (roughly 5%) contain more than 512 words and are guaranteed to
be truncated.

Figure 4.1: This histogram displays the word count distribution of the training data set.
The x-axis represents the number of words, and the y-axis shows frequency. The last red bar
groups records with over 512 words and thus the number of sequences that are guaranteed
to be truncated.

Additionally, due to PHS-BERT being based on large BERT it takes up more mem-
ory on the GPU and the maximum token length was reduced to 256 in order to
enable any training to be possible. The impact of this in terms of inputs truncated
is visualized in figure 4.2 below, where we can see that roughly 83.5% of the obser-
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vations contain 256 or fewer words, while roughly 95.0% of the observations contain
less than 512 words.

Figure 4.2: The cumulative plot illustrates the percentage of inputs with a word count
below or equal to a value on the x-axis. Horizontal and vertical lines intersect the plot at
x = 256 and x = 512 to illustrate the percentage of inputs unaffected by a maximum input
length of 256 or 512 respectively.

4.4 Datasets

Below the datasets used for training and testing the best performing models are
described.

4.4.1 Training Datasets

For the fine-tuning of the models during the random search, a combination of several
of the datasets presented in section 2 were used. This process begins by undersam-
pling the Twitter Suicidal Intention dataset and SWMH dataset to address the issue
of class imbalance, as the non-SI class is overrepresented in both datasets. Such an
imbalance could lead to biased performance, as the model may overfit to the ma-
jority class and struggle to generalize well for the minority class. Undersampling
can help ensure that the models assign equal importance to both classes during
training and learns meaningful representations of both classes, thereby improving
generalization performance (Dal Pozzolo et al., 2015).

Undersampling works by randomly selecting a subset of majority class samples,
making the number of observations of this class more comparable to the number of
minority class observations (Dal Pozzolo et al., 2015). It is important to note that
undersampling is not without it’s problems, as it may lead to the loss of valuable
information from the majority class, as some samples are removed from the dataset.
Furthermore it means that the distribution of training and test/production datasets
might not be the same, called a “distribution shift”, which could result in discrep-
ancies between the performance in training and production (Massachusetts Institue
of Technology, nd).
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By undersampling we were left with a balanced SWMH dataset containing 10k SI
and non-SI labels respectively, and a Twitter Suicidal Intention dataset consisting of
a total of 7,996 tweets, half of which (3,998) are labeled as SI. A subset of the already
balanced Reddit Suicide and Depression Detection dataset was then selected, 8k of
each label. We then combined the three balanced datasets into one balanced data
set consisting of a total of 43,996 observations. Ideally the IMHR dataset would
also have been utilized here in order to get a better balance between Reddit and
Twitter observations, however access to this dataset was not yet functional at the
commencement of the random search. The reasoning behind the greater number
of observations selected from the SWMH dataset than from the Reddit Suicide and
Depression Detection dataset is that SWMH was the product of a published research
paper and was assumed to be of slightly higher quality. At this point the evaluation
of the datasets by Dr. Cheri McDonald and the authors had not yet been completed,
however, after evaluations were made the assumptions were shown to very likely be
true.

After creation of this combined dataset, 20% of its (8,799) observations were set
aside as testing data to be used once the random hyperparameter search was com-
pleted and the best combinations for each model selected. The remaining 35,197
observations were used for the random hyperparameter search, split 70% for training
and 15% each for validation and testing.

4.4.2 Testing Datasets

Apart from the testing dataset set aside using the same distribution as the training
dataset, we utilize two other datasets to test the best performing models in a more
generalized social media setting.

The first of the generalized datasets is comprised of 182 positive SI cases from the
SWMH dataset that were not part of the original training or testing datasets, and is
combined with a random subset of 10,000 observations from 50 randomized Reddit
communities sourced from the RSPCT Dataset (Jones, 2018). This creates a more
imbalanced dataset with a wider variety of sequences, simulating a more realistic
scenario for implementation on Reddit although the true ratio of SI to non-SI is
unknown and would depend on deployment details. Going forward, this dataset is
referred to as the Normal Reddit dataset.

Additionally, a subset of the IMHR Twitter dataset from Roy et al. (2020) consisting
of 1,481 SI observations and 100,000 non-SI observations is used to test the models’
performance on a more realistic Twitter scenario. Going forward this dataset will
be referred to as the IMHR Twitter dataset.

4.5 Hardware and Time Consumption

The random search, fine-tuning and testing of the model were primarily carried out
on an NVIDIA 3060TI graphics card with 8GB of memory. Additionally, the unit
used for the computations had 16GB of RAM. Total time required for the random
search was approximately six days.
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5

Empirical Analysis

This section will present the results of the robust hyperparameter random search
during the fine-tune training of the pre-trained transformer models. Each random
combination for each model was evaluated at 3 random seeds, across a total of
40 models (8 times total for each BERT model variant). In addition to this, the
best hyperparameter combination found for each model during the random search
will be presented, as well as their performance during the random search against a
validation dataset and against the testing datasets.

5.1 Results

After performing the robust hyperparameter random search, the best performing
hyperparameter combination for each model is presented in table 5.1. In addition
to this, the table also includes the number of epochs it takes for the given model to
reach convergence, i.e. the lowest evaluation loss value, which is evaluated every 0.5
epochs and called back if there are 3 evaluation steps of non-decreasing loss. For a
full overview of all combinations tested during the random search, the seeds used,
and their results, please see the figures and tables in Appendix B.

The most apparent result from the hyperparameter search, according to table 5.1,
is that a dropout rate of 0.1 performs the best for all models. Furthermore, it seems
most models with an appropriate tune converge after 2-4 epochs, with 4 out of 5 of
the models converging after 2 epochs of fine-tuning. Effective batch size does not
seem to play an important role in determining model performance in this specific
context, as all three configurations [16, 32, 128] make an appearance. A learning
rate of 1e-05 and a weight decay of 0.1 make up the top 3 out of 5 hyperparameter
choices found, with a learning rate of 5e-05 and a weight decay of 0.001 making up
the other 2 of the 5 hyperparameters chosen. Most models, 4 out of 5, chose to use
the half/mixed-precision approach offered by FP16.

The best performances for each model during the robust hyperparameter random
search are described in table 5.2. The best performing model, MentalRoBERTa, has
a validation accuracy of 91.4% and F1-score of 91.6% while the worst performing
model, DistilBERT, has a validation accuracy of 89.1% and F1-score of 89.3%, a
difference of only 2.3 percentage points for both metrics. The average training run-

34



Table 5.1: Best performing hyperparameter combination for each model from the robust
random search trials.

Model
Learning
Rate

Weight
Decay

E.
Batch
size

Dropout
Rate

bf16/
fp16

Epochs at
Convergence

MentalRoBERTa 1e-05 0.1 128 0.1 bf16 4.0
MentalBERT 1e-05 0.1 16 0.1 fp16 2.0
PHS-BERT 1e-05 0.1 32 0.1 fp16 2.0
PsychBERT 5e-05 0.001 128 0.1 fp16 2.0
DistilBERT 5e-05 0.001 32 0.1 fp16 2.0

Table 5.2: Performance metrics using the best performing hyperparameter combinations
for each model found during the robust random search trials against the validation dataset.

Model
Avg.
Accuracy

Std.
Accuracy

Avg.
F1

Std.
F1

Avg.
Recall

Std.
Recall

Avg.
Precision

Std.
Precision

Avg.
Training
Runtime (s)

MentalRoBERTa 0.9144 0.0003 0.9161 0.0007 0.9254 0.0118 0.9073 0.0098 3443.6
MentalBERT 0.9045 0.0027 0.9039 0.0029 0.8986 0.0099 0.9093 0.008 2225.7
PHS-BERT 0.8999 0.0041 0.8994 0.0034 0.8951 0.0036 0.9038 0.0104 5413.7
PsychBERT 0.8958 0.0006 0.8975 0.0008 0.9134 0.0025 0.8821 0.0009 2133.7
DistilBERT 0.8913 0.0032 0.8927 0.0046 0.8959 0.0211 0.8902 0.0131 1171.2

time, including the 1.5 epochs where early callback ended the training was, however,
much smaller for DistilBERT, taking an average of 1171.2 seconds versus Mental-
RoBERTa’s average of 3443.6 seconds, nearly 3 times as long as DistilBERT. Overall,
it seems that Ji et al. (2022)’s pre-training approach to its ”Mental” models is more
applicable to this social media based task, performing best and second best in terms
of accuracy and F1-score, with the larger, optimized variant MentalRoBERTa out-
performing the base size MentalBERT. Naseem et al. (2022)’s PHS-BERT does,
however, perform better than either Vajre et al. (2021)’s PsychBERT or Sanh et al.
(2020)’s DistilBERT, which might be due to it being developed for use in social
media compared to PsychBERT’s split pre-training on academic and social media
text. DistilBERT was the only model that had not been pre-trained on social media
text, which combined with the fact it is the most lightweight model offers compelling
arguments as to why it performs the worst out of all 5 of the models tested.

The performance metrics and results from testing the trained models with the best
performing hyperparameters against the testing data with the same distribution as
the training data is described table 5.3. The table shows no change in the order
of the model performances in terms of accuracy and F1-score, with the best to
worst models being MentalRoBERTa, MentalBERT, PHS-BERT, PsychBERT, and
DistilBERT. The metrics are slightly lower as compared to the validation dataset,
with MentalRoBERTa having the highest accuracy of 90.7% and F1-score of 90.9%
while the DistilBERT having the lowest accuracy of 87.9% and F1-score of 88.2%, a
difference in performance of only 2.8 and 2.7 percentage points respectively. F1 and
precision scores slightly decreased across all models, while recall remains fairly high.
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Table 5.3: Performance metrics for each model against the test dataset consisting of the
same distribution as the training data after fine-tuning each model using the best found
hyperparameters during the random search.

Model Accuracy F1 Recall Precision AP

MentalRoBERTa 0.9072 0.9085 0.9214 0.8959 0.9717
MentalBERT 0.8958 0.8975 0.9125 0.883 0.9593
PHS-BERT 0.8934 0.8962 0.92 0.8735 0.9623
PsychBERT 0.8927 0.8943 0.9073 0.8816 0.9586
DistilBERT 0.8792 0.8822 0.9048 0.8608 0.9508

This indicates that the models still correctly identify most (90%+) of the SI cases,
but with slightly more false positives. Looking at the balance between precision and
recall offered by the AP-score metric, we can see that these values are fairly high,
indicating that the models are still fairly good at distinguishing between posts with
and without expressions of SI.

The performance of the fine-tuned models against the test dataset (with the same
distribution as the training data) can be compared to their performance without any
fine-tuning, as shown in table 5.4 below. Without fine-tuning, we can see that several
models seem to stick to one prediction for almost all inputs (e.g. MentalRoBERTa
predicting all inputs as SI), and that most models are performing no better than a
coinflip, having an accuracy close to 0.5. Results for the non-fine-tuned models on
the other testing datasets are similarly worse and can be seen in Appendix C.

Table 5.4: Performance metrics for each model against the test dataset consisting of the
same distribution as the training data before fine-tuning.

Model Accuracy F1 Recall Precision

PHS-BERT 0.5665 0.4966 0.4277 0.5920
PsychBERT 0.5157 0.6715 0.9902 0.5080
MentalBERT 0.5129 0.6420 0.8734 0.5075
MentalRoBERTa 0.5 0.6667 1 0.5
DistilBERT 0.4109 0.4513 0.4845 0.4223

Table 5.5: Performance metrics for each model against the Normal Reddit testing dataset
which has rates of suicidal ideation closer to the actual population of Reddit posts. Per-
formances are after fine-tuning each model using the best found hyperparameters and pri-
marily on text about or closely related to suicidal ideation.

Model Accuracy F1 Recall Precision AP

MentalBERT 0.9913 0.7861 0.8681 0.7182 0.8482
PHS-BERT 0.9824 0.6575 0.9176 0.5123 0.7079
PsychBERT 0.9564 0.4152 0.8407 0.2757 0.4481
DistilBERT 0.9524 0.399 0.8571 0.26 0.4344
MentalRoBERTa 0.946 0.3673 0.8516 0.2341 0.42

36



When the fine-tuned models were tested against the Normal Reddit dataset (dis-
cussed in 4.4.2) without additional training, all models’ F1 and AP scores were re-
duced, sometimes drastically as can be seen in table 5.5. The new dataset simulates
a rate of suicidal ideation, while still fairly high, closer in line with the propor-
tion expressed in reality. The best performing model, based on accuracy, F1 and
AP score becomes MentalBERT while the worst performing model becomes Men-
talRoBERTa. This shift could indicate that MentalRoBERTa was over fit, even
being outperformed by DistilBERT. Recall and precision values also show interest-
ing shifts. PHS-BERT outperforms all other models in terms of recall with almost
92%, practically maintaining its previous level, meaning it captures most of the true
SI cases. While it’s F1 score is weighed down by a higher number of false positives,
roughly 5 out of every 10 SI predictions, depending on the context this conservative
approach of prioritizing detection of true SI cases over increased numbers of false
positives might very well be preferred. This reasoning can also be applied to the
other models, as recall remained relatively high while precision dropped indicating
that they tend to be overinclusive and assign an SI label to many non-SI posts.
AP-scores remain relatively high for MentalBERT and PHS-BERT, indicating that
these models still strike an acceptable balance between recall and precision, while
dropping significantly for the remaining models as precision plummets and false
positives increase.

Based on these results, inclusion of more general text data when fine-tuning the
models might lead to improved model performance in these types of generalized
settings. For further insight into the performance on the models, ROC and PRC
curves for each model and for all three test datasets can be found in Appendix
D.

Table 5.6: Performance metrics for each model against IMHR Twitter testing dataset.
Performances are after fine-tuning each model using the best found hyperparameters and
primarily on text about or closely related to suicidal ideation.

Model Accuracy F1 Recall Precision AP

MentalBERT 0.9911 0.7335 0.8231 0.6614 0.7928
PHS-BERT 0.9817 0.5828 0.8589 0.4411 0.6467
MentalRoBERTa 0.9821 0.5755 0.8170 0.4442 0.6564
DistilBERT 0.9798 0.5253 0.7522 0.4036 0.4883
PsychBERT 0.9244 0.2460 0.8298 0.1444 0.1425

The fine-tuned models were also tested against the IMHR Twitter dataset (discussed
in 4.4.2) with similar outcome, as seen in table 5.6. While MentalBERT, PHS-BERT
and PsychBERT showed a decrease in performance according to F1 and AP metrics,
MentalRoBERTa and DistilBERT performed better on this Twitter dataset than
the Normal Reddit dataset. MentalBERT and PHS-BERT remained the two best
performing models however, MentalBERT maintains a fairly good balance between
recall and precision resulting in an AP score of 0.79 and PHS-BERT showing the
best recall metric at 85.9% of true SI cases correctly identified. Similar to the
performance on the Normal Reddit dataset, recall scores remain relatively high,
although the scores were lower than for the Normal Reddit and original test dataset.
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Figure 5.1: Paired plot overview analyzing the impact of hyperparameters on accuracy and
the F1-scores of the models. The above plot combines the trials from all models during the
robust hyperparameter random search. The red dashed line is a linear trendline.

The lower precision and the tendency to over label cases as SI again suggests the
need to include more general social media posts in the training data, if the use case
is deployment in a generalized social media context. Another potential factor here is
the fact that twitter-posts make up less than half of the training data observations,
and a more balanced training dataset might produce better results.

It’s also important to note that during our study we did not account for colloquial
expressions sometimes used in social media posts. Phrases such as “I want to die”
or “kill me” can frequently occur in social media discourse, emanating not from
SI, but rather from feelings such as embarrassment, exasperation, or as hyperbolic
self-expression. As such expressions were not considered during training, these col-
loquialisms may impact the performance of our models in accurately identifying
genuine instances of SI when tested on a more generalized dataset.

Examining all the models run during the hyperparameter random search, we can
examine the general impacts of hyperparameter ranges on accuracy and F1 score.
Looking at figure 5.1, we can see the effects of the different hyperparameters on the
evaluation metrics. From the figure, we can see that there is a positive relationship
between weight decay and the evaluation metrics of accuracy and F1 score. This
demonstrates that the model could potentially benefit from increasing weight decay,
however it does seem during the random search a weight decay of 0.1 was selected
less frequently than either 0.001 or 0.01 so more trials are suggested. We can also
see that there is a negative relationship between dropout rate and the evaluation
metrics. As such, it might be of interest to explore dropout rates below 0.1. Learning
rate, effective batch size, and precision (where 1 represents FP16 and 0 represents
BF16) show weak or no relations to the evaluation metrics and more trials with
wider search spaces are suggested to further study their effect in this particular
context. For additional figures exploring the relationship between hyperparameter
selections and metric results, see the parallel coordinate plots in Appendix E.

As computation time is also important in terms of hardware costs and in terms of

38



usability at scale, training computation times were recorded as a measure of model
computation speed. Figure 5.2 depicts the average and standard deviation for the
total time taken during the fine-tuning of each model. We can see that DistilBERT
is by far the fastest model and has the smallest range in deviation from the norm.
This is due to DistilBERT having the smallest architecture in terms of the number of
parameters. MentalBERT, PsychBERT, and MentalRoBERTa all perform roughly
the same in terms of fine-tuning time taken, as well as their standard deviations.
PHS-BERT has the largest standard deviation and takes the longest to train, which
could be due to being built on the large BERT model, which was not optimized like
RoBERTa was.

Figure 5.2: Average training runtime during model training/fine-tuning for each model.
The errorbars represent one standard deviation from the average. Note that this is total
training time and is thus affected by the number of epochs required until convergence.

Due to the time constraints of our study, we did not fine-tune the models further
with the additional Normal Reddit and IMHR Twitter datasets, but leave this aspect
open for further research.
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6

Conclusion

6.1 Summary of Findings

The aim of this study was to develop the existing research into a robust transformer
model that is capable of detecting suicidal ideation in text based social media posts,
with the hope of being able to create an early detection system. Through our
research, we were able to robustly fine-tune and evaluate pre-trained transformer
models that currently exist in the mental health space. The models were trained
on social media posts from Reddit and Twitter and went through a robust hyper-
parameter random search where each combination was tried against three random
seeds, where then the best performing combination for each model went to a final
series of tests.

Even with noise in labels of the fine-tune training data, the models were able to
achieve a high level of performance in the classification of suicidal ideation. Against
data that had the same balanced distribution used in the fine-tune training, the
best performing model had a test accuracy and F1-score of approximately 0.91
while the lowest performing, yet most lightweight, had a test accuracy and F1-score
of approximately 0.88.

Placing the models into an more realistic scenarios, the models had a substantial
decrease in their F1-score ranging from the best model at approximately 0.79 to
the worst model at approximately 0.25, suggesting a need to include general social
media posts in the fine-tune training data if these models are to be implemented
in a generalized setting. With that said, however, many models still retained recall
scores in the 0.8-0.9 range, meaning relatively few true SI cases were missed. While
both the recall and especially the precision could be improved, a more conservative
approach with a higher rate of false positives might be preferable in early detection
systems as it could be indicative and helpful in detecting borderline SI cases.

6.2 Practical Implications

The results of this study have a number of practical implications that could poten-
tially influence the way social media organizations and mental health professionals
approach the task of identifying suicidal ideation in social media posts.
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The study demonstrates that transformer models are effective at detecting suicidal
ideation from social media posts. Following from this, these type of models can
possibly be introduced into current social media platforms or be built into mental
health monitoring tools to look for expressions of suicidal ideation, increasing the
ability to provide faster intervention which could lead to more lives saved. It is
important to note for policy makers and organizations that care must be taken to
ensure implementation methods are ethical and respect users’ privacy.

This study also demonstrates the trade-offs that exist between computation time and
performance, which needs to be thought about when being put into applications. For
example, in real-time monitoring cases such as social media platforms, DistilBERT
may be more useful because of its computation speed, but in clinical settings a more
accurate model variant such as BERT or RoBERTa may be more applicable.

6.3 Research Limitations & Future Research

While this study has made advancements in the use of pre-trained transformers to
identify suicidal ideation in social media, it is not without its limitations. The text
data used was sourced from specific social media platforms, which might not fully
capture the complexity and variability of language used in different contexts and
expressions of SI. Furthermore, access to quality and professionally annotated data
is scarce, and while subsets of some of the datasets used were professionally evalu-
ated, utilization of larger and higher quality datasets could lead to improved model
performance by covering a wider range of language and semantics surrounding suici-
dal ideation and reducing incorrectly labeled observations. Collecting and utilizing
more diverse, representative, and robustly labeled datasets is therefore something
we see as a key area of future research.

The study was further limited by the constraint of our computational resources,
resulting in relatively small search spaces for the hyperparameters and limiting the
number of models that were included. As it’s likely that there are hyperparameter
combinations of interest that exist outside of the space created, future research
could expand the search space for both hyperparameters and models, allowing more
combinations to be robustly explored.

Finally, future research could investigate other model architectures or variations of
transformers. Specifically, future studies could focus on the trade-off between com-
putational efficiency and performance discussed above. Reducing the computational
resources required for both fine-tuning and pre-training would make deployment
more broadly feasible. One such area to explore, for example, is utilizing smaller
transformer models like DistilBERT. While it performed the worst out of the models
fine-tuned here it was not far behind, and in some testing scenarios performed better
than larger models; and if it was further pre-trained, DistilBERT might be able to
perform similarly to the others with a higher computational efficiency.
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Appendix A

Precision comparison

Table A.1: Difference in performance using FP32 precision vs FP16 precision for the
final models (excluding PHS-BERT). Values are from FP32 performance minus FP16
performance

Model ∆ Accuracy ∆ F1 ∆ Recall ∆ Precision

MentalRoBERTa 0.0031 0.0030 0.0027 0.0032
MentalBERT -0.0016 -0.0009 0.0052 -0.0065
PsychBERT 0.0009 0.0029 0.0211 -0.0136
DistilBERT 0.0027 -0.0003 -0.0234 0.0216
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Hyperparameter search results
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Figure B.1: Performance of models in terms of Accuracy and F1 with error bars included
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Table B.2: Seeds utilized during the random search for each trial. Ordering is the same as
in Tabel B.1 above.

Model Seeds
mental/mental-roberta-base [1106763746, 299029916, 1417749834]
mental/mental-roberta-base [1255185856, 2970252694, 3921262637]
mental/mental-roberta-base [2622675586, 519181682, 2752315950]
mental/mental-roberta-base [1737358439, 3210977169, 2605503547]
mental/mental-roberta-base [3588745318, 376064971, 1891258533]
mental/mental-bert-base-uncased [3053375588, 1317930322, 3214932045]
mental/mental-bert-base-uncased [3233306623, 3351088375, 1527662849]
publichealthsurveillance/PHS-BERT [2324431265, 2876649110, 1555847211]
mental/mental-bert-base-uncased [2739813511, 3890827836, 461376504]
mental/mental-bert-base-uncased [1888996467, 195290664, 1146866943]
mental/mental-bert-base-uncased [2840093105, 2299852178, 36673843]
mental/mental-bert-base-uncased [2022802130, 3040685039, 2323165098]
publichealthsurveillance/PHS-BERT [3874017394, 2910039224, 3994667487]
mnaylor/psychbert-cased [1019745909, 3211200192, 1623538460]
mnaylor/psychbert-cased [407076172, 4146655470, 604330228]
publichealthsurveillance/PHS-BERT [2981685284, 2201290722, 1093677434]
publichealthsurveillance/PHS-BERT [4103314878, 480048397, 1277830954]
distilbert-base-uncased [4108280851, 3040279568, 1253580082]
distilbert-base-uncased [2319314102, 147835935, 3858126191]
mnaylor/psychbert-cased [4133111773, 1899621510, 1768381052]
distilbert-base-uncased [1482956036, 2375570518, 3829412630]
mnaylor/psychbert-cased [1600068697, 3163146025, 1613653034]
distilbert-base-uncased [3133029574, 708903114, 3295217873]
distilbert-base-uncased [4246465560, 2836992208, 1386759166]
distilbert-base-uncased [3847934361, 381967677, 283826318]
distilbert-base-uncased [908014777, 2394830440, 1084101292]
publichealthsurveillance/PHS-BERT [2804882604, 1636867452, 898615959]
mnaylor/psychbert-cased [865138490, 2489312644, 4132410272]
distilbert-base-uncased [4028267788, 3793292022, 2785677833]
publichealthsurveillance/PHS-BERT [4087653450, 813281531, 4145280712]
mental/mental-bert-base-uncased [1465149761, 1402130911, 404401887]
mnaylor/psychbert-cased [493895715, 2073071199, 2692848488]
publichealthsurveillance/PHS-BERT [3939105037, 53792266, 2727208313]
mental/mental-bert-base-uncased [1880377600, 2664175979, 2319429930]
mnaylor/psychbert-cased [760699015, 928405771, 3088084685]
mental/mental-roberta-base [4170216869, 2499548483, 123682896]
mnaylor/psychbert-cased [2774934368, 701698718, 626148011]
publichealthsurveillance/PHS-BERT [3390767782, 3500503143, 3647528456]
mental/mental-roberta-base [950600914, 3051318926, 2011703506]
mental/mental-roberta-base [2192230731, 2704465100, 552926065]
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Appendix C

Untrained Test Results

Table C.1: Performance metrics for each model on the Normal Reddit Test dataset before
fine-tuning each model.

Model Accuracy F1 Recall Precision

MentalBERT 0.9816 0.0000 0.0000 0.0000
PHS-BERT 0.9816 0.0000 0.0000 0.0000
PsychBERT 0.2936 0.0485 0.9780 0.0249
DistilBERT 0.0777 0.0355 0.9231 0.0181
MentalRoBERTa 0.0184 0.0362 1 0.0184

Table C.2: Performance metrics for each model on the IMHR Twitter Test dataset before
fine-tuning each model.

Model Accuracy F1 Recall Precision

MentalRoBERTa 0.830140 0.020375 0.118839 0.011143
DistilBERT 0.662619 0.016847 0.194463 0.008805
MentalBERT 0.355799 0.029691 0.663065 0.015185
PsychBERT 0.066904 0.030755 0.995949 0.015619
PHS-BERT 0.014864 0.029293 1.000000 0.014864
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Appendix D

ROC and PRC curves

D.1 Test Dataset

(a) Optimal threshold: 0.0045 (b) Optimal threshold: 0.5221

Figure D.1: ROC and PRC curves for MentalBERT applied to the standard test dataset

(a) Optimal threshold: 0.0018 (b) Optimal threshold: 0.6733

Figure D.2: ROC and PRC curves for PHS-BERT applied to the standard test dataset
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(a) Optimal threshold: 0.0070 (b) Optimal threshold: 0.5070

Figure D.3: ROC and PRC curves for PsychBERT applied to the standard test dataset

(a) Optimal threshold: 0.0276 (b) Optimal threshold: 0.5129

Figure D.4: ROC and PRC curves for DistilBERT applied to the standard test dataset

(a) Optimal threshold: 0.0029 (b) Optimal threshold: 0.5521

Figure D.5: ROC and PRC curves for MentalRoBERTa applied to the standard test dataset

D.2 Normal Reddit Dataset
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(a) Optimal threshold: 0.0027 (b) Optimal threshold: 0.6412

Figure D.6: ROC and PRC curves for MentalBERT applied to the normal reddit dataset

(a) Optimal threshold: 0.0007 (b) Optimal threshold: 0.9865

Figure D.7: ROC and PRC curves for PHS-BERT applied to the normal reddit dataset

(a) Optimal threshold: 0.0034 (b) Optimal threshold: 0.9963

Figure D.8: ROC and PRC curves for PsychBERT applied to the normal reddit dataset
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(a) Optimal threshold: 0.0150 (b) Optimal threshold: 0.9888

Figure D.9: ROC and PRC curves for DistilBERT applied to the normal reddit dataset

(a) Optimal threshold: 0.0019 (b) Optimal threshold: 0.9314

Figure D.10: ROC and PRC curves for MentalRoBERTa applied to the normal reddit
dataset

D.3 IMHR Dataset

(a) Optimal threshold: 0.0027 (b) Optimal threshold: 0.7188

Figure D.11: ROC and PRC curves for MentalBERT applied to the IMHR Twitter dataset
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(a) Optimal threshold: 0.0007 (b) Optimal threshold: 0.8204

Figure D.12: ROC and PRC curves for PHS-BERT applied to the IMHR Twitter dataset

(a) Optimal threshold: 0.0018 (b) Optimal threshold: 0.9992

Figure D.13: ROC and PRC curves for PsychBERT applied to the IMHR Twitter dataset

(a) Optimal threshold: 0.0079 (b) Optimal threshold: 0.6619

Figure D.14: ROC and PRC curves for DistilBERT applied to the nIMHR Twitter dataset
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(a) Optimal threshold: 0.0018 (b) Optimal threshold: 0.7178

Figure D.15: ROC and PRC curves for MentalRoBERTa applied to the IMHR Twitter
dataset
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Appendix E

Parallel Coordinates Plots
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Figure E.1: Parallell coordinates plot to visualize the relationship between hyperparameter
values and the average accuracy of the model. Note that the figure above contains the runs
for all models.

Figure E.2: Overview of hyperparameter selections and their impact on the accuracy metric
for MentalRoBERTa model.
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Figure E.3: Overview of hyperparameter selections and their impact on the accuracy metric
for MentalBERT model.

Figure E.4: Overview of hyperparameter selections and their impact on the accuracy metric
for PHS-BERT model.
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Figure E.5: Overview of hyperparameter selections and their impact on the accuracy metric
for PsychBERT model.

Figure E.6: Overview of hyperparameter selections and their impact on the accuracy metric
for DistilBERT model.
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