
June 2023

Implementing the chirality-flow formalism for
tree-level massless QCD in MadGraph

Adam Warnerbring

Department of Physics, Lund University

Master thesis supervised by Malin Sjödahl
and co-supervised by Andrew Lifson and Zenny Wettersten



Abstract

The chirality-flow formalism provides a simple but efficient way to rewrite and evaluate
Feynman diagrams and has recently been shown to also optimize automated numerical
scattering matrix element evaluations in massless tree-level QED. In this thesis we ex-
tend the numerical QED model to massless tree-level QCD in the MadGraph5 aMC@NLO
framework. It is shown that a good gauge choice for external gluons lead to significant
simplifications of the kinematics, and a set of gauge-specific rules for Feynman diagram
generation are presented. The evaluation time for kinematic calculations in matrix element
evaluations are compared to standard MadGraph, demonstrating a speed improvement of
1.5-3 times in our implementation, increasing with increasing multiplicity.

Populärvetenskaplig beskrivning

En partikelfysikers arbete är att beskriva hur naturens minsta best̊andsdelar, subatomiska
partiklar, interagerar. Detta är väldigt sv̊art d̊a interaktioner är fundamentalt slumpmässiga.
Inte ens den bästa fysikern kan därför säga exakt vad som händer när tv̊a partiklar kollid-
erar, men hon eller han kan istället räkna ut sannolikheten för alla olika händelser. Detta
bygger p̊a att fysikern har tillg̊ang till en s̊a bra modell som möjligt av naturen.

Vi vet idag att v̊ara bästa modeller kan förklara en stor del av de interaktioner vi ser i
experiment men det finns fortfarande vissa observationer som inte har förklarats än. Detta
gör att experimentella fysiker letar efter nya partiklar genom att kollidera till exempel
protoner i nära ljushastigheten och sedan studera vilka nya partiklar som skapas. Dessa
resultat måste sedan jämföras med de resultat som de teoretiska modellerna förutsp̊ar.
Eftersom dagens experiment är s̊a stora skapar de en enorm mängd data som leder till att
det ocks̊a m̊aste simuleras stora mängder data fr̊an de teoretiska modellerna. Det är därför
väldigt lockande att hitta sätt att göra datorberäkningarna snabbare, och det är detta som
är projekets fokus.

De processer som är viktigast i dagens experiment förmedlas av den starka kärnkraften,
som beskrivs av kvantkromodynamik. Den starka kärnkraften verkar mellan färgladdade
kvarkar, med gluoner som kraftförmedlare. Gluoner bär ocks̊a p̊a färgladdning, vilket gör
att de kan växelverka med varandra, till skillnad fr̊an exempelvis fotoner. Detta innebär
att beräkningar i kvantkromodynamik är komplicerade och tar mycket av datorkraften i
simuleringar.

För att beräkna sannolikheten för en given process, till exempel att en uppkvark och en
antiuppkvark kolliderar och producerar tv̊a gluoner, s̊a måste vi räkna p̊a alla möjliga
sätt detta kan hända. Ett exempel är att kvarken först emitterar en gluon och därefter
annihileras med antikvarken och d̊a emitterar ytterligare en gluon. Ett annat sätt är att
kvarken och antikvarken först annihilerar varandra och skickar ut en gluon, varefter gluonen
delar upp sig i tv̊a nya gluoner.



För att beräkna sannolikheterna ritar vi upp s̊a kallade Feynmandiagram över de olika
sätten som en process kan ske. De partiklar som varken är med före eller efter inter-
aktionen kallas virtuella partiklar, och det är de som gör att partiklar kan ”känna av”
varandra. Tyvärr kan sannolikheterna änd̊a inte beräknas exakt, d̊a det finns oändligt
många diagram vi kan rita. Som tur är s̊a är det möjligt att veta vilka diagram som
kommer p̊averka beräkningen mest, och beror p̊a hur många g̊anger virtuella partiklar
växelverkar med sig själva. I detta projekt arbetar vi bara med diagram där det inte sker
n̊agra självinteraktioner, eftersom det är dessa diagram som p̊averkar resultaten allra mest.

För att optimera datorberäkningarna använder vi oss av den nyligen utvecklade kiralitets-
flödesformalismen, som bygger p̊a spinor-helicitetsformalismen. B̊ada formalismerna ut-
nyttjar att masslösa partiklar antingen är vänster- eller högerhänta, n̊agot som p̊averkar
hur de växelverkar med andra partiklar. Kiralitetsflödesformalismen använder detta som
utg̊angspunkt för att kunna rita förenklade Feynmandiagram, där de matematiska termerna
som används i beräkningen kan läsas av direkt fr̊an diagrammen.

Implementeringen av kiralitetsflödesformalismen gör vi i MadGraph, som är ett datorpro-
gram för att simulera partikelinteraktioner. Genom att modifiera programmet f̊ar vi det
att generera och beräkna de förenklade diagrammen. En av de stora fördelarna med den
nya versionen är att programmet lätt kan avgöra om beräkningar av diagram kommer bli
noll i förväg. Det visar sig att en stor andel av diagrammen blir noll, vilket gör att v̊ar
version av MadGraph gör väsentligen färre beräkningar än originalversionen av MadGraph
för samma process.

Förhoppningen är att färre beräkningar leder till kortare körtid för programmet, vilket är
precis vad som sker. När de modifierade beräkningarna jämförs med originalversionen av
MadGraph utan att ta hänsyn till färgberäkningar s̊a är v̊ar version mellan 1.5-3 g̊anger
snabbare och ger samtidigt lika noggranna resultat. Dessutom presterar det modifierade
programmet bättre ju större process som beräknas, vilket är en fördel d̊a stora processer
tar mycket mer tid att beräkna än sm̊a processer.

Trots att den modifierade versionen av MadGraph gör vissa beräkningar snabbare, s̊a är
färgberäkningar ofta det som tar längst tid för stora processer. V̊ar implementering be-
handlar färgberäkningar p̊a exakt samma sätt som originalversionen av MadGraph, vilket
gör att skillnaden i körtid mellan programmen blir mindre när färgberäkningar inkluderas.
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1 Introduction

One of the most important tools for particle physics are particle accelerators, where par-
ticles can be created and studied in a controlled environment. The data generated from
experiments must then be interpreted and compared to theoretical models. Theoretical
physicists accomplish this by calculating the probability of different events occurring and
comparing these predictions to the rates observed in experiments, using so-called event
generators. Through this process, one can evaluate the accuracy of their theoretical mod-
els and determine whether modifications are necessary to better describe the underlying
nature of the physical world.

The first step in event generation is to calculate the squared matrix elements for the
processes studied. For most processes, these calculations are unfeasible with pen and
paper, and are therefore done on computers. However, even numerical computations of
matrix elements are taking up significant computing power and grow factorially with the
number of external particles. Due to the large scale of modern particle physics experiments,
fast algorithms for calculating matrix elements are highly desirable.

In 1992 HELAS [1], a library of FORTRAN77 subroutines, was published. This library
has all functions needed to calculate any tree-level Feynman diagram in the SM (Standard
Model) and a key feature is that it is built to effectively recycle calculations for Feynman
diagrams that share the same vertices and propagators. Furthermore, HELAS uses the
spinor-helicity formalism [2, 3, 4], which builds on the relation between the Lie algebra of
the restricted Lorentz group to two copies of the su(2) Lie algebra. In the spinor-helicity
formalism, wavefunctions are represented by left- and right-chiral spinors which both have
two components and decouple in the massless limit.

In the last few years the chirality-flow formalism [5, 6, 7] has been developed, which provides
further simplifications of the spinor-helicity formalism. The chirality-flow formalism is a
graphical approach where spinor inner products can be immediately read off from the
Feynman diagram, inspired by the similar color-flow picture [8, 9] for QCD color. The
process of going from a standard Feynman diagram to a chirality-flow diagram is simple,
and does not require any algebra.

The chirality-flow formalism has been proven to be efficient for pen and paper tree level
matrix element calculations, and recently also for automated calculations for massless
QED (Quantum Electrodynamics), providing up to an order of magnitude faster matrix
element evaluations when compared to helicity amplitude methods [10]. While non-abelian
theories such as QCD (Quantum Chromodynamics) contains more complicated kinematic
structures than QED, these results lead us to believe that the chirality-flow formalism may
optimize automated QCD calculations as well.

The QED chirality-flow implementation, CAFE [10, 11] (Chiral Automized Flow Extension,
introduced in [11]), is a modified version of the MadGraph5 aMC@NLO [12] framework
for matrix element calculations and event generation. The standard release of MadGraph
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comes with the SM and some models beyond the SM, and the user can define and run
calculations for any QFT (Quantum Field Theory), with HELAS-like code for numerical
evaluations, inspired by the original HELAS [1] subroutine library, which allows for efficient
recycling of calculations between Feynman diagrams.

While MadGraph was not built with the chirality-flow formalism in mind, the CAFE add-
on allows us to implement chirality flow in the optimized MadGraph framework, which
removes the need to build a specific chirality-flow matrix element calculator from scratch.
In this thesis we extend CAFE to include massless tree-level QCD to allow the user to
generate and evaluate chirality-flow diagrams with new HELAS-like subroutines. We will
explore the performance of our implementation, and especially focus on how the gauge
choice for external gluons affects the complexity of matrix element evaluations.

The rest of the thesis is structured as follows: In Section 2 we begin by providing an
introduction to the spinor-helicity formalism and chirality flow. We then explore the effect
of our gauge choice on automated generation of Feynman diagrams and the efficiency of
our algorithm. Section 3 offers an introduction of MadGraph, while Section 4 focuses on
CAFE and our QCD implementation. In Section 5, we present our results and compare
them to standard MadGraph, and in Section 6 we conclude and give an outlook on the
chirality-flow formalism for automated matrix element calculations.

2 Theoretical background

In this section the necessary theoretical background for the rest of the thesis is presented.
It begins with a brief introduction to the restricted Lorentz group and the spinor-helicity
formalism. After this the chirality-flow formalism for massless tree-level QCD is described,
with an emphasis on how the choice of gauge vectors affects the analytic complexity towards
the end of the section.

2.1 Lorentz transformations

The matrix group O(1, 3) consists of the set of transformations Λ that preserve the inner
product ΛTgΛ = g, or equivalently Λα

µΛ
β
νgαβ = gµν with

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.1)

It is called the Lorentz group, with the matrices Λ being the Lorentz transformations and
gµν the Minkowski metric of the 4-dimensional space-time. Since

det(ΛTgΛ) = (det(Λ))2det(g) = det(g), (2.2)
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we have that det(Λ) = ±1. The transformations with det(Λ) = −1 correspond to “im-
proper” transformations which include parity or time reversal. Ignoring improper transfor-
mations gives the restricted Lorentz group SO(1, 3), which consists of spatial rotations and
boosts, where the former are the standard 3D rotations acting on the spatial components,
and are generated by

Ax =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , Ay =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , Az =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 . (2.3)

The generators of boosts are given by

Kx =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , Ky =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Kz =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 . (2.4)

The six matrices A⃗ = (Ax, Ay, Az) and K⃗ = (Kx, Ky, Kz) span the Lie algebra so(1, 3)

Λ = exp
(
θ⃗ · A⃗+ η⃗ · K⃗

)
= exp

(
−i

(
θ⃗ · L⃗+ η⃗ · K⃗ ′

))
, (2.5)

where we define the new Hermitian generators Lj = iAj and K ′
j = iKj. With these

definitions it is straightforward to show the commutation relations

[Li, Lj] = iϵijkLk, [Li, K
′
j] = iϵijkK

′
k, [K ′

i, K
′
j] = iϵijkLk. (2.6)

As we expect from the rotation generators L they are closed under the Lie bracket, and thus
rotations form a subgroup, but their generators do not commute with the boost generators
K ′. Furthermore the boosts do not form a subgroup. By introducing the new generators

N±
i =

Li ± iK ′
i

2
, (2.7)

which also span the Lie algebra, we find that the two sets of operators are closed under
the Lie bracket and commute with each other:

[N+
i , N

+
j ] = iϵijkN

+
k , [N−

i , N
−
j ] = iϵijkN

−
k , [N+

i , N
−
j ] = 0. (2.8)

The commutation relations for both sets are the same as the ones for su(2). Since N+
i

and N−
j commutes, the Lie algebra of the restricted Lorentz group has exactly the same

commutation relations as two copies of the Lie algebra su(2). However, since we used
a linear combination with complex coefficients to express N±

i , we need to consider the
group SL(2,C), whose Lie algebra sl(2,C) is the complexified su(2) algebra. Since the
irreducible representations of SL(2,C) can be labeled by a positive half integer or integer
j, the irreducible representations of the Lorentz group can be labeled by two such numbers
(j1, j2).
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2.2 The spinor-helicity formalism

We will here give a short introduction to the spinor-helicity formalism, which will allow us to
define the chirality-flow picture. In Section 2.1 we saw that we can label our representation
of the restricted Lorentz group on the form (j1, j2). The objects λ̃α̇

p that transform under
the (1/2, 0)-representation are called left-chiral spinors and written with a dotted index
α̇ = 1, 2. Similarly objects λp,β that transform under the (0, 1/2)-representation are called
right-chiral spinors and have an undotted index β = 1, 2. A massless incoming fermion or
outgoing anti-fermion with momentum p has 4-component spinors

u(p) =

(
uL

uR

)
=

(
λ̃α̇
p

λp,β

)
, v(p) =

(
vL
vR

)
=

(
λ̃α̇
p

λp,β

)
, (2.9)

in the chiral basis, also called the Weyl basis. The subscripts L and R denote left- and
right-chiral spinors respectively. The Dirac matrices in the chiral basis are

γµ =

(
0 σµ,α̇β

σ̄µ
βα̇ 0

)
=

(
0

√
2τµ,α̇β√

2τ̄µβα̇ 0

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
−12×2 0

0 12×2

)
, (2.10)

where σµ are the Pauli matrices. We introduce the normalized Pauli matrices τµ, which
will be easier to work with later and satisfy the relations

Tr(τµτ ν) = δµν , Tr(τµτ̄ ν) = gµν . (2.11)

To get the left- and right-chiral spinors from the 4-component spinor we can use the

projection operators PL/R = 1
2
(1∓ γ5), such that PLu(p) =

(
λ̃α̇
p

0

)
and PRu(p) =

(
0

λp,β

)
and similarly for v(p). The 2-component spinors can be represented as

λ̃α̇
p ←→ |p] =

1√
p+

(
p⊥∗

−p+
)
, λp,β ←→ |p⟩ =

1√
p+

(
p+

p⊥

)
, (2.12)

where p±, p⊥ are the light-cone coordinates

p± = p0 ± p3, p⊥ = p1 + ip2, p⊥∗ = p1 − ip2. (2.13)

We write left-chiral bras and kets with square brackets and right-chiral ones with angled
brackets as in eq. (2.12). For outgoing fermions or incoming anti-fermions the spinors are

ū(p) ≡ u†(p)γ0 =
(
(uR)

†, (uL)
†
)
=

(
λ̃p,β̇, λ

α
p

)
(2.14)

v̄(p) ≡ v†(p)γ0 =
(
(vR)

†, (vL)
†
)
=

(
λ̃p,β̇, λ

α
p

)
. (2.15)

We define the complex conjugation operator to add or remove a dot from the spinor indices(
λα
p

)∗
= λ̃α̇

p ,
(
λ̃p,β̇

)∗
= λp,β, (2.16)
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when α = α̇ and β = β̇, so that a complex conjugated left-chiral field is a right-chiral
field and vice versa. Using this and comparing the equations for incoming and outgoing
fermions, we see that spinor indices can be raised and lowered with the Levi-Civita tensor

ϵα̇β̇ = ϵαβ =

(
0 1
−1 0

)
, ϵα̇β̇ = ϵαβ =

(
0 −1
1 0

)
, (2.17)

so that
λ̃α̇
p = ϵα̇β̇λ̃p,β̇, λα

p = ϵαβλp,β, λ̃p,α̇ = ϵα̇β̇λ̃
β̇
p , λp,α = ϵαβλ

β
p . (2.18)

The Lorentz invariant inner product between spinors can now be written as

[ij] ≡ [i||j] = λ̃α̇
i λ̃j,α̇ = ϵα̇β̇λ̃i,β̇λ̃j,α̇ = −ϵβ̇α̇λ̃i,β̇λ̃j,α̇ = −λ̃β̇

j λ̃i,β̇ = −[ji] (2.19)

⟨ij⟩ ≡ ⟨i| |j⟩ = λα
i λj,α = ϵαβλ

α
i λ

β
j = −ϵβαλα

i λ
β
j = −λβ

j λi,β = −⟨ji⟩. (2.20)

We note that the inner product is antisymmetric, which follows from the antisymmetry of
the Levi-Civita tensor.

Now we have seen spinors and Lorentz invariant inner products, and turn our attention
to four vectors, which transform under the (1/2, 1/2) representation of the Lorentz group.
We map our four vectors pµ to Hermitian 2× 2 matrices

pα̇β ≡ pµτ
µ,α̇β =

1√
2
pµσ

µ,α̇β, p̄αβ̇ ≡ pµτ̄
µ

αβ̇
=

1√
2
pµσ̄

µ

αβ̇
, (2.21)

and define slashed momenta as

/p ≡ pµσ
µ =

(
p− −p⊥∗

−p⊥ p+

)
, /̄p ≡ pµσ̄

µ =

(
p+ p⊥∗

p⊥ p−

)
. (2.22)

If the momentum p is massless, i.e. if p2 = 0, it can be written as an outer product of
spinors

/p = |p] ⟨p| , /̄p = |p⟩ [p|. (2.23)

If p is massive it can instead be written as a linear combination of massless momenta1 pi,
p =

∑
i cipi with p2i = 0, then /p and /̄p can be expressed as a linear combinations of outer

products

/p =
∑
i

ci|pi] ⟨pi| , /̄p =
∑
i

ci |pi⟩ [pi|. (2.24)

If all external particles are massless we can easily find such a linear combination for an
internal particle in a Feynman diagram, since it is always possible to rewrite the momenta
of any particle in terms of external momenta at tree level.

Lastly, we need to consider polarization vectors of external vector bosons ϵ±(pi, r), where
the sign in the subscript denotes the helicity. The four-vector r is called the reference

1This can also always be done with only two momenta. Since p = 1
2 (p + q) + 1

2 (p − q), any q with
q · p = 0 and q2 = −p2 can be used.
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momentum, and is a light-like four-vector that can be chosen arbitrarily as long as it
satisfies pi · r ̸= 0. The outgoing polarization four-vectors can be expressed with Weyl
spinors as 2

ϵµ−(pi, r) =
λα
i τ̄

µ
βα̇λ̃

β̇
r

λ̃i,σ̇λ̃σ̇
r

=
⟨i| τ̄µ|r]
[ir]

, ϵµ+(pi, r) =
λα
r τ̄

µ
βα̇λ̃

β̇
i

λσ
rλi,σ

=
⟨r| τ̄µ|i]
⟨ri⟩ , (2.25)

and they can also be written using the τµ matrices instead of τ̄µ:

ϵµ−(pi, r) =
λ̃r,α̇τ

µ,α̇βλi,β

λ̃i,σ̇λ̃σ̇
r

=
[r|τµ |i⟩
[ir]

, ϵµ+(pi, r) =
λ̃i,α̇τ

µ,α̇βλr,β

λσ
rλi,σ

=
[i|τµ |r⟩
⟨ri⟩ . (2.26)

Using eq. (2.21) we can obtain representations of the polarization vectors with two spinor
indices instead of one Lorentz index, and eq. (2.25) becomes

ϵβ̇α− (pi, r) =
λ̃β̇
rλ

α
i

λ̃i,σ̇λ̃σ̇
r

=
|r] ⟨i|
[ir]

, ϵβ̇α+ (pi, r) =
λ̃β̇
i λ

α
r

λσ
rλi,σ

=
|i] ⟨r|
⟨ri⟩ , (2.27)

while eq. (2.26) turns into

ϵ̄−,βα̇(pi, r) =
λi,βλ̃r,α̇

λ̃i,σ̇λ̃σ̇
r

=
|i⟩ [r|
[ir]

, ϵ̄+,βα̇(pi, r) =
λr,βλ̃i,α̇

λσ
rλi,σ

=
|r⟩ [i|
⟨ri⟩ . (2.28)

2.3 Chirality flow and its Feynman rules

We will now introduce the concept of chirality flow for massless particles. By using the fact
that we can trade a Lorentz index for two spinor indices for four-vectors, as we have seen
in Section 2.2, we can write Feynman diagrams where the chiralities are explicitly shown
throughout the diagram, which will allows us to see the spinor contractions immediately.
Throughout this thesis we use the convention that all particles are outgoing, meaning that
we are studying processes 0→ p1p2p3... .

We say that a particle is right-chiral if it has positive incoming helicity. Hence, an outgoing
particle is right-chiral if it has negative helicity and we choose the direction of chirality-flow
to be opposite to the fermion flow direction. We represent right-chiral massless fermions
and anti-fermions with solid lines in the chirality-flow picture. Similarly, left-chiral particles
have positive outgoing helicity and also have chirality flow direction opposite to the fermion
flow direction and are represented with dashed lines. We use the convention of having
fermion flow and chirality flow in the opposite directions as this allows us to always read
diagrams along the chirality-flow direction to write down spinor inner products.

2Outgoing polarization vectors are typically denoted as ϵ∗, but as we are only considering outgoing
polarization vectors in this thesis we are omitting the star.
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Below we show the representations of massless fermions in spinors, bra-ket notation, with
standard Feynman rules, and rightmost in the chirality flow picture

Outgoing right-chiral fermion λα
p ↔ ⟨p| = p

− = p

(2.29)

Outgoing right-chiral anti-fermion λp,α ↔ |p⟩ = p
− = p

(2.30)

Outgoing left-chiral fermion λ̃p,α̇ ↔ [p| = p
+

= p

(2.31)

Outgoing left-chiral anti-fermion λ̃α̇
p ↔ |p] = p

+
= p .

(2.32)

Note that in our convention, we always read chirality flow along the directionof the arrow
to find the order of inner products, which allows us to represent spinor inner products
graphically as follows:

⟨ij⟩ = i j = −⟨ji⟩ = − i j (2.33)

[ij] = i j = −[ji] = − i j . (2.34)

In addition to fermions we have four-vectors and external vector bosons, which we also
need to describe in the chirality-flow formalism. Since four-vectors transform under the
(1/2, 1/2) representation, they carry one dotted and one undotted index. For the graphical
representation we define the so called momentum-dot, that takes either a dotted line and
turns it into an undotted line, or vice versa

pµσ
µ ≡ /p↔

√
2 pα̇β =

α̇ p β

, pµσ̄
µ ≡ /̄p↔

√
2 p̄αβ̇ =

α p β̇

.

(2.35)
If p is a massless momentum, eq. (2.23) can be used to immediately form spinor contrac-
tions with |p] ⟨p| or |p⟩ [p|, which we can graphically write as

α̇ p β

=

p

α̇ β ,
α p β̇

= α

p

β̇ .

(2.36)
If p is not massless we can instead use eq. (2.24) to represent the momentum-dot graphically
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as

α̇ p β

=
∑
i

ci

pi

α̇ β , (2.37)

which is, as previously mentioned, always possible to do at tree level in terms of external
momenta pi. While we focus on massless particles in this thesis, massive external particles
can be treated similarly as massless ones [6].

Let us now come back to external vector bosons. We remember that we can write polar-
ization vectors with two spinor indices as an outer product between the physical momenta
and reference momenta. Since we have a graphical representation of spinors from eqs.
(2.29-2.32), we can represent equations (2.25) and (2.26) as

ϵβ̇α− (pi, r) =
|r] ⟨i|
[ir]

=
1

[ir]
r
i (2.38)

ϵβ̇α+ (pi, r) =
|i] ⟨r|
⟨ri⟩ =

1

⟨ri⟩
i
r (2.39)

ϵ̄−,βα̇(pi, r) =
|i⟩ [r|
[ir]

=
1

[ir]
r
i (2.40)

ϵ̄+,βα̇(pi, r) =
|r⟩ [i|
⟨ri⟩ =

1

⟨ri⟩
i
r , (2.41)

keeping in mind that we always read chirality-flow diagrams along the arrow direction. We
note that polarization vectors have a similar flow structure to the massless momentum-
dots but with the important difference that the reference vector r can be chosen as an
(almost) arbitrary light-like momentum, which we will later show can simplify calculations
extensively.

The metric tensor gµν is graphically represented as two parallel lines, where one is con-
necting left-chiral spinors and one is connecting right-chiral spinors

gµν = . (2.42)

The arrows of the two lines must be in opposite direction to each other, but since the
inner products are antisymmetric, swapping both arrow directions does not introduce a
sign change due to the two minus signs canceling out. The arrow directions can therefore
always be chosen to fit with the rest of the diagram.

With these tools ready, let us go through Feynman rules for the vertices that are relevant
for massless QED and QCD and how to transform them to the chirality-flow formalism.
We begin with the fermion-photon vertex, which with standard Feynman rules is given by

ieQfγ
µ = µ , (2.43)
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where e is the electromagnetic coupling constant and Qf is the charge of the fermion. By
explicitly writing out the possible helicity configurations and using eq.(2.10) we can split
the vertex into two chirality-flow versions, remembering that we consider all particles as
outgoing

ieQf

√
2τµ,α̇β = µ

+
α̇

− β
= ieQf

√
2

α̇

β

(2.44)

ieQf

√
2τ̄µ

αβ̇
= µ

− α

+ β̇
= ieQf

√
2

α

β̇

, (2.45)

where the rightmost terms are in the chirality-flow picture. Similarly, the quark-antiquark-
gluon vertex in standard Feynman rules is

i
gs√
2
γµtaji =

a, µ

i

j

, (2.46)

where we use the following normalization of the color tensors

Tr(tatb) = δab, ifabc = Tr(ta[tb, tc]). (2.47)

Not suprisingly, the quark-antiquark-gluon vertex has the same flow structure as the
fermion-photon vertex and is given by

igsτ
µ,α̇βtaji =

a, µ

+
i, α̇

− j, β
= igst

a
ji

α̇

β

(2.48)

igsτ̄
µ

αβ̇
taji =

a, µ

− i, α

+ j, β̇
= igst

a
ji

α

β̇

. (2.49)

The other two QCD vertices are the three- and four-gluon vertex. The three-gluon vertex
has three separate kinematic terms and is given by

p1

a1, µ1 a2, µ2

p2

p3
a3, µ3

= i
gs√
2
(ifa1a2a3)

[
gµ1µ2(p1 − p2)

µ3 + gµ2µ3(p2 − p3)
µ1 + gµ3µ1(p3 − p1)

µ2
]
.

(2.50)
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We can use eq. (2.42) to turn gµ1µ2 into the chirality-flow picture, and identify the term
(p1 − p2)

µ3 as a momentum-dot. Hence the three-gluon vertex in the chirality-flow picture
is

p1

a1, µ1 a2, µ2

p2

p3
a3, µ3

= i
gs
2
(ifa1a2a3)

 + +

1 2

3

1− 2
2− 3

1

3

2 1

3

3− 1

2
.

(2.51)
We leave out the arrow directions, but they should again be chosen to match the rest
of the diagram. As before, the constraints that the flow must go in on one side of the
momentum-dot and come out on the other side, and that the flow must be in opposite
directions in the gµ1µ2 terms, still hold.

The kinematic terms of the four-gluon vertex contain only the metric gµν , but the terms
are multiplying three different color structures

a1, µ1 a2, µ2

a3, µ3a4, µ4

= i

(
gs√
2

)2[
ifa1a2difda3a4(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ifa1a3difda2a4(gµ1µ2gµ3µ4 − gµ1µ4gµ3µ2)

+ifa1a4difda3a2(gµ1µ3gµ4µ2 − gµ1µ2gµ4µ3)
]
.

(2.52)

Turning the metric into the chirality-flow picture lets us write the four-gluon vertex as

a1, µ1 a2, µ2

a3, µ3a4, µ4

= i

(
gs√
2

)2

ifa1a2difda3a4

 −

1 2

34

1 2

34



+ifa1a3difda2a4

 −

1 2

34

1 2

34

+ ifa1a4difda3a2

 −

1 2

34

1 2

34


 ,

(2.53)

where, as before, arrows belonging to the same metric have opposite directions and match
with the rest of the diagram.

Let us now lastly look at propagators in the chirality-flow picture. Since the gluon propa-
gator is proportional to the metric it becomes very simple

µ, a ν, b = −igµν
p2

δab = −iδ
ab

p2
. (2.54)
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The fermion propagator is given by

ipµγ
µ

p2
=

i

p2

(
0 pµ

√
2τµ

pµ
√
2τ̄µ 0

)
=

i

p2

(
0 /p

/̄p 0

)
, (2.55)

which just as eqs. (2.44) and (2.45) splits into two chirality flow versions. In equation
(2.35) we already have a chirality-flow representation for /p and /̄p, and hence the fermion
propagator is given by

i

p2
/p→

i

p2

√
2pα̇β =

i

p2

α̇ p β

, (2.56)

or

i

p2
/̄p→

i

p2

√
2p̄αβ̇ =

i

p2

α p β̇

. (2.57)

We now show a simple example of how to use the chirality-flow Feynman rules for the
process 0 → uRūLdRd̄L. We begin by collecting all coupling constants and factors from
vertices and propagators, and then using eqs. (2.48), (2.49) and (2.54) to turn the diagram
in to a chirality-flow diagram. Lastly we assign the arrow directions so that they are in
opposite directions in the propagator. Performing these steps we get

uR

−

+
ūL

dR
−

+

d̄L

=
ig2s
p2

uR

ūL

dR

d̄L

=
ig2s
p2
⟨pupd⟩[pūpd̄],

(2.58)
with p = pu+pū. In the last line we directly identified the inner products ⟨pupd⟩ and [pūpd̄]
by following the flow of the solid and dashed line, respectively.

Let us now consider a slightly more interesting example, calculating a Feynman diagram to
the process 0→ uRūLgRgL. Using the same strategy of collecting prefactors, then rewriting
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vertices and propagators as chirality-flows and deciding arrow directions we obtain

uR

−

+

ūL

1

2

−

+

=
ig2s

2(p1 + p2)2[p1r1]⟨p2r2⟩

×



u

ū

p1 − p2

p1 r1

p2r2

+

u

ū

p1 r1

r2
p2

+

u

ū

p1
r1

r2
p2

p2−

pu + pū − p1

(pu + pū)


.

(2.59)

We can simplify this in two ways. By noting that any term in the momentum-dot that
matches either spinor entering it will be zero (due to the antisymmetry of the inner prod-
uct), we can use momentum conservation to rewrite the dots so that as many terms as
possible vanish. For this diagram, momentum conservation gives pu + pū + p1 + p2 = 0.
Hence the first dot can be written as p1−p2 = p1+(pu+pū+p1)→ 2p1, where we removed
the vanishing terms in the last step. Doing the same for the two other momentum-dots
gives p2 − (pu + pū) → 2p2 and pu + pū − p1 → −2p1. The amplitude for this diagram is
then

ig2s
⟨pup1⟩[p1pū]⟨p1r2⟩[p2r1] + ⟨pur2⟩[p2pū]⟨p1p2⟩[p2r1]− ⟨pup1⟩[r1pū]⟨r2p1⟩[p1p2]

(p1 + p2)2[p1r1]⟨p2r2⟩
. (2.60)

We can simplify this expression if we make a good choice for r1 and r2. If we let r1 = pū
and r2 = pu (assuming that pu ̸= p2 and pū ̸= p1), we see directly from the diagram that
two terms vanish, since ⟨pur2⟩ = ⟨pupu⟩ = 0 and [r1pū] = [pūpū] = 0. Hence, with this
choice of reference momenta, the matrix element becomes

ig2s
⟨pup1⟩[p1pū]⟨p1r2⟩[p2r1]
(p1 + p2)2[p1r1]⟨p2r2⟩

= −ig2s
⟨p1pu⟩2[p2pū]

(p1 + p2)2⟨p2pu⟩
. (2.61)

2.4 Gauge based diagram removal

As we showed in the previous section, well-chosen reference momenta can simplify calcu-
lations by making spinor contractions vanish. In this section we will systematically clarify
how our gauge choices can help us and show that it can sometimes lead to chirality-flow
diagrams where all terms vanish. These diagram do not have to be considered for numeri-
cal evaluations, and we call this gauge based diagram removal. For processes with multiple
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Feynman diagrams one must choose the same reference momenta for each gauge-invariant
subset of Feynman diagrams, and for simplicity we limit ourselves to choosing the reference
momenta in the same way for all diagrams in the process, although in principle different
reference momenta could have been used for different gauge-invariant sets.

Diagram removal arises from our freedom in choosing the reference momenta of external
bosons, which lead to vanishing spinor contractions. Hence our goal should be to have
the maximum number of inner products between momenta and themselves. A natural
choice is therefore to set all left-chiral reference momenta to the physical momentum of a
right-chiral particle in the process, and similarly set all right-chiral reference momenta to
the same left-chiral physical momentum. With this choice all contractions of two reference
momenta of the same chirality will vanish, and additionally the inner product will vanish
when contracted with the physical momenta which the reference moment were chosen to
be equal to. In our implementation we set the reference momenta of all right-chiral bosons
to the momentum of the first left-chiral fermion, and similarly the reference momenta of
all left-chiral bosons to the momentum of the first right-chiral fermion. When considering
a gluon-only process we instead set the reference momenta to the physical momentum of
the first left- and first right-chiral gluon. Although not proven for all processes and phase
space points, we believe that this is often the optimal choice of the reference vectors.

Let us now see how this gauge choice affects the quark-antiquark-gluon vertex. In the
chirality-flow picture the quark-antiquark-gluon vertex is given by eq. (2.48) or (2.49), and
we can immediately see that the vertex will vanish if the reference momentum is equal to
the momentum of the fermion it is contracted with. With our gauge choice, this happens
if and only if the first left-chiral fermion is connected directly to a right-chiral gluon or the
first right-chiral fermion is connected directly to a left-chiral gluon

fR

r = fR

VL

L

R

∝ ⟨fRr⟩ = ⟨fRfR⟩ = 0. (2.62)

We can therefore remove all Feynman diagrams with this property from our processes
before preforming any numerical evaluations.

The other two QCD vertices, the three- and four-gluon vertex, both have three distinct
kinematic terms. These terms contain all possible spinor contractions, making the rules for
diagram removal for these vertices more complex than those for the quark-antiquark-gluon
vertex. However, even when the full Feynman diagram can not be removed, identifying
which kinematic terms vanish can yield significant simplifications.

17



2.5 Gauge-specific Feynman rules

The choice of reference vector determines which diagrams will vanish, as we have previously
observed. In addition, even for diagrams that do not vanish, some kinematic terms may be
zero. To be able to use these simplifications, we must know whether a gluon carries the left-
or right-chiral reference momentum. Therefore, to fully utilize our gauge choice, we require
a way to consistently keep track of the flow of the reference vectors. To determine the
presence of a reference vector in off-shell particles, we systematically examine all chirality
combinations of the three- and four-gluon vertex. By doing so, we create a table that maps
the incoming gluons to an off-shell gluon gi ∈ {g, gL, gR, gref} that contains the maximal
amount of information. This approach allows us to efficiently determine when a reference
vector is carried by the propagator, with a table that can be used for any process.

We will call these rules gauge-specific Feynman rules, aiming to retain as much information
as possible about the gluons at all stages of evaluation. Since these rules will only be valid
for this specific gauge choice, we here present them for the gauge choice presented in
Section 2.4. Because the reference momenta are chosen based on the first right-chiral and
the first left-chiral gluon, these two gluons will carry both the left- and right-chiral reference
momenta, and hence have unique properties. To distinguish them, we will refer to them
as reference gluons. We label these reference gluons gref, those carrying the right-chiral
reference momentum gL, those carrying the left-chiral reference momentum gR, and those
carrying neither reference momentum g.

In the MadGraph standard, each individual particle state is evaluated explicitly, to re-
cycle calculations that are shared between diagrams, and the last evaluation calculates
the amplitude by contracting the innermost propagators of the given diagram. With the
gauge-specific Feynman rules, it is therefore important to distinguish vertices which cre-
ate an off-shell particle from the final vertices, where the latter creates amplitudes in
MadGraph. We show this with the following example: Consider two left-chiral gluons gL
combining to a propagator. From the flow

r

r
L2

L1

+

r
L1

+

r
L2

, (2.63)

we see that the first term vanishes, since it is proportional to ⟨rr⟩ = 0, and in the other two
terms the solid line going to the propagator is the right-chiral reference momentum. The
propagator therefore behaves as a gL particle for the purpose of simplifying vertices, and
we only need to consider two out of three kinematic terms in our calculations. If the vertex
instead was a final vertex with three gL particles it would clearly vanish as all contractions
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between solid lines vanish.

Consider now a 4-gluon vertex with two gL gluons carrying the right-chiral reference mo-
mentum r, without knowledge of the two other gluon chiralities. Only the two terms where
the gL particles are not contracted survive

L1r L2 r

L3R3

= |r⟩ [L2|⟨R3r⟩[L1L3],

L1

r
L2

r

L3

R3

= |r⟩ [L1|⟨R3r⟩[L2L3],

(2.64)
as

L1

r
L2

r

L3

R3

∝ ⟨rr⟩ = 0. (2.65)

If this vertex results in an off-shell gluon, we see that both terms in eq. (2.64) carry the
right-chiral reference momentum, and hence the resulting gluons is a gL gluon. If this vertex
instead is the last vertex drawn, we can still use the fact that the contraction between two
gL particles vanishes to simplify the calculation of the amplitude. Furthermore, if the
fourth gluon carries the right-chiral reference momentum all terms are proportional to
⟨rr⟩ = 0, and the full vertex vanishes.

A powerful tool to simplify the four-gluon vertex even further is the Schouten identity [13],
which states that

⟨ij⟩⟨kl⟩ = ⟨ik⟩⟨jl⟩+ ⟨il⟩⟨kj⟩
[ij][kl] = [ik][jl] + [il][kj],

(2.66)

and follows from the fact that three two component spinors must be linearly dependent,
together with the antisymmetry of the inner products. These identities written in the
chirality flow picture are given by

i j

kl

=

i j

kl

+

i j

kl

i j

kl

=

i j

kl

+

i j

kl

.

(2.67)
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Hence we see that we can replace the flow between two pairs of spinors with the other two
possible pairs of flows. For example, we can rewrite the gLgLgRgR vertex with the help of
the Schouten identities, where we can use that solid lines between the gL pair and dashed
lines between the gR pair vanishes. By first using the Schouten identity on the dashed lines
and then on the solid lines we obtain

L L

R R

=

L L

R R

+

L L

R R

=

L L

R R

=

L L

R R

+

L L

R R

=

L L

R R

.

(2.68)

The kinematic structure contracting the two gL and gR with each other is obviously zero,
and with the use of the Schouten identity we have shown that the two other kinematic
structures are identical.

Another interesting consequence of our gauge choice is that any three-gluon vertex with
the two external reference gluons must vanish. Denoting the physical momenta of the
two gluons p1 and p2 respectively, the reference momenta are r1 = p2 and r2 = p1. The
chirality-flow vertex is given by

p2

p2
p1

p1

+ +

p2
p1

1

2

3

1

2

3
3− 1

p2
p1

2− 3

1

2

3

, (2.69)

and it is immediately clear that the first term must vanish. By using momentum conser-
vation (p1 + p2 + p3 = 0) we can rewrite the momentum-dots as p3 − p1 = −2p1 − p2 and
p2 − p3 = 2p2 + p1. Expanding the momentum-dots with eq. (2.37) for the second term
gives

−[p1|
(
2|p1] ⟨p1|+ |p2] ⟨p2|

)
|p2⟩ = 0, (2.70)

and similarly for the third term

[p1|
(
2|p2] ⟨p2|+ |p1] ⟨p1|

)
|p2⟩ = 0. (2.71)
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Vertex Remaining terms Vertex Remaining terms
ggrefgref 2 ggrefgL 2
ggrefgR 2 grefgrefgL 0
grefgLgL 0 grefgRgR 0
grefgLgR 1 grefgrefgR 0
ggLgL 2 ggRgR 2
gLgLgR 2 gLgRgR 2
gLgLgL 0 gRgRgR 0
gggrefgL 2 gggrefgR 2
gggLgL 2 gggRgR 2
ggrefgLgR 1 ggrefgrefgL 0
ggrefgLgL 0 ggrefgRgR 0
ggLgLgR 2 ggLgRgR 2
ggLgRgR 2 grefgrefgLgL 0

grefgrefgRgR 0 grefgLgLgL 0
grefgRgRgR 0 grefgLgLgR 0
grefgLgRgR 0 gLgLgRgR 1
gLgLgLgL 0 gRgRgRgR 0

Table 1: Final vertices that have one or more vanishing terms. The columns ”Remaining
terms” shows the number of non-vanishing kinematic terms out of the three unique ones.

Consequently, all three terms of a three-gluon vertex vanish if two external reference gluons
are part of the vertex, and diagrams containing these vertices can be removed. Note that
this result only applies to on-shell reference gluons, as the momentum-dots in general do
not vanish for off-shell reference gluons.

Using the results presented so far, the gauge-specific Feynman rules can be derived. By
systematically going through all possible combinations of gluons, Table 1 and 2 have been
obtained, containing the gauge-specific Feynman rules when we have one left- and one
right-chiral reference gluon. The rules are derived by searching for vanishing contractions
and applying the Schouten identities to find terms that are identical to each other or
vanishing.
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Incoming Propagator Remaining terms Incoming Propagator Remaining terms
gg g 3 ggrefgref gref 1
ggL g 3 ggrefgL gL 2
ggR g 3 ggrefgR gR 2
ggref g 3 ggLgL gL 2
grefgref gref 2 ggLgR g 3
grefgL gL 2 ggRgR gR 2
grefgR gR 2 grefgrefgL X 0
gLgL gL 2 grefgLgL X 0
gLgR g 3 grefgLgR gref 1
gRgR gR 2 grefgRgR X 0
ggg g 3 gLgLgL X 0
gggref g 3 gLgLgR gL 2
gggL g 3 gLgRgR gR 2
gggR g 3

Table 2: Gauge-specific Feynman rules for vertices returning an off-shell particle. The
columns ”Remaining terms” shows the number of non-vanishing kinematic terms out of the
three unique ones. Propagators with no remaining terms can be ignored when generating
diagrams, since diagrams containing them always vanish.

3 Technical background

We are now equipped with the necessary theoretical background of the chirality-flow for-
malism, and in this and the next section we go through the tools used to numerically
evaluate matrix elements for any tree-level QCD process using chirality flow. Our QCD
implementation is incorporated in CAFE - the Chiral Automized Flow Extension [11],
which in turn is a modified version of the framework MadGraph5 aMC@NLO [12]. It is
therefore natural to first give an overview of the different parts of MadGraph, and then
present the modifications that are made in CAFE as well as the extension to QCD done
in this project.

3.1 MadGraph5 aMC@NLO

While MadGraph has many features, in this project we focus on matrix element calcula-
tions. The strength of MadGraph is that it can take any quantum field theory, specified
by its Lagrangian (particles, vertices, couplings), and use this in a model independent
framework to evaluate matrix elements for all possible processes at LO and NLO. We here
give a brief introduction to the whole workflow, before giving more details to each part.
In Figure 1 an outline of the steps that MadGraph takes between the input and result is
shown.
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The model that the program uses is specified by UFO-files, containing information such
as the particles, vertices and parameters of the model. Feynman diagrams are generated
by recursively combining the particles, starting from the external ones, according to the
rules specified in the UFO model. Once the diagrams have been generated, MadGraph
uses these as a basis for generating a program to evaluate the matrix element for the
considered process. MadGraph itself is a Python program, but the generated code for
numerical evaluations is written in FORTRAN77. This code is based on the HELAS
library subroutines and shares the same structure in the sense that it recycles calculations
between Feynman diagrams of the same process, something we will discuss in more detail
later in this section.

Figure 1: Sketch over how MadGraph goes from user input to a numerical matrix element.

3.2 UFO

The Universal FeynRules Output (UFO) [14] is a Python module in which QFTs can be
defined in a generator-independent way, without any assumptions on the conventions used
by the event generator the model will eventually be used in. The official MadGraph release
comes with some UFO models already installed such as the SM and the minimally super-
symmetric SM, and allows easy downloads of other models directly through the program.
In this project we implement a chirality-flow version of the SM, and use the SM from the
official MadGraph release for comparison and benchmarking.

A UFO model is organized into several different Python files containing all information
that the event generator needs about the model. There are three files that need significant
modification for the chirality-flow implementation: particles.py, vertices.py and lorentz.py.
The file particles.py contains all particles within the model together with their mass, width
and quantum numbers, as well as some identifiers such as their PDG code. As an example,
the code snippet below shows part of the definition of a gluon in the standard model.
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g = Particle(pdg_code = 21,

spin = 3,

color = 8,

mass = Param.ZERO,

width = Param.ZERO,

charge = 0,

GhostNumber = 0,

LeptonNumber = 0,

Y = 0,

...)

Next we show how a quark-antiquark-gluon and the three-gluon vertex is represented in
vertices.py :

V_135 = Vertex(name = ’V_135’,

particles = [ P.u__tilde__, P.u, P.g ],

color = [ ’T(3,2,1)’ ],

lorentz = [ L.FFV1 ],

couplings = {(0,0):C.GC_11})

V_36 = Vertex(name = ’V_36’,

particles = [ P.g, P.g, P.g ],

color = [ ’f(1,2,3)’ ],

lorentz = [ L.VVV1 ],

couplings = {(0,0):C.GC_10})

Here P.u tilde is the up antiquark and P.u and P.g is the up quark and gluon respec-
tively. The color structure of the vertex is described by its color tensor, where T(3,2,1)

represents the fundamental representation matrix (T a3)j1i2 and f(1,2,3) the structure con-
stants fa1a2a3 . The line under color specifies which Lorentz structure the vertex has, which
is defined in lorentz.py.

The code below is a snippet from this file, showing the definition of the Lorentz structures
appearing in the vertices above.

FFV1 = Lorentz(name = ’FFV1’,

spins = [ 2, 2, 3 ],

structure = ’Gamma(3,2,1)’)

VVV1 = Lorentz(name = ’VVV1’,

spins = [ 3, 3, 3 ],

structure = ’P(3,1)*Metric(1,2) - P(3,2)*Metric(1,2) - P(2,1)*Metric(1,3)

+ P(2,3)*Metric(1,3) + P(1,2)*Metric(2,3) - P(1,3)*Metric(2,3)’)
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In the array spins, the particle spins are given in the 2j+1 convention, and the structure
is expressed in elementary Lorentz structures, where Gamma(3,2,1) represents (γµ3)i2i1 ,
Metric(1,2) the Minkowski metric gµ1µ2 and P(i,N) the µi component of the momenta
of the N-th particle: p

µi1
N . For example, the VVV1 structure will be

(p1 − p2)
µ3gµ1µ2 + (p2 − p3)

µ1gµ2µ3 + (p3 − p1)
µ2gµ3µ1 , (3.72)

and multiplies fa1a2a3 in the triple gluon vertex, just as we saw in eq. (2.50).

In general, many vertices use the same Lorentz structure, which means that the kinematics
implemented are the same for all vertices sharing the same structure. The four-gluon vertex
is special, since it multiplies three different color factors. This is solved by simply having
one Lorentz structure for each color factor, as shown below,

V_58 = Vertex(name = ’V_58’,

particles = [ P.g, P.g, P.g, P.g ],

color = [’f(-1,1,2)*f(3,4,-1)’, ’f(-1,1,3)*f(2,4,-1)’, ’f(-1,1,4)*f(2,3,-1)’],

lorentz = [ L.VVVV1, L.VVVV3, L.VVVV4 ],

couplings = {(1,1):C.GC_12,(0,0):C.GC_12,(2,2):C.GC_12})

with the Lorentz structures defined as

VVVV1 = Lorentz(name = ’VVVV1’,

spins = [ 3, 3, 3, 3 ],

structure = ’Metric(1,4)*Metric(2,3) - Metric(1,3)*Metric(2,4)’)

VVVV3 = Lorentz(name = ’VVVV3’,

spins = [ 3, 3, 3, 3 ],

structure = ’Metric(1,4)*Metric(2,3) - Metric(1,2)*Metric(3,4)’)

VVVV4 = Lorentz(name = ’VVVV4’,

spins = [ 3, 3, 3, 3 ],

structure = ’Metric(1,3)*Metric(2,4) - Metric(1,2)*Metric(3,4)’)

3.3 Diagram generation

From the vertices in the UFO model, MadGraph generates Feynman diagrams that are
later evaluated numerically. Initially, we only know the external particles, which needs
to be combined into correct Feynman diagrams. MadGraph does so in a recursive way,
which has two benefits as compared to naively generating all topologies individually. First
of all, MadGraph’s algorithm is effective at generating diagrams since it quickly throws
away combinations that will not generate a complete diagram. The second, and even larger
benefit, is that parts of diagrams that are shared between diagrams can be calculated once
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and reused for all the other diagrams where this subdiagram is contained. This means
that each propagator is only calculated one time, and then recycled optimally. Hence, the
number of calculations of off-shell particles grows slower than the number of amplitudes,
since the amplitudes are unique for each diagram.

Loosely described, the algorithm MadGraph uses for diagram generation is as follows.
From the UFO-model, two lists are created. The first list contains all combinations of
particles that can combine in a vertex, for example uug and ggg. The other list contains
combinations which can result in an off-shell particle, for example the combination uu can
result in an off-shell gluon g. MadGraph uses these lists to combine the external particles
and create off-shell particles or final vertices. The newly created off-shell particles are
then combined again recursively, until all diagrams containing all external particles are
generated. For a detailed explanation of the algorithm, see [15].

After diagram generation, MadGraph uses the diagrams to build a program that can evalu-
ate the matrix element numerically. It does so by using the information about the particles
and vertices in the UFO model, and using vertex subroutines corresponding to the different
Lorentz structures. These subroutines, which will be discussed more in Section 3.4, are
used to calculate wavefunctions or amplitudes for each unique vertex and external leg of
all the diagrams generated.

3.4 HELAS and ALOHA

HELicity Amplitude Subroutines [1], or HELAS for short, is a library of FORTRAN77
subroutines, from which the helicity amplitudes for any SM tree-level Feynman diagram
can be calculated by a series of subroutine calls. This allows for numerical matrix element
calculations that are efficient and easily automated.

We can divide the subroutines into three distinct groups depending on the number of wave-
functions in the input and output: external particles, propagators and amplitudes. The
subroutines for external particles are zero-to-one, taking the particles momenta, helicity,
mass and with, and returning the wavefunction of the particle. For the propagators, which
are many-to-one, the momenta and wavefunctions of the incoming particles are input, and
the wavefunction and momentum of the outgoing propagating particle is returned. Finally,
the amplitude subroutines used in the last vertex of a Feynman diagram are many-to-zero,
taking the wavefunctions and momenta as arguments and outputting the amplitude for
the given diagram. Since most interesting processes have more than one Feynman dia-
gram, one can easily see that some parts of the calculation can be reused. For example,
the external subroutines only need to be called once for each particle, since they are the
same for each Feynman diagram of the process. Similarly, any propagator only needs to
be calculated once; if it appears a second time it has already been calculated before and
can simply be recycled. The only subroutines that can never be recycled are the amplitude
calculations, since if two calculations were the same they would correspond to the same
Feynman diagram.

26



The original HELAS library only contains subroutines for the SM, and is therefore in-
sufficient for beyond SM event generation. The solution for this used in MadGraph is
ALOHA (Automatic Libraries Of Helicity Amplitudes) [16], which can automatically cre-
ate HELAS-like libraries for any quantum field theory, hence generalizing the HELAS
structure. ALOHA is made to be completely QFT agnostic, and it can take any UFO
model and output the HELAS-like routines needed for numerical calculations.

4 Implementation of chirality flow - CAFE

In this section, we will introduce the Chiral Automized Flow Extension - CAFE [11], a
numerical implementation of chirality flow for massless tree-level QED, which is extended to
massless tree-level QCD in this project. To provide context for our QCD implementation,
we will first review the key features of the existing QED implementation. We will then
proceed to describe the specific features and modifications used in our implementation of
QCD.

CAFE is designed to optimize the kinematics of the SM, and there are a few significant
changes compared to MadGraph. For example, while MadGraph works with 4 × 4 Dirac
matrices, CAFE utilizes 2× 2 Pauli matrices as these are used in the chirality-flow formal-
ism. However, where possible, we strive to keep the code as similar as possible to standard
MadGraph in our implementation to ensure that our performance comparisons are as fair
as possible and to show the benefit of using the chirality-flow formalism.

4.1 QED in CAFE

4.1.1 UFO

The chirality-flow QED UFO model is the restriction of the SM to massless QED, with
the chirality of the particles explicitly defined. The model contains left and right chiral
electrons, muons and photons, as well as a non-chiral photon that is used for all internal
photons since they do not carry a left- or right-chiral reference momenta.

The model contains all allowed combinations of vertices, namely e+R/Le
−
L/Rγ and µ+

R/Lµ
−
L/Rγ,

where the e+Re
−
Lγ and µ+

Rµ
−
Lγ vertices use the Lorentz structure given in eq. (2.44), which

is called RLV1, while e+Le
−
Rγ and µ+

Lµ
−
Rγ use the LRV1 structure given by eq. (2.45). In

naming the structures, the convention used is that L (R) represents a left-chiral (right-
chiral) fermion, V represents a non-chiral gauge boson, VL (VR) represents a left-chiral
(right-chiral) vector boson. In addition to this two other structures structures, LLV1 and
RRV1, are defined to treat momentum-dots to make sure that they are compatible with
MadGraph’s diagram generation.

In addition to the UFO model, the subroutines for external wavefunctions in chirality flow
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have been added to the ALOHA template files. For the fermions, these are LXXXXX and
RXXXXX which are calculated using eqs. (2.12) and (2.16) and for bosons the subroutines
VLXXXX and VRXXXX are implemented using eq. (2.27). The wavefunction for external
bosons depend on the choice of the reference momentum, which is set at diagram gener-
ation in CAFE, and is usually set to be physical momenta of the external particles. The
subroutines also check for singularities and use alternative expressions if needed. In the
QED implementation, vector bosons are described in terms of spinors, but we will use a
matrix representation in the QCD implementation.

4.1.2 Diagram generation

Diagram generation in CAFE follows the same algorithm as MadGraph, described in Sec-
tion 3.3, with one major change in how fermion propagators are treated. If we for example
have a right-chiral fermion fR and a photon γ emitting an off-shell particle, MadGraph
will output a left-chiral fermion fL as the propagator, since in the UFO models the vertices
are on the form f+

R/Lf
−
L/Rγ. However, in chirality flow, the momentum dot would flip the

chirality of the propagator back to being right-chiral. In CAFE this chirality flip is in-
cluded in diagram generation for fermion propagators, which requires the LLV 1 and RRV 1

subroutines mentioned in Section 4.1.1

4.1.3 Subroutine calls

The matrix elements are calculated from a sequence of subroutine calls, and the lists of
calls are created in MadGraph from the generated diagrams. In addition to the calls for
the external particles, the subroutine files are modified by CAFE to calculate propagators
and amplitudes in the chirality-flow picture.

In standard MadGraph, by default all possible helicity configurations are summed over for
a given process. However, since CAFE has explicitly chiral particles, in the massless case
there is exactly one non-vanishing helicity configuration, which is the one matching the
chiralities of the external particles. Hence, for helicity summation, one subprocess needs to
be created for each chirality configuration. To make this practically useful, multiparticles
are defined that contain the chiral particles, for example e− = e−L + e−R, so that (mostly)
standard MadGraph syntax can be used to create and run subprocesses for each non-
vanishing chirality combination. When multiparticles are used, a subprocess is created
for each chirality configuration, leading to a O(2n) scaling in the number of subprocesses,
where n is the number of external particles. This inevitably introduces overhead in CAFE
that does not appear for MadGraph, since each chirality configuration has to be run as a
distinct process.
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4.2 QCD in CAFE

4.2.1 UFO and diagram generation

In order to study the fully general case, where reference vectors can be chosen freely, as
well as an optimised implementation using the gauge-specific Feynman rules presented in
Section 2.5, two UFO models are created. In the generic model, the reference vectors
for gluons can be chosen freely at the cost of performance, while the model employing
gauge-specific Feynman rules has a fixed gauge choice and is focused on evaluation time
optimization by the use of simplified vertices.

In the generic model we define chiral up and down quarks uL, uR, dL, dR as well as their
antiparticles, together with the chiral gluons gL and gR and the non-chiral propagator g.
For the antifermion-fermion-gluon vertices we define all allowed chirality configurations:
ūR/LuL/R gi and d̄R/LdL/R gi, where gi ∈ {g, gL, gR}. Similarly, for the three- and four-
gluon vertex we make one vertex for each chirality configurations of the gluons, i.e. gigjgk
and gigjgkgl where gi, gj, gk, gl ∈ {g, gL, gR}, independently of each other.

In the diagram generation we then make sure that only g is used as a propagator to avoid
double counting of diagrams in the generic model. The three gluon vertex has the VVV1

Lorentz structure, while the four-gluon vertex have the VVVV1, VVVV3 and VVVV4 structures,
which we will describe later in this section.

In our gauge-specific QCD UFO model, we also define chiral up and down quarks and their
antiquarks. In addition to the non-chiral gluon g, we define the chiral gluons gL, gR, gLI , gRI ,
where gLI and gRI are the reference gluons discussed in Section 2.5, i.e. the first left-
chiral and right-chiral gluon in an all-gluon process. As in the generic model we define
vertices ūR/LuL/R gi and d̄R/LdL/R gi, as well as gigjgk and gigjgkgl, but this time with
gi, gj, gk, gl ∈ {g, gLI , gRI , gL, gR}. In order to prevent an excessive number of vertices,
we omit defining those that consistently would disappear. The vertices that would have
some vanishing terms in the Lorentz structures have been given new Lorentz structures,
corresponding to simplified subroutines, which will be described in Section 4.3. In the
reference gluons model, the letters VI represents a reference gluon. Otherwise, reduced
vertices use the same naming convention as before, i.e. a VVIVL1 Lorentz strucutre would
correspond to a ggLIgL or ggRIgL vertex, since the reference-gluon gref can be either a gLI
or gRI gluon.

There are some important changes in diagram generation when using the gauge-specific
model. Instead of using the non-chiral propagator g in every vertex, the propagator used for
each vertex is now determined according to the rules specified in Table 2. The information
in this table has been hard-coded into the Python dictionary of allowed propagators in
MadGraph, so that only desired diagrams are generated. Due to how MadGraph treats
particle-antiparticle pairs, the dictionary of allowed final vertices has been updated to
treat all different gluons as their own antiparticles. Using Table 1 we remove the vanishing
diagrams during generation, so that only diagrams that contribute to the matrix element
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are used during the numerical evaluation.

4.2.2 Arrow convention

Until now, we have discussed the process of generating chirality-flow diagrams, but we
have not yet addressed the topic of how to systematically implement arrow directions.
When drawing with pen and paper, a standard method is to start at one external leg, then
continuing through the diagram assigning the arrow direction according to the rules until
all lines has been assigned an arrow. This always yields a correct result, as any changes in
arrow direction will always result in an even number of flips in the massless case, which due
to the inherent anti-symmetry of the spinor contractions ultimately yield the same result.

However, this method is not straight forward to implement in MadGraph, so we take a
different approach, inspired by the QED implementation. By utilizing the Levi-Cevita
tensor, it is possible to turn an incoming spinor to an outgoing spinor, or vice versa,
according to eq. (2.18). Using bra-ket notation, this equation is equivalent to

|p]α̇ = ϵα̇β̇[p|β̇, [p|α̇ = ϵα̇β̇|p]β̇, ⟨p|α = ϵαβ |p⟩β , |p⟩α = ϵαβ ⟨p|β . (4.73)

Consequently, we can create chirality-flow diagrams with mismatched flow direction, and
then during numerical evaluations multiply with ϵ where there is a mismatch.

For these reasons, we use the following arrow convention in our implementation: for exter-
nal particles, left-chiral (dashed) lines have chirality flow into the vertex, while right-chiral
(solid) lines always have the chirality flowing out of the vertex. Since we always want left
chiral lines to flow into the vertex we are considering, we set left chirality to be outgoing for
propagators, since this will mean that in the next vertex we study, the left chiral flow will
again be incoming, and similarly for right chiral lines. With this method, mismatches will
only happen in the last vertex of a diagram, i.e. for amplitudes. Hence, all many-to-one
subroutines are made with matching arrow directions, while all amplitude subroutines will
multiply the wave functions by ϵ to solve the mismatch numerically.

Since multiplying wave functions is done component-wise, multiplying in two Levi-Cevita
symbols only changes which components of the wavefunctions that are multiplied, and
therefore does not increase code complexity. An example of the flow directions are shown
in Figure 2 for the antiquark-quark-gluon vertex. The left subfigure shows the flow when
the gluon is the propagator, corresponding to the LRV1 3 subroutine. The right subfigure
shows the flow when the vertex forms an amplitude, which is calculated with the LRV1 0

subroutine. The naming convention for subroutines is that the last digit denotes the
particle going out from the vertex, whereas subroutines ending with a ”0” correspond to
amplitudes. For example, the subroutine LRV1 1 would output a right-chiral fermion and
LRV1 2 would output a left-chiral fermion.
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α

β̇

(a) Propagator - LRV1 3

α

β̇

δ

σ̇

(b) Amplitude - LRV1 0

Figure 2: Chirality-flow diagram for the LRV vertex, showing that the chirality flow is
matching for the propagator but mismatched for both dashed and solid lines in the ampli-
tude.

4.3 Subroutines - vertex files

In this section we will in detail go through the vertex subroutines in our QCD implemen-
tation. We have kept the subroutines for external fermions from the QED implementation,
but all other subroutines have been modified due to a change in convention in how vec-
tor bosons are represented. In the QED implementation vector bosons are represented
in spinor form, but this choice is inefficient for propagators coming from the three-gluon
vertex. From equation (2.50), we see that one term in the propagator comes from a dis-
connected momentum dot. Since this momentum-dot is disconnected from the known
wavefunctions, we have to treat it as a 2×2 matrix, and it is therefore natural to represent
all vector bosons as 2× 2 matrices:

QED:


V (3)
V (4)
V (5)
V (6)

↔

[V |1
[V |2
|V ⟩1
|V ⟩2

 , QCD:

(
V (3) V (4)
V (5) V (6)

)
↔

(
|V ⟩1 [V |1 |V ⟩1 [V |2
|V ⟩2 [V |1 |V ⟩2 [V |2

)
. (4.74)

In MadGraph, components V (1) and V (2) of the vector V contain the momenta of the
particles, represented as V (1) = p0 + ip3, V (2) = p1 + ip2, and components 3 − 6 con-
tain information about the spinors. Hence, our new convention essentially redefines the
components of V as

V (3)→ V (3)V (5), V (4)→ V (4)V (5), V (5)→ V (3)V (6), V (6)→ V (4)V (6). (4.75)

By choosing this convention, the necessity of performing the transformation in eq. (4.75)
for every disconnected momentum dot is eliminated, leading to simplifications in these
subroutines.

4.3.1 LRV-subroutines

Now, let us examine some code examples of the QCD subroutines, beginning with the
LRV vertex from Figure 2. Below the subroutine LRV1P0 3 is shown, which as input takes
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the fermion wavefunctions F1 and F2, and outputs the vector boson propagator V3. Since
the flow directions are correct, the output is simply proportional to |F2⟩α [F1|β̇, which is
calculated in the last lines of the subroutine.

SUBROUTINE LRV1P0_3(F1, F2, COUP, M3, W3,V3)

...

V3(1) = +F1(1)+F2(1)

V3(2) = +F1(2)+F2(2)

P3(0) = -DBLE(V3(1))

P3(1) = -DBLE(V3(2))

P3(2) = -DIMAG(V3(2))

P3(3) = -DIMAG(V3(1))

DENOM = COUP/(P3(0)**2-P3(1)**2-P3(2)**2-P3(3)**2

$ - M3 * (M3 -CI * W3))

V3(3) = 2*DENOM*F2(5)*F1(3)

V3(4) = 2*DENOM*F2(5)*F1(4)

V3(5) = 2*DENOM*F2(6)*F1(3)

V3(6) = 2*DENOM*F2(6)*F1(4)

END

Next we consider the LRV1 0 subroutine, which takes the wavefunctions F1, F2 and V3

and outputs the amplitude of the vertex. Reading the chirality-flow diagram in Figure 2b
starting from the solid line of the vector boson, and using the Levi-Civita symbol to make
the flow direction matching, we obtain

|V 3⟩δ ϵδα |F2⟩α [F1|β̇ϵβ̇σ̇[V 3|σ̇ = [F1|β̇ϵβ̇σ̇
(
|V 3⟩δ [V 3|σ̇

)
ϵδα |F2⟩α , (4.76)

where the terms are collected as they are represented in the wavefunction for the vector
boson on the right side of the equation, i.e.

|V 3⟩1 [V 3|1 = V 3(3), |V 3⟩1 [V 3|2 = V 3(4), |V 3⟩2 [V 3|1 = V 3(5), |V 3⟩2 [V 3|2 = V 3(6).
(4.77)

Below, the code of the subroutine LRV1 0 is given, where the second to last line is equivalent
to eq. (4.76).

SUBROUTINE LRV1_0(F1, F2, V3, COUP,VERTEX)

IMPLICIT NONE

COMPLEX*16 CI

PARAMETER (CI=(0D0,1D0))

COMPLEX*16 COUP

COMPLEX*16 F1(*)

COMPLEX*16 F2(*)

COMPLEX*16 V3(*)
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COMPLEX*16 VERTEX

VERTEX = -COUP*((F1(4)*V3(3) - F1(3)*V3(4))*F2(6)

$ - (F1(4)*V3(5) + F1(3)*V3(6))*F2(5))

END

4.3.2 VVV-subroutines

Continuing with the three-gluon vertex, we employ the same approach of following the
chirality flow and flipping the arrow direction as needed in the VVV 0 subroutine. This
subroutine takes the wavefunctions V1, V2, and V3 as inputs and generates an amplitude
as output. Figure 3a shows one of the three terms in the three-gluon vertex amplitude,
which is given by

[V 1|α̇ϵα̇β̇[V 2|β̇ |V 1⟩γ ϵγσ |V 2⟩σ [V 3|η̇(P1− P2)η̇ν |V 3⟩ν + permutations. (4.78)

The subroutine is provided below but with variable declarations and momentum definitions
removed to save space. The three variables TEMP1, TEMP2 and TEMP3 are used for the
calculation of the explicit term in eq. (4.78), and the rest of the variables are used for the
other two kinematic terms.

SUBROUTINE VVV1_0(V1, V2, V3, COUP,VERTEX)

...

P1(0) = DBLE(V1(1))

...

TMP1 = V1(3)*V2(6) - V1(4)*V2(5) - V1(5)*V2(4) + V1(6)*V2(3)

TMP2 = (V3(3)*(P1(0) - P1(3)) - V3(4)*(P1(1) + CI*P1(2))

$ - V3(5)*(P1(1) - CI*P1(2)) + V3(6)*(P1(0) + P1(3)))

TMP3 = (V3(3)*(P2(0) - P2(3)) - V3(4)*(P2(1) + CI*P2(2))

$ - V3(5)*(P2(1) - CI*P2(2)) + V3(6)*(P2(0) + P2(3)))

TMP4 = V2(3)*V3(6) - V2(4)*V3(5) - V2(5)*V3(4) + V2(6)*V3(3)

TMP5 = (V1(3)*(P2(0) - P2(3)) - V1(4)*(P2(1) + CI*P2(2))

$ - V1(5)*(P2(1) - CI*P2(2)) + V1(6)*(P2(0) + P2(3)))

TMP6 = (V1(3)*(P3(0) - P3(3)) - V1(4)*(P3(1) + CI*P3(2))

$ - V1(5)*(P3(1) - CI*P3(2)) + V1(6)*(P3(0) + P3(3)))

TMP7 = V3(3)*V1(6) - V3(4)*V1(5) - V3(5)*V1(4) + V3(6)*V1(3)

TMP8 = (V2(3)*(P3(0) - P3(3)) - V2(4)*(P3(1) + CI*P3(2))

$ - V2(5)*(P3(1) - CI*P3(2)) + V2(6)*(P3(0) + P3(3)))

TMP9 = (V2(3)*(P1(0) - P1(3)) - V2(4)*(P1(1) + CI*P1(2))

$ - V2(5)*(P1(1) - CI*P1(2)) + V2(6)*(P1(0) + P1(3)))

VERTEX = COUP*CI*(TMP1*(TMP2 - TMP3) + TMP4*(TMP5 - TMP6)

$ + TMP7*(TMP8 - TMP9))/4

END
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Figure 3: Chirality-flow diagram for the VVV vertex, showing one term for the amplitude
and two terms for the propagator.

We now consider the three-gluon vertex when it outputs an off-shell particle. Figure 3b
and 3c show two of the three kinematic terms in the chirality-flow picture. The two terms
are fundamentally different, since in Figure 3b the flow of the propagating particle is
disconnected from the other two spinors, while in Figure 3c the flow is connected to known
spinors, similarly to the LRV1 3 propagator in Figure 2a. The two terms become

[V 1|α̇ϵα̇β̇[V 2|β̇ |V 1⟩γ ϵγσ |V 2⟩σ (P1− P2)η̇ν + [V 2|β̇(P3− P1)β̇σ |V 2⟩σ |V 1⟩γ [V 1|α̇δα̇η̇δγν ,
(4.79)

while the third term of the vertex has the same structure as the second term in the equation
above. In the same way as before, the full expression has been implemented in the VVV1 3

subroutine.

4.3.3 VVVV-subroutines

For the four-gluon vertex, there is one subroutine for each color structure, which are called
VVVV1, VVVV3 and VVVV4 respectively, and correspond to the kinematic structures in eq.
(2.53). The four-gluon vertex is significantly easier to implement since it contains no
momentum dots. For example, the many-to-zero subroutine VVVV1 0 corresponds to the
metric gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3 . The first term of the subroutine is proportional to

[V 1|α̇ϵα̇β̇[V 3|β̇ |V 1⟩γ ϵγσ |V 3⟩σ [V 2|γ̇ϵγ̇σ̇[V 4|σ̇ |V 2⟩α ϵαβ |V 4⟩β , (4.80)

which is just the inner products we have seen before. The subroutines for off-shell particles
become even more simple, since the chirality-flow lines are directly connected between the
off-shell particle and a known gluon. For instance, the first term of VVVV1 1 is proportional
to

[V 2|α̇ϵα̇β̇[V 4|β̇ |V 2⟩γ ϵγσ |V 4⟩σ |V 3⟩α [V 3|γ̇, (4.81)

and has been implemented similarly to the other subroutines. In some instances all three
of the four-gluon vertex subroutines do not need to be used. If we for example consider

34



the final vertex gLgLgRgR, we showed in eq. (2.68) using the Schouten identities that

L L

R R

=

L L

R R

, (4.82)

which means that the first kinematic term in eq. (2.53) is identically zero, and hence the
subroutine VVVV1 0 does not need to be used for the gLgLgRgR vertex.

4.3.4 Reduced subroutines

Now that the most important subroutines have been shown, we consider the reduced ver-
sions of the subroutines in the optimized reference gluons implementation. These new
subroutines share the content with the files already shown, but all parts that do not con-
tribute to the final result as a consequence of contracting reference vectors with each other
have been removed.

Below is the VIVLVR1 0 subroutine, where the calculation is significantly simplified due to
the presence of only one non-vanishing term resulting from the contraction between the gL
gluon and gR gluon.

SUBROUTINE VIVLVR1_0(V1, V2, V3, COUP,VERTEX)

...

P2(0) = DBLE(V2(1))

...

TMP1 = V2(3)*V3(6) - V2(4)*V3(5) - V2(5)*V3(4) + V2(6)*V3(3)

TMP2 = (V1(3)*(P2(0) - P2(3)) - V1(4)*(P2(1) + CI*P2(2))

$ - V1(5)*(P2(1) - CI*P2(2)) + V1(6)*(P2(0) + P2(3)))

TMP3 = (V1(3)*(P3(0) - P3(3)) - V1(4)*(P3(1) + CI*P3(2))

$ - V1(5)*(P3(1) - CI*P3(2)) + V1(6)*(P3(0) + P3(3)))

VERTEX = COUP*CI*(TMP1*(TMP2 - TMP3))/4

END

Reduced subroutines have been implemented for each vertex in Table 1 and Table 2 where
there are two or one terms remaining.

4.4 Validation and time tests

To ensure the accuracy of the new implementations, the results were validated by com-
paring its results with those obtained from standard MadGraph. For the generic QCD
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implementation, this comparison was carried out for the following QCD processes

gg > ng, uū > ng, ug > u (n− 1)g, uū > dd̄g, uū > dd̄gg, (4.83)

with n ∈ {2, 3, 4, 5}. The numerical value of the matrix element is compared between our
implementation and standard MadGraph at the same phase space points, and for all valida-
tion processes the results agree up to numerical (double) precision. For the reference-gluon
implementation, the comparison is made for the processes gg > ng, with n ∈ {2, 3, 4, 5},
with the results also accurate up to numerical (double) precision.

To evaluate the efficiency of our implementation, we want to compare the evaluation time
for a certain number of matrix elements in CAFE and standard MadGraph. In this project
the kinematic calculations have been changed, but the color treatment has been left un-
touched, since it is clearly separated from kinematics in MadGraph. Hence, we are inter-
ested in comparing the time taken to run all subroutine-calls for a given process, since the
time spent on color should be identical between the programs. To make this comparison,
during time tests only the subroutine-calls are executed, and all lines of code related to
color are commented out. Hence, the results will not show the true evaluation time for
a color summed matrix element, and the true relative evaluation time difference is there-
fore much smaller for practical calculations. Furthermore, the complexity of the kinematic
computations scale as O(n!), while the color computations scale as O((n!)2), where n is
the number of external particles. To minimize overhead, the matrix element is evaluated
a large number of times within each subprocess, specified in Section 5 for each process.
However, our implementation still brings slightly more overhead since we need to run more
subprocess for each matrix element, as discussed in Section 4.1.3.

5 Results

Having described both standard MadGraph and our chirality-flow QCD implementation,
we now present the results, focusing on the differences in the number of instructions in the
subroutines, number of ALOHA-calls, and the time tests conducted.

By comparing the number of instructions between subroutines, we can see how the com-
plexity differs in the chirality-flow implementation, and quantify the simplifications made
in the reduced subroutines. We utilize the Valgrind [17] profiling tool Callgrind [18] to ob-
tain call graphs, number of instructions executed and the number of times each subroutine
is called.

Table 3 shows the number of instructions for the subroutines in the generic implementation.
We have left out subroutines that only differ by signs to another subroutine in the table,
for example LLV1 1 and LLV1 2. We see that the FFV subroutines contains a significantly
smaller amount of instructions in CAFE compared to standard MadGraph, and the VVV

and VVVV subroutines are similar in number of instructions. While the subroutines for
external vector bosons VLXXXX and VRXXXX contain more instructions, they are only used
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Vertex file MG Instructions MG Instructions CAFE Vertex files CAFE
IXXXXX 196 155 LXXXXX

OXXXXX 164 144 RXXXXX

VXXXXX 182 477 VLXXXX,VRXXXX
FFV1 0 416 168 LRV1 0

FFV1 1 2108 426 LLV1 1, RRV 1

FFV1P0 3 627 333 LRV1P0 3

VVV1 0 919 1034 VVV1 0

VVV1P0 1 1151 1146 VVV1P0 1

VVVV 0 1287 1254 VVVV 0

VVVVP0 1 1818 1872 VVVVP0 1

Table 3: Number of instructions in the generic implementation for the different subroutines,
compared between standard MadGraph (MG) and CAFE. In the VVVV-rows, the number
of instructions is the sum of instructions in the VVVV1, VVVV3 and VVVV4 files.

once per external vector boson per phase space point, and thus contribute negligibly to
the runtime for higher multiplicities. The amplitude subroutines, ending with ” 0”, are
dominating for large numbers of external particles n, since they can not be reused between
Feynman diagrams and the number of Feynman diagrams scale as O(n!).

Due to the large number of instructions in the VVV and VVVV subroutines, these mostly
dominate the evaluation time for processes with high gluon multiplicity. Hence, the generic
implementation without diagram removal should have comparable performance to standard
MadGraph in this limit.

Diagram removal affects the process by eliminating subroutine calls corresponding to van-
ishing vertices, and in Figure 4 the average number of subroutine calls used for a single
chirality configuration is shown for CAFE and standard MadGraph. The figure also shows
the number of calls for the best and worst chirality combination, where the best combina-
tion corresponds to the maximally helicity violating amplitudes.

Figure 5 shows the ratio of number of subroutine calls between MadGraph and CAFE
for the processes gg → ng and uū → ng. Diagram removal is most efficient when as
many gluons as possible carry the same reference vector, since this leads to more vanishing
contractions. We therefore expect that diagram removal works best for an odd number of
external particles, since then there is on average a larger difference in number of left- and
right-chiral gluons.
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Figure 4: Average number of subroutine calls as a function of external particles for Mad-
Graph and CAFE with diagram removal. For CAFE, the vertical bars show the number
for the best and worst chirality case. Note that without diagram removal, the number of
subroutine calls is the same for CAFE and MadGraph.
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Figure 5: Ratio of number of subroutine calls between standard MadGraph and CAFE
with diagram removal.
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Vertex 3 remaining terms 2 remaining terms 1 remaining term
Total % 77% VVV 0 29% 67% 4%

Instructions VVV 0 1034 717 386
Total % 10% VVV 1 47% 53% 0%

Instructions VVV 1 1146 926 X
Total % 9% VVVV 0 0% 73% 27%

Instructions VVVV 0 1254 876 450
Total % 4% VVVV 1 0% 57% 43%

Instructions VVVV 1 1872 1392 896

Table 4: Frequency of different subroutines for the process gLgR → gLgRgLgRgL after
diagram removal. Note that the column ”3 remaining terms” corresponds to the standard
vertex subroutine.
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Figure 6: Evaluation time for subroutine calls corresponding to 106 matrix elements as a
function of number of external particles. The runtime of CAFE is shown with and without
diagram removal. The reduced subprocesses for the all-gluon case is only used in the time
tests with diagram removal. Only non-vanishing helicity configurations are included for
standard MadGraph.
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In addition to diagram removal, the reduced subroutines for the three- and four-gluon
vertex further simplify computations in the optimized gluon implementation. Apart from
the subroutines for external vector bosons, only VVV and VVVV subroutines are used in
all-gluon processes. Table 4 shows the percentages of subroutines used for the process
gLgR → gLgRgLgRgL with diagram removal activated. The table also shows the percentage
of reduced subroutines for each vertex type, and also the number of instructions for these
files. As expected, the amplitude calculations dominate for this process, and a significant
fraction of the time reduced subroutines can be used.

Lastly, we assess the evaluation times for our implementation and compare to standard
MadGraph. We study the processes gg → ng and uū→ ng, with n ∈ {2, 3, 4, 5}. The all-
gluon processes are evaluated using the reference gluons model with diagram removal, while
the processes containing quarks are evaluated using the generic implementation with the
gauge choice described in Section 2.4 and diagram removal. In the time tests for standard
MadGraph, all vanishing helicity combinations have been removed, so that there is a one-
to-one correspondence between chirality configurations in CAFE to helicity configurations
in standard MadGraph. The matrix elements have been evaluated at the same random
phase space points in CAFE and MadGraph. The evaluation times are also shown for
CAFE without diagram removal and reduced subroutines for comparison. Figure 6 presents
the total evaluation time of the subroutine calls for the processes per 106 matrix element
evaluations, comparing CAFE and standard MadGraph, where it can be seen that CAFE
is significantly faster for both the gg → ng and uū→ ng processes when diagram removal
is used.

Figure 7 shows the ratio of evaluation times between standard MadGraph and CAFE.
Without diagram removal and reduced subroutines, the evaluation time of all-gluon pro-
cesses is slightly longer in CAFE, with a runtime ratio of approximately 0.894 for gg → 4g
and gg → 5g. The VVV 0 subroutine is dominating for all-gluon processes with high multi-
plicity, and the ratio of instructions of this subroutine in standard MadGraph and CAFE
is 919/1034 ≈ 0.889. The processes with quarks are faster in CAFE even without diagram
removal, as fewer instructions are used in the FFV subroutines.

Using diagram removal significantly increases the evaluation speed, especially for all-gluon
processes. As can be seen from Figure 5, a large fraction of the speed gain can be explained
by the fact that fewer subroutines need to be used. Furthermore, the reduced subroutines
in the reference-gluon implementation contain fewer instructions than the corresponding
default subroutines, as shown in Table 4, and even for a worst case chirality configuration
reduced subroutines can be used over 70% of the time.
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Figure 7: Ratio of measured evaluation time of subroutines between standard MadGraph
and CAFE as a function of number of external particles with and without diagram removal.

6 Conclusion and outlook

Matrix element evaluations are crucial for particle physics, as they provide the base for
event generation. Searches for rare events do not only require accurate matrix elements,
but also need large amounts of them to precisely simulate backgrounds. Therefore, matrix
element calculators that are more efficient could simultaneously lower computation costs
and allow simulations of more complex processes.

The chirality-flow formalism has already proven to be effective for numerical massless tree-
level QED calculations, and in this thesis we have shown that chirality flow can also be
used to simplify the kinematics of massless tree-level QCD. The speed increase for the QCD
implementation has not been as large as the QED implementation in CAFE, as the non-
reduced subroutines for three- and four-gluon vertices have a similar number of instructions
compared to standard MadGraph. However, the chirality-flow formalism provides an easy
and transparent way of choosing the reference momenta of external vector bosons, which
makes it possible to take advantage of optimal gauge choices. Furthermore, knowledge of
the gauge choice in advance gives rise to simplified gauge-specific Feynman rules, which
have been simplified even further with the Schouten identities.
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Although we have solely considered massless particles in this thesis, the chirality-flow
formalism can describe the complete SM [6], and a massive QED version has recently been
implemented in CAFE [19]. In addition to this, the chirality-flow formalism simplifies
weak interactions due to W-bosons always being left-chiral. It is therefore probable that a
full chirality-flow SM implementation in CAFE would continue to be faster than standard
MadGraph for all LO processes. Furthermore, the chirality-flow formalism has also been
shown to simplify kinematics for one-loop calculations [7], so there is potential for it to
lead to more efficient automated NLO matrix element evaluation as well.

While the results demonstrate that the chirality-flow formalism provides significantly faster
QCD kinematics, the bottleneck for large processes is summing over color due to its scaling
with number of external particles. This means that the evaluation time difference between
CAFE and standard MadGraph becomes much smaller if color is taken into account.

Finally, it is worth noting that while the structure of our implementation is very close to
standard MadGraph, it is likely that there may exist an algorithm more suited for chi-
rality flow than typical helicity amplitudes. For instance, MadGraph is recycling off shell
particles, which we also do in our implementation. However, it would be more intuitive
to recycle inner products within the chirality-flow formalism, which could be achieved by
caching inner products that appear many times in a process, for example inner products
containing the reference vectors. Nevertheless, we have shown that the chirality-flow for-
malism is suitable for automated matrix element evaluations for massless tree-level QCD,
and have reason to believe that this holds true for the full SM at both LO and NLO.
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