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Abstract

This thesis concerns the creation of Majorana bound states (MBSs) – a type of

condensed matter excitations theorized to have exotic and technologically valuable

properties. In particular, they could be used to store and manipulate quantum

information in a protected way, forming the building blocks of a topological quantum

computer. The search for MBSs has been intense since it was realized that they

could be created in superconductor-semiconductor hybrid structures, such as long

chains of quantum dots separated by superconductors. Majorana bound states can

even appear in two-site chains, although called ”poor man’s” MBSs since they only

appear at fine-tuned sweet spots and hence lack the protection standard MBSs offer.

However, they share all other properties of MBSs, making the short quantum dot

chains appealing for studying their exotic physics. In this thesis, we study the

platform proposed in Ref. [1], consisting of a short chain of quantum dots where

each dot is coupled to a separate superconductor. However, we consider Coulomb

interactions in the system, which were neglected in the original work. We develop

MBS quality measures to determine that Coulomb interactions do not destroy the

possibility of creating MBSs. Furthermore, we use the quality measures to conclude

that adding more sites to the chain does not necessarily improve the MBS quality.

Finally, we suggest that control of the superconducting phases can be used to fine-

tune the system to the sweet spot. In conclusion, this thesis finds that the quantum

dot chain is a relevant platform for creating poor man’s MBSs.
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Populärvetenskaplig

sammanfattning

Majorana-tillst̊and i kedjor av kvantprickar

Majorana-tillst̊and är exotiska kvanttillst̊and som tros kunna användas

för att lagra och manipulera kvantinformation p̊a ett helt nytt och robust

sätt. Skapandet av Majorana-tillst̊and skulle inte bara skriva fysikhistoria

utan ocks̊a revolutionera utvecklingen av kvantdatorer.

Vid mycket l̊aga temperaturer kan vissa metaller g̊a igenom en fasöverg̊ang och

bli supraledande. I ett s̊adant tillst̊and parar alla elektroner ihop sig i s̊a kallade

Cooper-par. Tillsammans bildar den enorma mängden par (i storleksordningen

Avogadros tal) en koherent v̊agfunktion, vilket gör att elektronerna kan flöda helt

utan motst̊and. Supraledning är p̊a s̊a sätt ett tillst̊and där kvantmekaniken gör

sig till synes även i v̊ar makroskopiska värld. Detta beteende hos elektroner i

supraledare skiljer sig helt fr̊an ”vanliga” material, som metaller och halvledare, där

elektroner beter sig mer individuellt. I halvledare är istället elektronerna bundna

till atomkärnor, förutom ett f̊atal elektroner som f̊att tillräckligt med termisk en-

ergi för att kunna färdas genom halvledaren. Anledningen till halvledarnas tekniska

användbarhet och den gigantiska halvledarindustrin är att deras elektroniska egen-

skaper kan förändras genom att införa föroreningar i halvledaren. Det g̊ar till och

med att skapa konstgjorda atomer av halvledare, s̊a kallade kvantprickar. I kvant-

prickar g̊ar det att precist avgöra och justera antalet elektroner. Därför är de mycket

användbara för att undersöka kvantmekaniska koncept och utveckla ny typ av kvant-

teknologi som utnyttjar kvantmekanik för att utföra uppgifter effektivt eller med hög

precision.

I början av 2010-talet ins̊ag man att kombinationen av halvledare och supraledare

kunde möjliggöra formationen av s̊a kallade Majorana-tillst̊and. Stora satsningar har

gjorts för att skapa dessa exotiska tillst̊and och experimentella tecken av dem har

uppmätts, men än s̊a länge saknas det övertygande bevis. Det finns tv̊a anledningar

till att det satsas s̊a mycket p̊a forskningen kring Majorana-tillst̊and. För det första

förväntas de kunna lagra kvantinformation som inte blir förvrängd av störningar
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p̊a systemet. För det andra beter sig Majorana-tillst̊and speciellt när man byter

plats p̊a dem. Vanliga partiklar, som elektroner, återg̊ar till sitt ursprungstillst̊and

efter att de har bytt plats med en annan elektron tv̊a g̊anger. Ett system med

Majorana-tillst̊and däremot, tros hamna i ett helt annat tillst̊and efter platsbyten.

Genom att kontrollerat byta plats p̊a Majorana-tillst̊and kan man därför manipulera

kvantinformationen som är lagrad i dem, och p̊a s̊a sätt implementera en kvantdator.

I denna avhandling studerar jag ett system där Majorana-tillst̊and förväntas

finnas enligt tidigare forskning. Systemet best̊ar av en kedja av kvantprickar där

varje prick är kopplad till en supraledare. Vid stora magnetiska fält och efter fin-

justering av systemets parametrar, uppst̊ar tv̊a Majorana-tillst̊and, en p̊a vardera

änden av kedjan. Till skillnad fr̊an tidigare forskning av systemet har jag inklud-

erat växelverkan mellan elektroner i modellen. Under arbetets g̊ang har jag, ana-

lytiskt och med hjälp av en dator, undersökt hur denna växelverkan mellan elek-

troner i kvantprickarna och längden p̊a kedjan p̊averkar Majorana-tillst̊anden. Re-

sultaten visar att Majorana-tillst̊anden kan bli av b̊ade sämre och bättre kvalitet

av växelverkan, men att de änd̊a alltid g̊ar att hitta. Att öka längden p̊a kedjan

verkar inte nödvändigtvis öka kvaliteten p̊a Majorana-tillst̊anden. Ett annat viktigt

resultat fr̊an arbetet är att man kan använda supraledarnas faser för att finjustera

systemet s̊a att Majorana-tillst̊and uppst̊ar. Sammanfattningsvis är kedjan av kvant-

prickar ett relevant alternativ för att skapa och detektera Majorana-tillst̊and.
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I

Introduction

Superconductivity is a phase of matter that arises in certain metallic elements at

low temperatures. In the superconducting state, all electrons pair up in so-called

Cooper pairs, forming a macroscopic and coherent quantum wavefunction [2]. This

allows them to move with perfect conductance through the superconductor. On

the other hand, semiconductors have a conductance intermediate to metals and

insulators. Most electrons in a semiconductor are tightly bound to the nuclei, and

only a few electrons have enough thermal energy to move through the material,

although with a finite resistance [3]. However, the advances in fabrication and

processing within semiconductor technology have allowed for precise control of the

properties of nanoscale structures; even forming tiny artificial atoms, called quantum

dots, is now standard practice [4]. In the marriage between superconductors and

semiconductors lies rich and exotic physics waiting to be discovered. In the early

2010s, it was realized that the combination of superconductors and semiconductors

could be used to engineer topological superconductors hosting so-called Majorana

bound states (MBSs) [5]. The successful detection and control of MBSs would allow

for the exploration of novel phenomena in fundamental physics, most notably non-

Abelian exchange statistics, and the possibility to implement a robust, topological

quantum computer [6, 7]. Therefore, the search for MBSs has been intense, both

from leading research groups and from industry [8].

One of the platforms most studied for creating MBSs is semiconducting nanowires

strongly coupled to superconductors [5]. Two MBSs are expected to form in such

systems, one at each end of the wire. In 2012, the first signs of MBSs in nanowires

were detected [9], see also Refs. [10–12] for further examples. However, it has be-

come increasingly clear that similar signals could be generated by other effects not

originating from the formation of MBSs [13–15]. Therefore, it is still controver-

sial whether they have been detected. To find more conclusive evidence, there has

lately been a push to study simpler systems where MBSs are expected to form. The
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minimal system required to have MBSs is a two-site version of a toy-model Kitaev

proposed in 2001 – the Kitaev chain [16]. A two-site Kitaev chain can be realized

using two quantum dots separated by a superconductor [17, 18], and experimental

signs of MBSs in such a system were found in 2023 [19]. The MBSs appearing in

short Kitaev chains are called poor man’s MBSs since they lack the extent of pro-

tection regular MBSs have against perturbations. Instead, the poor man’s MBSs

appear when the system is fine-tuned to a ”sweet spot” in parameter space. Except

for the lesser amount of protection, poor man’s MBSs share all other properties of

regular MBSs, such as their non-Abelian exchange statistics. The relatively simple

setup required to create poor man’s MBSs is, therefore, an attractive way to study

their exotic physics.

In this thesis, we analyze a chain of quantum dots with the potential to create

poor man’s MBSs. Instead of having a superconductor between the quantum dots

like the original proposal and the recent experiments, we have studied a system where

each dot is coupled to its own superconductor. This system was proposed in Ref. [1],

where it was shown that an effective Kitaev chain description emerges for large

magnetic fields. However, electron-electron interactions were not considered, which

are expected to be important in the system. In this work, we include interactions

between electrons on the same site and neighboring sites. To compare the situation

with and without interactions, we develop an MBS quality measure. Using the

measure, we investigate how interactions and chain length impact the quality of

MBSs. Finally, we discuss how the system could be tuned to the sweet spot using

the phases of the superconductors.

The aim of the thesis is to investigate an alternative platform for studying poor

man’s MBSs. The system we consider is simpler to implement than the original poor

man’s proposition since the quantum dots are directly next to each other. However,

it is more sensitive to interactions between electrons on neighboring sites, which are

shielded by the superconductors in the original platform. Therefore, investigating

the interdot Coulomb interactions’ impact on the MBSs is essential to conclude our

model’s relevance as an alternative to the original poor man’s system. Furthermore,

determining if longer chains increase the MBS quality will help experimentalists to

know if adding more dots to their setups is worth the extra effort.

The structure of the thesis is as follows. First, in Chapter II, we provide a

background of the main subjects of the thesis – quantum dots, conventional su-

perconductivity, the superconducting proximity effect, and topological supercon-

ductivity. Next, we introduce the model of the quantum dot chain and derive the

effective Kitaev chain parameters in Chapter III. Then, in Chapter IV, we discuss

the methodology of the thesis work. The results of the thesis is presented in Chap-

ter V. Finally, we conclude in Chapter VI by discussing the results and giving an

outlook on future work.
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II

Background

This chapter is devoted to establishing a proper background for the rest of the the-

sis. To begin with, we introduce quantum dots and discuss how to model them.

Next, we cover superconductivity and standard theoretical tools for analyzing su-

perconductors, such as the Bardeen-Cooper-Schrieffer theory. In Section II.3, we

combine the previous two sections by placing a superconductor near a quantum

dot. To understand the exciting physics arising in such systems, we first review

the superconducting proximity effect, which explains how superconductivity tends

to leak into nearby normal-state materials. Then, we look at the specific case when

the proximitized material is a quantum dot. Theoretically, chains of quantum dots

proximitized by superconductors can host MBSs. In Section II.4, we introduce

Majorana physics and topological superconductivity with a famous toy model, the

Kitaev chain. Finally, we discuss the notion of poor man’s Majorana bound states

and possible quality measures for such states. Throughout the thesis, we have set

the reduced Planck’s constant to unity (ℏ = 1).

II.1 Quantum dots

In low-dimensional materials, electrons are confined in one or more dimensions, lead-

ing to quantum effects that strongly influence the electrons’ behavior. In quantum

dots, the electrons are tightly confined in all three spatial dimensions. This leads

to electronic properties similar to those of atoms, most notably, a quantized energy

spectrum and the so-called charging energy – the additional energy required to add

an electron to the dot due to Coulomb repulsion [4, 20]. To access quantum phe-

nomena in quantum dots, the confinement length needs to be small in comparison

to the thermal wavelength of the electrons. Therefore, the size of a quantum dot is

typically tens of nanometres, and experiments are usually performed at cryogenic

temperatures [4]. Nowadays, there are many different ways to construct such tiny
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islands of electrons. One technique is to first restrict the electrons to one or two

dimensions in semiconducting nanowires or two-dimensional electron gases and then

electrostatically confine them in the remaining directions with nanoscale electrodes

called gates. Chains of two quantum dots, forming artificial molecules, can be man-

ufactured with the same techniques [4, 21].

Typically, quantum dot setups have additional gates that can be used to fine-tune

the energy levels and precisely control the number of electrons on the dot. Quantum

dots are hence an excellent testing ground for fundamental quantum physics. In the

following section, we introduce how to model chains of quantum dots, which will be

used throughout the thesis.

II.1.1 Modeling quantum dot chains

As discussed above, the energy levels of a quantum dot are quantized and can be well

separated. One common assumption when modeling a quantum dot system is that

the spacing between energy levels is large in comparison with the other energy scales

of the system. Then, one needs only to include one energy level per quantum dot.

This approximation will be used throughout this thesis. A Hamiltonian describing

a chain of N quantum dots can, in the language of second quantization, be written

as

Hchain =
N∑

j=1,s

µj,snj,s +
N−1∑
j=1,s

[wjd
†
j+1,sdj,s +H.c.] +

N∑
j=1

Uintranj↑nj↓ +
N−1∑
j=1

UinterNjNj+1.

(II.1)

Here, d†j,s creates an electron on quantum dot j with spin s ∈ {↑, ↓} and dj,s is the

corresponding annihilation operator. Furthermore, nj,s = d†j,sdj,s counts the number

of electrons at site j with spin s, and Nj = nj↑ + nj↓ counts the total number of

electrons at site j. The first term hence adds together the single-particle energies µj,s

for each occupied state. Note that the energy is, in general, spin-dependent, taking

into account e.g., magnetic fields. The second term represents tunneling between

sites j and j + 1, with a tunneling amplitude wj. Finally, Coulomb interactions

between electrons on the same dot (intradot) and on neighboring dots (interdot)

are taken into account by the last two terms. The Hamiltonian in Eq. (II.1) is the

starting point when we model the system in Chapter III.

II.2 Superconductivity

In 1911, the Dutch physicist Heike Kamerlingh Onnes recorded the first proof of

superconductivity while measuring the resistivity of mercury at cryogenic tempera-

tures [2]. When the mercury reached a temperature of 4.2 K, Onnes noticed that the

resistivity suddenly dropped to zero. While not knowing it at the time, Onnes had
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witnessed a phase transition to a superconducting state with perfect conductance.

However, it took 46 years from Onnes’s famous experiments until Bardeen, Cooper,

and Schrieffer (BCS) proposed the complete microscopic theory of superconductiv-

ity in 1957 [22]. A year later, Bogoliubov and Valatin independently set the idea

on firmer grounds by introducing the Bogoliubov (-Valatin) transformation [23, 24],

which later developed into the Bogoliubov-de Gennes (BdG) formalism [25]. In

this section, these essential theoretical tools for describing superconductivity are

reviewed.

II.2.1 Bardeen-Cooper-Schrieffer theory

A year before the BCS paper, Cooper showed that electrons can form so-called

Cooper pairs that lower the energy of the normal state Fermi sea in the presence of

a net attractive interaction between the paired electrons [26]. But how could such

an attractive interaction occur? Electrons are charged particles, and due to the

Coulomb interaction, they repel each other. A few years before the BCS paper, ex-

periments by Maxwell and Reynolds et al. [27, 28] showed that the superconducting

transition temperature of mercury varies between isotopes. The conclusion was that

superconductivity arises from interactions between electrons and lattice vibrations.

It can be shown that such interactions can result in an attractive net attraction

between a pair of electrons, the intuitive idea being that the first electron attracts

the positive ions close to it, which then attract the second electron [2]. Cooper’s

proposition of paired electrons hence stood on firm experimental ground.

BCS took the Cooper pairing idea further by forming an ansatz for the ground

state of a superconductor:

|ψG⟩ =
∏
k

(|uk|+ |vk|eiΦc†k↑c
†
−k↓) |0⟩ , (II.2)

where |0⟩ is the vacuum state, uk and vk are variational coefficients to be deter-

mined, and c†ks is the creation operator for an electron with momentum k and spin

s. Furthermore, Φ will turn out to describe the phase of the superconductor, which

becomes important to consider in systems with several superconductors. The BCS

ansatz can be understood as follows: For each momentum k, a Cooper pair of elec-

trons (k ↑,−k ↓) is occupied with probability |vk|2 and unoccupied with probability

|uk|2. Assuming that the interactions that are important for superconductivity are

between the Cooper paired electrons, the Hamiltonian of the superconductor is given

by

HSC =
∑
ks

ϵkc
†
kscks +

∑
kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑, (II.3)

where ϵk is the single particle energy of an electron with momentum k. The interac-

tion term in Eq. (II.3) can be seen as the scattering of a Cooper pair from momenta
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(l,−l) to (k,−k), with Vkl describing the attractive interaction between the Cooper

paired electrons discussed above.

Minimizing the energy of the state in Eq. (II.2) with respect to HSC, the varia-

tional coefficients uk and vk are obtained. By inserting the coefficients into Eq. (II.2),

the energy of the BCS ansatz can be calculated, which shows that it indeed has lower

energy than the Fermi-sea [2]. The ground state of a superconductor hence consists

of a macroscopic wavefunction of Cooper pairs. The BCS paper finally made it

possible to calculate the properties of superconductors from a microscopic theory

and is one of the 20th century’s major breakthroughs in physics. However, to deal

with excited states of the superconductor, another approach is better suited than

the variational approach BCS used – the Bogoliubov transformation.

II.2.2 The Bogoliubov transformation

The interaction term in the Hamiltonian in Eq. (II.3) is difficult to deal with since

it contains products of four operators. With mean-field arguments, however, it is

possible to reduce the product of four operators into terms of two operators. Since

the BCS ground state in Eq. (II.2) is a superposition of states with different particle

numbers, operators like c−k↓ck↑ can have non-zero expectation values. Furthermore,

since the number of particles involved in the state is macroscopic, we can expect

that the fluctuations around these expectation values are small [2]. We can then

form

c−k↓ck↑ = ⟨c−k↓ck↑⟩+ (c−k↓ck↑ − ⟨c−k↓ck↑⟩) and

c†k↑c
†
−k↓ = ⟨c†k↑c

†
−k↓⟩+ (c†k↑c

†
−k↓ − ⟨c†k↑c

†
−k↓⟩),

(II.4)

and neglect terms bilinear in the fluctuation terms in the parentheses. The Hamil-

tonian in Eq. (II.3) then turns into the mean-field Hamiltonian

HMF =
∑
ks

ξkc
†
kscks −

∑
k

(∆kc
†
k↑c

†
−k↓ +∆∗

kc−k↓ck↑) (II.5)

where ξk = ϵk −µ is the single particle energy with respect to the Fermi level µ and

∆k = −
∑
l

Vkl ⟨c−k↓ck↑⟩ , (II.6)

is the superconducting pairing amplitude, which has to be calculated self-consistently.

Note that in Eq. (II.5), we have neglected constant terms since they just shift all

energies. This will be done throughout this thesis.

As desired, the new Hamiltonian in Eq. (II.5) is now bilinear in the electron

operators. Bogoliubov and Valatin realized that such a Hamiltonian could be di-

agonalized by transforming the operators cks into new fermionic operators, γk0 and

γk1 [23, 24]. The appropriate transformation is given by

ck↑ = u∗kγk0 + vkγ
†
k1 (II.7a)

c†−k↓ = −v∗kγk0 + ukγ
†
k1 (II.7b)
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where uk and vk will turn out to be the same as uk and vk in the variational

approach. Inserting Eq. (II.7) in Eq. (II.5) and imposing the requirement that the

Hamiltonian is diagonal, i.e., only contain terms of the form γ†kγk, the mean-field

Hamiltonian then reduces to

HMF =
∑
k

Ek(γ
†
k0γk0 + γ†k1γk1), (II.8)

where Ek =
√
ξ2k + |∆k|2 [2].

By performing a Bogoliubov transformation to a basis of the so-called quasipar-

ticle operators γk0 and γk1, the mean-field Hamiltonian in Eq. (II.8) becomes simple.

The absence of quasiparticles corresponds to the BCS ground state in Eq. (II.2), and

excited states contain one or more quasiparticles. Since the energy of a quasiparticle

is Ek =
√
ξ2k + |∆k|2, the minimum energy required to excite the system is |∆k| > 0.

The parameter ∆k hence plays the role of an energy gap in the density of states in

the superconductor, see Fig. II.1. The Cooper pairs of the superconductor live at

zero energy.

Figure II.1: The density of states D of quasiparticles in a superconductor on the

horizontal axis with energy E on the vertical axis. At zero temperature, the quasi-

particle states are filled up to E = −∆ and unoccupied above the gap, with no

available states in between.

As we have seen in the derivation above, the idea behind the Boguliubov transfor-

mation is to transform the original operators such that excitations can be described

as the occupation of quasiparticle states. The Bogoliubov transformation is not only

used within bulk superconductivity but is a useful tool in general when the Hamil-

tonian is quadratic in its creation and annihilation operators. In the next section, a

method of finding the appropriate transformation is reviewed, the BdG formalism.
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II.2.3 Bogoliubov-de Gennes formalism

Inverting Eq. (II.7), we can express the quasiparticle operators in terms of the

original operators and see that they consist of superpositions of particles and holes:

γk0 = ukck↑ − vkc
†
−k↓ (II.9a)

γk1 = ukc−k↓ + vkc
†
k↑. (II.9b)

For an arbitrary quadratic Hamiltonian, we would like to find the corresponding

transformation. This can be done in a systematic way in the BdG formalism, which

will be described in what follows and is based on Ref. [25]. We consider a Hamil-

tonian H, quadratic in the operators c1, c2, . . . cN and their corresponding creation

operators. A general transformation of the type in Eq. (II.9) to quasiparticle oper-

ators {aj, a†j}j is given by

an =
∑
j

u∗njcj + v∗njc
†
j, a†n =

∑
j

unjc
†
j + vnjcj. (II.10)

This can be written in matrix notation as Φ =MΨ, with

Φ = (a1, . . . , aN , a
†
1, . . . , a

†
N)

T , Ψ = (c1, . . . , cN , c
†
1, . . . , c

†
N)

T ,

M =

(
U∗ V ∗

V U

)
,

(II.11)

and where U and V contains the coefficients unj and vnj from Eq. (II.10). Fur-

thermore, we want the new quasiparticles in Eq. (II.10) to obey the fermionic anti-

commutation relations. This requires M to be unitary.

To find the transformation matrix M , we first use Ψ to rewrite the Hamiltonian

as

H =
1

2
Ψ†hBdGΨ, (II.12)

where hBdG is the Bogoliubov-de Gennes Hamiltonian. Diagonalizing hBdG leads to

the so-called BdG equations

hBdG

(
ũn

ṽn

)
= En

(
ũn

ṽn

)
, (II.13)

where ũn and ṽn are N -component column vectors, together forming the nth eigen-

vector to hBdG with energy En.

The BdG Hamiltonian has a certain property called particle-hole symmetry. For

superconductors, the particle-hole symmetry operator is given by an anti-unitary

operator P = τxK, where τx is the first Pauli matrix acting on the blocks of annihi-

lation and creation operators, and K is the operator for complex conjugation [29].

The particle-hole symmetry of hBdG is written as

PhBdGP−1 = −hBdG, (II.14)
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which implies that an eigenstate (un, vn)
T with energy En will have a partner

(v∗n, u
∗
n)

T with energy −En. It is hence enough to consider the positive energy eigen-

vectors. Since hBdG is Hermitian, we can use the eigenvectors to form a unitary

transformation matrix Γ which diagonalizes hBdG:

Γ =

(
ũ1 . . . ũN ṽ∗1 . . . ṽ∗N

ṽ1 . . . ṽN ũ∗1 . . . ũ∗N

)
=⇒ hBdG = ΓDΓ†, (II.15)

where D = diag(E1, . . . , EN ,−E1, . . . ,−EN). Inserting the transformation into

Eq. (II.12) results in

H =
1

2
Ψ†(ΓDΓ†)Ψ =

1

2
(Γ†Ψ)†D(Γ†Ψ). (II.16)

Now we claim that the appropriate transformation matrix is given by M = Γ† and

that the quasiparticles hence are given by Φ = Γ†Ψ. Note that Γ† is unitary and has

the appropriate structure described in Eq. (II.11). Assuming that this is the correct

transformation, we get

H =
1

2
Φ†DΦ =

1

2

∑
j

Eja
†
jaj − Ejaja

†
j =

∑
j

Eja
†
jaj + const., (II.17)

and hence, the assumption works, and we have found the new operators {aj, a†j}j
given by Φ = Γ†Ψ which diagonalize the Hamiltonian.

Since Ψ has 2N elements, hBdG is a 2N ×2N matrix and scales linearly with the

number of particles. When dealing with multiple particles, this improves computa-

tion time drastically compared to using a many-body basis, which scales exponen-

tially with the number of particles. However, when there are explicit interactions in

the system, one must revert to the many-body basis. One particular application of

the Boguliobov transformation and BdG formalism can be seen in Chapter III.

II.3 The superconducting proximity effect

The superconducting proximity effect describes phenomena when a ”normal” non-

superconductive material (N) is coupled to a superconductor (S) such that electrons

can be transferred between the two materials. As we have seen in Section II.2, the

electrons in a superconductor form Cooper pairs and are hence ordered in a com-

pletely different way than in a normal material. Because of the plane-wave behavior

of electrons in bulk materials, the properties of the electrons cannot change infinitely

quickly. Intuitively, it is hence reasonable that at an NS interface, superconductive

properties can ”leak” into the normal material [25]. This is known as the supercon-

ducting proximity effect. In this section, we will briefly discuss the NS interface by

introducing Andreev reflection and then consider the situation when a quantum dot

is proximal to the superconductor.
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II.3.1 Andreev reflection

Consider an electron with energy E in a normal material heading towards an NS

interface, see Fig. II.2. If the energy is larger than the gap of the superconductor,

there are available quasiparticle states and the electron can pass the interface. If E <

∆, no states are available, and the electron cannot continue into the superconductor.

However, the superconductor can accept Cooper pairs at the Fermi energy. Through

a process called Andreev reflection [30], the incoming electron can be reflected as a

hole. The difference in charge of 2e before and after the Andreev reflection, which

seemingly is missing from the system, has been injected into the superconductor

as a Cooper pair, see Fig. II.2. This process can also happen in reverse, where a

Cooper pair is transferred from the superconductor to the normal material.

Figure II.2: An NS interface with the normal state to the left and the superconductor

to the right. An electron with energy E < ∆ can be Andreev reflected as a hole,

resulting in the injection of a Cooper pair into the superconductor.

II.3.2 Proximity effect in quantum dots

Now, let’s consider the situation when the normal material consists of a quantum dot.

In Fig. II.3 below, a quantum dot is coupled to a superconductor with a tunneling

amplitude t. According to the proximity effect, we expect that the properties of the

superconductor will ”leak” into the quantum dot.

10



(a)

(b)

Figure II.3: A quantum dot (QD) coupled to a superconductor (S) with a tunneling

amplitude t. Due to the superconducting proximity effect, the quantum dot will

inherit properties of the superconductor. a) Spatial sketch of the quantum dot

coupled to a superconductor. b) The density of states picture of the same system,

where ϵQD is the discrete energy level of the quantum dot.

To show this, we model the system by a superconducting Anderson Hamiltonian,

which originated from modeling impurities in superconductors [31]. Here, the impu-

rity instead consists of a quantum dot. The superconducting Anderson Hamiltonian

is given by

H = HSC +HQD +HT, (II.18)

where HSC is the mean-field superconducting Hamiltonian given in Eq. (II.5) and

HQD =
∑
s

ϵQDd
†
sds + Ud†↑d↑d

†
↓d↓, and (II.19a)

HT =
∑
ks

t(c†ksds + d†scks) (II.19b)

are the quantum dot and tunneling Hamiltonians, respectively. Here, ds annihilates

a spin-s electron on the quantum dot, and cks annihilates an electron in the super-

conductor with momentum k and spin s. The constants ϵQD and U describe the

energy level and Coulomb interaction on the quantum dot. Furthermore, the tun-

neling amplitude is assumed to be related to the tunneling rate by Γ = 2πt2ρ0. The

density of states the superconductor would have had in its normal state, denoted by

ρ0, is assumed to be constant.
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In the limit of a large superconducting gap, i.e., ∆ → ∞, one can derive an

effective Hamiltonian of the proximitized quantum dot [32]. Using the method of

Green’s functions, the superconductor can be integrated out, resulting in an effective

dot-local Hamiltonian

Heff =
∑
s

ϵQDd
†
sds + Ud†↑d↑d

†
↓d↓ − Γ(d†↑d

†
↓ + d↓d↑). (II.20)

Comparing with HQD from Eq. (II.19), it is clear that an effective BCS-like pairing

term proportional to Γ has been induced due to the coupling to the superconduc-

tor. This term can be understood as the electrons Andreev reflecting between the

superconductor and the quantum dot, where two electrons can simultaneously enter

or leave the quantum dot. In Appendix A.1, we further analyze the Hamiltonian in

Eq. (II.20) and the formation of Andreev bound states.

When we introduce the Hamiltonian of our system in Chapter III, we include

the superconducting proximity effect by a term ∆indd
†
j↑d

†
j↓ +H.c., where ∆ind is the

induced superconducting pairing amplitude. This is a reasonable approximation for

energies below the superconducting gap [33]. However, ∆ind is not always propor-

tional to the tunneling rate as in Eq. (II.20), since it is bounded by the gap of the

parent superconductor.

II.4 Topological superconductivity and Majorana

bound states

Topological superconductivity is a fascinating state of matter which combines the

notion of superconductivity and topology. Topological superconductors, just like

conventional superconductors discussed in Section II.2, have an energy gap in their

dispersion relation. However, it is not possible to smoothly transform the band

structure of a topological superconductor into the band structure of a normal super-

conductor without closing and reopening this energy gap [6, 7, 29], hence the term

”topological” superconductivity.

At the boundaries and defects of topological superconductors, there is an inter-

face between topologically trivial and nontrivial states (e.g., the vacuum). At such

interfaces, there is a topology mismatch, and gapless (zero-energy) boundary states

arise [29]. These are the Majorana bound states (MBSs). Majorana bound states

are described by operators γj with the properties

[γj, H] = 0, (II.21a)

γ†j = γj, (II.21b)

{γi, γj} = 2δij, (II.21c)

whereH is the Hamiltonian of the system. These properties imply that a single MBS

γj cannot describe a creation or annihilation operator. We could try and create a
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corresponding number operator γ†jγj, however, using Eqs. (II.21b) and (II.21c), this

results in γ†jγj = γ2j = 1, and similarly γjγ
†
j = 1. An MBS is hence both empty and

filled simultaneously, indicating that the occupation of an MBS is not well defined [7].

This complication is resolved by combining pairs of MBSs into fermionic operators

fij =
1

2
(γi + iγj), f †

ij =
1

2
(γi − iγj), (II.22)

which obey the fermionic commutation relations. Furthermore, we can now form

number operators nij = f †
ijfij, which measures the occupancy of a pair of MBSs.

For this reason, an MBS is often referred to as ”half a fermion” since each fermionic

state occupies two MBSs.

Since the state in Eq. (II.22) is made up of two MBSs that commute with the

Hamiltonian, it takes zero energy to occupy the state. Therefore, if there are many

MBSs, there is a large degenerate subspace of ground states corresponding to the

occupation numbers of each pair of MBSs. In other words, the states spanned

by |n1,2, n3,4 . . .⟩, where nij = (0, 1), form a subspace of degenerate ground states,

which can be used to store quantum information. Furthermore, if the two MBSs

making up a fermionic state are spatially separated, local perturbations cannot lift

this degeneracy, and the information stored in the MBSs is protected against such

perturbations.

Another exotic property of separated MBSs, due to their nonlocal nature, is

nonlocal correlations and non-Abelian exchange statistics [29]. For regular (Abelian)

fermions, an exchange of particles leads to a sign change, and exchanging them twice

takes the system back to its original state. However, the exchange of two MBSs can

rotate the wavefunction inside the degenerate subspace spanned by |n1,2, n3,4 . . .⟩ [7].
By doing controlled exchanges of MBSs, the quantum information stored in the

MBSs can be manipulated. This is the idea behind topologically protected quantum

computing, one of the main motivations for studying MBSs.

In the following subsection, we introduce the simplest toy model that can host

MBSs – the Kitaev chain. We also discuss how such a chain can be engineered with

superconductor-semiconductor hybrid structures. Then we will introduce the notion

of ”poor man’s MBSs” and finish by discussing how to quantify them.

II.4.1 The Kitaev chain

In 2001, Kitaev [16] proposed a famous toy model where MBSs can form, now

known as the Kitaev chain. It consists of a spinless tight-binding chain with p-

wave superconductivity. In contrast, the conventional superconductors described in

Section II.2 are s-wave superconductors. In general, the total wave function of a

Cooper pair has to be anti-symmetric since it consists of fermions. A Cooper pair in

an s-wave superconductor has a symmetric spatial wavefunction, and the spin part

must therefore be anti-symmetric, forming a singlet pairing between the electrons.

13



In a p-wave superconductor, the spatial wavefunction is anti-symmetric, and the

spin part forms a symmetric triplet pairing, having the possibility to couple the

same spins. For a spinless superconducting system such as the Kitaev chain, p-wave

superconductivity is necessary.

The Kitaev chain Hamiltonian is given by

HK = −ϵ
N∑
j=1

c†jcj −
N−1∑
j=1

(tc†j+1cj +∆c†j+1c
†
j +H.c.), (II.23)

where ϵ is the chemical potential of the chain, t is the nearest neighbor hopping am-

plitude, and ∆ is the p-wave superconducting pairing, coupling electrons on neigh-

boring sites. We take t and ∆ to be real and positive. The following analysis of the

Kitaev chain is based on the reviews in Refs. [6, 7].

Inspired by Eq. (II.22), we introduce two Majorana operators for each site j, γj,a

and γj,b. We can then rewrite the c-fermions as

cj =
1

2
(γj,b + iγj,a), c†j =

1

2
(γj,b − iγj,a). (II.24)

By rewriting the operators like this, we have split the fermion operators into two

Majorana operators at the same site. Inserting the change of basis into HK , we

obtain

HK = − ϵ

2

N∑
j=1

(1 + iγj,bγj,a)

− i

2

N−1∑
j=1

[(∆ + t)γj,bγj+1,a + (∆− t)γj,aγj+1,b].

(II.25)

Majorana physics becomes the most illuminating in two contrasting limits. Firstly,

let’s take the trivial limit t = ∆ = 0. Then, the second line of Eq. (II.25) disappears,

and we only have couplings of Majorana operators γj,a and γj,b living at the same site.

In this limit, there is a unique ground state consisting of the vacuum of c-operators.

If we instead take the limit ϵ = 0 and t = ∆ ̸= 0, HK reduces to

HK = −it
N−1∑
j=1

γj,bγj+1,a. (II.26)

Then, we only have coupling between Majorana operators on adjacent sites. If

we now pair these Majorana operators into new fermionic operators dj by forming

dj =
1
2
(γj+1,a + iγj,b), the Hamiltonian becomes

HK = 2t
N−1∑
j=1

d†jdj. (II.27)

At first glance, this does not seem very interesting. The Hamiltonian is diagonal in

the d-operators, and it takes an energy 2t to add a d-particle to the system. At a
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closer look, however, we see that the Majorana operators γ1,a and γN,b located at

each end of the chain are missing from Eq. (II.27). These Majorana operators can

be combined into

f =
1

2
(γ1,a + iγN,b), (II.28)

such that the two MBSs at each end form a single fermionic mode. This is an

example of the highly non-local states discussed previously in this section. Since the

Majorana operators in f are missing from the Hamiltonian, they commute with HK

and it takes zero energy to occupy this state. The ground state is hence two-fold

degenerate between the vacuum state |0⟩ defined by f |0⟩ = 0, and the state where

the two MBSs are occupied, defined by |1⟩ = f † |0⟩. The states |0⟩ and |1⟩ are said

to have different parity (even or odd) since they contain an even and odd number

of fermions, respectively.

The two MBSs appear at the ends of the chain because they form an interface

between topologically trivial and nontrivial states (vacuum). The Kitaev chain is

in a topological phase as long as the chemical potential is within the gap to the

excited states, i.e., |ϵ| < 2t and with a non-zero pairing amplitude ∆ ̸= 0. However,

in general, the Majorana operators are not entirely localized on the outermost sites.

Instead, they decay exponentially away from the edges [6].

II.4.2 Engineering the Kitaev chain

The Kitaev chain requires spinless, p-wave superconductivity, as stated in the pre-

vious section. Unfortunately, not only do superconductors consist of spinful elec-

trons, but p-wave superconductivity is scarce in nature. Finding a material mim-

icking the Kitaev chain is, therefore, difficult. However, the challenge became much

more achievable when it was realized that the proximity effect in superconductor-

semiconductor structures could induce p-wave superconductivity. In this way of

engineering an effective Kitaev chain, the following three ingredients are required [7]:

1. Conventional (s-wave) superconductivity.

2. Strong magnetic fields to reach an effective spinless system.

3. Spin-orbit coupling (or a spatially varying magnetic field [34]).

Low-energy descriptions of systems with these ingredients can directly be mapped

to the Kitaev chain. Some examples of systems that could host MBSs include

one-dimensional semiconducting nanowires proximitized by superconductors [5] and

chains of quantum dots separated by superconductors [35].

Despite many efforts to detect MBSs in hybrid superconductor-semiconductor

structures, no conclusive evidence has yet been found. Although signatures of MBSs

have been reported [9–12], there has been no way to assure that the signals do
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not come from other, trivial states living at zero energy [13–15]. Furthermore, no

evidence of the non-Abelian nature of MBSs has been found. Hence there has

recently been a push to study simpler systems where MBSs can appear. Instead of

reaching a topological phase and detecting MBSs at interfaces to trivial states, the

idea has been to engineer a minimal Kitaev chain of just two sites. In such systems,

poor man’s MBSs are predicted to form.

II.4.3 Poor man’s Majorana bound states

In 2023, experimental signatures consistent with MBSs were found in a double quan-

tum dot system separated by a superconductor, effectively forming a two-site Kitaev

chain [19]. The idea of this setup dates back to Ref. [17], where the term ”poor

man’s” MBSs was coined. The MBSs theorized to appear in such short Kitaev

chains were called ”poor man’s” since they lack the topological protection MBSs in

topological matter offer. Instead, the poor man’s MBSs appear when fine-tuning the

system to sweet spots. At a sweet spot, two MBSs form, one entirely localized on

the left dot and the other on the right dot. The MBSs are hence spatially separated

just like the ones appearing in topological matter and could be studied for their

non-Abelian exchange statistics.

A generalized version of the Kitaev chain in Eq. (II.23) is given by

HK =
N∑
j=1

ϵjc
†
jcj +

N−1∑
j=1

(tje
iΘjc†j+1cj +∆je

iΦjc†j+1c
†
j +H.c.), (II.29)

where the parameters can now vary along the chain. Furthermore, the phases of the

tunneling and superconducting pairing are now included. It can be shown that a

sweet spot where two MBSs are localized entirely on each end of the chain can be

found when

ϵj = 0, (II.30a)

tj = ∆j, (II.30b)

forming an energy gap to the next excited state by Egap = 2min{tj} [1]. These

conditions define the sweet spot to which one must tune the system to find MBSs

at each end of the chain. In the simplified Kitaev chain analyzed at the beginning

of this chapter, we showed that in the limit of Eq. (II.30), two Majorana operators

disappeared from the Hamiltonian and formed MBSs at each end of the chain.

In the original poor man’s model [17], the two-site Kitaev chain emerges from

considering an infinite magnetic field that fully spin-polarizes the dots. This reduces

the Hilbert space significantly and allows for analytical results. However, in practice,

the strength of the magnetic field is bounded by the fact that large magnetic fields

destroy superconductivity [2]. Therefore, the analysis of a poor man’s system in
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Ref. [18] considers a finite magnetic field and spinful quantum dots. Furthermore,

intra-dot Coulomb interactions were also considered. However, two issues appear

when considering finite magnetic fields and Coulomb interactions. Firstly, a perfect

sweet spot might not exist since the system does not directly map to the Kitaev

chain. Secondly, the conditions for the ”best” sweet spot are not necessarily given

by Eq. (II.30) anymore. Therefore, a quality measure of the MBSs appearing in

the poor man’s systems is necessary to resolve these issues. By forming a loss

function based on relevant quality measures of the MBSs, numerical optimization

allows for locating the best sweet spot. The MBS quality can then be evaluated at

this optimized sweet spot.

II.4.4 Quantifying Majorana bound states

To quantify MBSs appearing in the short Kitaev chains, one can take inspiration

from ”perfect” MBSs in the topological phase and use their properties as a quality

measure. During the work of the thesis, two quality measures have been developed

and used: the energy degeneracy and the local distinguishability between the odd

and even ground states.

Energy degeneracy

The first quality measure is the energy difference between the odd and even ground

states. As the MBSs are zero-energy excitations, the odd and even ground states

should be degenerate at a perfect sweet spot. To quantify this, we have constructed

an energy degeneracy quality measure defined as

δE =
Eodd − Eeven

Egap

, (II.31)

where Egap = Eexc−max {Eodd, Eeven} is the minimal energy difference between the

ground states and the next excited state. At a perfect sweet spot, δE = 0. However,

this is not a sufficient condition, so other complementary quality measures must be

used.

Local distinguishability

Another property of the Kitaev chain in its topological phase is that measurements

done locally cannot reveal if the system is in its odd or even ground state – the

two ground states are locally indistinguishable. To quantify this property, we define

local distinguishability (LD) as

LD =
1

N

N∑
j=1

∥ρoj − ρej∥ =
1

N

N∑
j=1

∥δρj∥, (II.32)
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which is zero at a perfect sweet spot. We will later show that the LD is related

to how protected the ground state degeneracy is against local perturbations. In

Eq. (II.32), ∥·∥ is the Frobenius norm, N is the number of sites in the system and

ρηj is the reduced density matrix at site j for the odd (η = o) or even (η = e) ground

state. The reduced density matrix is a way to describe a quantum state as seen

by looking only at a subsystem of the full system. The difference between reduced

density matrices of the odd and even ground state is, therefore, a natural measure

of how distinguishable the states are when probing locally.

Due to quantum entanglement, information of the full state is lost when only

looking at parts of the system. From an observer’s perspective, only looking locally

at a subsystem, the quantum state is in a statistical mixture of different states. The

reduced density matrix is defined in a way to ensure that the expectation value of

a local measurement on the subsystem is the same when using the reduced density

matrix or the full quantum state to calculate it [36]. Using this property, we can

show that the LD gives an estimate of how protected the ground state degeneracy

is against local perturbations.

Consider a perturbation VR, local to the region R. In first-order perturbation

theory, the energy perturbation Eη
p on the η-parity ground state is

⟨Eη
p ⟩ = ⟨η|VR|η⟩ = Tr (ρηVR) = Tr (ρηRVR), (II.33)

where ρη is the full density matrix of the η-parity state. In the final equality, we have

used the above-mentioned defining property of the reduced density matrix. Using

Eq. (II.33), we can look at the difference between the change in energy of the odd

and even ground states due to the perturbation VR:

⟨∆E⟩ = ⟨Eo
p⟩ − ⟨Ee

p⟩ = Tr (ρoRVR)− Tr (ρeRVR) = Tr (δρRVR) = (δρR, VR), (II.34)

where (·, ·) is the Frobenius inner product. If the odd and even states were degenerate

to begin with, i.e., if δE = 0, ⟨∆E⟩ is an estimate of the energy splitting between

the states due to VR. Using the Cauchy-Schwartz inequality, we get

|⟨∆E⟩| = |(δρR, VR)| ≤ ∥δρR∥∥VR∥ =⇒ |⟨∆E⟩|
∥VR∥

≤ ∥δρR∥. (II.35)

Thus, ∥δρR∥ is an upper bound to the ratio between the first-order energy splitting

due to VR and the strength of VR. The LD in Eq. (II.32) is an average of this bound

for perturbations at each site in the system and therefore quantifies how protected

the system is against local perturbations in general. This ties back to the properties

of MBSs discussed in Section II.4, where it was said that spatially separate MBSs

are robust against local perturbations.

Based on the two quality measures, we define a loss function

Loss = δE2 + LD2 (II.36)

which we want to minimize to find the best sweet spot. For more details of the

optimization procedure, see Section IV.1.
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III

The model and its Kitaev limit

In this chapter, we begin by presenting the model and Hamiltonian of the chain of

interacting quantum dots proximitized by superconductors. Most of the modeling

is based on Ref. [37], where a similar system is analyzed. Starting out with a

rather general Hamiltonian in Eqs. (III.1) and (III.2), we will then perform an

operator transformation to simplify parts of the Hamiltonian. Next, we invoke a

few assumptions and go through a short derivation, after which the final form of the

Hamiltonian in Eq. (III.9) is obtained. In the second section of this chapter, we go

through the derivation sketched in Ref. [1], which shows that the system (without

interactions) maps to the Kitaev chain for large magnetic fields. The main result is

Eq. (III.23), where the effective Kitaev parameters are presented.

III.1 Model: Chain of interacting quantum dots

proximitized by superconductors

In this thesis, we consider a chain of interacting quantum dots, where each dot is

proximitized by a superconductor. Furthermore, non-colinear magnetic fields are

applied at each dot. However, the rotation of the magnetic fields can be replaced

by spin-orbit coupling. We will consider chain lengths between two and four sites.

For a sketch of the system, see Fig. III.1.
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Figure III.1: Sketch of the quantum dot chain withN sites. The tunneling amplitude

between the quantum dots is homogenous and given by w. At each quantum dot,

a superconductor with phase ϕj induces a superconducting pairing term on the dot

with amplitude ∆ind. Finally, non-colinear magnetic fields Bj are applied at each

dot.

We model the system by the following Hamiltonian:

H = HQD +Ht +Hmag +Hind, (III.1)

where HQD includes the chemical potential on each quantum dot and Coulomb inter-

actions, Ht is the tunneling Hamiltonian, Hmag contains the contributions from the

magnetic fields, and Hind includes the induced superconductivity from the proximity

effect. Each term is given by

HQD = µ
∑
j,s

njs + Uintra

∑
j

nj↑nj↓ + Uinter

∑
j

NjNj+1, (III.2a)

Ht = w
∑
j,s

d†j,sdj+1,s +H.c., (III.2b)

Hmag =
∑
j,s,s

′

1

2
gµB(Bj · σ)ss′d

†
jsdjs′ , (III.2c)

Hind = ∆ind

∑
j

eiϕjd†j↑d
†
j↓ +H.c.. (III.2d)

Here, djs annihilates a spin-s electron (measured along the z-axis) on site j and njs =

d†jsdjs is the corresponding number operator. Furthermore, Nj = nj↑ + nj↓ is the

operator for the total number of electrons on each site. The parameters we consider

fixed along the chain are the chemical potential µ of the quantum dots, the intra-dot

and inter-dot Coulomb interactions Uintra and Uinter, the real and positive tunneling

amplitude w, and the absolute value of the induced superconducting pairing ∆ind.

However, the phase of the induced pairing ϕj can vary along the chain. The magnetic

field at site j is given by Bj = B0b̂j, where B0 is the magnitude of the magnetic

20



field, taken to be constant along the chain, and b̂j is the direction of the magnetic

field, which varies with j. We denote the Zeeman energy with Vz = gµBB0/2, where

g is the Landé g-factor and µB the Bohr magneton. Furthermore, σ = (σx, σy, σz)

is the vector of Pauli matrices, and hence (Bj · σ)ss′ = B0(b
x
jσx + byjσy + bzjσz)ss′ ,

where the index ss′ indicates the matrix element between spins s and s′.

Following Ref. [37], we align the spin basis with the magnetic field direction at

each site, which in polar coordinates is given by b̂j = (sin θj cosφj, sin θj sinφj, cos θj).

This way, the spin is measured in the same direction as the magnetic field. We per-

form a SU(2) transformation of the operators given by(
dj↑

dj↓

)
= Uj

(
d̃j↑

d̃j↓

)
, (III.3)

where d̃js are the new, rotated operators and

Uj =

(
cos (θj/2) − sin (θj/2)e

−iφj

sin (θj/2)e
iφj cos (θj/2)

)
. (III.4)

Applying the transformation, the terms of the Hamiltonian in Eq. (III.2) transform

into

HQD = µ
∑
j,s

ñjs + Uintra

∑
j

ñj↑ñj↓ + Uinter

∑
j

ÑjÑj+1, (III.5a)

Ht = w
∑
j,ss

′

Ωj,ss
′ d̃†j,sd̃j+1,s

′ +H.c., (III.5b)

Hmag =
∑
j,s,s

′

Vzσz,ss′ d̃
†
jsd̃js′ =

∑
j

Vz(ñj↑ − ñj↓), (III.5c)

Hind = ∆ind

∑
j

eiΦj d̃†j↑d̃
†
j↓ +H.c.. (III.5d)

where Ωj = U †
jUj+1 which evaluates to

Ωj =

(
αj −βj
βj α∗

j

)
, (III.6a)

αj = cos
θj
2
cos

θj+1

2
+ sin

θj
2
sin

θj+1

2
e−i(φj−φj+1), (III.6b)

βj = − sin
θj
2
cos

θj+1

2
eiφj + cos

θj
2
sin

θj+1

2
eiφj+1 . (III.6c)

The transformation from Eq. (III.2) to Eq. (III.5) has simplified Hmag since the

magnetic field is now aligned with the spin basis at each dot. The difficulty now lies

in the tunneling term Ht.

Next, we consider a couple of simplifying assumptions. Firstly, we take φj = φ

to be constant, such that the rotation of the magnetic field lies in a single plane

(perpendicular to the xy-plane) along the chain. Furthermore, we assume that the
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magnetic field’s rotation between two sites is the same everywhere, i.e., δθj = θj+1−
θj = δθ. Using these assumptions, αj = α = cos (δθ/2) and βj = β = sin (δθ/2)eiφ

become site-independent and Ωj = Ω reduces to

Ω =

(
cos (δθ/2) − sin (δθ/2)eiφ

sin (δθ/2)e−iφ cos (δθ/2)

)
. (III.7)

By inserting Ω in Eq. (III.5), the tunneling Hamiltonian simplifies to

Ht = w cos
δθ

2

∑
js

d̃†jsd̃j+1,s+w sin
δθ

2

∑
j

(eiφd̃†j↓d̃j+1,↑− e−iφd̃†j↑d̃j+1,↓)+H.c. (III.8)

The first term represents tunneling between spins that are either both parallel or

both anti-parallel to the magnetic fields at the corresponding site. This term is

proportional to w cos (δθ/2) and hence disappears if the magnetic fields on neigh-

boring dots are anti-parallel (δθ = π). The second term in Ht represents tunneling

between sites where one spin is parallel and the other is anti-parallel to the magnetic

fields. Since this term is proportional to w sin (δθ/2), it disappears when there is no

magnetic field rotation.

For completeness, we write the final form of the total Hamiltonian for the inter-

acting quantum dot chain as

H =
∑
j,s

(µ+ ηsVz)ñjs + Uintra

∑
j

ñj↑ñj↓ + Uinter

∑
j

ÑjÑj+1

+ w cos
δθ

2

∑
js

[d̃†jsd̃j+1,s +H.c.]

+ w sin
δθ

2

∑
j

[d̃†j↓d̃j+1,↑ − d̃†j↑d̃j+1,↓ +H.c.]

+ ∆ind

∑
j

[eiϕj d̃†j↑d̃
†
j↓ +H.c.],

(III.9)

where η↑ = 1 and η↓ = −1 and we have set φ = 0. This is the form of the

Hamiltonian we will study analytically and numerically in the remainder of this

work.

III.2 The Kitaev limit without interactions

In Ref. [1], it is shown that the Hamiltonian in Eq. (III.9) without interactions maps

to the Kitaev chain (see Eq. (II.29)) for large Zeeman energies in comparison to the

tunneling amplitude. This is not obvious for a couple of reasons. Firstly, the Kitaev

chain requires a non-local superconducting pairing of the form c†j+1c
†
j, while, in our

Hamiltonian, we only have the local superconducting pairing d̃†j↑d̃
†
j↓. However, an

effective non-local pairing can be formed by the following two-step process: 1) An
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Andreev reflection of a Cooper pair from the superconductor to one quantum dot,

followed by 2) tunneling of one of the Cooper paired electrons to the neighboring

dot. The process is sketched in Fig. III.2.

Figure III.2: Firstly, two electrons Andreev reflect onto one of the quantum dots

(left). Then, one of the electrons tunnels to the other dot (right). This creates ef-

fective non-local superconducting pairing between neighboring sites in the quantum

dot chain.

Secondly, as discussed in Section II.4.2, to engineer a Kitaev chain, a strong

magnetic field is required to turn the system spinless at low energies. However,

since the local superconducting pairing results in both spins occupying the quantum

dots to some extent, it seems like we have destroyed the spinless feature of the

system. Yet, Ref. [1] showed that in the limit of a large magnetic field, the chain

indeed only consists of one particle species. The trick is that the species is not one of

the spin-up or spin-down operators but as quasiparticles consisting of superpositions

of particles and holes. In the rest of this section, we will go through this derivation.

We start by looking at the local Hamiltonian for an isolated, single quantum dot

at site j in the chain, assuming no interactions:

Hj =
∑
s

(µ+ ηsVz)ñjs +∆ind[e
iϕj d̃†j↑d̃

†
j↓ +H.c.]. (III.10)

Since the Hamiltonian in Eq. (III.10) is quadratic, we can use the BdG formalism

to find new quasiparticle operators which diagonalize Hj. Following the method de-

scribed in Section II.2.3, we introduce the vector of operators Ψj = (d̃j↑, d̃j↓, d̃
†
j↑, d̃

†
j↓)

T

and rewrite Hj as

Hj =
1

2
Ψ†

jhjΨj + µ, (III.11)

23



with the BdG Hamiltonian

hj =


µ+ Vz 0 0 ∆inde

iϕj

0 µ− Vz −∆inde
iϕj 0

0 −∆inde
−iϕj −(µ+ Vz) 0

∆inde
−iϕj 0 0 −(µ− Vz)

 . (III.12)

We then solve the BdG equations

hjψ = Eψ, (III.13)

where ψ = (u↑, u↓, v↑, v↓)
T , and get the energies E = ±(Vz±

√
µ2 +∆2

ind). Because of

particle-hole symmetry (see Section II.2.3), we can restrict ourselves to the positive

energy solutions, which we can assume to be given by ±Vz +
√
µ2 +∆2

ind. The

corresponding eigenvectors are

ψb =
e−iϕj/2

√
2β

(
eiϕj

√
β + µ 0 0

√
β − µ

)T
, Eb = Vz + β,

ψa =
e−iϕj/2

√
2β

(
0 −eiϕj

√
β + µ

√
β − µ 0

)T
, Ea = −Vz + β,

(III.14)

where β =
√
µ2 +∆2

ind. Using particle-hole symmetry, we can form the two remain-

ing eigenvectors and construct the transformation matrix

Γj =
e−iϕj/2

√
2β


eiϕj

√
β + µ 0 0 eiϕj

√
β − µ

0 −eiϕj
√
β + µ eiϕj

√
β − µ 0

0
√
β − µ

√
β + µ 0

√
β − µ 0 0 −

√
β + µ

 . (III.15)

Finally, we can find the new operators Ξj = (bj, aj, b
†
j, a

†
j)

T by forming

Ξj = Γ†
jΨj. (III.16)

For the annihilation operators, we get

aj =
eiϕj/2

√
2β

(√
β − µ d̃†j↑ − e−iϕj

√
β + µ d̃j↓

)
,

bj =
eiϕj/2

√
2β

(√
β − µ d̃†j↓ + e−iϕj

√
β + µ d̃j↑

)
.

(III.17)

These are the quasiparticle operators that diagonalize Hj, meaning that

Hj = (β + Vz)b
†
jbj + (β − Vz)a

†
jaj, (III.18)

where the constant term is, as usually, neglected.
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The idea of Boguliobov transforming the local Hamiltonian is to express the

original d̃ operators in terms of the new a and b operators. This is done by inverting

Eq. (III.16)

Ψj =


d̃j↑

d̃j↓

d̃†j↑
d̃†j↓

 = ΓjΞj =
1√
2β


eiϕj/2(

√
β − µ a†j +

√
β + µ bj)

eiϕj/2(
√
β − µ b†j −

√
β + µ aj)

e−iϕj/2(
√
β − µ aj +

√
β + µ b†j)

e−iϕj/2(
√
β − µ bj −

√
β + µ a†j)

 . (III.19)

Equipped with the expressions in Eq. (III.19), we can return to the full Hamiltonian

in Eq. (III.9). Without interactions, we write it as

H ′ =
∑
j

Hj +Ht =
∑
j

(β + Vz)b
†
jbj + (β − Vz)a

†
jaj +Ht, (III.20)

where Ht is the tunneling Hamiltonian given in Eq. (III.8) with φ = 0. If we have

a large Zeeman energy, the b particles will live at much larger energies than the a

particles. If we further assume that the tunneling amplitude w is much smaller than

the Zeeman energy, w ≪ Vz, the occupancy of the b-excitations will be negligible for

the low energy states of the system. Hence, we can safely project H ′ onto the states

without b-excitations by throwing away terms that include b operators. However,

note that terms of the form bb†, which count the number of b-quasiholes, evaluate

to one in this approximation since the level is always empty.

Using Eq. (III.19), we can express Ht in terms of a and b operators and project

it by only keeping the terms with a operators. We get

d̃†j↑d̃j+1,↑ +H.c. → −e
−iδϕj/2

2β
(β − µ)a†j+1aj +H.c.,

d̃†j↓d̃j+1,↓ +H.c. → e−iδϕj/2

2β
(β + µ)a†jaj+1 +H.c.,

d̃†j↓d̃j+1,↑ +H.c. → e−iδϕj/2

2β
∆inda

†
j+1a

†
j +H.c.,

−d̃†j↑d̃j+1,↓ +H.c. → e−iδϕj/2

2β
∆indajaj+1 +H.c.,

(III.21)

where δϕj = ϕj − ϕj+1 is the superconducting phase difference between two sites.

From this projection, we get two different kinds of terms. One corresponds to normal

tunneling of the form a†j+1aj, and the other corresponds to a non-local pairing of

the form a†j+1a
†
j. Inserting Eq. (III.21) into the tunneling Hamiltonian Ht, we get

H ′ =
∑
j

(β − Vz)a
†
jaj +

∑
j

[
w cos

δθ

2

(
µ

β
cos

δϕj

2
+ i sin

δϕj

2

)
a†j+1aj

+
w∆ind

β
sin

δθ

2
cos

δϕj

2
a†j+1a

†
j +H.c.

] (III.22)
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Comparing with Eq. (II.23), we see that H ′ maps to the Kitaev chain in the a

operators with the following effective parameters

ϵ = β − Vz =

√
µ2 +∆2

ind − Vz,

teiΘ = w cos
δθ

2

(
µ

β
cos

δϕ

2
+ i sin

δϕ

2

)
,

∆eiΦ =
w∆ind

β
sin

δθ

2
cos

δϕ

2
.

(III.23a)

(III.23b)

(III.23c)

To have completely site-independent Kitaev-parameters, we have chosen δϕj = δϕ

to be constant.
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IV

Methodology

The computational work of the thesis involves numerically implementing and diago-

nalizing the Hamiltonian in Eq. (III.9) to calculate the eigenstates and eigenenergies

of the interacting quantum dot chain. In particular, the ground states in each par-

ity sector are of interest. The ground states in the odd and even parity sectors and

their corresponding energies are used to numerically evaluate the quality measures

defined in Section II.4.4. Finally, we evaluate the loss function in Eq. (II.36). The

loss function is then optimized to find the parameters corresponding to the sweet

spot. See Section IV.1 for more details about the optimization procedure. A corre-

sponding routine for calculating the quality measures and optimizing for the sweet

spot in the Kitaev chain is also implemented.

The programming language of choice is Julia [38]. In particular, we use the

QuantumDots.jl package [39], which has been implemented by one of the super-

visors of this thesis. To perform the numerical optimization of the loss function,

we use the BlackBoxOptim.jl package [40]. Furthermore, in Ref. [41], the compu-

tational routines written by the author can be found, such as the implementation

of the interacting quantum dot chain Hamiltonian, the quality measures, and the

optimization procedure.

IV.1 Optimization procedure

To find the best sweet spot, we optimize the loss function in Eq. (II.36) based on

the two quality measures defined in Section II.4.4. For the interacting quantum

dot chain, we optimize the parameters in the (∆ind/w, µ/w)-plane, fixing all other

parameters. The initial guess for the optimization procedure (∆ind,init/w, µinit/w) is

based on the Kitaev limit (large Zeeman energies), where we know the location of the

sweet spot; see Eqs. (V.8) and (V.9) in the next chapter. Furthermore, the region

for optimization has been determined through a trial and error process to ensure
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that the sweet spot is inside the region. The resulting range for each parameter is

given by ∆ind = (0,∆ind,init + δ∆ind) and µ = (µinit − δµ, µinit + δµ), where

δµ = max{2Vz + 2Uinter +
1

2
Uintra, 2w}, (IV.1a)

δ∆ind = max{Vz + Uinter +
1

2
Uintra, 2w}. (IV.1b)

The maximum function ensures that δ∆ind, δµ ≥ 2w. Otherwise, if setting δ∆ind and

δµ to the first argument in the maximum functions in Eq. (IV.1), the optimization

region would become too small without interactions and with a small Zeeman energy.

To compare the quality of sweet spots for different configurations, we want to

fix one of the quality measures (δE) at a small value and optimize the second (LD).

To do this, we define

Loss = (LD)2 +W |δE − ϵ0|2, (IV.2)

where W is a weight factor and ϵ0 is where we want to fix δE. We then perform

three rounds of optimization, increasingW from 1 to 109 over the rounds. This way,

we first find the approximate sweet spot location, then, by increasing W , we force

the optimization to fix δE to ϵ0. The resulting value of LD can then be compared

for different configurations. This will be done in Sections V.4 and V.5.
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V

Results

In this section, the main results of the thesis work are presented. The results consist

of analyses of both the Kitaev chain and the model of the interacting quantum dot

chain presented in Chapter III. Table V.1 is provided to explain the notation of each

parameter and to which model it applies.

Table V.1: Notations for each parameter in the Kitaev chain and the interacting

quantum dot chain.

Kitaev chain

ϵ Chemical potential

teiΘ Tunneling amplitude

∆eiΦ Non-local superconducting pairing

U Intersite Coulomb interaction

The interacting quantum dot chain

µ Chemical potential

w Tunneling amplitude

∆ind Magnitude of the induced (local) superconducting pairing

Uintra Intradot Coulomb interaction

Uinter Interdot Coulomb interaction

Vz Zeeman energy

δθ Rotation of the magnetic field between adjacent sites

δϕ Difference between the induced superconducting phases at adjacent sites

Except for in Section V.6, we have used homogenous superconducting phases at

each site, i.e., δϕ = 0. The length of the quantum dot chain is kept to two sites,

except for in Section V.5. Furthermore, δθ = π/2 unless otherwise stated.
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V.1 Testing the quality measures in the Kitaev chain

To test the quality measures from Section II.4.4, we apply it to the two-site Kitaev

chain

HK,2 = ϵ(n1 + n2) + [tc†1c2 +∆c†1c
†
2 +H.c.]. (V.1)

For simplicity, we have taken site-independent chemical potentials and positive and

real t and ∆. From Eq. (II.30), we know that the sweet spot is found when ϵ = 0

and t = ∆. However, to get an understanding of how the LD and δE behave away

from the sweet spot and to have an analytical example of the quality measures, we

now determine the two curves defined by LD = 0 and δE = 0.

Since the Hamiltonian in Eq. (V.1) conserves number parity, i.e., if there are

an odd or even number of particles in the system, we can block-diagonalize it into

the two parity sectors. The odd and even parity sectors contain the states {|10⟩ =
c†1 |00⟩ , |01⟩ = c†2 |00⟩} and {|00⟩ , |11⟩ = c†1c

†
2 |00⟩}, respectively. Diagonalizing each

block leads to the ground state energies in each parity sector

Eo = ϵ− t, (V.2a)

Ee = ϵ−
√

∆2 + ϵ2. (V.2b)

One of our sweet spot requirements is that δE = 0, i.e., that the two ground states

are degenerate, which leads to the condition

δE = 0 =⇒ ∆2

t2
+
ϵ2

t2
= 1, (V.3)

forming a circle with radius one in the (∆/t, ϵ/t)-plane. The sweet spot should then

be located at this circle. To calculate the LD, we first determine the eigenstates

corresponding to each ground state

|o⟩ = 1√
2
(|10⟩ − |01⟩), (V.4a)

|e⟩ = 1

N

(
∆

Ee

|00⟩+ |11⟩
)
, (V.4b)

where N2 = 1 + ∆2/E2
e is a normalization factor. Note that the odd state |o⟩ is

independent of the parameters since we take the chemical potentials of both sites to

be equal. Therefore, if there is one electron in the system, the weight on each site

must be equal. The density matrices for the states in Eq. (V.4) are

ρo =
1

2
(|10⟩ ⟨10| − |10⟩ ⟨01| − |01⟩ ⟨10|+ |01⟩ ⟨01|) (V.5a)

ρe =
1

N2

(
∆2

E2
e

|00⟩ ⟨00|+ ∆

Ee

|00⟩ ⟨11|+ ∆

Ee

|11⟩ ⟨00|+ |11⟩ ⟨11|
)

(V.5b)
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Taking the reduced density matrix for the first site, we get

ρo1 =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|), (V.6a)

ρe1 =
1

N2

(
∆2

E2
e

|0⟩ ⟨0|+ |1⟩ ⟨1|
)
. (V.6b)

The reduced density matrices for the second site give the same result. To get LD = 0,

the odd and even reduced density matrices at each site have to be equal, and we get

the condition

LD = 0 =⇒ ∆2

N2E2
e

=
1

N2 =
1

2
=⇒ ϵ = 0. (V.7)

Combining this with the energy degeneracy condition in Eq. (V.3), we obtain t = ∆

and see that the energy degeneracy and local indistinguishability give the expected

sweet spot. See also Fig. V.1 for a numerical calculation of the two-site Kitaev

chain. There, we see that LD = 0 at ϵ/t = 0 and that the circle defining δE = 0 is

given by Eq. (V.3). Furthermore, the numerically optimized sweet spot is located

at ϵ = 0 and ∆ = t, in accordance with theory.

Figure V.1: Parameter scan of the two-site Kitaev chain in the (∆/t, ϵ/t)-plane.

The color scale represents the LD, and the green curve is defined by δE = 0. The

star shows the numerically optimized sweet spot based on the loss function in Sec-

tion II.4.4.

V.2 Checking the Kitaev limit without interactions

From Section III.2, we expect the quantum dot chain to behave like the Kitaev chain

for large Zeeman energies. To confirm this, we scan the effective Kitaev-parameter

∆ in Eq. (III.23) by varying δθ and w such that the Kitaev-tunneling amplitude

t is held constant. We then perform the corresponding parameter scan in the real

Kitaev chain and compare the quality measures for each model, see Fig. V.2. The
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difference between the models’ quality measures decreases with increasing Zeeman

energies, indicating that the model has been implemented correctly.

Figure V.2: Comparison of the quality measures between the two-site Kitaev chain

(with subindex K) and the two-site quantum dot chain (without subindex) for vary-

ing Zeeman energies. On the x-axis are the ∆ for the Kitaev model and the effective

Kitaev-∆ for the quantum dot chain. The latter is scanned by varying w and δθ,

such that the effective Kitaev-t is held constant. The tunneling amplitude w varies

between ∼ t− 5t. Furthermore, µ = ∆ind = Vz/
√
2 such that the sweet spot condi-

tion ϵ = 0 is fulfilled.

To reach the sweet spot, the effective Kitaev-parameters in Eq. (III.23) must

fulfill the conditions ϵ = 0 and t = ∆. The first condition (which we have seen is

equivalent with LD = 0) means that

ϵ = 0 =⇒ β =

√
µ2 +∆2

ind = Vz. (V.8)

The sweet spot, therefore, lies on a circle with radius Vz/w in the (∆ind/w, µ/w)-

plane. The induced superconductivity must hence scale with the Zeeman splitting to

reach the sweet spot. We discuss this further in Section V.4. The second condition

gives

t = ∆ =⇒ µ

∆ind

=

∣∣∣∣tan δθ2
∣∣∣∣ , (V.9)

and the sweet spot, therefore, lies at an angle δθ/2 from the ∆ind axis. To confirm

this numerically, we perform the optimization procedure for a large Zeeman energy

and check if the sweet spot is located at this expected position. In Fig. V.3, this is

done for two sites with a Zeeman energy of Vz = 50w. The optimized sweet spot is

seen to coincide with the above theory, valid for Vz ≫ w.
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Figure V.3: Parameter scan of the two-site quantum dot chain in the (∆ind/w, µ/w)-

plane using δθ = π/3 and Vz = 50w. The color scale represents the LD, and the

green curve is defined by δE = 0. The blue star shows the numerically optimized

sweet spot and the red dot indicates the location of the sweet spot in the Kitaev

limit Vz ≫ w.

To understand the plot in Fig. V.3 better, we can translate the conditions for

δE = 0 and LD = 0 for the two-site Kitaev chain given by Eqs. (V.3) and (V.7)

into the system parameters. Since the conditions LD = 0 and ϵ = 0 are equivalent,

the LD-condition is given in Eq. (V.8), and forms the previously mentioned circle

with radius Vz/w in the (∆ind/w, µ/w)-plane. A quarter of this circle can be seen

in Fig. V.3. The condition for δE = 0 becomes(√
µ2 +∆2

ind − Vz

)2

+
w2∆2

ind

V 2
z

sin2 δθ

2
=
w2µ2

V 2
z

cos2
δθ

2
. (V.10)

In Fig. V.4, the analytical curves in Eqs. (V.8) and (V.10) are plotted for the same

parameters as in Fig. V.3.

Figure V.4: The curves LD = 0 and δE = 0 defined by Eqs. (V.8) and (V.10) for

the same parameters as in Fig. V.3.
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V.3 Including interactions

In this section, we will start to include Coulomb interactions. In the initial Hamilto-

nian of the model in Eqs. (III.1) and (III.2), we have included interactions between

electrons on the same dot (intradot) and neighboring dots (interdot). Firstly, we

will see how the intradot Coulomb interaction looks after projecting it on the states

without b-excitations. Next, we will study intersite interactions in the two-site Ki-

taev chain and show that a sweet spot (δE = LD = 0) still exists.

V.3.1 Intradot interactions

To see how intradot Coulomb interactions affect the Kitaev limit, we follow the

same procedure as in Section III.2. It is important to note that the interaction is

between the original electrons defined by the d-operators and not between the a-

and b-particles. Therefore, we must take the transformation between the d̃-operators

and the a- and b-operators in Eq. (III.19) and insert this into the intradot Coulomb

interaction term in Eq. (III.9). For large magnetic fields, we can then project the

resulting Hamiltonian on the states without b-excitations. The result is an extra

term

Hintra = −Uintra

2

(
1− µ

β

)∑
j

a†jaj, (V.11)

which renormalizes the Kitaev chemical potential in Eq. (III.23a) to

ϵ =

√
µ2 +∆2

ind − Vz −
Uintra

2

(
1− µ√

µ2 +∆2
ind

)
. (V.12)

V.3.2 Interdot interactions

Before adding interdot Coulomb interactions to our system, we want to understand

it in a simpler case – an interacting two-site Kitaev chain. Starting with Eq. (V.1),

we add an intersite Coulomb interaction U to the Hamiltonian such that

HK,2 +HU = ϵ(n1 + n2) + [tc†1c2 +∆c†1c
†
2 +H.c.] + Un1n2. (V.13)

Now, the Hamiltonian is not a Kitaev chain anymore, and we cannot use the con-

ditions t = ∆ and ϵ = 0 in Eq. (II.30) to determine where the sweet spot is. So

instead, we will use our quality measures.

Following the same procedure as in Section V.1, we block-diagonalize the system

and find the ground states in the odd and even parity sectors. However, we can

restrict ourselves to the even sector since the Coulomb interaction does not affect

the odd parity states. The odd parity states with intersite Coulomb interactions are

34



hence the same as in Section V.1. The energy of the even ground state becomes

Ee = ϵ+
U

2
−

√(
ϵ+

U

2

)2

+∆2, (V.14)

and the corresponding eigenstate is the same as in Eq. (V.4b), but with Ee from

Eq. (V.14). The sweet spot conditions of degenerate ground states and equal reduced

density matrices become

δE = 0 =⇒ ∆2

t2
+

(
ϵ

t
+
U

2t

)2

=

(
U

2t
+ 1

)2

, (V.15a)

LD = 0 =⇒ ϵ = −U
2
. (V.15b)

The first condition forms a circle in the (∆/t, ϵ/t)-plane, centered at (0,−U/2t) and
a radius of U/2t + 1. The second condition forms a horizontal line at ϵ/t = −U/2t
in the same plane. At the point (U/2t + 1,−U/2t), both conditions are fulfilled.

Therefore, despite intersite Coulomb interactions in the Kitaev chain, a sweet spot

based on our quality measures can still be found. This conclusion corrects the result

in Ref. [17], where it was stated that intersite Coulomb interactions destroyed the

possibility of sweet spots. See Fig. V.5 for a numerical calculation of the Kitaev chain

with interdot interactions. Again, the numerically optimized sweet spot coincides

with the theory.

Figure V.5: The same plot as Fig. V.1 but with a finite intersite Coulomb interaction

(U = 10t). The numerically optimized sweet spot coincides with the algebraic result

(U/2t+ 1,−U/2t) = (6,−5).

Adding interdot Coulomb interactions to the quantum dot chain and translating

it into a- and b-operators, terms of the form a†j+1aj+1a
†
jaj appear after the projection

on the states without b-excitations. The system hence reduces to a Kitaev chain

with intersite Coulomb interactions. Based on the above calculation, we expect
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that a good-quality sweet spot can still be found in the quantum dot chain for large

magnetic fields. However, we expect the sweet spot to move compared to the theory

in Section V.2.

After projecting the Hamiltonian onto the states with no b-excitations, there

also appear terms that renormalize the chemical potentials of the quantum dots,

similarly to Section V.3.1. These terms affect the sites on the ends differently than

the ones in the middle of the chain. Therefore, the chemical potentials have to be

tuned differently along the chain to reach the sweet spot. However, studying this

case was outside the scope of the present work.

V.4 Reducing the magnetic field

As discussed in Section II.4.3, there is a limit to how large the Zeeman energy can get

in an experiment since large magnetic fields destroy superconductivity. Additionally,

in our system, there is another restriction to the magnetic field. Since one of the

requirements for a sweet spot in Eq. (V.10) is that µ2 + ∆2
ind = V 2

z , the induced

superconducting pairing must increase with the Zeeman energy at the sweet spot.

However, as discussed in Section II.3.2, ∆ind is bounded by the superconducting gap

in the parent superconductor. Therefore, for large enough Zeeman energies, ∆ind

cannot be large enough to reach the sweet spot.

Due to the restrictions of the magnetic field strength, it is of interest to track

the quality of MBSs at the optimized sweet spot while lowering the magnetic field.

This allows us to see how this quality scales with the Zeeman energy and determine

how large it must be to reach a certain MBS quality. In Fig. V.6, the optimization

procedure in Section IV.1 has been performed for a chain of two sites with different

combinations of included interactions and varying magnetic fields.
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Figure V.6: The LD on a logarithmic scale for varying Zeeman energies at the

optimized sweet spot using the optimization procedure in Section IV.1. Due to the

optimization procedure, δE ≈ 10−7 at each point. The different curves represent

different combinations of included intradot and interdot Coulomb interactions. The

values used for the interactions are Uintra = 100w and Uinter = 20w. An additional

curve defined by w/Vz is given for reference.

A few conclusions can be made based on Fig. V.6. Firstly, for large Zeeman

energies, the LD improves as w/Vz for all curves. Secondly, intradot Coulomb in-

teractions improve the LD. This might be because the intradot interactions help

the Zeeman splitting to push the b-excitations further away in energy. However, for

large Zeeman energies, the difference due to intradot interactions is less noticeable.

Finally, interdot Coulomb interactions worsen the LD for large Zeeman energies.

However, the LD still approaches zero as Vz increases. This can be explained by

the analysis in Section V.3.2, where we showed that sweet spots in an interacting

Kitaev chain could be found.

Instead of increasing Vz to obtain higher quality MBSs, one could lower the

tunneling amplitude w. However, as mentioned in Section II.4.3, the gap to the

next excited states is given by Egap = 2t, where t is the Kitaev tunneling amplitude.

According to Eq. (III.23), t is proportional to w, and hence, by decreasing w, the

gap to the next excited states also reduces. To detect MBSs, the gap cannot be

too small, e.g., compared to the temperature. Therefore, the tunneling amplitude

cannot be decreased indefinitely.

V.5 Adding more dots to the chain

In this section, we add more sites to the model, increasing it to three and four sites.

In Fig. V.7, the same calculation as in Fig. V.6 has been made, but with varying

numbers of sites in the chain.
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Figure V.7: The same plot as in Fig. V.6 but with varying numbers of sites in the

quantum dot chain. For each curve, Uintra = 100w and Uinter = 0. Again, the energy

degeneracy is kept at ≈ 10−7.

According to Fig. V.7, adding more sites to the chain does not necessarily de-

crease the LD. The chain with N = 3 has a larger LD than N = 2. Furthermore, the

scaling with Zeeman energy is worse for N = 3. However, when increasing the chain

length to four sites, the LD is better than the shorter chains, although with similar

scaling as the two-site chain. The N = 4 curve is less smooth than the other curves.

This, we believe, is because of the increased computational cost of the larger sys-

tem, which leads to fewer function evaluations in the optimization procedure than

the smaller systems. To counteract this, the optimization procedures for the larger

systems were run for longer times, but for N = 4, it might not have been enough

for complete convergence.

When including interdot Coulomb interactions, there were convergence issues

for the chains with N > 2. One reason might be that the interdot interaction

term renormalizes the chemical potentials differently at the sites at the ends of the

chain compared to the ones in the middle with two neighboring sites, as discussed in

Section V.3.2. Therefore, the best sweet spot could lie outside of our optimization

region since we only consider homogenous chemical potentials. However, including

inhomogeneous chemical potentials was outside this thesis’s scope.

V.6 Tuning using superconducting phase

As mentioned in Section II.4.3, to create poor man’s MBSs in short Kitaev-chains, it

is crucial that the system can be fine-tuned to the sweet spot. One experimentally

reachable degree of freedom in the quantum dot chain is the chemical potentials

of the quantum dots since gate electrodes easily tune them. This could be used

to satisfy ϵ = 0. However, we need also to be able to tune the ratio t/∆, see
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Eq. (III.23). This could be done by controlling the rotation of the magnetic fields

δθ, as was proposed in the original poor man’s model [17]. However, this is tricky

to realize experimentally. Furthermore, if the rotation of the magnetic fields is

replaced by spin-orbit coupling, it would be impossible to tune. It would therefore

be preferable if a different mechanism could tune the t/∆-ratio.

Figure V.8: By applying a magnetic flux ΦF through the dashed loop, the phase

difference between the induced superconductivity δϕ can be controlled [2].

During the work of the thesis, it was realized that the ability to control the

phase difference between the superconductors could act as a different tuning knob

for the t/∆-ratio. This could be done by applying a magnetic flux through a loop

connecting the superconductors, see Fig. V.8. When including differences in the su-

perconducting phases between the sites, i.e., δϕ ̸= 0, the effective Kitaev parameters

t and ∆ become

t =
w
√
µ2 + V 2

z −∆2
ind cos δϕ√

2Vz

∣∣∣∣cos δθ2
∣∣∣∣ , (V.16a)

∆ =
w∆ind

Vz

∣∣∣∣sin δθ2
∣∣∣∣ ∣∣∣∣cos δϕ2

∣∣∣∣ , (V.16b)

where we have inserted β = Vz to satisfy ϵ = 0. Furthermore, no interactions have

been taken into account. From Eq. (V.16), we can see that t increases when varying

δϕ from zero, while ∆ decreases. If we initially have the same superconducting

phases at each site (δϕ = 0) and a large rotation between the magnetic fields (δθ ≈
π), the system is initialized such that t < ∆. A superconducting phase difference

could then be applied to satisfy t = ∆ and reach the sweet spot.
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VI

Conclusion

In this thesis, we have analyzed an interacting chain of quantum dots proximitized

by superconductors for its potential to host MBSs. In Chapter III, we did the

derivation sketched in Ref. [1] to show that, for large Zeeman energies, the non-

interacting system reduces to a Kitaev chain with effective Kitaev-parameters in

Eq. (III.23). The main novel contribution of this thesis was to add interactions

to the system. To test the quality of the MBSs when including interactions and

when away from the ideal set of parameters, we developed quality measures for

the MBSs in Section II.4.4. Since perfect MBSs result in degenerate and locally

indistinguishable ground states, these two properties were used as quality measures.

The measures were then used to numerically optimize for the best sweet spot

for a given set of parameters and evaluate its quality. Performing the optimization

procedure for the two-site quantum dot chain with varying Zeeman energies and

different combinations of included interactions, we could conclude that intradot

interactions improve the quality of the MBSs. In contrast, interdot interactions

worsen it, see Fig. V.6. However, even when including interdot interactions, the

LD approaches zero when increasing the Zeeman energy, and high-quality MBSs

can still be found. We also studied the MBS quality when adding more dots to

the chain, which would intuitively allow the MBSs to be more separated. However,

as shown in Fig. V.7, the LD for the three-site chain is higher and has a worse

scaling with the Zeeman energy than the two-site chain. Finally, we discussed how

to tune the system to a sweet spot experimentally. In particular, we showed that

the t/∆-ratio can be tuned by applying an additional magnetic field to control the

superconducting phase difference between the superconductors.

Since the quantum dot chain consists of quantum dots directly neighboring each

other, it would be problematic if interdot Coulomb interactions would destroy the

possibility of finding high-quality MBSs. However, the novel finding that interdot

interactions still leave the possibility of sweet spots, combined with the potential
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of tuning the system using the superconducting phases, means that the quantum

dot chain is highly relevant for creating and detecting MBSs experimentally. Fur-

thermore, the two-site chain is probably the system to focus on since the reward

for adding one or two more dots does not seem to be worth the extra experimental

effort. An important next step when continuing this project would be to propose a

detailed tuning procedure to reach the sweet spot and detect MBSs in an experiment.

Also, it would be interesting to determine what MBS quality can be achieved for

experimentally appropriate parameter values. We expect that good-quality MBSs

are necessary to detect the exotic properties of MBSs, such as the protection against

local perturbations and non-Abelian exchange statistics. However, precisely what

the required values of LD and δE are is a subject of current research.

To conclude, the simplicity of using quantum dots to create and detect MBSs is

appealing and has brought new life to the search for MBSs. Creating poor man’s

MBSs in quantum dot chains, such as the one considered in this thesis, would be

a crucial step toward developing topological quantum computing and an exciting

discovery for those amazed by the exotic physics MBSs promises.
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A

Appendix

A.1 Andreev bound states

In this section, we analyze the Hamiltonian in Eq. (II.20) describing a quantum

dot proximitized by a superconductor and the formation of Andreev bound states.

Due to the last term in Eq. (II.20), the effective Hamiltonian does not conserve

the number of particles on the dot. However, it conserves the system’s parity, i.e.,

if there is an even or odd number of electrons on the dot. We can hence block-

diagonalize the Hamiltonian in terms of the odd and even parity sector to obtain

the eigenstates and eigenenergies. For the odd parity sector, the eigenstates are

simply |↑⟩ and |↓⟩ with degenerate energies E↑,↓ = ϵQD. Due to the degeneracy,

these states are usually called doublets. In the even parity section, the eigenstates

and eigenenergies are

|+⟩ = u |0⟩+ v |↑↓⟩ , E+ = ξQD +
√
ξ2QD + Γ2

|−⟩ = v |0⟩ − u |↑↓⟩ , E− = ξQD −
√
ξ2QD + Γ2,

(A.1)

where ξQD = ϵQD + U/2 and u, v are scalars. These states are called BCS singlets

since they, similarly to the BCS ground state in Eq. (II.2), are superpositions of

states with an even number of electrons.

Depending on the parameters ϵQD, U and Γ, the ground state of the proximitized

quantum dot is either odd (one of the doublets) or even (the BCS singlet |−⟩).
The energy required to excite the system from the ground state is given by δE =

|E−−E↑,↓| = |U/2−
√
ξ2QD + Γ2|. Since ∆ is assumed to be the largest energy scale

in the system, this excited state lies within the superconducting gap, where there

in a bulk superconductor are no states. Such a subgap state is called an Andreev

bound state [32, 33].
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