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Abstract

This paper discusses implementation techniques for integration methods within
the Discontinuous Galerkin Methods. These methods are used to approximate
solutions for differential equations. To do so, one must compute a polynomial u, of
degree P , which is an approximation of a function f . This approximation is done
by L2 projection, which uses orthogonal polynomials, chosen to be the Legendre
polynomials, as well as integration. This is first demonstrated for one dimension.
For two or three dimension, full tensor product or sum-factorization is used.
These implementations give the same approximation of u, but sum-factorization
uses fewer computations than full tensor product. It is demonstrated how the L2

projection is computed in Python and also that sum-factorization is faster to
compute than the full tensor product based approach.
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1 Introduction

In this paper it is shown how to give a best approximation of a function
f ∈ L2[a, b], where f ∈ L2[a, b] is projected on V ⊂ L2[a, b] with

dim V = P + 1 <∞ (1.1)

and V being a polynomial space. To find the best approximation, one uses a set of
basis functions that are orthogonal polynomials ψi(x) over the domain [a, b], such
that

V = span{ψ0(x), ..., ψP (x)}. (1.2)

The set of orthogonal polynomials are the Legendre polynomials. To compute the
projection, one computes a set of coefficients ûi, by integration such that

ûi =

∫ b

a

f(x)ψi(x)dx, i = 0, ..., P. (1.3)

In general, one cannot solve integrals analytically. Hence, the integration will be
approximated numerically. This is done is by Gauss-Legendre quadrature. Once
the coefficients ui are computed, one can compute the projected function u ∈ V
with either full tensor product, or, by the faster implementation of
sum-factorization.

In general, sum-factorization and full tensor product gives the same
approximation. The difference of the implementations are that sum-factorization
requires fewer computations than full tensor product. This is shown in Chapter 6,
where the numerical experiments are presented. These experiments are performed
in Python. In that chapter, algorithms, approximations and approximation errors
are shown. The chapter is then summarized by presenting the computation times
for all implementations.
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2 L2 projection

The idea of L2 projection is for a function f ∈ L2(a, b), to find a polynomial of
degree P , u ∈ PP , such that

∥f − u∥2 = inf
v∈PP

∥f − v∥2. (2.1)

The polynomial u is a best approximation of degree P to the function f in the
2-norm on the interval (a, b) [4, p.256]. Given f ∈ L2(a, b), such a polynomial
exists and is unique [4, p.258]. One can describe the polynomial u using the
monomial basis, by the formula

u(x) =

P∑
i=0

cix
i. (2.2)

To find u(x), we choose coefficients

ci, i = 0, .., P, (2.3)

such that we minimize the error

∥en∥2 = ∥f − u∥2 = (

∫ 1

0

|f(x)− u(x)|2)1/2. (2.4)

Without loss of generality, we consider the square of (2.4) and obtain the following
minimization problem

E(c0, ..., cP ) =

∫ 1

0

[f(x)− u(x)]2dx

=

∫ 1

0

[f(x)]2dx− 2

P∑
i=0

ci

∫ 1

0

f(x)xidx+

P∑
i=0

P∑
j=0

cicj

∫ 1

0

xi+jdx.

(2.5)

The minimum is obtained when all partial derivatives of E, with respect to ci are
0 [4, p.258]. This means that for the coefficients ci, one has to solve the following
system of equations

P∑
j=0

Mijcj = βi, i = 0, ..., P, (2.6)

where Mij and βi, are defined by

Mij =

∫ 1

0

xi+jdx =
1

1 + i+ j
, βi =

∫ 1

0

f(x)xidx, (2.7)

see for example [4, p.259].

Once all coefficients ci are computed, we get a polynomial that is the best
approximation of f in PP with respect to the 2-norm. The example above
demonstrates how such a polynomial can be computed on the interval (0, 1). It is
possible to compute u on any interval (a, b) for any positive, continuous and
integrable weight function ω on (a, b) [4, p.259].
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3 Orthogonal polynomials

3.1 Introduction

In Chapter 2, it was described how to compute the polynomial best approximation
u ∈ PP to a function f in the 2-norm. The matrix M from the previous chapter is
ill-conditioned, which makes it difficult to solve, for the coefficients ci [4, p.250].
To counteract this, we want to construct M , such that, M is a diagonal matrix.
This can be achieved by choosing a different basis. In particular a basis consisting
of orthogonal polynomials. The polynomial u will be defined by

u(x) =

P∑
i=0

ûiψi(x), (3.1)

for coefficients ûi and basis functions ψi(x). The basis functions in (3.1) are
orthogonal polynomials.

Definition 3.1. Given a weight function ω(x), which is positive, continuous and
integrable on the interval (a, b), we say that the sequence of polynomials
{ψ0(x), ψ1(x), ...}, is a system of orthogonal polynomials on the interval (a, b) with
respect to ω, if each ψi is of exact degree i and if∫ b

a

ω(x)ψi(x)ψj(x)dx

{
= 0, ∀i ̸= j

̸= 0, when i = j
(3.2)

3.2 Legendre polynomials

Legendre polynomials are orthogonal polynomials and the basis of choice for this
project.

Definition 3.2. The set of Legendre polynomials Li(x) are orthogonal with
respect to the basis function ω(x) = 1, on the interval (a, b) [4, p.263].

Definition 3.3. The Legendre polynomials satisfy

Li(x) =
di

dxi
((x2 − 1)i)

i!

(2i)!
(3.3)

in (−1, 1) for degree i [2, p.127].

Legendre polynomials can be defined on other domains than (−1, 1). For example,
Legendre polynomials defined on the domain (0, 1) are very useful. Legendre
polynomials on this domain will help with integration, which is discussed in the
next chapter. We can also compute Legendre polynomials in any other interval
(a,b). This is required to compute u(x) on an arbitrary interval (a, b).

Definition 3.4. If there exists a set of orthogonal polynomials on an interval
(−1, 1), with respect to the weight function ω(x) = 1, the polynomials
ψi((2x− a− b)/(b− a)), represent an orthogonal system on the interval (a, b), with
respect to ω(x) = 1.
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For this project, we mainly use normalized Legendre polynomials L̂i(x), of degree
i, that are defined on the interval (0, 1). To compute these polynomials, we use
the previously specified Legendre polynomials Li(x), that are defined on the
interval (−1, 1). The polynomials L̂i(x) are computed by the formula

L̂i(x) = Li(2x− 1)/∥Li(2x− 1)∥2 =
√

(2i+ 1)Li(2x− 1). (3.4)

The main purpose of the polynomial L̂i(x) is to serve as a basis for the polynomial
approximation of f . This is discussed in the next chapter.

The use of Legendre polynomials as basis functions, yields a diagonal matrix M ,
which makes the computation of the best approximation in the L2 sense easy.
This will be discussed in the next chapter.

Because these polynomials are orthogonal with respect to each other, we get a
matrix M which is diagonal. We evaluate the coefficients û by the system of
equation

Mû = β. (3.5)

Where the entries of M and β are defined by

Mij = δij∥ψi(x)∥22, (3.6)

βi = ⟨f(x), ψi(x)⟩, (3.7)

where δij is the Kronecker delta.
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4 Gauss-Legendre quadrature

In this chapter it is shown how definite integrals are computed. In general, it is
not possible to solve integrals analytically. Hence, we will approximate each
definite integral numerically. One can compute numerical approximations of
definite integrals by Gauss-Legendre quadrature. This is done by summing a set of
quadrature points, with corresponding weight points, on the domain that the
function is integrated over. The purpose of this chapter is to explain what the
correct quadrature points and weight points should be and how this gives us
numerical approximations of definite integrals. An error approximation of the
integration is also shown in the chapter.

Definition 4.1. For a set of quadrature points x̂i and weight points ω̂i,
i = 0, ..., P , a definite integral of an arbitrary function g(x) over a domain [a, b] is
approximated by the formula

I =

∫ b

a

g(x)dx ≈
P∑
i=0

ω̂ig(x̂i), (4.1)

see for example [4, p.280].

The domain [a, b] can also be split into several sub-domains. If we have N
sub-domains, we can define these domains as

[a, b] = {[a, a+ h], [a+ h, a+ 2h], ..., [b− h, b]}. (4.2)

This is used to compute a set of integrals Ik, such that

Ik =

∫ a+(k+1)h

a+kh

g(x)dx, k = 0, ..., P, (4.3)

where

h =
b− a

N
, (4.4)

is the increment of x for each step.

The quadrature points and weight points are defined below. It is desired for the
quadrature points x̂i and weight points ω̂i to satisfy the following properties.

∫ b

a

dx =

P∑
i=0

ω̂i,

∫ b

a

xdx =

P∑
i=0

ω̂ix̂i,

...∫ b

a

x2P+1dx =

P∑
i=0

ω̂ix̂
2P+1
i .

7



If this is is true for all quadrature points and weights, the quadrature is exact for
polynomials of at most degree 2P + 1 [4, p.280-281].

The quadrature points x̂i are given by the zeros of the Legendre polynomial of
degree P + 1 on the interval (a, b) [4, p.279]. Once we have computed the
quadrature points, it is straight forward to compute the weight points, since they
are based on the quadrature points and Legendre polynomial of degree P + 2 [4,
p.279].

We use everything discussed in this chapter to handle integration to compute all
βi in equation (3.7), which is defined by

βi =

∫ b

a

f(x)ψi(x)dx, i = 0, ..., P, (4.5)

where f(x) is an arbitrary function and ψi(x) are Legendre polynomials on the
interval (a, b) of degree i.

The first step of evaluating the definite integral is to compute all points of ψpi,
which is a matrix of shape (P + 1)× (P + 1). What we want is the quadrature
points x̂p and weight points ω̂p over the domain [0, 1]. Next, we define the basis
function ψi(x) as the Legendre polynomial of degree i on the domain [0, 1]. This
gives us that the points of ψpi are defined by

ψpi = ω̂pL̂i(x̂p). (4.6)

Because the integration will only be carried out on a reference domain, we only
need to compute the values of ψpi once. What we want to achieve with the
integration is to compute the coefficients ûi which are computed by the formula

ûi =

∫ b

a

f(x)ψi(x)dx ≈
P∑

p=0

f(x̂p)ψpi, 0 ≤ i ≤ P. (4.7)

Once the points of ûi are computed, we can use (3.1) to evaluate the polynomial
u(x) in any point x ∈ [a, b].
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5 Sum-factorization

Previously, we have demonstrated how to compute u of one dimension. For this
project, we are generally interested in computing u of two or three dimensions.
For the 1D case, we have shown how to compute u(x) for some points ûi and basis
functions ψi(x).

When the dimension is greater than 1, we still use Legendre polynomials as basis
functions. To compute the function u(x, y) for two dimensions, or u(x, y, z) for
three dimension, the implementations that are used are either by full tensor
product or sum-factorization. We start by defining the tensor product
implementation. For two dimensions, the full tensor product is defined by

u(x, y) =

P∑
i=0

P∑
j=0

ψi(x)ψj(y)ûij (5.1)

and for three dimensions, it is defined by

u(x, y, z) =

P∑
i=0

P∑
j=0

P∑
k=0

ψi(x)ψj(y)ψk(z)ûijk. (5.2)

Full tensor product is expensive computationally. In total, the number of
operations are roughly

2(P + 1)2 (5.3)

multiplications and

(P + 1)2 (5.4)

summations, for a total of

3(P + 1)2 (5.5)

operations, for the 2D case and

3(P + 1)3 (5.6)

multiplications and

(P + 1)3 (5.7)

summations, for a total of

4(P + 1)3 (5.8)

operations, for the 3D case.

We can reduce the number of operations by computing (5.1) and (5.2) differently.
This is done by sum-factorization.
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Lemma 5.1. For the 2D case, u(x, y) can be computed by full tensor product and
sum-factorization

u(x, y) =

P∑
i=0

P∑
j=0

ψi(x)ψj(y)ûij =

P∑
j=0

ψj(y)

{
P∑
i=0

ψi(x)ûij

}
(5.9)

which are equivalent [5, p.5167].

Proof. If we rearrange the factors we get the computations

u(x, y) =

P∑
i=0

P∑
j=0

ψi(x)ψj(y)ûij =

ψ0(y)

P∑
i=0

ψi(x)ûi0 + ...+ ψP (y)

P∑
i=0

ψi(x)ûiP =

P∑
j=0

ψj(y)

{
P∑
i=0

ψi(x)ûij

}
.

Lemma 5.2. For the 3D case, u(x, y, z) can be computed by full tensor product
and sum-factorization

u(x, y, z) =

P∑
i=0

P∑
j=0

P∑
k=0

ψi(x)ψj(y)ψk(z)ûijk =

P∑
k=0

ψk(z)

{
P∑

j=0

ψj(y)

{
P∑
i=0

ψi(x)ûijk

}} (5.10)

which are equivalent.

Proof. If we rearrange the factors we get the computations

u(x, y, z) =

P∑
i=0

P∑
j=0

P∑
k=0

ψi(x)ψj(y)ψk(z)ûijk =

ψ0(z)

P∑
i=0

P∑
j=0

ψi(x)ψj(y)ûij0 + ...+ ψP (z)

P∑
i=0

P∑
j=0

ψi(x)ψj(y)ûijP =

P∑
k=0

ψk(z)

{
P∑
i=0

P∑
j=0

ψi(x)ψj(y)ûijk

}
=

P∑
k=0

ψk(z)

{
ψ0(y)

P∑
i=0

ψi(x)ûi0k + ...+ ψP (y)

P∑
i=0

ψi(x)ûiPk

}
=

P∑
k=0

ψk(z)

{
P∑

j=0

ψj(y)

{
P∑
i=0

ψi(x)ûijk

}}
.
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Sum-factorization requires fewer operations than full tensor product to compute.
For the 2D case, there are roughly

((P + 1) + 1)(P + 1) = (P + 1)2 + (P + 1) (5.11)

multiplications and

(P + 1)2 (5.12)

summations, for a total of

2(P + 1)2 + (P + 1) (5.13)

operations. For the 3D case, there are roughly

((P + 1) + 2)(P + 1)2 = (P + 1)3 + 2(P + 1)2 (5.14)

multiplications and

(P + 1)3 (5.15)

summations, for a total of

2(P + 1)3 + 2(P + 1)2 (5.16)

operations.

The above argument shows that theoretically it should be faster to compute u
using sum-factorization rather than full tensor product. In the next chapter, it is
shown in Python that it is faster to compute u with sum-factorization, than with
full tensor product.
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6 Numerical experiments

6.1 Introduction

In this chapter, the Python implementations of the project are discussed. The
main goal of this project is to test computation times of the full tensor product
and sum-factorization implementations and compare the difference between these.
This will summarize the chapter. Before discussing computation times, it is
explained how Dune uses the previously discussed aspects, such as L2 projection,
integration, basis functions, full tensor product and sum-factorization. There are
also some explanation about the algorithms of the tensor product and
sum-factorization implementations, followed by showing the approximation and
approximation error, given a test function.

6.2 Dune framework

Most implementations used in this chapter are from a tool called Dune [3]. The
way Dune is used is to create grids of one, two or three dimensions, depending on
the function we want to approximate, as well as, basis functions, quadrature
points and weight points. Dune also does interpolation automatically for
computed coefficients. One can implement the mentioned tools by the code

Python code
import os, io
# ensure some compilation output for this example
os.environ[’DUNE_LOG_LEVEL ’] = ’info’
print("Using DUNE_LOG_LEVEL=",os.getenv(’DUNE_LOG_LEVEL ’))

from ufl import SpatialCoordinate , pi, sin , dot

from dune.generator import algorithm
from dune.geometry import quadratureRule
from dune.grid import structuredGrid as leafGridView
from dune.fem.space import dglegendre
from dune.fem.function import uflFunction , integrate

import numpy as np

_code = \
"""
#ifndef FEM_EVAL_BASIS_HH
#define FEM_EVAL_BASIS_HH
#include <vector >
#include <array >
#include <utility >
#include <dune/python/pybind11/numpy.h>
#include <dune/common/fvector.hh >
#include <dune/common/dynvector.hh >

template <class Space , class Entity , class Point >
std :: vector < typename Space :: RangeType >
evaluateBasis (const Space& space , const Entity& entity , const Point& x)
{

const auto basisSet = space. basisFunctionSet ( entity );
std :: vector < typename Space :: RangeType > basis( basisSet.size () );
basisSet. evaluateAll ( x, basis );
return basis;

}
#endif

"""
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Once all required tools are imported from Dune, quadrature points and weight
points can be evaluated. These points are used to compute a set of basis points
that are used to compute the L2 projection, which is a polynomial of deg ≤ P ,
with either full tensor product or sum-factorization. The points are evaluated by
Dune by the code

Python code
def basisfunctions_1d(P):

gridView = leafGridView([0], [1], [1])
space = dglegendre(gridView , dimRange = 1, order = P)

basisEval = None

w = []

basis_points = []

for e in space.grid.elements:

# loop over all quadrature points
for p in quadratureRule(e.type , 2 * P + 1):

# coordinate of quadrature point (\ hat{x})
x = p.position

# weight point
w.append(p.weight) # * geo. integrationElement (x)

if basisEval is None:
basisEval = algorithm.load(’evaluateBasis ’, \

io.StringIO(_code), space , e, x)

# evaluate all basis function at the quadrature point
basis_points.append(basisEval(space , e, x))

psi_Vals = np.array(basis_points).reshape(P + 1, P + 1) * np.vstack(w)

return psi_Vals

If one computes these points mathematically, one uses the quadrature points x̂p
and weight points ω̂p, with Legendre polynomials L̂i(x), of degree i, defined on
(0, 1). Then the basis points ψpi are defined as

ψpi = ωpL̂i(x̂p), p, i = 0, ..., P. (6.1)

The values of ψpi are given for 1D and used to construct basis functions for higher
dimension by means of full tensor product. These are stored in a separate matrix
for each dimension. The advantage this gives, is that fewer computations are
required when performing full tensor product. This is the way Dune does the L2

projection. The way Dune evaluates basis values, is by the code

13



Python code
def basisfunctions(P, d):

gridView = leafGridView(d * [0], d * [1], d * [1])
space = dglegendre(gridView , dimRange = 1, order = P)

basisEval = None

w = []

basis_points = []

for e in space.grid.elements:

# loop over all quadrature points
for p in quadratureRule(e.type , 2 * P + 1):

# coordinate of quadrature point (\ hat{x})
x = p.position

# weight point
w.append(p.weight) # * geo. integrationElement (x)

if basisEval is None:

basisEval = algorithm.load(’evaluateBasis ’, \
io.StringIO(_code), space , e, x)

# evaluate all basis function at the quadrature point
basis_points.append(basisEval(space , e, x))

phi_Vals = np.array(basis_points).reshape ((P + 1)**d, (P + 1)**d) * \
np.vstack(w)

return phi_Vals

This algorithm creates a matrix ϕ of size (P + 1)d × (P + 1)d, compared to ψ,
which is a matrix of size (P + 1)× (P + 1). The way these points are evaluated
given elements of ψ.., is by

ϕ(P+1)p+q,valij = ψqiψpj , p, q, i, j = 0, ..., P, (6.2)

for two dimensions, and

ϕ(P+1)2p+(P+1)q+r,valijk = ψriψqjψpk, p, q, r, i, j, k = 0, ..., P, (6.3)

for three dimensions. The elements of val shall be seen as the way Dune orders
the way to compute elements. The set val is defined as

valij =

{
i2 + j, j < i

j(j + 1) + i, j ≥ i
(6.4)

for two dimensions, and

valijk =


k((k + 1)2 + j) + i+ j, k ≥ j, k ≥ i

i(i2 + 2k) + j + k, k < i, j < i

j(j2 + 2k + 1) + i+ k, k < j, j ≥ i

(6.5)

for three dimensions. To demonstrate with an example. If we have
i = 2, j = 1, k = 4, we see from equation (6.5), that Dune will store these values
in column 4((4 + 1)2 + 1) + 2 + 1 = 107 of ϕ, for all values of p, q, r.

14



The set of val is used as a demonstration tool to show how one can compute the
matrix ϕ from the matrix ψ. The set of val is useful when computing either the
full tensor product, or sum-factorization, to not violate the built-in ordering of
Dune. If val is not used in this way for the L2 projection, the approximation
becomes incorrect.

Next step of the project is to introduce a test function and the space we want to
approximate over. The test function of choice for the project is the sin function of
dimension d. In general, we always want to approximate a function over several
grids over some space. The boundary for all axes of the space is defined as a and
b. The dimension of the function is defined as d and the number of grids is defined
as N . Note that the total number of grids are Nd, meaning, for a two dimensional
square, with boundary a = 0 and b = 1 and N = 20, there are 400 grids, portioned
evenly over the unit square. Mathematically, the grids over the space are defined
as

Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ω399 ∪ Ω400 =

[0, 0.05]× [0, 0.05] ∪ [0.05, 0.1]× [0, 0.05] ∪ ...
∪[0.95, 1]× [0.9, 0.95] ∪ [0.95, 1]× [0.95, 1]

(6.6)

The way we use this in Dune, is for given values of P , N , d, a and b, as input, we
have to store the test function f , as the output fct. We also have to create an
output for the approximated function uh. This is the output uh. The code below
represents the discussed parts

Python code
def spaces(P, N, d, a, b):

gridView = leafGridView(d * [a], d * [b], d * [N])
space = dglegendre(gridView , dimRange = 1, order = P)

x = SpatialCoordinate(space)
f = sin(x[0] * pi)
for i in range(1, d):

f *= sin(x[i] * pi)

fct = uflFunction(gridView , name = ’f’, order = P, ufl = f)

uh = space.interpolate([0], name = ’uh’)

return fct , uh , f, gridView

6.3 Approximation and algorithm explanations

We now have all required tools from Dune to compute the L2 projection of a
function. We will do this with 4 implementations and test 3 of these, with various
approaches. The first implementation that is used, which is the only
implementation to not be tested, is a straight forward built-in implementation.
We use the test function

f(x, y) = sin(πx) sin(πy) (6.7)
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and variables

P = 3, N = 20, d = 2, a = 0, b = 4. (6.8)

We use this input, with the output f and gridView and do the L2 projection of
f(x, y), with the code

Python code
space = dglegendre(gridView , dimRange = 1, order = P)
uh = space.interpolate(f, name = ’uh’)

The command

Python code
uh.plot()

plots the approximated solution uh. The approximation, given the values above, is
shown below

Figure 1: Approximation of uh, over the domain Ω = [0, 4] × [0, 4], polynomial
degree 3 and 20 grid per axis, given f(x, y) = sin(πx) sin(πy). The bar to the right
represents the value of uh(x, y).

Going forward, this plot works as sheet to see if a programmed algorithm appears
to be correct. In the Chapter 6.4, it is demonstrated that the error of the
approximation decreases for increasing polynomial degree P and increasing
number of grids N .

6.3.1 Full tensor product

We are now discussing the algorithms we want to test. These are called, full
tensor product, Dune implementation and sum-factorization. There will also be a
brief discussion, about different approaches, that can be used with the
implementations.
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The first implementation to test is the full tensor product. In short, what we can
say about the full tensor product implementation is that this implementation
computes the interpolation points ûij , for two dimensions, or, ûijk, for three
dimensions, with full number of multiplications, for given values of ψ... Once these
points are computed, we compute the coefficients ûval, with the formula

ûvalij =
∑

0≤p,q≤P

ψqiψpj f̂pq (6.9)

for two dimensions, where f̂pq = f(x̂q, ŷp), and

ûvalijk =
∑

0≤p,q,r≤P

ψriψqjψpkf̂pqr (6.10)

for three dimensions, where f̂pqr = f(x̂r, ŷq, ẑp).

It is now explained how the computations are being performed. The algorithm we
create to perform these computations, uses the input fct and uh. We must also
use the basis matrix, defined as psi and the dimension, defined as d. In the
algorithm, we have a string input as well. For this demonstration, we call string
’looping’. The string element will be discussed later in this chapter. For now,
the way to compute the full tensor product in two dimensions in Python, is by the
code
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Python code
def tensor_product(fct , uh , psi , d, string):

uLocal = uh.setLocalContribution ()

space = uh.space

P = space.order

# set all entries of u to zero
uh.clear ()

if d == 2:

count = []

val = np.empty((P + 1, P + 1), dtype = int)

for i in range(P + 1):
for j in range(P + 1):

count.append([i, j])

# values for uLocal indices
if j < i:

val[i, j] = i**2 + j
elif j >= i:

val[i, j] = j * (j + 1) + i

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty((P + 1, P + 1))

# loop over all quadrature points
for index , coord in enumerate(quadratureRule(e.type , 2 * P)):

p, q = count[index]

# f- evaluations
f_hat[p, q] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):
for j in range(P + 1):

uLocal[val[i, j]] = \
sum(psi[q, i] * psi[p, j] * f_hat[p, q] \

for p in range(P + 1) for q in range(P + 1))

uLocal.unbind ()

6.3.2 Dune implementation

This is the implementation that uses the way Dune solves the L2 projection. The
difference between the Dune implementation and the previously discussed tensor
product implementation, is that the Dune implementation uses the values of ϕ..,
which reduces the number of multiplications performed. For this implementation,
we are only required to store f̂ as a vector. We call this f̄ = vec(f̂).

The algorithm for this implementation is straightforward. We perform the
computation with the code
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Python code
def dune(fct , uh , phi , string):

uLocal = uh.setLocalContribution ()

space = uh.space

P = space.order

Q = len(phi)

# set all entries of u to zero
uh.clear ()

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_bar = np.empty(Q)

# loop over all quadrature points
for p, coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

# f- evaluations
f_bar[p] = fct(e, coord.position)

if string == ’looping ’:

for i in range(Q):

uLocal[i] = sum(phi[p, i] * f_bar[p] for p in range(Q))

uLocal.unbind ()

Mathematically, we are computing the formula

ûi =

(P+1)d−1∑
p=0

ϕpif̄p. (6.11)

One can see that for each computed point of ûi, there are fewer multiplications
performed, compared to the full tensor product. It is also worth noting, that the
other implementations are based on the Dune implementation. In particular, no
extra code is needed for ordering, such as val. For this reason, the Dune
implementation is a fairly straightforward algorithm.

6.3.3 Sum-factorization

The sum-factorization implementation is theoretically the best of the three
implementations. The way this implementation works is a little bit more
complicated than the previous implementations. The way û is evaluated, for two
dimensions, is by the formula

Ap =

P∑
q=0

ψqiFpq, (6.12)

ûvalij =

P∑
p=0

ψpjAp. (6.13)
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.
For three dimensions, it is evaluated by

Apq =

P∑
r=0

ψriFpqr, (6.14)

Bp =

P∑
q=0

ψqjApq, (6.15)

ûe,valijk =

P∑
p=0

ψpkBp. (6.16)

What makes this algorithm effective, especially for three dimensions, is the fact
that when we change k and let i and j be intact, we do not need to recompute A
or B. The same is true for when we change j and let i be the same, we do not need
to recompute A. This drastically decreases the number of required operations.
The way this is computed for two dimensions, in Python is demonstrated below.
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Python code
def sum_factorization(fct , uh, psi , d, string):

uLocal = uh.setLocalContribution ()

space = uh.space

P = space.order

# set all entries of u to zero
uh.clear ()

if d == 2:

count = []

val = np.empty((P + 1, P + 1), dtype = int)

for i in range(P + 1):
for j in range(P + 1):

count.append([i, j])

# values for uLocal indices
if j < i:

val[i, j] = i**2 + j
elif j >= i:

val[i, j] = j * (j + 1) + i

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty((P + 1, P + 1))

# loop over all quadrature points
for index , coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

p, q = count[index]

# f- evaluations
f_hat[p, q] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):

A = np.empty(P + 1)

for p in range(P + 1):

A[p] = sum(psi[q, i] * f_hat[p, q] \
for q in range(P + 1))

for j in range(P + 1):

uLocal[val[i, j]] = sum(psi[p, j] * A[p] \
for p in range(P + 1))

uLocal.unbind ()

6.3.4 Discussion about approaches

So far, only algorithms with looping approach have been discussed. Unfortunately,
looping works poorly in Python. For this reason, other approaches have been
tested to speed up computation. The best approach found, is numpy’s builtin
matrix-vector multiplication. In Chapter 6.5, it is shown that this approach is
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faster than looping in Python, for any implementation. The code of the
sum-factorization implementation is sufficient to get an idea how to code the other
implementations with the matrix-vector approach. The code for using
matrix-vector multiplication in dimension two, is performed by

Python code
if string == ’matvec ’:

for i in range(P + 1):

A = f_hat @ psi.T[i]

for j in range(P + 1):

B = A @ psi.T[j]

for k in range(P + 1):

uLocal[val[i, j, k]] = B @ psi.T[k]

This shows the difference when we call string as matvec, instead of looping, when
the input for sum_factorization is chosen.

6.4 Error estimation

We now want to verify the approximation of uh. What we can say about uh, in
mathematical sense, is that this approximation is exact of order P , i.e., the
polynomial degree of uh. The error of uh is defined by

uh − f ≈ CxP+1

(P + 1)!
, (6.17)

see for example [4, p.183].

We want to compute the absolute error of the approximation using the L2-norm.
This is because when L2 projection is used, this is a best approximation in the
L2-norm. The definition of the error is

error =

√∫
Ω

(uh − f)2dx. (6.18)

We want to compute this error with respect to h = (b− a)/N . First, we compute

∫
Ω

(uh − f)2dx ≈ NC2

((P + 1)!)2

∫ h

0

x2P+2dx =
(b− a)C2

((P + 1)!)2

∫ h

0

x2P+2

h
dx. (6.19)

We use this to show that the error, given the L2 norm, is

error ≈

√
(b− a)C2

((P + 1)!)2

∫ h

0

x2P+2

h
dx =

√
b− a

2P + 3

( ChP+1

(P + 1)!

)2

=

ChP+1

(P + 1)!

√
b− a

2P + 3
.

(6.20)
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After experimenting, we get that the test function, which we assume to be an
upper bound of the actual error, is

test =
2(b− a)

(P + 1)!
√
2P + 3

hP+1. (6.21)

The code used to approximate the error, compared to the exact solution, is

Python code
def L2error(fct , uh, f, gridView , P):

fct = uflFunction(gridView , name = ’f’, order = P, ufl = [f])

err = uflFunction(gridView , name = ’err’, order = P, \
ufl = uh - fct)

L2err = np.sqrt(integrate(gridView , dot(err , err), order = 2 * P + 3))

return L2err

This code gives the absolute error, given an approximation of uh. The error, for
given values of a, b, P and d, with various values of h is plotted below. Because
the factor hP+1 has an exponent, it is appropriate to use a loglog plot, to plot the
error. We use the test function, and compare it with the error we get from
L2error. The error plot for a = 0, b = 4, d = {2, 3} is shown below

Figure 2: Error of the L2 projection uh, given
f(x, y) = sin(πx) sin(πy), over the domain Ω = [0, 4]× [0, 4] and polynomial degree
3. The plot shows that the error is decreased for decreasing h and is bounded from
above by the test function.
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Figure 3: Error of the L2 projection uh, given
f(x, y, z) = sin(πx)sin(πy)sin(πz), over the domain Ω = [0, 4] × [0, 4] × [0, 4] and
polynomial degree 3. The plot shows that the error is decreased for decreasing h
and is bounded from above by the test function.

The error of the approximation is what one can expect. We have the same slopes
of both the L2 error and the test function, given h. We also have that the L2 error
is bounded from above by the test function.

6.5 Computation time

It is now verified that we have well approximated solutions. Now we can start
testing computation times for all implementations. In Python, there are many
ways to time how quickly an algorithm is performed. The timing method that will
be used for this project is called timeit [1]. This tool is imported by the code:

Python code
import timeit

One way to measure the computation time of an implementation is to define
within the code of the implementation algorithm where the timing will start and
where it will end, and compute the time difference of when the timing started and
timing ended. This will not be the method of choice in this case. Since we will
always compute the time for a full algorithm and not just parts of it, we rather
want to use a timing method for this purpose. The method of choice is to create a
string of the algorithm and import all used input of the algorithm. The way to
compute the computation times for the algorithms, is by the code

Python code
N_vals = []

app1 = ’looping ’
app2 = ’matvec ’
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method = np.array([[’dune(fct , uh, phi_Vals , app1)’, \
’from __main__ import dune , fct , uh, phi_Vals , app1’], \

[’tensor_product(fct , uh , psi_Vals , d, app1)’, \
’from __main__ import tensor_product , fct , uh , \

psi_Vals , d, app1’],
[’sum_factorization(fct , uh, psi_Vals , d, app1)’, \
’from __main__ import sum_factorization , fct , uh, \

psi_Vals , d, app1’], \
[’dune(fct , uh, phi_Vals , app2)’, \
’from __main__ import dune , fct , uh, phi_Vals , app2’], \

[’tensor_product(fct , uh , psi_Vals , d, app2)’, \
’from __main__ import tensor_product , fct , uh , \

psi_Vals , d, app2’], \
[’sum_factorization(fct , uh, psi_Vals , d, app2)’, \
’from __main__ import sum_factorization , fct , uh, \

psi_Vals , d, app2’]])

dune_looping_time = []
tp_looping_time = []
sf_looping_time = []

dune_matvec_time = []
tp_matvec_time = []
sf_matvec_time = []

for i in range(P_min , P_max + 1):

dune_looping_time_k = []
tp_looping_time_k = []
sf_looping_time_k = []

dune_matvec_time_k = []
tp_matvec_time_k = []
sf_matvec_time_k = []

N_vals.append(i)

fct , uh, f, gridView = spaces(i, N, d, a, b)

phi_Vals = basisfunctions(i, d)

psi_Vals = basisfunctions_1d(i)

for k in range(count):

dune_looping_time_k.append(timeit.timeit(method[0, 0], method[0, 1], \
number = num) / num)

tp_looping_time_k.append(timeit.timeit(method[1, 0], method[1, 1], \
number = num) / num)

sf_looping_time_k.append(timeit.timeit(method[2, 0], method[2, 1], \
number = num) / num)

dune_matvec_time_k.append(timeit.timeit(method[3, 0], method[3, 1], \
number = num) / num)

tp_matvec_time_k.append(timeit.timeit(method[4, 0], method[4, 1], \
number = num) / num)

sf_matvec_time_k.append(timeit.timeit(method[5, 0], method[5, 1], \
number = num) / num)

dune_looping_time.append(np.mean(dune_looping_time_k))
tp_looping_time.append(np.mean(tp_looping_time_k))
sf_looping_time.append(np.mean(sf_looping_time_k))

dune_matvec_time.append(np.mean(dune_matvec_time_k))
tp_matvec_time.append(np.mean(tp_matvec_time_k))
sf_matvec_time.append(np.mean(sf_matvec_time_k))
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This is the way the computation times for the algorithms are computed. We want
to test the computation times for the three different implementations that have
previously been discussed, with looping and matrix-vector approaches. It is
advised to use a looping approach over matrix-vector multiplication [5, p. 5169].
In Python however, we see that the matrix-vector approach in general is much
faster, than using the looping approach.

We have discussed what to test and how the test is performed. We will now see the
computation times for all algorithms. The plot of the two dimensional case and
three dimensional cases for a given N and various values of P is included below

Figure 4: Computation times for each performed algorithm, for two dimensions and
20 grids per axis. The time is measured for various polynomial degrees.
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Figure 5: Computation times for each performed algorithm, for three dimensions
and eight grids per axis. The time is measured for various polynomial degrees.

One sees that for the matrix-vector approach, we have that all three
implementations almost have the same computation times. If we compare the
implementations using the looping approach, we see that the sum-factorization
implementation gets comparatively better than the other implementations for
large P and for higher dimension. This can be seen by the number of operations
for each implementation. For the full tensor product there is roughly C1(P + 1)2d

number of operations. For the Dune implementation it is C2(P + 1)2d, where C1 is
larger than C2. Lastly, we have that sum-factorization have C3(P + 1)d+1 number
of operations. If we look at the three dimensional case, we see that the looping
sum-factorization implementation, is almost as quick to compute than
matrix-vector approaches. This shows that sum-factorization can be efficient in a
programming language, where looping is faster than in Python.
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7 Summary

The goal of this project was to show that for the aspects of the Discontinuous
Galerkin Methods, that have been presented in this paper, sum-factorization is an
effective implementation in Python. In Chapter 6, it was demonstrated that in
Python, the sum-factorization implementation was fast in comparison with the
Dune implementation and the full tensor product implementation. When the
looping approach is used, sum-factorization is by far the fastest implementation.
Unfortunately, it is not quite as effective to use with numpy’s matrix-vector
command. The sum-factorization is still a sufficiently good implementation even
when looping. In the plot of the computation times, which can be seen in Chapter
6.5, we can see that the sum-factorization of any approach is about as fast as all
implementations of the matrix-vector approach. The conclusion of this is that the
way to use sum-factorization is likely to use a different programming language
where looping performs well. In conclusion it can be said that the implementation
of sum-factorization performs well overall and gives results that are satisfactory.
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8 Appendix

The appendix is used to show all of the code that is used for the project. Most of
the code is discussed and shown in Section 6. A big thanks goes out to Robert
Klöfkorn for setting up some of the code. Especially the imported tools from dune.

Python code
import os, io
# ensure some compilation output for this example
os.environ[’DUNE_LOG_LEVEL ’] = ’info’
print("Using DUNE_LOG_LEVEL=",os.getenv(’DUNE_LOG_LEVEL ’))

from ufl import SpatialCoordinate , pi, sin , dot

from dune.generator import algorithm
from dune.geometry import quadratureRule
from dune.grid import structuredGrid as leafGridView
from dune.fem.space import dglegendre
from dune.fem.function import uflFunction , integrate

import numpy as np
import matplotlib.pyplot as plt
import timeit

_code = \
"""
#ifndef FEM_EVAL_BASIS_HH
#define FEM_EVAL_BASIS_HH
#include <vector >
#include <array >
#include <utility >
#include <dune/python/pybind11/numpy.h>
#include <dune/common/fvector.hh >
#include <dune/common/dynvector.hh >

template <class Space , class Entity , class Point >
std :: vector < typename Space :: RangeType >
evaluateBasis (const Space& space , const Entity& entity , const Point& x)
{

const auto basisSet = space. basisFunctionSet ( entity );
std :: vector < typename Space :: RangeType > basis( basisSet.size () );
basisSet. evaluateAll ( x, basis );
return basis;

}
#endif

"""

def dune(fct , uh , phi , string):

uLocal = uh.setLocalContribution ()

space = uh.space

P = space.order

Q = len(phi)

# set all entries of u to zero
uh.clear ()

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_bar = np.empty(Q)

# loop over all quadrature points
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for p, coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

# f- evaluations
f_bar[p] = fct(e, coord.position)

if string == ’looping ’:

for i in range(Q):

uLocal[i] = sum(phi[p, i] * f_bar[p] for p in range(Q))

elif string == ’matvec ’:

for i in range(Q):

uLocal[i] = f_bar @ phi.T[i]

uLocal.unbind ()

def basisfunctions(P, d):

gridView = leafGridView(d * [0], d * [1], d * [1])
space = dglegendre(gridView , dimRange = 1, order = P)

basisEval = None

w = []

basis_points = []

for e in space.grid.elements:

# loop over all quadrature points
for p in quadratureRule(e.type , 2 * P + 1):

# coordinate of quadrature point (\ hat{x})
x = p.position

# weight point
w.append(p.weight) # * geo. integrationElement (x)

if basisEval is None:

basisEval = algorithm.load(’evaluateBasis ’, \
io.StringIO(_code), space , e, x)

# evaluate all basis function at the quadrature point
basis_points.append(basisEval(space , e, x))

phi_Vals = np.array(basis_points).reshape ((P + 1)**d, (P + 1)**d) * \
np.vstack(w)

return phi_Vals

def tensor_product(fct , uh , psi , d, string):

uLocal = uh.setLocalContribution ()

space = uh.space

P = space.order

# set all entries of u to zero
uh.clear ()

if d == 1:

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)
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f_hat = np.empty(P + 1)

# loop over all quadrature points
for p, coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

# f- evaluations
f_hat[p] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):

uLocal[i] = \
sum(psi[p, i] * f_hat[p] for p in range(P + 1))

elif string == ’matvec ’:

for i in range(P + 1):

uLocal[i] = f_hat @ psi.T[i]

uLocal.unbind ()

elif d == 2:

count = []

val = np.empty((P + 1, P + 1), dtype = int)

for i in range(P + 1):
for j in range(P + 1):

count.append([i, j])

# values for uLocal indices
if j < i:

val[i, j] = i**2 + j
elif j >= i:

val[i, j] = j * (j + 1) + i

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty((P + 1, P + 1))

# loop over all quadrature points
for index , coord in enumerate(quadratureRule(e.type , 2 * P)):

p, q = count[index]

# f- evaluations
f_hat[p, q] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):
for j in range(P + 1):

uLocal[val[i, j]] = \
sum(psi[q, i] * psi[p, j] * f_hat[p, q] \

for p in range(P + 1) for q in range(P + 1))

elif string == ’matvec ’:

for i in range(P + 1):
for j in range(P + 1):

uLocal[val[i, j]] = (f_hat @ psi.T[i]) @ psi.T[j]

uLocal.unbind ()
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elif d == 3:

count = []

val = np.empty((P + 1, P + 1, P + 1), dtype = int)

for i in range(P + 1):
for j in range(P + 1):

for k in range(P + 1):

count.append([i, j, k])

# values for uLocal indices
if k >= j and k >= i:

val[i, j, k] = k * ((k + 1)**2 + j) + i + j
elif k < i and j < i:

val[i, j, k] = i * (i**2 + 2 * k) + j + k
elif k < j and j >= i:

val[i, j, k] = j * (j**2 + 2 * k + 1) + i + k

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty((P + 1, P + 1, P + 1))

# loop over all quadrature points
for index , coord in enumerate(quadratureRule(e.type , 2 * P)):

p, q, r = count[index]

# f- evaluations
f_hat[p, q, r] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):
for j in range(P + 1):

for k in range(P + 1):

uLocal[val[i, j, k]] = \
sum(psi[r, i] * psi[q, j] * psi[p, k] * \

f_hat[p, q, r] for p in range(P + 1) \
for q in range(P + 1) \

for r in range(P + 1))

elif string == ’matvec ’:

for i in range(P + 1):
for j in range(P + 1):

for k in range(P + 1):

uLocal[val[i, j, k]] = \
((f_hat @ psi.T[i]) @ psi.T[j]) @ psi.T[k]

uLocal.unbind ()

def sum_factorization(fct , uh, psi , d, string):

uLocal = uh.setLocalContribution ()

space = uh.space

P = space.order

# set all entries of u to zero
uh.clear ()

if d == 1:
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for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty(P + 1)

# loop over all quadrature points
for p, coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

# f-estimates
f_hat[p] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):

uLocal[i] = \
sum(psi[p, i] * f_hat[p] for p in range(P + 1))

elif string == ’matvec ’:

for i in range(P + 1):

uLocal[i] = f_hat @ psi.T[i]

uLocal.unbind ()

elif d == 2:

count = []

val = np.empty((P + 1, P + 1), dtype = int)

for i in range(P + 1):
for j in range(P + 1):

count.append([i, j])

# values for uLocal indices
if j < i:

val[i, j] = i**2 + j
elif j >= i:

val[i, j] = j * (j + 1) + i

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty((P + 1, P + 1))

# loop over all quadrature points
for index , coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

p, q = count[index]

# f- evaluations
f_hat[p, q] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):

A = np.empty(P + 1)

for p in range(P + 1):

A[p] = sum(psi[q, i] * f_hat[p, q] \
for q in range(P + 1))

for j in range(P + 1):
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uLocal[val[i, j]] = sum(psi[p, j] * A[p] \
for p in range(P + 1))

if string == ’matvec ’:

for i in range(P + 1):

A = f_hat @ psi.T[i]

for j in range(P + 1):

uLocal[val[i, j]] = A @ psi.T[j]

uLocal.unbind ()

elif d == 3:

count = []

val = np.empty((P + 1, P + 1, P + 1), dtype = int)

for i in range(P + 1):
for j in range(P + 1):

for k in range(P + 1):

count.append([i, j, k])

# values for uLocal indices
if k >= j and k >= i:

val[i, j, k] = k * ((k + 1)**2 + j) + i + j
elif k < i and j < i:

val[i, j, k] = i * (i**2 + 2 * k) + j + k
elif k < j and j >= i:

val[i, j, k] = j * (j**2 + 2 * k + 1) + i + k

for e in space.grid.elements:

# bind uLocal to current element
uLocal.bind(e)

f_hat = np.empty((P + 1, P + 1, P + 1))

# loop over all quadrature points
for index , coord in enumerate(quadratureRule(e.type , 2 * P + 1)):

p, q, r = count[index]

# f- evaluations
f_hat[p, q, r] = fct(e, coord.position)

if string == ’looping ’:

for i in range(P + 1):

A = np.empty((P + 1, P + 1))

for p in range(P + 1):
for q in range(P + 1):

A[p, q] = sum(psi[r, i] * f_hat[p, q, r] \
for r in range(P + 1))

for j in range(P + 1):

B = np.empty(P + 1)

for p in range(P + 1):

B[p] = sum(psi[q, j] * A[p, q] \
for q in range(P + 1))
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for k in range(P + 1):

uLocal[val[i, j, k]] = sum(psi[p, k] * B[p] \
for p in range(P + 1))

elif string == ’matvec ’:

for i in range(P + 1):

A = f_hat @ psi.T[i]

for j in range(P + 1):

B = A @ psi.T[j]

for k in range(P + 1):

uLocal[val[i, j, k]] = B @ psi.T[k]

uLocal.unbind ()

def basisfunctions_1d(P):

gridView = leafGridView([0], [1], [1])
space = dglegendre(gridView , dimRange = 1, order = P)

basisEval = None

w = []

basis_points = []

for e in space.grid.elements:

# loop over all quadrature points
for p in quadratureRule(e.type , 2 * P + 1):

# coordinate of quadrature point (\ hat{x})
x = p.position

# weight point
w.append(p.weight) # * geo. integrationElement (x)

if basisEval is None:
basisEval = algorithm.load(’evaluateBasis ’, \

io.StringIO(_code), space , e, x)

# evaluate all basis function at the quadrature point
basis_points.append(basisEval(space , e, x))

psi_Vals = np.array(basis_points).reshape(P + 1, P + 1) * np.vstack(w)

return psi_Vals

# ##################################################################

#Fetching what we need from dune

def spaces(P, N, d, a, b):

gridView = leafGridView(d * [a], d * [b], d * [N])
space = dglegendre(gridView , dimRange = 1, order = P)

x = SpatialCoordinate(space)
f = sin(x[0] * pi)
for i in range(1, d):

f *= sin(x[i] * pi)

fct = uflFunction(gridView , name = ’f’, order = P, ufl = f)

uh = space.interpolate([0], name = ’uh’)
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return fct , uh , f, gridView

#Computes uh , with the implementations ’C’, ’dune ’, ’tp’ and ’sf’ and
# approaches looping and matvec

def approx(P, N, d, a, b, implementation , approach):

fct , uh, f, gridView = spaces(P, N, d, a, b)

phi_Vals = basisfunctions(P, d)

psi_Vals = basisfunctions_1d(P)

if implementation == ’C’:
space = dglegendre(gridView , dimRange = 1, order = P)

uh = space.interpolate(f, name = ’uh’)

elif implementation == ’dune’:
dune(fct , uh, phi_Vals , approach)

elif implementation == ’tp’:
tensor_product(fct , uh, psi_Vals , d, approach)

elif implementation == ’sf’:
sum_factorization(fct , uh , psi_Vals , d, approach)

return uh

#Creating the error function

def L2error(fct , uh, f, gridView , P):

fct = uflFunction(gridView , name = ’f’, order = P, ufl = [f])

err = uflFunction(gridView , name = ’err’, order = P, \
ufl = uh - fct)

L2err = np.sqrt(integrate(gridView , dot(err , err), order = 2 * P + 3))

return L2err

#This plots the computed approximation for a given implementation

def approx_plt(P, N, d, a, b, implementation , approach):

fct , uh, f, gridView = spaces(P, N, d, a, b)

uh = approx(P, N, d, a, b, implementation , approach)

if d == 1 or d == 2:
uh.plot()

elif d == 3:
gridView.writeVTK(’uh3d’, pointdata = [uh])

#Computes the error of the approximation in the L2 -norm

def approx_err(P, N, d, a, b, implementation , approach):

fct , uh, f, gridView = spaces(P, N, d, a, b)

uh = approx(P, N, d, a, b, implementation , approach)

error = L2error(fct , uh , f, gridView , P)

return error

#Creating lists of different grids

N2d = np.array([10, 20, 30])
N3d = np.array([8, 12, 16])
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#Plot of the approximation errors

def approx_err_plt(P, N_vals , d, a, b, implementation , approach):

h_vals = (b - a) / N_vals

fact = np.math.factorial(P + 1)

test = 2 * (b - a) * h_vals**(P + 1) / fact / (2 * P + 3)**(1 / 2)

plt.loglog(h_vals , test , label = \
r’Test function: $\frac{2(b-a)h^{P+1}}{(P+1)!\sqrt{2P+3}}$’)

error = [approx_err(P, i, d, a, b, implementation , approach) \
for i in N_vals]

plt.loglog(h_vals , error , label = ’$\sqrt{\int_\Omega(u_h -f)^{2}dx}$’)

plt.title(’$L^2$ -error given space $\Omega=[{},{}]^{}$ for $P={}$’
.format(a, b, d, P))

plt.xlabel(’h’)
plt.ylabel(’error ’)
plt.legend(loc = ’upper left’)

# Measuring the computation time of each implementation

P_min = 0
P_max = 2

N = 20

d = 2

a = 0
b = 1

num = 25

count = 5

N_vals = []

app1 = ’looping ’
app2 = ’matvec ’

method = np.array([[’dune(fct , uh, phi_Vals , app1)’, \
’from __main__ import dune , fct , uh, phi_Vals , app1’], \

[’tensor_product(fct , uh , psi_Vals , d, app1)’, \
’from __main__ import tensor_product , fct , uh , \

psi_Vals , d, app1’],
[’sum_factorization(fct , uh, psi_Vals , d, app1)’, \
’from __main__ import sum_factorization , fct , uh, \

psi_Vals , d, app1’], \
[’dune(fct , uh, phi_Vals , app2)’, \
’from __main__ import dune , fct , uh, phi_Vals , app2’], \

[’tensor_product(fct , uh , psi_Vals , d, app2)’, \
’from __main__ import tensor_product , fct , uh , \

psi_Vals , d, app2’], \
[’sum_factorization(fct , uh, psi_Vals , d, app2)’, \
’from __main__ import sum_factorization , fct , uh, \

psi_Vals , d, app2’]])

dune_looping_time = []
tp_looping_time = []
sf_looping_time = []

dune_matvec_time = []
tp_matvec_time = []
sf_matvec_time = []

37



for i in range(P_min , P_max + 1):

dune_looping_time_k = []
tp_looping_time_k = []
sf_looping_time_k = []

dune_matvec_time_k = []
tp_matvec_time_k = []
sf_matvec_time_k = []

N_vals.append(i)

fct , uh, f, gridView = spaces(i, N, d, a, b)

phi_Vals = basisfunctions(i, d)

psi_Vals = basisfunctions_1d(i)

for k in range(count):

dune_looping_time_k.append(timeit.timeit(method[0, 0], method[0, 1], \
number = num) / num)

tp_looping_time_k.append(timeit.timeit(method[1, 0], method[1, 1], \
number = num) / num)

sf_looping_time_k.append(timeit.timeit(method[2, 0], method[2, 1], \
number = num) / num)

dune_matvec_time_k.append(timeit.timeit(method[3, 0], method[3, 1], \
number = num) / num)

tp_matvec_time_k.append(timeit.timeit(method[4, 0], method[4, 1], \
number = num) / num)

sf_matvec_time_k.append(timeit.timeit(method[5, 0], method[5, 1], \
number = num) / num)

dune_looping_time.append(np.mean(dune_looping_time_k))
tp_looping_time.append(np.mean(tp_looping_time_k))
sf_looping_time.append(np.mean(sf_looping_time_k))

dune_matvec_time.append(np.mean(dune_matvec_time_k))
tp_matvec_time.append(np.mean(tp_matvec_time_k))
sf_matvec_time.append(np.mean(sf_matvec_time_k))

print(i)

def time_plt ():

plt.plot(N_vals , tp_looping_time , label = ’Looping Full tensor product ’)
plt.plot(N_vals , dune_looping_time , label = ’Looping Dune implementation ’)
plt.plot(N_vals , sf_looping_time , label = ’Looping Sum -factorization ’)

plt.plot(N_vals , tp_matvec_time , label = ’Matvec Full tensor product ’)
plt.plot(N_vals , sf_matvec_time , label = ’Matvec Sum -factorization ’)
plt.plot(N_vals , dune_matvec_time , label = ’Matvec Dune implementation ’)

plt.title(’Computation time , N={}, d={}’.format(N, d))
plt.xlabel(’P’)
plt.ylabel(’Time’)
plt.legend(loc = ’upper left’)
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