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Abstract

English

Acute myeloid leukemia (AML) is a heterogeneous disease, making it difficult to

treat. The standard treatment is intensive chemotherapy and has not changed in 40

years. However, recently new drugs and as less intensive treatment regimens have

been approved in the US and in Europe. However. With a larger therapeutic toolbox,

there is an urgent need for predictive biomarkers to offer the optimal treatment for

the patient, also referred to as precision medicine. This project investigated AML flow

cytometry drug screens using the unpublished analytical application, Flowty. Cellular

subpopulations present in AML bone marrow samples were visualized based on their

phenotypic expression of the biomarkers CD34, CD38, CD33, CD45, CD64, CD117

and HLA-DR, as well as granularity. This enabled investigation of whether AML pa-

tients and subpopulations with similar differentiation phenotypes have similar drug

response. The aim was to explore the possibility of using differentiation phenotype to

dictate on AML precision medicine. The heterogeneity in drug response was evident

when comparing patients. However, exploring a small patient cohort, subpopulations

with similar phenotypic expression demonstrated a similar drug response across pa-

tients. Furthermore, future aspects of research were proposed, focusing on additional

analysis of the correlations between phenotypic expression and drug response.

Swedish

Akut myeloisk leukemi (AML) är en heterogen sjukdom, vilket gör den sv̊ar att

behandla. Standardbehandlingen är intensiv kemoterapi och har inte förändrats p̊a

40 år. P̊a senare tid har nya läkemedel och mindre intensiva behandlingsregimer

godkänts i USA och Europa. Fler möjliga behandlingsformer gör att det krävs predik-

tiva biomarkörer och tillförlitliga utvärderingsmetoder för att hitta den optimala be-

handlingen hos patienterna, s̊a kallat precisionsmedicin. I detta projekt undersöktes

flödescytometriska läkemedelsscreens för AML med hjälp av den opublicerade ana-

lytiska applikationen Flowty. Cellulära subpopulationer hos patienter med AML visu-

aliserades baserat p̊a deras fenotypiska uttryck av biomarkörerna CD34, CD38, CD33,

CD45, CD64, CD117 och HLA-DR, samt granularitet. Detta gjorde det möjligt att

undersöka huruvida AML-patienter och subpopulationer med liknande differentier-

ingsfenotyper har liknande läkemedelsrespons. Syftet var att undersöka möjligheten

att använda differentieringsfenotyper för att styra precisionsmedicin för AML. Het-

erogeniteten i läkemedelsresponsen var uppenbar när man jämförde mellan patienter.

Subpopulationer med liknande fenotypiskt uttryck visade dock liknande läkemedel-

srespons mellan patienter, vid undersökning av en liten patientgrupp. Vidare forskn-

ingsaspekter föreslogs, med fokus p̊a ytterligare analys av sambandet mellan feno-

typiskt uttryck och läkemedelsrespons.
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1 Introduction

Acute myeloid leukemia (AML) is a blood cancer that is genetically and phenotypically

heterogeneous [1]. It is one of the most common types of leukemia in adults, with an

average age at diagnosis of 68 years [2]. The standard treatment has not changed in over

40 years, and the 5-year overall survival in Sweden is only 2% in patients diagnosed at the

age of 70–89 years [3, 4]. Recently, several new drugs for treating AML patients have been

approved in the US by the US Food and Drug Administration (FDA) and in Europe by the

European Medicines Agency’s (EMA) [5]. Having a larger therapeutic toolbox allows for

more opportunities, but also raises the challenge of finding the optimal treatment for each

patient. To find new effective therapies, investigation of novel biomarkers that predict

therapeutic response in patients is therefore of great interest [6].

In the last couple of decades, the characterization of AMLs has shifted from using mor-

phological phenotypes, to almost exclusively, using genetic alterations as prognostic and

predictive biomarkers [7]. However, single cell analytical tools, such as multi-parametric

flow cytometry analyses, have evolved and greatly improved the phenotypic characteriza-

tion of AMLs [8].

This provides the opportunity to explore AML cell phenotypes and the differentiation

hierarchies of AML as new or additional biomarkers guiding therapy. However, traditional

manual gating of cellular subpopulations in scatter plots, where you look at two biomarkers

at a time, is inefficient. Finding new, unexpected, subpopulations is also challenging using

this method [9]. New ways to analyze these high-dimensional data is therefore needed. One

example of such is FlowSOM, a visualization technique, which uses clustering algorithms

to identify cell subpopulations [10].

2 Project Aim & Research Questions

The aim of this master’s project was to systematically analyze multiparametric flow cy-

tometry drug screening data from AML patients in order to characterize the phenotypic

expression and answer the following research questions:

Which are the least differentiated cells, and their phenotypes, in each AML patient?

Do similar differentiating AML patients have similar drug response?

Do similar subpopulations, between different AML patients, have similar drug re-

sponse?

The purpose of addressing these research questions is to investigate whether the differ-

entiation phenotype could be used to dictate AML precision medicine. The project also

contributes to the development of ”Flowty”, an unpublished bioinformatic analytical ap-

plication, by showing its practical usage.
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3 Background

3.1 Myelopoiesis

In our bone marrow, we have hematopoietic stem cells (HSC) that have the ability to

self-renew and differentiate into all the different cells in our blood. During the differenti-

ation, the cells gain molecular functions and lose their self-renewal ability. Fluorochrome

labelled antibodies and flow cytometry made it possible to study and characterize the cell

types formed during the hematopoietic differentiation, also known as hematopoiesis. This

approach is useful to study hematological disorders [11].

Initially, HSCs embark on a path of differentiation, leading them to become multipotent

progenitors (MPPs). These MPPs differentiate into lymphoid-primed multipotent pro-

genitors (LMPPs) and common myeloid progenitors (CMPs). These progenitors give rise

to two primary branches known as the lymphoid and myeloid arms. Simplified, the lym-

phoid arm consists of LMPPs that through a common lymphoid progenitor differentiate

into mature lymphocytes, such as T cells, B cells, natural killer cells, and dendritic cells.

In the myeloid arm, common myeloid progenitors (CMPs) give rise to two distinct lineages:

granulocyte/macrophage lineage-restricted progenitors (GMPs) and megakaryocyte/ery-

throcyte lineage-restricted progenitors (MEPs). LMPPs have the potential to form GMPs,

but not MEPs. Through several intermediate stages, these progenitors ultimately differ-

entiate into various mature cell types such as granulocytes, dendritic cells, macrophages,

platelets, and erythrocytes [11, 12].

Figure 1 illustrates the myeloid arm, which is also referred to as myelopoiesis. Furthermore,

the figure depicts the expression of specific cell surface markers, including CD34, CD38,

CD33, CD45, CD64, CD117, and HLA-DR, which aid in identifying and distinguishing

cell types [11, 13]. Primarily, these markers differentiate cell types within the granulocyte

and monocyte lineages. Acute myeloid leukemia can emerge at any of these cellular stages,

except for the end stages of myelopoiesis that typically have restricted proliferative activity

[14].

5



Figure 1. Illustration of the myelopoiesis. The expressions of the biomarkers CD34,
CD38, CD33, CD45, CD64, CD117 and HLA-DR are shown for each cell type. (Adapted
from [11, 12, 13])

3.2 Acute Myeloid Leukemia

AML, or acute myeloid leukemia, is an oncogenic hematopoietic disorder characterized by

the clonal expansion of myeloid stem cells and progenitor cells within the bone marrow.

This abnormal proliferation leads to the formation of leukemic blasts, which are aberrant

blood cells that disrupt the normal process of myelopoiesis [14].

Among adults, AML is one is the most common types of leukemia. The median age at

diagnosis is 68 years [2]. The 5-year overall survival in Sweden and Denmark is 22% and

27%, respectively. However, for patients diagnosed at the age of 70–89 years, the 5-year

overall survival in Sweden and Denmark is only 2% and 1%, respectively [4].

AML is an exceptionally complex and heterogeneous disease, most often arising from

mutations in various leukemia-associated genes. Patients often have more than one driver

mutation and the disease evolves over time with clones competing. The most common

driver mutations are in the genes NPMI, FLT3 and CEBPA [15]. Moreover, AML can

also progress from other myeloid diseases, such as myelodysplastic syndrome. This type

of AML is referreded to as secondary and accounts for more than 25% of AML [16].

3.2.1 Current Classification and Treatment of AML

The heterogeneity within and between patients challenges the classification of AML. In

1976, the French American British (FAB) classification was first introduced [17]. It divides
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AML into eight different subgroups (M0-M7) based on the cell morphology in the bone

marrow [18]. The European LeukemiaNet (ELN) genetic classification (favorable, inter-

mediate, and adverse) to predict clinical outcome is also widely used nowadays [19]. The

state-of-the-art classification currently used to diagnose AML is the 2017 World Health Or-

ganization (WHO) Classification, which is based on genetics [20]. In the new 5th edition of

WHO Classification, AML that were previously categorized as not otherwise specified due

to lack of genetic abnormalities are now referred to as defined by differentiation [21].

The standard of care for AML patients has been induction chemotherapy with cytarabine

and anthracycline, since the 1970s, and autologous stem cell transplantation (ASCT) since

the 1980s, making it one of the few diseases with limited therapeutic advancements [3, 22].

However, the majority of AML patients are considered unfit for intensive chemotherapy

and are instead treated with low-dose cytarabine (LDAC) and hypomethylating agents

(HMAs), for example azacitidine. While these alternative treatments can extend survival,

they do not offer curative outcomes [6]. Lately, there has been a remarkable advance

in AML drug discovery, with 10 new approved drugs by the FDA, of which 7 have been

approved in Europe by the EMA. However, predictive markers for these targeted therapies

are mostly lacking [5].

In a recent study by Zeng et al., AML heterogeneity was investigated using transcriptomics

data to determine cellular hierarchy composition and the association to therapy response.

The findings suggest that biomarkers based on leukemia cell hierarchy composition hold

promise for the development and selection of precision medicine approaches in AML [23].

This is the field where this project aims to contribute.
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4 Materials & Methods

4.1 Overall Workflow

The overall workflow for this research project is illustrated in Figure 2. The first five steps

describes the flow cytometry drug screening, which was performed prior to the start of this

master’s project. This project starts with the Flowty analysis and the last step illustrates

the main part of this master’s project, which involves creating and evaluating approached

to address the research questions, using the Flowty outputs.

Figure 2. Schematic overview of the overall workflow. (1) Bone marrow sample from
AML patient were seeded into a 384 well plate. (2) The cells were incubated with drugs
(3 days) and antibodies (1,5 h) before the plate was run through the flow cytometer. (3)
Live and dead cells were manually gated out in Forecyt. (4) Flow cytometry standard
(FCS) files were extracted with information about the single and live cells of each well.
(5) The FCS files were run through Flowty. (6) Flowty generates cluster and differential
abundance analysis of the drug screen plate in the form of graphs, plots and data tables.
(7) Methodologies used to address the research questions. The steps enclosed in red are
the ones included in this project.

4.2 Patient Samples

Mononuclear cells were isolated from donated human bone marrow from 22 AML patients

enrolled in the Program for Translational Hematology (PTH). Written informed consent

was obtained from each patient according to the Danish National Ethical committee/Na-

tional Videnskabsetisk Komité (permit 1705391).

The patient information was gathered from RedCap. The average age at sample collection

was 70 years and the cohort consists of 12 males and 10 females, primary (n = 16),

secondary (n = 5) and one relapse patient. The patients are classified using the FAB

classification, consisting of M0 (n = 1), M1 (n = 4), M2 (n = 9), M4 (n = 6) and M5 (n =

2), and the ELN risk classification, consisting of favorable (n = 1), intermediate (n = 10)

and adverse (n = 11). DNA sequencing data was filtered to obtain the most likely driver

mutations in each patient. The patient information is specified in Table 1.

8



Table 1. Patient Information. The hyphen (-) indicates missing data.

ID Age Gender Type Risk FAB Mutations

1 78 Male Primary Adverse M2 BCOR, BCORL1, DNMT3A
KRAS, NRAS, RUNX1
SETD2, U2AF1

2 48 Male Primary Favorable M4 CEBPA, GATA2, NRAS

3 71 Male Primary Adverse M4 ASXL2, FLT3, SUZ12
TP53

4 44 Male Primary Adverse M1 NCOR2, PTPN11, TP53

5 76 Male Secondary Adverse M2 FLT3, NPM1, TET2

6 70 Male Primary Intermediate M2 CEBPA, STAG2

7 60 Male Relapse Adverse M4 -

8 71 Female Primary Intermediate M5 BRAF, DNMT3A, FLT3
NPM1, RUNX1, TET2
ZRSR2

9 70 Female Primary Intermediate M2 -

10 77 Male Primary Intermediate M0 -

11 74 Male Primary Intermediate M2 CEBPA, IDH2, STAG2
WT1

12 78 Female Secondary Adverse M2 ASXL1, IDH1, RUNX1
ZRSR2

13 61 Female Primary Adverse M1 CUX1, NOTCH2, RUNX1

14 77 Female Primary Intermediate M2 IDH2, NCOR2, RUNX1
SRSF2

15 73 Female Primary Adverse M4 ASXL1, ATRX, RUNX1
SF3B1

16 92 Male Primary Intermediate M5 ASXL1, EZH2, RUNX1

17 60 Male Secondary Adverse M2 STAG2

18 71 Male Secondary Intermediate M1 BRCC3, EP300, IDH2
SUZ12

19 40 Female Secondary Adverse M1 GNAS, WT1

20 85 Female Primary Adverse M4 BCOR

21 57 Female Primary Adverse M4 -

22 77 Female Primary - M1 -

4.3 Flow Cytometry Drug Screening

The bone marrow cells from patients were distributed into a 384-well plate, with an approx-

imate seeding of 15,000 cells per well. Over a period of 72 hours, the cells were subjected

to incubation with 40 drugs (Table 2) using a seven-point concentration range. Afterward,

fluorescently labeled antibodies, which target seven specific biomarkers distinguishing dif-

ferent cellular subpopulations, along with Draq7, a DNA-binding dye for detecting dead

cells, were introduced to the plate. The plate was then incubated for 1.5 hours before

being analyzed using a high-throughput flow cytometer (iQue Screener Plus, Intellicyte).

The antibody panel listed in Table 3 specifies the particular biomarkers employed in this

experiment. After the flow cytometry, the data was manually gated to obtain live and

single cells using the Draq7 and FSC.
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Table 2. Drug panel. All drugs are used in a seven-point concentration gradient.

Drug Name Drug Name

Dexamethasone Tamibarotene
Methotrexate Selinexor
Etoposide Birabresib
Eprenetapopt Idasanutlin
Mitoxantrone Enasidenib
Vincristine Gilteritinib
Palbociclib A-1331852
Navitoclax Ivosidenib
Ponatinib Tazemetostat
Trametinib Idelalisib
BAY-2402234 A-366
ruxolitinib Pyrvinium pamoate
Dasatinib YKL-06-062
Iadademstat Azacitidine
Sorafenib Venetoclax
NVP-MIK665 Combo Venetoclax/ azacitidine
Midostaurin Daunorubicin
Onvansertib Cytarabine
Copanlisib Combo cytarabine/daunorubicin
Pevonedistat
SNDX-5613

Table 3. Antibody panel. The channel specifies the red (RL), violet (VL) and blue (BL)
lasers and whether the height (H) or area (A) is detected.

Biomarker Fluorophore Clone Ab Isotype Vendor Ref. No. Lot No. Detector
CD34 APC 563 IgG1 BD Bioscience 561209 0073826 RL1-H
CD38 BV421 HB7 IgG1 BioLegend 356618 B293282 VL1-H
CD45 PE-Cy7 HI30 IgG1 BioLegend 304016 B286744 BL5-H
CD117 BV605 104D2 IgG1 BD Bioscience 562687 0042133 VL4-H

HLA-DR AF488 6H6 IgG2a Biolegend 307620 B271228 BL1-H
CD33 PE WM53 IgG1 BioLegend 303404 B314615 BL2-H
CD64 BV786 10,1 IgG1 BioLegend 305044 B284669 VL6-H
Draq7 APC-Cy7 - - Biolegend 424001 273DR71000 RL2-H

The flow cytometer measures the single cells as they are transported through a laser beam.

The laser excites the fluorophores at a specific wavelength, and the fluorophores then emit

light in another wavelength. The fluorescence emission light from the fluorophores are

detected at approximately 90-degrees angle of the beam. The side scatter (SSC) and the

forward scatter (FCS) of the light is proportional to the granularity, or internal complexity,

and the size of the cell respectively [24]. In Figure 3, the components of a flow cytometer

are illustrated.
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Figure 3. Flow cytometer. The cells are transported one-by-one through a fluidics system
and hit by lasers. The FSC, SSC and fluorescence emission are detected by photodiodes
or photomultiplier tubes (PMTs). The signals are converted into digital data that can be
viewed as plots or graphs on a computer. (Adapted from [24])

4.4 Flowty Analysis

Flowty is an unpublished bioinformatic analytical application that has been used to per-

form subpopulation analysis and drug response data, using algorithms such as FlowSOM

[10]. This section describes how to use Flowty and which analyses can be performed,

whereas the Results & Discussion describes how it was used specifically to address the

research questions.

The Flowty application can be opened in a browser after installing and running it in R.

The first user interface presented is shown in Figure 4. Here the drug screen plate is

processed by uploading an annotation file containing the compound and concentration

information about each well along with the path to the FCS-files with the flow cytometry

results. The control compound and what compounds to exclude in the analysis are also

specified here. The biomarkers that are measured in the drug screen are automatically

loaded into the active channels. The default plate is a 384-well plate, but the size of the

plate can be changed. The minimum events are the lowest number of cells that should be

detected in each well to include it in the analysis. The sampling rate is the proportion

of each well that is randomly sampled when calculating global statistical summaries and

channel correlations. Quality control and signal drift correction is performed by

default, but can be turned off. Lastly, an absolute path to an output folder where the

information of the analysis will be returned is entered before the screen can be processed.
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Once the processing is finished, it is saved as an RData file and can be opened again in

Flowty without having to run the plate again.

Figure 4. Flowty’s ”Data and analysis - Process screen” user interface.

When processing the data screen with quality control and signal drift correction, the fluo-

rescent intensities are first compensated, filtered and then corrected to give more reliable

results. In Flowty these adjustments can be viewed in a channel line plot (Figure 5).

Channels which want to be viewed can be selected.

Figure 5. Channel line plot illustrating the raw, compensated, filtered and corrected mean
fluorescence intensity (MFI) of CD34 expression across one plate in Flowty.

After the screen has been processed, clustering using the FlowSOM algorithm and differ-

ential abundance (DA) analysis can be performed (Figure 6).
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Figure 6. Flowty’s ”Data and analysis - Workflow” user interface.

The dataset and channels for the FlowSOM analysis are loaded by default after the

screen has been processed. The dataset specifies whether to use the raw, compensated,

filtered or corrected data, and is by default set to be the corrected. The channels, i.e.,

biomarkers, by which the cells are clustered can be adjusted. Simply explained, the

FlowSOM algorithm initially places cells randomly into the grid of a self-organizing map

(SOM) (Figure 7a). Each new cell is then compared, according to its phenotypic expression

of the biomarkers, to the cells in the grid and placed with the most similar cell. The nodes

are then compared to each other and rearranged according to similarity. More details

about how the FlowSOM algorithm works can be found in the paper by Van Gassen, et

al. [10].

After the cells have been placed in the SOM, an additional clustering of the nodes is per-

formed to form the subpopulations (Figure 7b). This is done in the clustering window,

see Figure 6, where you can select the minimum and maximum numbers of clusters (Kmin

and Kmax) to be tested. By default, five different clustering algorithms are used, creating

five times the number of K (Kmax − Kmin) cluster sets to be formed, one for each al-

gorithm and cluster number. The significance of the cluster sets is then determined by

the P-value created based on the null hypothesis, that is, the possibility that the clusters

could be formed by chance. The significant threshold is set by default to a P-value of 5

%, but this can be adapted.
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(a) The color of the nodes illustrates the in-
tensity of the side scatter (SSC).

(b) the color of the SOM nodes indicates the
subpopulation, with a star chart within illus-
trating the mean expression of each channel.

Figure 7. Self organizing maps (SOM) with a grid of 15x15.

4.5 Data Analysis

Flowty was used as the main analytical tool. The drug response data of the subpopu-

lations obtained from Flowty was analyzed in Breeze. Breeze is a computational tool,

introduced by Potdar et al. (2020), that performs qualitative drug response calculations

on high-throughput drug screens. An Excel file is loaded, specifying the plate, well-id,

subpopulation, compound, concentration and cell count. The application was set to per-

form inhibition readout with a four-parameter log-logistic model. Breeze then calculates

the drug sensitivity score (DSS), which is used as a robust measurement of drug sensitivity

[25]. The results from Breeze were extracted as matrices. All heatmaps were created in R

using the R-package ComplexHeatmap [26]. All clustering analyses were performed using

the complete linkage clustering method with Euclidean distance.
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5 Result & Discussion

5.1 Which Are the Least Differentiated Cells, and Their Phenotypes, in

Each AML Patient?

This research question aimed to establish an automated method for comparing AML

patients. This could then be used for exploring whether similar types of AML have a

similar drug response, and recognize potential drugs targeting the least differentiated

cells, possibly leukemic stem cells. By using Flowty, analysis of the highly diverse cellular

phenotypes within and between patients with AML could be studied in more depth than

using traditional manual gating strategies.

5.1.1 Identifying and Characterizing Subpopulations

The first approach was to run all patient plates in Flowty individually. The FlowSOM

grid dimensions were 15x15 and the number of clusters (K), i.e. subpopulations, were set

to be between 3-15 for each run. The cluster sets used were the ones with the highest

significance score, indicating clusters containing the most similar cells.

To compare the cellular subpopulations within and between the patient samples, the

subpopulation heatmaps were extracted for each patient (Figure 8). The subpopulation

heatmaps, for each patient, were then looked at individually to find the least differentiated

subpopulation for each AML patient.
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(a) Patient 1 (b) Patient 2 (c) Patient 3 (d) Patient 4

(e) Patient 5 (f) Patient 6 (g) Patient 7 (h) Patient 8

(i) Patient 9 (j) Patient 10 (k) Patient 11 (l) Patient 12

(m) Patient 13 (n) Patient 14 (o) Patient 15 (p) Patient 16

(q) Patient 17 (r) Patient 18 (s) Patient 19 (t) Patient 20

(u) Patient 21 (v) Patient 22

Figure 8. Subpopulation heatmaps for all patients, illustrating the cellular subpopulations
(columns) and their phenotypic expression (rows). The bar plot illustrates the size of
the subpopulation, measured in cell count. The dendrograms illustrate the hierarchical
clustering of the subpopulations and biomarkers, according to the phenotypic expressions
measured as mean fluorescent intensity (MFI).

In Figure 9, a representative patient (patient 10) is illustrated. Here, the subpopulation

heatmap (Figure 9a) shows the six subpopulations of the patient derived cells. According

to the phenotypic expression, the least differentiated subpopulation is number 5, which

only express CD34. This subpopulation mimic the expression of early myeloid progenitors,

as seen in the myelopoiesis in figure 1.
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An alternative approach to compare the subpopulations in Flowty is by visualizing them

in a scatterplot. In the scatterplot, biomarkers for comparison can be selected. In Figure

9b, the side scatter (SSC) is plotted against the CD45 expression. The least differentiated

cells are expressed in the lower left corner, having low SSC and CD45 expression, which in

this case is represented by subpopulation 5. During differentiation, the cells progressively

express more CD45 and becomes more granular, which is represented by the SSC. This

indicates that the order of differentiation after subpopulation 5 is 15, 3 and lastly 11.

The lower right subpopulation 1 is the typical lymphocyte subpopulation, having high

CD45 expression and a low SSC. Subpopulation 2 is less than 1% of the cells and has an

extremely low CD64 expression. This is most probably an outlier that is not relevant to

look at due to the size of the cluster.

The minimal spanning tree (MST) generated by Flowty (Figure 9c) arranges the SOM

nodes according to their phenotypic expression in relation to each other. The MST shows

the least differentiated subpopulation nodes in the middle. Lymphocytes are represented

on one branch, whereas the three branches correspond to other myeloid subpopulations

differentiating/growing out in another direction. The interpreted differentiation hierarchy

and the assumptions made about the lymphocyte and outlier subpopulations are shown

in Figure 9d.
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(a) Subpopulation heatmap. Each cluster represents a
subpopulation.

(b) Scatterplot with SSC vs CD45
expression. The events are colored
according to their distributed sub-
population.

(c) Minimal spanning tree (MST) of the
SOM nodes. The color of the nodes repre-
sents the subpopulations.

(d) The interpreted differentiation hierarchy
of the subpopulations, as well as lymphocytic
and an outlier subpopulation.

Figure 9. Subpopulation analysis of patient 10.

Investigating the other patients using the same approach as described above was chal-

lenging. The subpopulations’ phenotypic expression of the biomarkers does not always

correspond to a specific cell type in the myelopoiesis (Figure 1), and for patients not

having a clear CD34+/CD38- population, it was therefore difficult to determine the least

differentiated subpopulation. The MFI values are also normalized for each patient when

run through Flowty, making them non-comparable between patients. After attempts to

build differentiation patterns for the patients, as done for patient 10, the comparison of

patients was done based on comparable subpopulations, generated together for all patients

in Flowty, instead.
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5.2 Do Similar Differentiating AML Patients Have Similar Drug Re-

sponse?

5.2.1 Comparing Patients Based on Subpopulation Composition

In contrast to running the patient plates one-by-one in Flowty, running all plates together

would create comparable subpopulations since the phenotypic expressions are normalized

across all patient cells. However, the Flowty analysis generates a lot of memory, not

being compatible with some of the R-packages used in Flowty, or the RAM memory of

the computer. This limitation prevented Flowty analysis of all 22 patient plates together.

Therefore, to reduce the memory of the analysis, only the 16 untreated control wells of each

patient were run together in Flowty. In order to create significant cluster sets, generating

subpopulations for all 22 patients, the FlowSOM grid was increased to 35x35 and K was

set to be between 30-40, after trying out different options. The subpopulations with the

highest significance are shown in Figure 10.

Figure 10. Subpopulation heatmap showing the 30 subpopulations generated when run-
ning all 22 patient control wells together in Flowty.

By comparing the subpopulation composition of each control well, it may be possible to

identify patients with similar phenotypic differentiation patterns. The subpopulation bar

plot, in Figure 11, illustrates the percentage of the subpopulations in each patient’s 16

control wells. It is possible to get a visual overview of the phenotypic differences between

patients.
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Figure 11. Subpopulation bar plot showing the percentage of each subpopulation in the 16
control wells of the 22 patients. The colors indicate the 30 different subpopulations shown
in the subpopulation heatmap. The patients are shown in increasing order.

However, to determine which AML patients shows similar phenotypic differentiation pat-

terns, a quantitative comparison of the subpopulation composition data is needed. There-

fore, a heatmap in which the wells are clustered according to their subpopulation com-

position was created (Figure 12). The subpopulations that looked like lymphocytes (sub-

population 32, 34, 35, 37, 38 and 40 in the subpopulation heatmap) were removed since

the main interest lies in investigating the myeloid cell populations, which are the potential

leukemic cells.
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Figure 12. Heatmap showing the 16 untreated patient control wells (columns) and their
subpopulation percentage for each subpopulation (rows). The dendrogram on top shows
the hierarchical clustering of the wells. The dendrogram connects the wells based on simi-
larity, where more similar wells are connected further down. The subpopulation numbers
corresponds to the numbers in the subpopulations heatmap (Figure 10).

The dendrogram on top of the heatmap illustrates the clustering of the wells based on their

subpopulation composition similarity. The control wells are clearly clustered according to

patient, indicating patient control well similarity, which is positive for further analysis.

The dendrogram also shows similarities between patients, with some patients being more

similar than others. These results can be used in further analysis to investigate whether

patients with similar subpopulations have similar drug response.

5.2.2 Analyzing the Relationship Between Subpopulation Composition and

Drug Response across Patients

The subpopulation composition of all patients was compared to the drug response of all

cells, excluding the lymphocytes, to see whether similar differentiating AMLs exhibit a

similar drug response. The drug sensitivity score (DSS) was calculated to determine the

total drug response for all cells, for each drug and patient. The subpopulation composition

was determined by calculating the average subpopulation percentages in the control wells.
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The FAB class, gender, age, cell count, mutations and karyotype of the patients were

also included in the analysis to see whether they had any obvious correlation to the drug

response. All these data were combined in a heatmap (Figure 13).
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Figure 13. Heatmap showing the patients (columns) and their subpopulation composi-
tion, drug sensitivity scores (DSS), mutations from sequencing (seq) data existing in two
or more patients, and karyotype (rows). The FAB class, gender, age and total cell count
of all subpopulations, except the lymphocytes, is annotated for each patient. The dendro-
gram on top shows the hierarchical clustering of the patients based on their subpopulation
composition and divides the patient into six groups.
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Patients with similar subpopulations, or phenotypic differentiation, do not show any obvi-

ous correlations in their overall drug response. No clear correlations in the mutational and

karyotypic expressions to the drug response can be observed either. There are variations

between patients showing very similar subpopulation compositions, as for example patient

5 and 18, while other similar patients, such as 15 and 3, show more similar drug response.

This highlights the complexity of the disease. Individual drug responses across patients

could be compared between similar differentiating AML and/or genetic data, to investigate

further on how specific drugs target different AML. However, this was not in the scope

of this project. To answer the research question on whether similar differentiating AML

have a similar drug response, a larger patient cohort would be required to generate more

significant results, where the responses could be statistically compared between different

groups of similar AML. In addition, the drug response of patients should preferably also

be analyzed on different cell subpopulations and not solely on the overall drug response

of the bulk cells.

5.3 Do Similar Subpopulations, Between Different AML Patients, Have

Similar Drug Response?

AML is a very heterogeneous disease, and it is crucial that the optimal treatment for each

patient is found. Therefore, predictive characteristics of patients need to be established. If

AML precision medicine should be guided by phenotypic characterization of hierarchical

subpopulations, it is essential to examine whether these subpopulations exhibit similar

drug responses across different patients.

5.3.1 Drug Response Analysis of Subpopulations across Multiple Patients

To compare the subpopulation drug response between AML patients, the whole plates with

all the drug wells need to be included in the Flowty analysis. Due to limitations in running

multiple plates together in Flowty, four groups, a total of nine patients, were selected

for this analysis. The patients were chosen based on the hierarchical clustering of the

patients’ subpopulation composition seen in figure 12. Patients with similar subpopulation

expressions were selected, and groups were formed based on their dissimilarity between

each other. These groups are (A) patient 3 and 15, (B) patient 4, 5 and 20, (C) patient 2

and 22 and (D) patient 9 and 19.

The drug screening plates from the nine chosen patients were run together in Flowty.

The clustering analysis was performed several times, testing different numbers of clusters

(K). High significance was shown for cluster sets consisting of 13 and 21 subpopulations.

To ensure larger subpopulations for further analysis, the cluster set of 13 subpopulations

was selected. These subpopulations are therefore larger, consisting of a higher variability

of cells. Consequently, they have a higher representation across patients, allowing for

meaningful comparisons between patients. The 13 subpopulations that were generated for

the nine patients are shown in Figure 14.
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Figure 14. Subpopulation heatmap showing the phenotypic expression of the 13 subpop-
ulations obtained running patients 2, 3, 4, 5, 9, 15, 19, 20 and 22 together in Flowty.

The drug response data for each subpopulation and patient, represented as cell count,

was extracted from Flowty. To solely focus on the potential leukemic cells and their drug

response, the lymphocytes (subpopulation 9, 6, 11, and 15) were removed from further

analysis. The subpopulation composition of the nine patients is shown in Figure 15.

Prior to investigating the subpopulation drug response, the data was filtered to avoid

misleading results. The standard deviation of the cell count of the subpopulations in the

patient control wells was calculated. Subpopulations exceeding a standard deviation of

22% were excluded from further drug response analysis. Only three subpopulations (2, 3

and 4) had a lower standard deviation in two or more of the patients. These subpopulations

and patients are marked with asterisks in Figure 15.
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Figure 15. Heatmap showing the subpopulation composition of patient 2, 3, 4, 5, 9, 15,
19, 20 and 22. The subpopulations correspond to the subpopulations in Figure 14. The
asterisks mark the subpopulations of patients with substantial amount of cells to be used
as a negative control for the drug response comparisons, having less than 22% standard
deviation in the control wells of at least two patients.

The DSS derived from the drug response analysis in Breeze is illustrated as a heatmap

in Figure 16. The subpopulations are clustered together according to the dendrogram,

independent of the patient, indicating that similar subpopulations have similar drug re-

sponse. Nevertheless, there are still some variations between the subpopulations that

cluster together, indicating patient variability. However, to obtain significant results re-

garding subpopulation drug response across patients and to compare patient variability,

it would be necessary to have additional subpopulations and patients to compare.

In order to obtain additional comparable subpopulations, the cell count in each well would

need to be increased. This should contribute to lower standard deviation in the control

wells, making the drug response calculations more robust. This analysis could therefore

not focus on patient similarity, but rather on subpopulation similarity independent of

patient.
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Figure 16. Heatmap showing the DSS of subpopulation 2, 3 and 4.

By looking at the drug responses one drug at a time, some drugs seem to have an effect on

all three subpopulations, indicating no subpopulation specificity, while others seem to work

only for one or two of the subpopulations. For example, the combination therapy with

cytarabine and daunorubicin, at the top of the heatmap, seem to be effective on all three

subpopulations, whereas the other combination therapy with venetoclax and azacitidine

seems to be effective only on subpopulation 2 and 4, not on 3. The drug response curves of

the combo venetoclaz/azacitidine, obtained from Breeze, is shown in Figure 17, together

with the DSS bar plots.
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Figure 17. Drug response curves and DSS bar plots for subpopulation 2 (green colors),
3 (red colors) and 4 (blue colors), taken from seven different patients, for Combo Veneto-
clax/azacitidine treatment.

5.3.2 Drug Response Analysis of Subpopulations from Individual Flowty

Runs

The same approach as described above should be performed on more subpopulations and

patients to obtain statistically significant results to fully answer the research question.

This would also enable further analysis of which subpopulations respond to which drugs.

However, due to the limitations already mentioned, the number of plates being run together

in Flowty was restricted. Therefore, the subpopulations generated from the individual

Flowty runs (Figure 8) were chosen for drug response comparison.

Although the MFI values of the subpopulations in the individual Flowty patient analysis

were normalized for each plate, it is uncertain whether the observed variations in MFI are

specifically influenced by the patient. To investigate this, a factor analysis was performed.

Principal component analysis (PCA) on the subpopulations based on their MFI (Figure

18) was executed. A regression analysis of each principal component against the patient

covariate was performed, showing no sign of patient-dependent variations. This can also

be seen by looking at the PCA plot.
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Figure 18. PCA plot showing how the patient subpopulations are distributed based on
their MFI values.

Drug response analysis was therefore performed for each subpopulation, generated from

the individual Flowty runs. Before the analysis, subpopulations showing a standard de-

viation higher than 22% in the control wells were filtered out. The biomarker expression

(measured as MFI) and the drug response (measured as DSS) are illustrated for each of

these subpopulations in Figure 19.

The heatmap illustrates 10 groups of subpopulations, based on the hierarchical clustering

of the MFI. Group 2, 3 and 4 consists of lymphocytes, whereas group 1 are probably

subpopulations of dead cells that were not removed during the manual gating. These

groups show significantly less drug response compared to the other subpopulations, which

is expected. The other subpopulations exhibit a varying phenotypic expression. Group

6 appears to consist of less differentiated cells, having low expression of biomarkers but

showing a higher expression of CD34. Group 10 seems to consist of more differentiated

cells, with high granularity (SSC). The other groups, 5, 8, 7 and 9 consist of various AML

blasts that will not be further characterized.

The drug response within these AML blast subgroups are varying between subpopulations.

However, the overall drug response pattern appears to be similar, where some drugs have a

greater impact than others. The observed variability could be patient-dependent, however,

this is difficult to outline in this heatmap. Therefore, the heatmap was rearranged ordering

the subpopulations based on patient, instead of marker expression (Figure 20).
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The drug response of subpopulations within each patient exhibit more similarity than the

subpopulations compared across patients, indicating that cells within one patient are more

similar in differentiation. However, the drug response within each patient also varies across

subpopulations, indicating that subpopulations with different phenotypic expression show

different responses within patients as well.

The heterogeneity between (Figure 19) and within (Figure 20) patients become evident

when comparing the two heatmaps. This demonstrates the complexity of the disease.

The only clear correlation that can be seen, is the difference between the lymphocytes

and the rest of the AML blasts (Figure 19). Statistical analysis of the DSS between the

subpopulation, such as ANOVA, could reveal if there are subpopulation dependencies in

the drugs, but were limited due to time constraints.

These subpopulations drug response heatmaps have only clustered subpopulations and

patients independently of one and another. If subpopulation and patient similarities were

combined before looking at the drug responses, it would be possible to investigate whether

similar subpopulations, in similar differentiating AML, have comparable drug responses.

This analysis was also limited due to time constrains.
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Figure 19. Heatmap showing the subpopulations from each individual Flowty run and their phenotypic expression and DSS for the different drugs.
The patient and the cell count are annotated on top. The dendrogram shows the hierarchical clustering of the subpopulations based on their phenotypic
expression of the biomarkers. The subpopulations are divided into 10 groups.
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Figure 20. Heatmap showing the subpopulations from each individual Flowty run and their phenotypic expression and DSS for the different drugs.
The patient and the cell count are annotated on top, and the subpopulations are ordered by patient ID.
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6 Future Aspects

To obtain more accurate clustering of patients according to their phenotypic expressions,

the subpopulations that are compared between patients should first be compared and

clustered to each other based on their phenotypic expression. Thereby, patients expressing

distinct subpopulations yet similar, can be detected and clustered more closely together.

Additionally, a larger patient sample size would improve the characterization, with more

and larger patient subgroups to be analyzed.

To see whether similar subpopulations show similar drug response results within similar

patients, the subpopulation drug response within and between patient subgroups should

be analyzed. This would generate a three-dimensional matrix of patient subgroups, sub-

populations and drug response data. A high-throughput approach for statistical analysis

of such data would also need to be established.

When analyzing the drug response of subpopulations, it is also interesting to see whether

the cellular subpopulation increases in number, indicating differentiation towards that

subpopulation caused by a drug. To do this, a high-throughput analysis of investigating

both inhibition and proliferation drug responses has yet to be found.

7 Conclusion

Flowty can be used to automatically visualize subpopulations from flow cytometry data.

It was difficult to create an automized way of determining the hierarchical differentia-

tion of each patient, due to the complexity of the phenotypic expressions shown for each

subpopulation. Instead, patients were compared by analyzing the composition of subpop-

ulations generated together for all patients, indicating patients with similar differentiation.

However, to improve this, a prior clustering of the subpopulations based on phenotypic

expression would enhance the analysis by adding an extra comparative dimension.

Due to high heterogeneity between patients, most subpopulations were only highly ex-

pressed in few of the 22 patients, and the rest of the subpopulations were only present in a

very low number. Therefore, there were few subpopulations that could be properly com-

pared across patients based on their drug response. Larger patient cohorts and a higher

cell number per well would improve the analysis. Comparing the subpopulations gener-

ated in the individual Flowty runs, variations between subpopulations were shown both

between and within patients, indicating the complexity of this heterogeneous disease. To

evaluate whether similar subpopulations have similar drug response, the conclusion was

that patients with phenotypic similarities should be grouped together before comparing

the drug response. It would then be possible to investigate whether similar subpopulations

show similar drug response in similar differentiating AML, which would possibly generate

more apparent results.

Even though this research project did not generate any statistically significant results, it

introduced potential methodologies that can be used in further research. This includes how
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Flowty can be used in order to do cellular subpopulation analysis of patient flow cytometry

drug screens, and how AML patients can be compared based on their subpopulations, and

subpopulation drug response. To improve clinical outcomes for patients with AML, the

identification of predictive biomarkers to guide precision medicine is crucial and further

research within phenotypic expressions and drug responses between patients still holds

this promise.
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pelbaum, Thomas Büchner, Hervé Dombret, Benjamin L Ebert, Pierre Fenaux,

Richard A Larson, et al. Diagnosis and management of aml in adults: 2017 eln

recommendations from an international expert panel. Blood, The Journal of the

American Society of Hematology, 129(4):424–447, 2017.

[20] Sandra Huber, Constance Baer, Stephan Hutter, Frank Dicker, Manja Meggendor-

fer, Christian Pohlkamp, Wolfgang Kern, Torsten Haferlach, Torsten Haferlach, and

Gregor Hoermann. Aml classification in the year 2023: How to avoid a babylonian

confusion of languages. Leukemia, pages 1–8, 04 2023.

[21] Joseph D Khoury, Eric Solary, Oussama Abla, Yassmine Akkari, Rita Alaggio, Jane F

Apperley, Rafael Bejar, Emilio Berti, Lambert Busque, John KC Chan, et al. The 5th

36

https://www.cancer.gov/types/leukemia/hp/adult-aml-treatment-pdq
https://www.cancer.gov/types/leukemia/hp/adult-aml-treatment-pdq


edition of the world health organization classification of haematolymphoid tumours:

myeloid and histiocytic/dendritic neoplasms. Leukemia, 36(7):1703–1719, 2022.

[22] Rama Al Hamed, Abdul Hamid Bazarbachi, Florent Malard, Jean-Luc Harousseau,

and Mohamad Mohty. Current status of autologous stem cell transplantation for

multiple myeloma. Blood cancer journal, 9(4):44, 2019.

[23] Andy GX Zeng, Suraj Bansal, Liqing Jin, Amanda Mitchell, Weihsu Claire Chen,

Hussein A Abbas, Michelle Chan-Seng-Yue, Veronique Voisin, Peter van Galen, Anne

Tierens, et al. A cellular hierarchy framework for understanding heterogeneity and

predicting drug response in acute myeloid leukemia. Nature medicine, 28(6):1212–

1223, 2022.
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