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Abstract

The two-Higgs-doublet model (2HDM) is an extension to the Standard Model which adds
a second Higgs doublet. This extension provides freedom within the model, in comparison
to the Standard Model, which makes it possible to study strong electroweak phase tran-
sitions. These can provide an explanation for the matter-antimatter asymmetry through
the Sakharov conditions, three conditions that leads to creating this asymmetry in the
early universe. Due to this, we are looking at phase transitions in the 2HDM extension
to the Standard Model. This is done by using an effective field theory, dimensional re-
duction, that allows to study thermal effects in the model. Using this, a search is done
which finds strong phase transitions for certain parameters. These results are compared to
another method that has been previously used without finding a good similarity between
the results for the different methods.

Populärvetenskaplig Beskrivning

Efter upptäckten av Higgspartikeln vid CERN 2012 har alla partiklar i standardmodellen
för partikelfysik upptäckts. En intressant fr̊ageställning är d̊a för vilka processor inom
fysiken som standardmodellen är bristfällig och inte ger tillfredsställande svar. Fysik som
försöker utvidga partikelfysiken till mer än standardmodellen i hoppet om att kunna ge
svar p̊a dessa fr̊agor kallas fysik bortom standardmodellen. Ett exempel p̊a en s̊adan typ
av fysik är försöket till en förklaring p̊a varför allt kring oss är materia medan antimateria
är s̊a otroligt sällsynt att det tog fysiker till 1900-talet att upptäcka det. Det här projektet
undersöker en utvidgning av standardmodellen och om den har egenskaper som möjliggör
en förklaring p̊a detta fenomen kring materia och antimateria.

Fysikern Andrei Sakharov ger en del av förklaringen till bristen p̊a symmetri mellan
materia och antimateria. Han lade fram tre krav som leder till processer i det tidiga
universum som skapar denna asymmetri. Dessa krav är relaterade till partiklars egenskaper
och flera av dem är inte möjliga att uppfylla inom standardmodellen. Detta motiverar att
undersöka en utvidgning av standardmodellen för att möjliggöra den frihet, inom den
utvidgade modellen, som behövs för att kunna möta dessa krav. Det krav som fokuseras
p̊a specifikt i detta projekt är att det tidiga universum inte ska vara i termisk jämvikt.
Denna jämvikt r̊ader i ett system när det inte sker n̊agon transport av värme inom detta
system vilket även gör att inga temperaturskillnader kan förekomma inom systemet.

Utvidgningen av standardmodellen som används i det här projektet är den s̊a kallade
tv̊ahiggsdubblet-modellen (2HDM) som, likt namnet antyder, har tv̊a Higgs dubbletter till
skillnad fr̊an standardmodellen som enbart har en dubblett. Detta är av vikt eftersom den
termiska jämvikten kan brytas av fasöverg̊angar i Higgsmekanismen i det tidiga univer-
sumet. Dessa sker när universumet g̊ar fr̊an att ha en elektrosvag symmetri till att inte ha
denna symmetri, symmetrin bryts. Detta symmetribrott är vad som ger massa till partik-
lar och kan även göra att det tidiga universum inte var i termisk jämvikt om fasöverg̊angen
var stark. Styrkan p̊a fasöverg̊angen beror p̊a hur stor skillnad i energi det är fr̊an det
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symmetriska tillst̊andet till den brutna symmetrin. I standardmodellen är förändringen
inte stor nog för att bryta den termiska jämvikten medan i 2HDM är det möjligt för den
att vara stor nog för att bryta den termiska jämvikten.

Det här projektet undersöker fasöverg̊angar inom 2HDM och om de är starka eller ej.
Undersökningen av fasöverg̊angar sker genom en metod, dimensionell reducering, vilket
jämförs med andra metoder för att finna dessa fasöverg̊angar. Eftersom det är starka
fasöverg̊angar som är intressanta för fr̊agan om materia och antimateria är det dessa
fasöverg̊angar som fokus läggs p̊a. Projektet finner starka fasöverg̊angar för en del parame-
trar i 2HDM och jämför dessa resultat med andra metoder för att studera fasöverg̊angar.
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1 Introduction

An unanswered question in the Standard Model (SM) is the cause of the matter-antimatter
asymmetry that we observe today [1]. The process that would have created this asymmetry
in the early universe is called baryogenesis, which could have been caused by the breaking
of the electroweak symmetry [2]. This would have manifested as a type of phase transi-
tion (PT), more specifically an electroweak phase transition (EWPT). This PT occurred
when the universe expanded and therefore cooled which resulted in a non-zero vacuum
expectation value for the Higgs field [3].

While it is known that a PT can cause baryogenesis, the matter-antimatter asymmetry
is still unexplained in the SM as all Sakharov conditions are not met. There are three
conditions that must be met in order for the asymmetry to be explained by baryogenesis
in the early universe. One of the conditions, that is not met in the SM, is the requirement
that the early universe needs to not be in thermal equilibrium. This would be accomplished
if the EWPT in the early universe was strong and first-order, which it is not in the SM but
could be in extensions of it. Another condition is the presence of both C and CP violation
in the early universe. While there is CP violation in the SM it is not strong enough to
fulfill the requirement for the condition. The SM does however meet the final Sakharov
condition, the violation of baryon number [2].

The Sakharov conditions provide motivation for a model with an additional Higgs
doublet, the two Higgs-doublet model (2HDM), as in the 2HDM a strong first-order PT is
possible [4]. The first introduction of the 2HDM, in Ref.[5], showed that this extension of
the SM gives an additional source of CP violation. This means that all Sakharov conditions
may be fulfilled in a 2HDM, which makes a model with baryogenesis possible in the 2HDM.
This project will however only focus on the condition of having a strong EWPT.

In this paper the PT in the 2HDM will be investigated using a technique known as
dimensional reduction [6]. This technique uses an effective theory that describes the tem-
perature dependent properties of the theory well, given that the temperature is sufficiently
high. The dimensional reduction is performed using DRalgo [7], a package developed for
this purpose. While the PTs in the 2HDM have been looked at previously those searches
tend to use other methods [8][9]. Therefore, it is of interest to examine how this method
performs in comparison to other methods and in what way the results differs.

The paper goes through the procedure used to find PTs in the 2HDM as well as the
background necessary regarding the 2HDM and PTs. In section 2 the general theory be-
hind the 2HDM and PTs is presented. After that the specific parameters used to define the
model are described in section 3 as well as how to convert between different sets of param-
eters. With this general information about the model, section 4 describes the techniques
used to compute PTs. This section also explains DRalgo [7] and CosmoTransition [10], two
packages which implement the algorithms necessary to calculate PTs. Using the numerical
methods, section 5 goes through the different scenarios that were used in the search for
PTs and what was found. It also analyzes the impact of internal parameters, i.e. order and
matching scale, on the result of the model. Using these results, in section 6, conclusions
are drawn about the results and methods used.
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2 Background

The 2HDM adds an additional doublet to the Standard Model. In this section the back-
ground for it is introduced. Specifically, in section 2.1 the basics of the model in two
different bases is presented and the notation is introduced. In addition to the theory of
the model, the constraints needed to make the model unitary and stable are presented in
subsection 2.2. Following that, section 2.3 introduces the basics of phase transitions in
particle physics as well as concepts specific to phase transitions such as the strength and
order of a phase transition. In section 2.4 the general method used for calculating PTs, as
well as the justification behind it, is presented.

2.1 The Higgs Bases

This section contains general information about the 2HDM following the conventions
in [11], a more comprehensive overview is available in [12]. In the generic basis the Higgs
doublets in the 2HDM are written as

Φ1 =

(
ϕ+
1

(v1 + ρ1 + iη1)/
√
2

)
,Φ2 =

(
ϕ+
2

(v2 + ρ2 + iη2)/
√
2

)
. (1)

From the 8 fields in the doublets, three of them are the would be Goldstone bosons [13].
These are in turn absorbed into the W± and Z bosons giving them mass. The other 5
fields combine to form five Higgs particles, meaning that the Φ1 and Φ2 doublets contain
five Higgs particles.

In a CP-conserving theory these particles are the CP-even h and H, the CP-odd A and
the charged H± . The CP-even particles are differentiated by using a convention where

mh ≤ mH , (2)

and they are related to the ρ1 and ρ2 fields defined above by(
H
h

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
ρ1
ρ2

)
, (3)

where angle α is the mixing angle.
The Higgs potential is as general as possible if it contains all possible quadratic and

quartic couplings. Odd order terms cannot be included as it would break the symmetry
present and higher order even terms are excluded to make the theory renormalizable.
Writing the Higgs potential in the generic basis, where Φ1 and Φ2 are the Higgs doublets
above, it is

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.) +

1

2
λ1(Φ

†
1Φ1)

2 (4)

+
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
1

2
λ5(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]
,
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where h.c. refers to the hermitian conjugate, m2
ij are the quadratic couplings and λi are

the quartic couplings. It is possible for the couplings m2
12, λ5, λ6 and λ7 to be complex

while the other couplings are strictly real.
The 2HDM is Z2 symmetric if Eq.4 is invariant under the transformation

Φ1 −→ +Φ1,Φ2 −→ −Φ2. (5)

Φ is now no longer generic but rather the specific basis for which Eq.5 holds, which leads
to the condition that m2

12 = λ6 = λ7 = 0. The symmetry has the effect that no flavour-
changing neutral currents (FCNC) are allowed in the theory [14]. The Z2 symmetry is said
to be softly broken if m12 ̸= 0 while λ6 = λ7 = 0 . The argument for the softly broken
symmetry is that the FCNC will be suppressed as a result of it, in order to satisfy the
experimental constraints from FCNC.

The vacuum expectation values (VEVs), vi, of the doublets in the generic basis are
defined to be

⟨Φi⟩ =
vi√
2

(
0
1

)
, (i = 1, 2), (6)

where v is the magnitude
v2 = v21 + v22. (7)

It follows that v has the same magnitude as the VEV from the Standard Model such that
the mass of the W± and Z boson are the same as in the SM. From the VEVs an angle β
can be defined as

tan(β) =
v2
v1
. (8)

Going forward an abbreviated notation for the trigonometric functions will be used where

tβ = tan(β), cβ = cos(β), sβ = sin(β). (9)

Using the angle β one can define the Higgs basis as the doublets resulting from a
rotation of Φ by the angle β. With the VEVs of the Higgs basis having the property

⟨H1⟩ =
v√
2

(
0
1

)
, ⟨H2⟩ = 0, (10)

where Hi are the Higgs doublets in the Higgs basis and v is the VEV from the SM. As
these Higgs doublets are the result of a rotation by β they can be written as(

H1

H2

)
=

(
cβ sβ
−sβ cβ

)(
Φ1

Φ2

)
. (11)

The VEV, in Eq.10, makes the Higgs basis an interesting choice of basis as H1 will be
similar to the SM doublet in which case H2 can be interpreted as an extension to the SM.

6



The Higgs potential written in the Higgs basis is

V (H1, H2) = Y1H
†
1H1 + Y2H

†
2H2 + (Y3H

†
1H2 + h.c.) +

1

2
Z1(H

†
1H1)

2 (12)

+
1

2
Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+

[
1

2
Z5(H

†
1H2)

2 + Z6(H
†
1H1)(H

†
1H2) + Z7(H

†
2H2)(H

†
1H2) + h.c.

]
.

The quadratic couplings, Yi, and quartic couplings, Zi, in the Higgs basis can be calcu-
lated from the couplings in the generic basis, mij and λi. This entails that there is an
transformation between the Higgs basis couplings and the generic basis couplings [15], the
formulas for doing this transformation are collected in appendix A. Using the potential in
the Higgs basis, the mass matrix can be calculated which results in the following masses

m2
H± = Y2 +

v2

2
Z3, (13)

m2
A = Y2 +

v2

2
(Z3 + Z4 − Z5), (14)

m2
H/h =

1

2

(
m2

A + (Z1 + Z5)v
2 ±

√
[m2

A + (Z5 − Z1)v2]2 + 4Z2
6v

4

)
. (15)

These formulas assumes a CP-conserving model with real couplings.
While the Z2-symmetric theory has no CP breaking the softly-broken theory can have

it. However this paper will only concern itself with the case when the couplings in Eq.12
are real which means that CP is not broken as a result of the 2HDM. While taking the
couplings as real parameters is sufficient for conserving CP there are weaker conditions
which will also conserve CP [9].

2.2 Theoretical Constraints on the 2HDM

The theoretical constraints of unitarity and stability are imposed on the theory, therefore
the conditions for both are needed. A more detailed discussion of the unitary constraints
can be found in [16] and of the stability constraints in [17].

Within a unitary theory the scattering matrices preserve inner products which is im-
portant as the magnitude of inner products are interpreted as probabilities. Finding the
conditions for the 2HDM to be unitary involves four of these scattering matrices. These
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matrices are [16]

Λ21 =

 λ1 λ5

√
2λ6

λ∗
5 λ2

√
2λ∗

7√
2λ∗

6

√
2λ7 λ3 + λ4

 , (16)

Λ20 = λ3 − λ4, (17)

Λ01 =


λ1 λ4 λ6 λ∗

6

λ4 λ2 λ7 λ∗
7

λ∗
6 λ∗

7 λ3 λ∗
5

λ6 λ7 λ5 λ3

 , (18)

Λ00 =


3λ1 2λ3 + λ4 3λ6 3λ∗

6

2λ3 + λ4 3λ2 3λ7 3λ∗
7

3λ∗
6 3λ∗

7 λ3 + 2λ4 3λ∗
5

3λ6 3λ7 3λ5 λ3 + 2λ4

 . (19)

Labeling the eigenvalues of the scattering matrices as Λi then the unitarity constraint, on
tree-level, is fulfilled if all eigenvalues follow [16]

Λi < 8π. (20)

Having a Higgs potential that is bounded from below is referred to as stability which
makes it possible for the VEV to be a global minimum. To ensure stability the properties
of another matrix is investigated. For a model with softly broken Z2 symmetry this matrix
is [17]

Λ =
1

2


1
2
(Z1 + Z2) + Z3 −Z6 − Z7 0 −1

2
(Z1 − Z2)

Z6 + Z7 −Z4 − Z5 0 −Z6 + Z7

0 0 −Z4 + Z5 0
1
2
(Z1 − Z2) −Z6 + Z7 0 −1

2
(Z1 + Z2) + Z3

 . (21)

The stability condition is fulfilled if all the following conditions are met [17]:

1. all the eigenvalues of Λ are real,

2. the largest eigenvalue of Λ is positive,

3. there are four linearly independent eigenvectors of Λ each corresponding to an eigen-
value,

4. the eigenvector corresponding to the largest eigenvector is timelike while the other
eigenvectors are spacelike.
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TC

∆v

T

v

Illustration of the order of a PT

Continous
First-Order

Figure 1: Two phase transitions of different order that showcase the difference between
first-order PTs and other PTs. The red graph is the first-order change in VEV, v, while
the blue is the non first-order change in VEV as a function of temperature, T .

2.3 Phase Transition

The critical temperature, TC , of an EWPT is defined as the temperature where there are
two minima in the Higgs potential with equal value. In order for this phase transition to
be the cause of baryogenesis it needs to be a strong first-order phase transition [2]. An
EWPT being first-order means that the change in VEV occurs abruptly at TC , as illustrated
in fig. 1. Contrary to first-order phase transitions, the second-order phase transitions
occur continuously over a range of temperatures. The first-order phase transition is also
strong if the change in vacuum expectation value is large in comparison to the critical
temperature [3]. More quantitatively, the ratio ξ = ∆v

TC
is used and the phase transition is

considered strong if the condition

ξ =
∆v

TC

≥ 1, (22)

holds.
The breaking of the electroweak symmetry occurs through a PT. This means that at

high temperatures the Higgs potential is symmetric around the origin and the origin is
a global minimum. This high temperature potential is illustrated in the one-dimensional
case by the T > TC curve in fig. 2. Also illustrated is the potential when the temperature
is lowered and the potential stops having a single minimum and gains a VEV. At the
critical temperature two or more minima are equal in value by the definition of the critical
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ϕ

V (ϕ)

Progression of a Phase Transition

T > TC

T = TC

T < Tc

Figure 2: Illustration of the potential for different temperature relevant to a PT in the one
dimensional case.

temperature which leads to the potential T = TC in the figure. When the temperature is
sufficiently low this results in a ”Mexican hat potential” which is still symmetric around
the origin but there are now multiple minima, this is illustrated in T < TC in fig. 2.

Allowing for quantum tunneling a system can go from one state to another even if
there is not sufficient energy to overcome the potential barrier between the states. This
allows for situations where particles go from one minima to another minima in the Higgs
potential. This means that when several ”phases” are present, which will occur around
TC but not necessarily only at TC , bubbles can form. Bubbles are regions of space where
the ”new” phase is present in a stable manner. An example of this would be in the
early universe when the Higgs potential gained a VEV. When the universe expanded and
therefore cooled bubbles of the new metastable phase formed. These bubbles can then
collapse, expand and even collide with one another depending on the conditions. As the
temperature was further lowered in the universe, the bubbles become more likely to expand
until, finally, the universe is encompassed by the new phase.

2.4 Dimensional Reduction

The dimensional reduction that is used by programs such as DRalgo includes an effective
field theory that takes into account the thermal aspects of the full field theory. An effective
field theory entails going from a general four-dimensional Lagrangian with all available
fields to a less general three dimensional Lagrangian with fewer fields. The dimension that
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is removed is the time-dimension which can be done since the temperature is added as a
degree of freedom. If a system is in thermal equilibrium there is only one temperature
T in the system at a time t. Much of the information about the time is then contained
in the temperature which allows for the removal of the time dimension in the reduced
theory. This new reduced Lagrangian does however fulfill all symmetries present at higher
temperatures making it a good approximation there [6]. Using this effective field theory
several parts of the Lagrangian can be integrated out such that the new Lagrangian is only
3D. The fields that can be integrated out are the fields that have a higher energy scale
than the scale of the problem that is being examined. If, at a temperature scale T , the
energy of some field is far higher than that scale then the field can be integrated out from
the Lagrangian. This new theory, that has parts integrated out, is in turn simpler and
therefore it is easier to calculate temperature dependent effects such as phase transitions
in that theory. From this one can match the results of the dimensionally reduced theory to
the original 4D theory if the temperature is sufficiently large [18]. The temperature scale
that this matching is done at is denoted as the matching scale, µ.

The steps involved in dimensional reduction can be performed differently dependent on
the order of the theory. In DRalgo there is the leading order (LO) dimensional reduction
and the next-to-leading order (NLO) dimensional reduction. The potential of the model
can also be taken as LO or NLO which corresponds to a potential including only tree-
level in the LO case contributions or also including one-loop contributions in the NLO
case [7]. This is different to the order of the dimensional reduction which impacts how
the dimensional reduction itself is performed. The NLO dimensional reduction will have
certain higher-order corrections taken into account in comparison to the LO dimensional
reduction. An example of this is the calculation of the masses in the 4D theory which is
required for the matching. For this the LO case only require these to be calculated using
Feynman diagrams at the 1-loop level while the NLO case requires also the 2-loop level
diagrams.

The dimensional reduction follows a procedure that will be covered in a condensed
manner here following Ref.[18]. Firstly, the 4D temperature dependent theory is set-up
and evolved to a matching scale of

µ = CπT, (23)

where C is a dimensionless constant that should be around 1. However a small change in
C should still keep the theory the same if πT is large enough as is required by the theory.
πT is required to be larger than the masses of the bosons for dimensional reduction to be
used. At these temperature scales the theories are matched meaning that calculations can
be performed in the 4D to get information about the temperature dependent properties of
the 3D theory. These calculations can be performed at one-loop level, in the LO case, or
at two-loop level, in the NLO case. This will involve integrating over the contributions of
certain fields which makes those fields disappear. The fields integrated over are the modes
of the fields for which the energy scale is larger than the temperature scale. These high
energy modes corresponds to the hard scale energy regime and integrating these out leads
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to a theory in the soft energy regime.
The theory in the soft energy regime can be further reduced to the ultrasoft regime. To

further reduce the theory to the ultrasoft scale one can integrate out more fields. At the
soft scale the theory is 3D meaning that the time dimension is removed from the theory
due to thermal effects. To compensate for this there are new temporal fields, these come
about when the time dimension is removed, that represent the impact of time. These fields
are said to be of energy scale E ∼ gT , where g is the gauge coupling. In the ultrasoft scale
all fields in the energy regime E ∼ gT are integrated out including the temporal fields.
This creates a theory that is as reduced as possible and using the potential of it PTs can
be found that should match the PTs of the initial 4D theory.

3 Parametrizations

In this section the parametrization of the 2HDM is presented. In section 3.1 the hybrid
basis is introduced and the parameters used to define the model. Furthermore in section
3.2 it is explained how to convert from a parametrization containing the masses of the
particles in 2HDM to the hybrid basis.

3.1 The Hybrid Basis

A parametrization of the 2HDM gives a set of variables such that the couplings of the Higgs
potential, m and λ in Eq.4 , are uniquely determined. In a model with a softly broken Z2

symmetry, where λ6 = λ7 = 0, there are 7 required parameters, if all are real, in order to
uniquely determine the couplings. This is due to the fact that there are 8 couplings and
one angle β that need to be determined, assuming v is the same value as the VEV in the
Standard Model. This number is then reduced to 7 through the two tadpole equations.
These are defined by the criteria

∂V (Φ1,Φ2)

∂Φi

∣∣∣∣
Φi=<Φi>

= 0, (24)

which follows from the minimization criteria at the vacuum expectation values.
The hybrid basis, introduced in [9], uses the following parameters

mh,mH , cβ−α, tβ, Z4, Z5, Z7, (25)

as a parametrization. This basis is useful as mh can be taken as the mass of the Standard
Model Higgs particle to match experiment. In addition, the coupling of H to the W and Z
bosons depends on cβ−α [9]. This means that taking small values for cβ−α leads to a weak
coupling to the non-SM Higgs. The values of the Z-couplings can vary but need to be kept
small (|Zi| ≲ 4π) in order for the model to be able to be unitary and stable at tree-level.
The Hybrid basis thus provides parameters which has some useful properties to construct
a 2HDM model.
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The quartic couplings of the Higgs basis can be obtained from the Hybrid parametriza-
tion as [11]

Z1 =
m2

h

v2
sβ−α, (26)

Z6 =
m2

h −m2
H

v2
cβ−αsβ−α., (27)

Z2 = Z1 + 2(Z6 + Z7) cot(2β), (28)

Z3 = Z1 − Z4 − Z5 + 2Z6 cot(2β)− (Z6 − Z7)t2β. (29)

The tadpole equations give Y1 and Y3 as

Y1 = −1

2
Z1v

2, (30)

Y3 = −1

2
Z6v

2, (31)

which follows from the minimization condition in the Higgs basis, Eq.24 but expressed in
the Higgs basis. The relation of the mass of A, the CP-odd particle, from Eqs.14-15 results
in {

m2
A = Y2 +

1
2
(Z3 + Z4 − Z5)v

2

m2
A + Z5v

2 = m2
Hs

2
β−α +m2

hc
2
β−α

(32)

=⇒ Y2 = m2
Hs

2
β−α +m2

hc
2
β−α − 1

2
(Z3 + Z4 + Z5)v

2, (33)

which allows for the calculation of Y2. Thus from Eqs.26-33 all the quadratic and quartic
couplings in the Higgs basis can be calculated from the hybrid basis.

The quadratic, m2
ij, and quartic couplings, λi, in the generic basis are also of interest.

These can be obtained, as discussed earlier, from the couplings in the Higgs basis. In the
case where the couplings in the Higgs basis are chosen to be real and with a softly broken
Z2 symmetry the formulas for these conversions are the ones presented in appendix A.

3.2 The Mass Basis

At times, working with parametrizations other than the hybrid basis is useful especially
for comparisons to previous results. One such other parametrization is the one which uses
the masses, a mass basis. This basis uses the parameters

cβ−α, tβ,mh,mH ,mA,mH± ,m2
12.

It is possible to convert from this set of parameters to the hybrid basis. This is done by
converting mA,mH± ,m2

12 to Z4, Z5, Z7.
The procedure of the conversion from the mass basis starts with calculating Z5. From

Eq.15 the Z5 coupling in the hybrid basis can be calculated as

Z5v
2 = m2

Hs
2
β−α +m2

hc
2
β−α −m2

A. (34)
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In addition, from the mass of the charged Higgs particle the Z4 coupling can be calculated.
It is given by the difference of mass between H± and mA , from Eqs.13-14, resulting in

Z4 = Z5 +
2(m2

A −m2
H±)

v2
. (35)

From m2
12 and all of the known particle masses the last Z coupling in the hybrid basis can

be calculated. This is done by using the relation [11]

Z7 = Z6 +
2 cot(2β)

v2
(m2

Hs
2
β−α +m2

hc
2
β−α − m2

12

cβsβ
), (36)

where Z6 is obtained from Eq.27. Using Eqs.34-36 the conversion from the parameters in
the mass basis to the parameters in the hybrid basis can be done.

4 Numerical methods

To simulate phase transitions the packages CosmoTransitions [10] and DRalgo [7] are used.
DRalgo uses GroupMath [19] to be able to define a generic model for which the dimensional
reduction method can be used. Using DRalgo a 2HDM model is defined and then that
model is used by CosmoTransitions to find phase transitions. The export of the model from
DRalgo and applying this model in CosmoTransitions was accomplished using a package
written by Mårten Bertenstam [20].

Using the model defined by DRalgo, CosmoTransitions finds the phase transitions from
the potential of the model by varying the temperature. It accomplishes this by tracking
the minima of the potential over a range of temperatures. When there is the possibility
for a particle to go from being in the region of one minimum to the region of another, this
is called a bubble. CosmoTransitions investigates phase transitions by first finding a direct
path between two minima and then deforming that path to find the ideal path, the path
that extremizes the action. It uses this information to, given a potential with temperature
dependence, find if a phase transition occurs and if so what the critical temperature is [10].

The code written for this project uses the 7 parameters in the hybrid basis to create a
model defined from DRalgo using the export code. In order to do this the 7 parameters
from the hybrid basis need to be converted to the λ and m couplings. This is done by
using Eqs.26-33 to obtain all couplings in the Higgs basis. After this Eqs.38-45 are used to
convert to the generic basis which are the parameters required to define the DRalgo model
used for Cosmotransitions. After this the model is defined by the export code and used
by CosmoTransitions to find the potential PTs and critical temperatures. At this step ξ is
calculated and if there are multiple PTs the one with the highest ξ is used and the others
are discarded, transitions which are not identified as first-order by CosmoTransitions are
also discarded.

Using this set-up a parameter point is given to the code which then outputs a value of
ξ and TC . Building on this several parameter points can be passed through and the results
are stored in text files alongside the parameters themselves which allows for plotting the
results in different ways.
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Table 1: Parameter bounds or values for the parameter search and the distribution used. A
logarithmic distribution means that the logarithm of the distribution would be uniformly
distributed.

Parameter mh(GeV) mH(GeV) mA(GeV) mH±(GeV) m2
12 (GeV2) cβ−α tβ

Bounds 125 130...1000 65...1000 65...1000 0...5·105 -0.1...0.1 1...35
Distribution Fixed Uniform Uniform Uniform Log Uniform Log

5 Numerical results

A search varying the parametersmH ,mA,mH± ,m2
12, cβ−α and tβ is done. These parameters

are chosen to match a search done in [9]. The values used for the bounds as well as the
type of distribution used to vary the different quantities is presented in table 1. For most
parameters uniform distributions are used but when the parameter spans several orders of
magnitudes another type of distribution is used. This distribution is denoted ”log” and
is chosen such that the logarithm of the distribution is uniformly distributed. A search
through the parameter space is done by randomly selecting points within the bounds and in
accordance to the distribution laid out in table 1. This search is done for 100 000 randomly
chosen unitary and stable points.

Using this method a search through the parameter space is done for both the NLO and
LO models for randomly chosen points. These random points are the same for both the
LO and NLO case. The results of these are plotted in fig. 3a for the NLO case and fig. 3b
for the LO case. The points with phase transitions that are not classified as first order by
CosmoTransitions are discarded. In addition to this, the ones that are first-order but not
strong (ξ < 1) are plotted as grey points in the background.

The NLO search found several points with strong first-order phase transitions. This
is represented in fig. 3a as colored points were each point represents a PT and the color
represents ξ. From the figure it is clear that for larger values of mH there are PT however
they are not strong. There are also regions of the parameter space which seemingly lacks
any first-order PT. For example when mA or mH is sufficiently large there are regions of
white space in the plot which represents no found first-order PT even though the area was
searched. The largest amount of strong first-order PT occurred in the region

130 GeV ≲ mH ≲ 400 GeV , 65 GeV ≲ mA ≲ 500 GeV. (37)

This is different from the LO search, shown in fig. 3b in a similar manner as the NLO
plot, where the points with strong PT are more spread out than the NLO case. The LO
search also lacks the region of PT that are not strong but are first-order that the NLO case
has, this is aroundmH ≈ 800 GeV. However the maximum value of ξ found for both models
is quite similar, ξ ≈ 13. As mentioned, the LO model produces strong PTs in a larger
area than the NLO model which results in there being some regions where, in the NLO
model, no strong PTs were found but there are strong PTs in the LO case. Specifically for
mA ≳ 400 GeV, mH ≳ 300 GeV this feature is clear from the plot.
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(a) Next-to-leading order search

(b) Leading order search

Figure 3: A next-to-leading order(a) and leading order(b) search where several parameters
were varied randomly according to table 1 and points with a first-order PT were found. It
is the projection of this search onto the mHmA plane that is shown. The color represents
the strength of the PT and ”greyed-out” points are points where the PT is not strong but
is first-order.
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Table 2: Parameter bounds or values for the second parameter search. All distributions
used for random selection of parameters are uniform distributions.

mh(GeV) mH(GeV) mA(GeV) mH±(GeV) m2
12 (GeV2) α tβ

125 130...1000 65...1000 65...1000 0...5·105 −π
2
...π

2
1...35

Neither figure 3a nor figure 3b has a great similarity to the results in [8] which varies
similar parameters. A possible explanation to this is the way the sampling is done, the
distributions used could impact the resulting plots. Therefore a similar search is done but
this time using the parameters in table 2. These parameters are a more close match to
what was done in the previous paper. For the same reason all distributions are chosen to
be uniform.

Using this parameter set, the search is done at both LO and NLO, using the same set
of points for the LO search and the NLO search. This set contained 100 000 points that
are unitary and stable at tree-level. The same set was used for the LO and NLO to better
compare the results for between orders. Moreover, two different values for the C parameter
are chosen, the parameter that determines the matching scale in Eq.23. For the previous
searches C was kept at 1 as the matching scale was not of interest in those searches. As
previously done, the PTs that are not strong are represented by grey points and all points
in the plot are identified as first-order by CosmoTransitions.

The search done for the plot in figure 4a is done at NLO and C is kept at 1, the same
value as previous searches. There are similarities to figure 3a as the parameters varied
are very similar. The only differences are that α is being varied as opposed to previously
varying cβ−α and the distributions used. α is being varied more freely than cβ−α which
could explain some of the differences between the plots. Differences such as seeing more
PTs for large values of mH and mA (mH ,mA > 600) than what was previously there.
However, overall the change in parameters did not have a large impact on the result. The
region that contains strong PTs is still largely the same as previously, it is still confined to
the region defined by Eq.37.

Both the searches shown in fig. 3a and fig. 4a closely resemble the search done in [8],
which used a different method, in terms of how the sampling was done. However, the
results here are quite dissimilar to the previous search, which could be due to flaws in
either of the methods. It could be that the points of interest in [8] have phase transitions
that is outside the temperature range described by dimensional reduction.

Using the same set of points as the search in fig. 4a a search is done using C = 1/2.
This amounts to lowering the matching scale to see the impact of it. The resulting plot,
presented in fig. 4b, has a region of strong PTs that is less spread out than the C = 1 case
and seemingly has a smaller region with a large value of ξ (ξ ≳ 10). The C = 1/2 case also
does not have the same number of points in the region of PTs that are not strong as in the
C = 1 case, this region is a lot sparser in the C = 1/2 case. Doing this same search for the
C = 2 case the resulting time it took to generate the PTs using CosmoTransitions was far
greater than for the other cases of C. Therefore, this report is limited to the C = 1/2 and
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(a) Search using C = 1

(b) Search using C = 1/2

Figure 4: Random search done at NLO which uses uniform distributions, parameters given
in table 2. The search was done using two different values of C. The color of the points
indicate the strength of the PT and grey points represent a PT that is first-order but not
strong.
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Figure 5: Comparison done between the LO and NLO strength by showing the ratio
between the two as the color of the points. This was done at C = 1.

C = 1 cases.
The order of the model was investigated for the matching scale at C = 1. This was done

by repeating the search that was done for the results at NLO in fig. 4a but at LO. For each
point where both the NLO search and the LO search yielded a strong PT a comparison is
done, taking ξLO

ξNLO
as the comparison. The results are shown in fig. 5.

Figure 5 shows that the agreement between the LO and NLO search varies significantly
from point to point. In some points they differ by as much as a factor of 10 while other
points appear to match well between orders. All points that were chosen were strong
(meaning ξ > 1) at both LO and NLO which makes a factor of 10 a significant difference
between orders. This significant difference occurs for several points which showcases the
importance of order.

Another pattern that is found in this comparison is that there are far more points in
the NLO order search than in this plot. This is a result of the LO search not always being
able to find a strong PT were the NLO search can. The reverse can also occur were the
LO search finds a strong PT that is not present at higher order. All this showcases the
impact that order has on the results, meaning that searches should be performed at least
at NLO.

In order to more explicitly see the dependence on matching scale, plots were done that
show how ξ changes with C for specific points in parameter space. The points used are
presented in table 3 with a name for each specific scenario. For each parameter point the
model was defined using many different values of C and finding the strongest PT for each
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Table 3: The parameters of different scenarios. These scenarios are then investigated by
varying the matching scale.

Scenario mh(GeV) mH(GeV) cβ−α tβ Z4 Z5 Z7

Split 125 250 0.98 1.37 0.29 0.10 -0.26
Decrease 125 314 0.48 4.6 4.4 -2.0 -0.57

value. This means that it is only the highest value of ξ, for every value of C, that is present
in these graphs. This results in the plots that show the dependence on matching scale in
fig. 6. The value of the critical temperature for the found PT is also presented as the color
of the point, if a point does not have a PT the point is red.

For the split scenario in fig. 6a there is a clear dependence on the matching scale. It is
only for some values that the PT at ξ ≈ 6 is found while other times the only PT it is able
to find is at ξ ≈ 2. As only the PT with the highest value of ξ is used this means that a
slight variation in the matching scale could, at least for this point, have a large effect on
the results.

In contrast to fig. 6a, fig. 6b shows the decrease scenario with a more continuous decrease
in ξ until no PT is found. This shows a clear relationship between ξ and C where ξ is
smaller for larger values of C. However, TC decreases for larger values of C which means
that the decrease in ξ comes from changes in the VEVs. This, in turn, means that the
structure of the phases depend on the matching scale which means that the theory is likely
not valid in this case.

Both fig. 6a and 6b shows flaws in the dependence of the results on the matching scale.
This could be due to the critical temperature being low which means that the theory
behind dimensional reduction no longer holds.
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(a) Comparison for the split scenario

(b) Comparison for the decrease scenario

Figure 6: Plotting the strength of the phase transition, ξ against the matching scale
parameter,C, at next-to-leading order using the parameters specified by the scenario. The
color of the points represents the critical temperature.
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6 Conclusion

In summary, dimensional reduction was used to study the temperature dependence of the
effective potential for a CP-conserving 2HDM with a softly broken Z2 symmetry. Seven
parameters were used to uniquely determine the necessary couplings in the model. This
was then used to find PTs which in turn could be classified by strength and order. Using
this, searches were performed and the impact that internal parameters of the method have
on the results was investigated, specifically matching scale and order was examined.

Various searches were done in the parameter space in an attempt to find strong PTs
using different distributions and parameters that were varied. The varied parameters
were partially inspired by the set used in Ref.[8], where a similar search was done but
using a different method. However, the results do not match for the different methods
when comparing to the previous results. This leads to an examination of how the model
used holds up, which is done by comparing how results change with order or matching
scale. How much the results changed between next-to-leading order and leading order
varied significantly, some points differing by a factor of 10 while other points match well.
Similar results are found for the specific points where the impact of the matching scale was
examined, the strength of the PT was strongly affected by the change in matching scale.
This all showcases potential flaws in the method used.

The problem with the dependence of the strength on the matching scale could be due
to the low temperature of the phase transitions examined. Ideally, the strength, ξ, would
not depend on C in the ranges examined for the model to be valid. This could be an
indication of a breakdown of the validity of the model, with such low critical temperatures
the dimensional reduction method may not be applicable. An interesting investigation
would be to see how the results change if you include some type of limit on the PTs that
are looked at in order to avoid these issues. This could be done by ignoring PTs that
have a critical temperature below a certain threshold or other ways of ensuring that the
dimensional reduction performed is valid. Another way would be to check directly if the
underlying assumptions of the dimensional reduction holds. This would mean checking the
masses of the modes of the relevant fields and comparing these to the matching scale and
from this determine if it is possible to perform the dimensional reduction.
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A Appendix

The conversion from the Higgs basis couplings to the generic basis couplings comes about
as a result of the Higgs basis being a rotation of the generic basis. The specific formulas
are (formulas are from [15])

m2
11 = Y1c

2
β − Y2s

2
β + Y3s2β (38)

m2
22 = −Y1s

2
β + Y2c

2
β + Y3s2β (39)

m2
12 = −1

2
(Y1 − Y2)s2β + Y3c2β (40)

λ1 = Z1c
4
β + Z2s

4
β +

1

2
Z345s

2
2β − 2s2β[c

2
βZ6 + s2βZ7] (41)

λ2 = Z1s
4
β + Z2c

4
β +

1

2
Z345s

2
2β + 2s2β[s

2
βZ6 + c2βZ7] (42)

λ3 =
1

4
s22β[Z1 + Z2 − 2Z345] + Z3 + s2βc2β(Z6 − Z7) (43)

λ4 =
1

4
s22β[Z1 + Z2 − 2Z345] + Z4 + s2βc2β(Z6 − Z7) (44)

λ5 =
1

4
s22β[Z1 + Z2 − 2Z345] + Z5 + s2βc2β(Z6 − Z7) (45)

Where Z345 = Z3 + Z4 + Z5 is used as a simplifying piece of notation.
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