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Abstract

A numerical investigation of the unit cell approach has been done to reduce

the computational cost for CFD (Computational Fluid Dynamics) of plate heat

exchangers (PHE) at Alfa Laval. The reduced cost would enable LES (Large

Eddy Simulation) to be done which would give a more detailed and accurate

insight into the flow and heat transfer processes of the PHE. The unit cell which

is repeatable in all directions is created by cutting out a small domain consisting

of four contact points between the upper and lower plate of a full plate channel.

Simulations of the unit cell have been done using LES in the software Ansys Fluent

and compared with simulations of a whole plate done by Karlsson et al. [1]. The

method of going from CAD (Computer Aided Design) to a CFD simulation of

the unit cell has been developed and evaluated resulting in a recommendation

regarding the method. It was found that the unit cell was able to capture the

large-scale physics while the smaller scales were overpredicted. Taking this into

consideration the method seems promising but still has room for improvement.
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Popular Science Summary

The transport of heat from hot to cold mediums is called heat transfer. It can be used

for either heating or cooling machines, electronics food, etc. in industry. Examples are

the cooling of a car engine or recovering heat from a power plant turbine. In these

types of applications, it is practical to use fluids of high heat capacity as mediums

for transferring heat as this means they that they are to able carry more thermal

energy per degree Kelvin. An effective way to transfer heat between hot and cold

fluids is to use a plate heat exchanger (PHE). A PHE consists of multiple stacked

plates that forms separate channels for the fluids which exchange heat between the

thin plates. The corrugated geometry of the plates increases the surface area as well

as the turbulence in the flow which both increases the heat transfer. An increasingly

used tool in industry and in research to understand and visualize the complex flow as

well as heat transfer processes is Computational Fluid Dynamics (CFD). The method

uses computational power and numerics to solve these problems that are in most cases

too complex to do by hand using empirical relations. Since the entire flow and heat

transfer fields are solved in the simulated domain the post-processing possibilities are

endless enabling the user to visualize the physics in 3D space as well as over time.

However, doing a detailed simulation on a full plate of a heat exchanger would require

vast computational resources. In an effort to reduce the computational cost this thesis

investigates the idea of using a unit cell consisting of four contact points which could

reduce the computational domain by factors of 100 or even thousand. This would enable

the use of more accurate and detailed simulations within a reasonable time.
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1 Introduction

1.1 Alfa Laval

This master’s thesis is done in collaboration with Alfa Laval Technologies AB, a com-

pany with world leading competence within heat transfer, separation and fluid handling.

The company provides many products worldwide that offer a broad range of industrial

applications within mainly energy, environment, food and marine industry [2].

One of the products is the plate heat exchanger (PHE) which provides a compact and

efficient way of transferring heat between two fluids compared to the shell and tube

heat exchanger [3]. The fluids flow through separate channels formed by stacked thin

corrugated plates that are sealed with gaskets and heat is transferred through the plates.

With the ongoing energy crisis and the constant work towards a more environmentally

friendly society, new and improved technology within industry is needed. Improving

the thermal efficiency of the PHE is therefore of great importance. In order to optimize

heat transfer, computational fluid dynamics (CFD) is used to research and understand

the flow and heat transfer processes in the PHE channels at Alfa Laval. The flow in

these channels is complex and requires large computing power to simulate. An idea

is therefore to use small periodic elements known as unit cells in order to reduce the

computational cost which enables more detailed simulations to be done. A channel

then consists of hundreds or even thousands of these unit cells.

1.2 CFD

The tool Computational Fluid Dynamics or CFD used for R&D at Alfa Laval, is a

computer-based simulation method for solving fluid flow, heat transfer, and accompany-

ing processes such as chemical reactions [4]. The method is based on the Navier-Stokes

equations which are discretized and solved typically using RANS, LES, or DNS.

In Reynolds averaged Navier-Stokes (RANS), the instantaneous values in the Navier-

Stokes equation are split into mean and fluctuating quantities using Reynolds decom-

position. The mean flow is then solved while the fluctuating components describing the

turbulence are modeled. This essentially means that all turbulence is modeled. RANS

is the most widely used method in industry due to its robustness and low cost.

Another approach is Large Eddy Simulation (LES) where low-pass filtering is used

to solve the larger scale energy-containing eddies and model the more universal smaller

eddy scales. In doing so the turbulence and thus flow, heat transfer, and other involved
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processes are more accurately captured compared to RANS. However, this comes at a

greater computational cost since a time dimension is added where higher spatial and

temporal resolutions are needed.

Direct Numerical Simulation (DNS) means that all turbulent scales are resolved since

the Navier-Stokes equations are solved directly which gives the most accurate result

since no modeling is needed. This becomes very computationally expensive because

the majority of the computational resources are used to resolve the smallest turbulence

scales [5]. Moreover, according to ANSYS FLUENT the cost of DNS is proportional

to Re3 at high turbulent Reynolds numbers [6] or Re9/4 if the time scaling is also

considered. This limits the use of DNS to simple canonical flows.

1.3 Problem Description and Objectives

The objective of this master thesis is to reduce the computational cost of CFD sim-

ulations by investigating if a unit cell accurately describes the flow and heat transfer

inside a PHE channel. The cost of the unit cell is reduced by only simulating a fraction

of the full plate computational domain. Moreover, simulations of the unit cell will be

validated by quantitative and qualitative comparisons to simulations of mainly a whole

plate done by Karlsson et al. [1] and experimental data by Focke et al. [7].

The reduction in computational power could enable the use of LES instead of RANS

which would show a greater level of detail and could thus improve the research and

development of PHE:s. Advantages and disadvantages will also be compared to the

current method done on a full plate.

Lastly, a method from computer-aided design (CAD) to CFD simulation of a unit cell

shall be developed.

The objectives for this work are:

• Develop a method for doing LES of a unit cell inside of PHE:s.

• Evaluate the level of detail and accuracy of the simulation results by comparisons

with previous work of a full plate done by Karlsson et al. [1].

• Compare advantages and disadvantages of the unit cell method compared with

the full plate method.
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1.4 Benchmark

The full benchmark plate consists of 63 contact points with the dimensions 35 by 100

mm (see Figure 1). It should be noted that this geometry is very simplified making it

a theoretical case. For example, the inlet and outlet ports are simplified in the form of

rectangular ducts. Simulations were done in OpenFOAM using LES with resolutions

approaching that of DNS. Moreover, RANS was also simulated [1].

The extensive work and different methods used in this case as well as its simplicity

compared to a real plate channel is why it is chosen as a benchmark for evaluating this

work.

Figure 1: Full plate geometry with rectangular inlet and outlet ducts (reprinted with

permission from Karlsson et al. [1]).

1.5 Geometry

The unit cell is created by cutting out a small piece of the full plate domain in figure 1.

It should be a repeatable unit which means the smallest possible unit cell consists of four

contact points (see fig.2). The fact that the four contact point is the smallest possible

unit cell makes it particularly interesting to study in order to reduce the computational

cost and understand its implications on the results. This is also why this work is

based on the unit cell consisting of four contact points. Even though the unit cell is

a simplified version of the industrial PHE there are still some challenging geometrical

features to consider. To begin with, the corrugation angle is set to 60 degrees, and is

defined as the angle between the corrugation and the main flow direction (see fig.2).
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The interior domain representing the fluid channel is shown in figure 3. Since the unit

cell is repeatable, a periodic length is defined as the distance between two end faces

along one corrugation (see fig.4). The geometry of the plate corrugation itself is shown

in fig.5. The contact points of the unit cell are of course identical to the ones of the full

plate and thus shown in fig.1. Lastly, because of symmetry the upper and lower plates

of the cell will have the same dimensions which are all presented in Table 1.

Figure 2: Unit cell geometry seen from

bird eye-view where the two inlets are

shown in green and the main flow di-

rection is indicated by the black arrow.

One quarter of the contact points are

situated at each corner.

Figure 3: The upper plate has been

made transparent displaying the inte-

rior geometry of the unit cell.

Figure 4: Periodic length L and mean

channel height h.

Figure 5: Upper beam width b, corru-

gation pitch δ, outer and inner radius

Ro and RI respectively. See Table 1 for

values.
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Table 1: Dimensions of the unit cell from figures 1 4 and 5.

Dimension Value (mm)

Contact point height Hc = 0.1

Contact point length Lc = 2.2

Contact point width Wc = 1.25

Corrugation pitch δ = 7

Inner radius RI = 1.4

Length of the unit cell ∆a = 4.04

Mean channel height h = 1.95

Outer radius Ro = 1

Periodic length L = 8.08

Upper beam width b = 0.2

Corrugation angle θ = 60°

5



2 Theory

2.1 Plate Heat Exchanger

In a Gasketed Plate Heat Exchanger (GPHE) the plates are pressed together by an

external frame that is tightened with bolts. The channels formed between the plates

are sealed with elastomeric gaskets which also directs the fluids into alternate channels

[8]. Typically the fluids on each side of the plates flow in opposing directions i.e. in

counterflow to increase the heat transfer efficiency (see fig.6).

Figure 6: Full heat plate heat exchanger setup including the external frame. Coun-

terflow is illustrated between hot (red) and cold (blue) fluids (reprinted from Alfa

Laval [8]).

The standard plate pattern is the herringbone corrugation pattern. This pattern im-

proves the heat transfer by increasing the heat transfer area. Moreover, the plates

are stacked with the herringbone pattern in opposite directions which significantly in-

creases the turbulent mixing and thus the heat transfer even further. Except for the

herringbone patterned heat transfer area the plate also has round inlets or outlets at

the corners followed by a ”chocolate” patterned distribution which distributes the flow

more evenly over the heat transfer area (see fig.7). This also reduces dead spots where

the flow is slower allowing buildup of fouling or corrosion [9].

6



Figure 7: The chevron patterned plate with inlet, outlet and distribution area illustrated

(reprinted from Alfa Laval [9]).

2.2 Flow and Heat Transfer Numbers

In this subsection the relevant numbers for quantifying the flow and heat transfer of

this problem are presented. The Reynolds number Re is obtained using the following

formula:

Re =
ρUbDh

µ
(1)

where ρ is the fluid density (kg/m3) and µ is the fluid viscosity (Pa s). Ub mean fluid

bulk velocity (m/s) and the hydraulic diameter Dh (m) are defined as:

Ub =

∫
Ac

UdA

Ac

(2)

Dh =
4Ac

Pw

(3)

where U is the mean velocity (m/s), Ac (m
2) is the cross-sectional area of the flow and

Pw (m) is the wetted perimeter of the cross-sectional area. In order to stay consistent

with the benchmark, the hydraulic diameter is approximated as the total channel height:

Dh ≈ 2h (4)

where h is the mean channel height (see Figure 4). The Fanning friction factor ff and

the Darcy friction factor f are calculated as:

ff =
|∆p|Dh/ϕ

ρ∆aU2

2

(5)
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f = 4ff (6)

where ∆p (Pa) is the pressure drop between the inlet and outlet faces, ∆a (m) is the

length of the unit cell in the main flow direction (see Figure 2) and ϕ is the surface

enlargement factor defined as the ratio of the plate heat transfer area to its projected

area on the xy-plane.

The Prandtl number, defined as the ratio of the momentum- to thermal diffusivity, can

be obtained by the following formula:

Pr =
cpµ

κf

(7)

where cp (J/K) is the specific heat capacity at constant pressure and κf (W/m K) is

the thermal conductivity of the fluid.

By taking the ratio of the convective to the conductive heat transfer the Nusselts number

is obtained:

Nu =
α1Dh

κf

(8)

where α1 (W/m2 K) is the convective heat transfer coefficient inside the channel walls

and is obtained using the following formulas:

Q = kA∆TL (9)

1

k
=

1

α1

+
1

α2

+
δ

κw

(10)

=> α1 =
1

A∆TL

Q
− 1

α2
− δ

κw

(11)

where A is the total heat transfer surface area, k is the total heat transfer coefficient,

α2 - convective heat transfer coefficient outside the channel, δ is the plate thickness

and κw is the thermal conductivity of the plates. The logarithmic mean temperature

difference for the unit cell can be calculated as [10]:

∆TL =
(T∞ − Tin)− (T∞ − Tout)

ln( T∞−Tin

T∞−Tout
)

(12)

2.3 Governing Equations

The Navier-Stokes quations which governs the fluid flow and heat transfer processes for

incompressible newtonian fluids excluding any source terms are as follows:

∂ui

∂xi

= 0 (13)

ρ
∂ui

∂t
+ ρ

∂uiuj

∂xj

= − ∂p

∂xi

+
∂σij

∂xj

(14)
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ρ
∂e

∂t
+ ρ

∂uje

∂xj

= σij
∂ui

∂xj

+
∂hi

∂xi

(15)

where e (J/kg) is the internal energy and hi is the heat flux vector (W/m2):

e =

∫
cV (T )dT (16)

hi = κ∇T (17)

where κ is thermal conductivity (W/m K) and p (Pa) is the static pressure and σij is

the stress tensor of the fluid:

σij = 2µSij − λSkkδij (18)

where λ is the bulk viscosity (Pa s) using Stokes assumption [11]:

3λ+ 2µ = 0 (19)

yields

σij = 2µSij −
2

3
µSkkδij (20)

where Sij is the strain rate tensor:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(21)

Equation 13 is the continuity equation which ensures that the mass is conserved. The

second one is the momentum equation (eq.14) which establishes a momentum balance

in all directions. The last equation is the energy equation (eq.15) which describes the

energy transport of the flow [4].

2.4 Finite Volume Discretisation

The governing equations (eqs.13-15) stated in the previous subsection can be written

in terms of a general transport equation for a generic variable Φ

∂(ρΦ)

∂t
+∇ · (ρΦu) = ∇ · (Γ∇ Φ) + SΦ (22)

where Φ can be substituted by the transported variables (per unit volume) which are

mass (ρ), momentum (ρu) and internal energy (e) respectively and the source term SΦ

is equal to zero. The respective terms in equation 22 have the physical according to

the box below:

9



Rate of increase Convection of ϕ Rate of increase Rate of increase

of Φ of fluid + out of fluid = of Φ due to + of Φ due to

element element diffusion sources

Integration of eq.22 over a control volume (CV) and a small time interval (∆t) gives [4]:∫ t+∆t

t

∂

∂t

(∫
CV

ρΦdV

)
dt+

∫ t+∆t

t

∫
A

n·(ρΦu)dAdt =
∫ t+∆t

t

∫
A

n·(Γ∇ Φ)dAdt+

∫ t+∆t

t

∫
CV

SΦdV dt

(23)

where Gauss’s divergence theorem was used for the convection and diffusion terms:∫
CV

∇ · (a) =
∫
A

n · adA (24)

where a is an arbitrary vector and n is the normal vector to surface element dA. This

enables the convective and diffusive flux terms to be discretized as sums of fluxes over

the cell faces f with area ∆A. Performing the integrals over a cell with volume ∆V

while assuming that Φ and SΦ vary linearly within the cell yields:

∫ t+∆t

t

ρ
∂Φp

∂t
∆V dt =

∫ t+∆t

t

∑
f

(Γ∇Φ ∆A)f −
∑
f

(ρΦu∆A)f dt+

∫ t+∆t

t

SΦ∆V dt

(25)

where the values stored at the cell centers are denoted as Φp and the values at faces

f are discretized in section 2.5.2. Tthe partial time derrivative is discretized and time

integration is done in the following section 2.5.3 [11].

2.5 Discretization Schemes

2.5.1 Gradient Evaluation

In Fluent, gradients are used to calculate scalars at the cell faces and to evaluate

the convection and diffusion terms of the discretized Navier Stokes equations. For

this purpose, gradients are determined using the Least Squares Cell-Based Gradient

Evaluation. This method assumes that the solution varies linearly between cell centers

so that the change in value from cell c0 to its neighbor ci along direction vector δri

can be written as:

(∇Φ)c0 ·∆ri = (Φci − Φc0) (26)

this can be expressed in matrix format to relate multiple cell centers:

[J ] (∇Φ)c0 = ∆Φ (27)

10



where [J] is a function of the mesh geometry [6].

This linear system of equations is over-determined but can be solved by manipulating

[J] using the Gram-Schmidt process [12] which yeilds:

(
∂Φ

∂x

)
c0

=
nb∑
i=1

W x
i0 · (Φci − Φc0) (28)

(
∂Φ

∂y

)
c0

=
nb∑
i=1

W y
i0 · (Φci − Φc0) (29)

(
∂Φ

∂z

)
c0

=
nb∑
i=1

W z
i0 · (Φci − Φc0) (30)

where W b
a0 are weight factors and nb is the number of neighboring cells. The gradient

can then be written in the following compact form [6]:

∇Φ =

(
∂Φ

∂xi

)
c0

(31)

2.5.2 Spatial Discretization

The gradients of the diffusion terms in equation 25 can be discretized using the Least

Squares Cell-Based Gradient Evaluation directly (see subsection 2.5.1). However the

convective terms are evaluated at the cell faces and need to be interpolated with care

from the cell center values to ensure numerical stability and accuracy. To do this the

following schemes implemented in FLUENT are used:

First order upwind

Φf,UP = Φ (32)

Second order upwind

Φf,SOU = Φ+∇Φ · r⃗ (33)

Central differencing

Φf,CD =
1

2
(Φ0 + Φ1) +

1

2
(∇Φ0 · r⃗0 +∇Φ1 · r⃗1) (34)

Given large enough Peclet numbers Pe = ρu
Γδx

, the central differencing can result an in

unbounded solution with non-physical wiggles that can lead numerical instability. The

stability problem is resolved by using a implicit and explicit contribution to dampen

the central differencing scheme:

Φn
f = Φn+1

f,UP + (Φn
f,CD − Φn

f,UP ) (35)

11



An alternative way of solving the instability problem that is used for this work is

Bounded Central Differencing which is based on a normalized variable diagram (NVD)

(for definition see B. P. Leonard [13]) and the convection boundedness criterion (CBC).

Composed of central differencing, a central differencing and second order upwind blend,

and first order upwind, the composite scheme is kept stable by using the these three

schemes based on the NVD. Lastly, first order upwind is only used when the CBC is

violated i.e. when the solution would get unbounded [6].

2.5.3 Temporal Discretization

In order to capture the time dependency of the problem with LES or URANS (Unsteady

RANS), the temporal terms of the Navier Stokes equations need to be discretized.

First order accuracy can be obtained if backward differencing is used to discretize the

temporal term in equation 25:

∂Φ

∂t
≈ Φn+1 − Φn

∆t
= F (Φ) (36)

where F is a function including the spatial discretizations, n is the previous time step

and n+1 is the next time step to be evaluated.

Here implicit time integration is used which means that the spatial function of the

neighbouring cells F (Φ) is evaluated in the next time step n+1:

Φn+1 − Φn

∆t
= F (Φn+1) (37)

Now instead of backward differencing, Bounded Second-Order Implicit Time Integration

is used for higher accuracy:

∂Φ

∂t
≈ Φn+1/2 − Φn−1/2

∆t
= F (Φn+1) (38)

Where the intermediate temporal quantities Φn+1/2 and Φn−1/2 are determined in the

following way for a variable time step size:

Φn+1/2 = Φn + (τβ)n+1/2
(
Φn − Φn−1

)
(39)

Φn−1/2 = Φn−1 + (τβ)n−1/2
(
Φn−1 − Φn−2

)
(40)

Here β essentially serves as a weighting factor where the scheme becomes second-order

when equal to one and first-order Euler backward if it is equal to zero. The time step

size ratio τ is determined by [6]:

τn+
1
2 =

∆tn+1

(∆tn+1 +∆tn)
(41)

τn−
1
2 =

∆tn

(∆tn +∆tn−1)
(42)
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which is a ratio designed to take into account that time levels that have large time step

size between them should have more influence.
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2.6 Pressure-Velocity Coupling

For incompressible flow the ideal gas law can no longer be used to couple the Navier

Stoke’s equations which leads to the velocity and pressure field becoming independent.

This makes the need for a pressure-velocity coupling scheme since one equation is

missing to close the system. In this work the PISO algorithm (by Issa 1986 [14]) is used

to iteratively couple the pressure and velocity fields.

Figure 8: Schematics of the PISO algorithm when advancing from timestep n to n+1

(adapted from [4].
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The steps in the PISO algorithm according to figure 8 are as follows [4]:

• An initially guessed pressure field is made.

• The algorithm uses a momentum predictor that calculates an initial velocity field

from the momentum equations based on an initially guessed pressure field.

• Inserting the expressions for the pressure-corrected velocities into the continuity

equation yields an equation for the pressure correction (as a function of initial

velocities). This pressure correction is then used to correct the velocity and

pressure field of the momentum predictor.

• The predicted velocity field is now inserted into the pressure correction equation

to obtain a second pressure correction.

• The velocity and pressure fields from the predictor is then corrected a second time

using the second pressure correction.

• The core set of variables are updated and the remaining equations are solved.

• The same procedure is done until the converges criteria are met after which a new

time step is began.

2.7 RANS SST k-ω

The SST k-ω is a two equation eddy viscosity based RANS model. Like all RANS

models it solves the mean flow of the Navier-Stokes equations and models the fluctu-

ating components stored in the Reynolds stress tensor i.e turbulent contributions. The

modeling is done by solving two equations and by using the eddy viscosity assumption

(Boussinesq hypothesis). The two equations consist of one for the turbulent kinetic

energy k and one for the turbulence frequency ω = k
ϵ
. Additionally, the model is a

blend of the k− ω model near to handle adverse pressure gradients and k− ϵ to model

the free stream turbulence [4].

The RANS equation has the following form

∂(U)

∂t
+∇ · (U⊗U) = −1

ρ
∇P +∇ · (S−R) (43)

where U is the mean velocity vector and R is the Reynolds stress tensor defined as:

Rij =< u
′

iu
′

j > (44)

which is modeled using the Boussinesq hypothesis:

Rij = νt

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− 2

3
ρkδij (45)
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and the eddy viscosity is calculated as:

νt =
a1k

max(a1ω,SF2

(46)

where a1 is a constant, F2 is a blending function and S =
√
(2SijSij). The turbulent

frequency ω and turbulent kinetic energy are then calculated by a transport equation

each:

∂(ρk)

∂t
+∇ · (ρkU) = ∇ ·

[(
µ+

µt

σk

)
∇(k)

]
+Pk − β∗ρ̄ k ω (47)

∂(ρω)

∂t
+∇ · (ρωU) = ∇ ·

[(
µ+

µt

σω,1

)
∇(ω)

]
+ γ2

(
2ρSij · Sij −

2

3
ρω

∂Ui

∂xj

δij

)
− ...

β2ρω
2 + 2

ρ

σω,2ω

∂k

∂xk

∂ω

∂xk

(48)

where

Pk =

(
2µtSij · Sij −

2

3
ρ
∂Ui

∂xj

δij

)
where µ is the dynamic viscosity, µt is the eddie viscosity and Sij is the rate of defor-

mation tensor. The remaining constants are shown below [4]:

Table 2: Coefficients for the SST k − ω model

σk σω,1 σω,2 γ2 β2 β∗

1.0 2.0 1.17 0.44 0.083 0.09

2.8 LES Filtering

LES solves the largest scaled eddies by filtering away the smaller eddies (low-pass

filtering). The filtering can be done in the wave or physical space. In Ansys Fluent

space filtering (box filtering) is used in he following manner:

G
(
x,x

′
)
=

{
1/V, x

′ ∈ ν

0, x
′
otherwise

(49)

where V is the cell volume.

The filtered variables in the Navier Stokes equation can then be expressed as:

Φ (x) =

∫
D

Φ
(
x

′
)
G
(
x,x

′
)
dx

′
(50)

where D is the fluid domain [6].
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2.9 Filtered Navier-Stokes Equations

Applying the filter described in the previous section (subsection 2.8) to the incompress-

ible Navier-Stokes equations (see eqs.13-15) with overbar notation for filtered quantities

gives the corresponding equations for LES:

∂ui

∂xi

= 0 (51)

ρ
∂ui

∂t
+ ρ

∂uiuj

∂xj

= − ∂p

∂xi

+
∂σij

∂xj

− ∂τij
∂xj

(52)

ρ
∂e

∂t
+ ρ

∂uje

∂xj

= −p
∂ui

∂xi

+ σij
∂ui

∂xj

+
∂hi

∂xi

− ∂qi
∂xi

(53)

where the filtered stress tensor is:

σij ≡
[
µ

(
∂ui

∂xj

+
∂uj

∂xi

)]
− 2

3
µ
∂ui

∂xi

δij (54)

and the subgrid-scale stress tensor τij is defined as:

τij ≡ ρuiuj − ρuiuj (55)

The isotropic part of the subgrid-scale stress tensor τkk is added to the pressure term

(or neglected for incompressible flows) while the deviatoric part need to be modeled for

closure which will be shown in subsection 2.10. Moreover, the subgrid-scale heat flux

vector is defined as:

qj ≡ ρuie− ρuie (56)

and can be modeled in the following manner:

qij = − µt

Prt

∂e

∂xj

(57)

and Prt is the turbulent Prandtl number [6].

2.10 Wall-Adapting Local Eddy-Viscosity (WALE) Model

As discussed, the isotropic part of the subrid-scale stresses are not modeled, but added

to the filtered static pressure term in Equation 52. The deviatoric part of the subrid-

scale stress tensor which is unknown is modeled using the Smagorisky model:

τ ij −
1

3
τ kkδij = 2µt

(
Sij −

1

3
Skkδij

)
(58)

where τij is the subgrid stress tensor defined in eq.55. Then the last unknown subgrid-

scale turbulent viscosity is modeled using the WALE model [6]:
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µt = ρL2
s

(Sd
ijS

d
ij)

3/2

(SijSij)5/2 + (Sd
ijS

d
ij)

5/4
(59)

Ls = min
(
κd, CwV

1/3
)

(60)

Sd
ij =

1

2

(
g2
ij + g2

ji

)
− 1

3
δijg

2
kk, gij =

∂ui

∂xj

(61)

2.11 Wall Modeling

To treat the sharp gradients near the wall arising from the no-slip condition (zero tan-

gential velocity at the wall) fluent uses a wall model which relates the non-dimensional

filtered velocity u+ to a non-dimensional distance from the wall y+:

u+ =
u

uτ

(62)

y+ =
ρuτy

µ
(63)

where

uτ =

√
τw
ρ

(64)

and τw is the wall shear stress. For low y+ values when the centroid of the first cell

layer is close to the wall in the viscous sublayer a linear relationship is used:

u+ = y+ (65)

If the mesh is coarser near the wall so that the y+ values falls into the logarithmic

region the law of the wall is used:

u+ =
1

κ
ln

(
Ey+

)
(66)

where κ = 0.4187 is the von Kármán constant and E = 9.793. For y+ values in the

buffer region a blend of the two relationships is used [6].

2.12 Lumley Triangle

One way to keep track of the characteristics of the anisotropic turbulence is by plotting

the invariants of the normalized anisotropy tensor, which is based on the Reynolds

stress tensor, in a so called Lumley triangle. Depending on where inside this triangle the

invariants are located, different types of anisitropic turbulence can be determined and

invariants outside the triangle corresponds to non-realizable Reynolds stress tensors.

The invariants used are defined as:

6η2 = −2IIb = b2ii = bijbji (67)
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6ξ3 = 3IIIb = b3ii = bijbjkbki (68)

where the normalized anisotropy tensor:

bij ≡
< u

′
iu

′
j >

< u
′
ku

′
k >

− 1

3
δij =

aij
2k

(69)

where angle brackets < > denotes time average and k is the turbulent kinetic energy:

k =
< u

′

ku
′

k >

2
(70)

where the fluctuating velocity component is obtained as:

u
′
= u− < u > (71)

and aij is the anisotropic part of the Reynolds stress tensor [5]:

aij = Rij −
1

3
Rkkδij (72)

The different turbulent components inside the Lumley triangle are shown in figure 9.

Figure 9: The turbulent components inside the Lumley triangle (reprinted from Gao &

Liu [15]).
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2.13 Vorticity Equation

The rotating flow structures characterizing turbulence can be described using the vor-

ticity vector defined as the curl of the velocity in the Cartesian tensor format:

ω = ∇× V (73)

By taking the curl of the incompressible Navier-Stokes equations (see eq.14), the fol-

lowing vorticity equation is obtained:

Dω

Dt
= ν∇2ω + ω · ∇u (74)

The first source term corresponds to viscous diffusion of the vorticicty while the second

corresponds to vortex stretching which plays an essential role in the cascading of energy

between eddie scales [5]. Together with the material derivative on the left hand side

these terms describe the evolution or the transport of vorticity for incompressible flow.

2.14 Q-criterion

A way of visualizing vortical structures of CFD simulations is to plot the iso-surfaces

of the so-called Q-criterion defined as [16]:

Q =
1

2
(|| Ω2

ij || − || S2
ij ||) (75)

where Sij is the strain rate tensor previously defined (see eq.21) and Ωij is the vorticity

tensor:

Ωij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
(76)

Positive Q-values are obtained when the vorticity is dominating the over the strain thus

indicating where vortex cores are present.
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3 Modeling and Numerics

3.1 Boundary Conditions

Periodic mapping is done in two corrugation directions (see fig.10). The velocity at the

outlet is then mapped to the corresponding periodic inlet to obtain a periodic flow:

u(r⃗ + L⃗) = u(r⃗ + L⃗) = u(r⃗ + 2L⃗) = ... (77)

Due to viscous losses there will be a drop in pressure. The pressure is not a peri-

odic quantity but the pressure drop can be seen as periodic:

∆p = p(r⃗)− p(r⃗ + L⃗) = p(r⃗ + L⃗)− p(r⃗ + 2⃗L) = ... (78)

The periodic velocity profile at the inlet is unknown, therefore a linearly varying pres-

sure gradient β is set instead to drive the flow until the periodic feedback loop or

mapping has developed it instead. The total pressure gradient is then decomposed in

a linearly varying component β L⃗

|L⃗|
and a periodic quantity ∇p̃(r⃗):

∇p(r⃗) = β
L⃗

|L⃗|
+∇p̃(r⃗) (79)

where β|r⃗| is the linearly varying pressure and p̃(r⃗) is the periodic pressure:

p̃(r⃗) = p̃(r⃗ + L⃗) = p̃(r⃗ + 2L⃗) = ... (80)

Ideally the linearly varying pressure gradient would be set in the two periodic directions

along respective corrugation. However only one direction for the pressure gradient was

available in Fluent. Therefore the pressure gradient was set in the main flow direction

(y-direction) to drive the desired mass flow which was iterated to fulfill the continuity

equation (conservation of mass) in this direction (see fig.10).
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Figure 10: Illustration of the periodic boundary condition. Each of the periodic inlets

of the cell are coupled to a periodic outlet creating two periodic directions indicated by

the red and blue arrows respectively. The pressure gradient which drives the flow is set

along the main flow direction marked by the grey arrow.

In an effort to align one of the periodic directions with the pressure gradient that could

only be set in one direction, a unit cell consisting of five contact points was created (see

fig.11). The idea was that using five contact points creates two new periodic directions

one in the spanwise direction and one in the main flow direction. This would enabled

the pressure gradient and the periodic direction in the main flow direction to align

creating a more physically accurate boundary condition. This would also make it more

intuitive to define the pressure drop and pressure gradient in of the unit cell since two

periodic faces would be normal to the main flow direction. However this concept could

not be used since the meshing tool Ansys Fluent Meshing with Watertight Geometry

Workflow could not map the two periodic directions since they now collide due to being

at the same height whereas previously one periodic direction bypassed under the second

one. Another meshing tool could be used to mesh this geometry but this option was

not used since the mesh would not be consistent with the benchmark which could affect

the results.
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Figure 11: Conceptual unit cell consisting of five contact points which creates periodic

faces normal to the spanwise direction (x) and the main flow direction (y).

Convective boundary conditions are set at the walls except for the contact points which

are assumed to be adiabatic. Additionally, an artificial thickness δ together with a

thermal conductivity is added to the heat transferring walls in order to take heat con-

duction of the plate into account. The Ansys Fluent users’s guide recommends either

constant temperature or heat flux for periodic heat transfer which is why this is not well

documented for the convective condition. However the convective boundary condition

is still chosen since it represents the heat transfer of the PHE most realistically. There-

fore, it can only be speculated how this would be done in Fluent. It seems possible

that the periodic heat transfer is solved by mapping the temperature similar to how the

velocity was solved but for the temperature profile instead of the actual temperature

since it would continuously increase until wall temperature due to thermal equilibrium.

Treating the temperature profile φ as a periodic quantity it can be expressed as:

φ(r⃗ + L⃗) = φ(r⃗ + L⃗) = φ(r⃗ + 2L⃗) = ... (81)

where

φ =
T − T∞

Tb,in − T∞
(82)

by doing this the outlet temperature profile can be mapped to the inlet thus fullfilling

the periodicity. In order to prevent the temperature from increasing to the wall tem-

perature, the temperature profile at the inlet can simply be rescaled to maintain the
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specified bulk inlet temperature after each iteration. The thermal boundary conditions

discussed are condensed into table 3.

Table 3: The thermal boundary conditions summarised.

Boundary Inlet Outlet Contact point Upper wall Lower wall

Condition Periodic Periodic Adiabatic Convection Convection

Value Tb,in = 293.15 K - q = 0 Tinf = 333 K Tinf = 333 K

Finally, smooth wall condition is used and no-slip condition is applied at the wall which

means that the tangential fluid velocity is zero at the wall. The fluid used is water and

all properties can be seen in Table 4.

Table 4: Fluid and solid properties of the unit cell.

Property Value

Thermal conductivity κ = 0.09 W/m K

Thermal wall conductivity κw = 15 W/m K

Density ρ = 998.2 kg/m3

Specific heat capacity cp = 712 J/kg

Dynamic viscosity µ = 1 · 10−3 kg/m s

Convective heat transfer coefficient α2 = 20 000 W/m2 K

Virtual plate thickness δ = 0.3 mm

Heat capacity ratio γ = 1

Turbulent Prandtl number Prt = 0.7

3.2 Assumptions

The boundary conditions are simplifications of the real problem and makes it possible

to implement and solve it in a computer program. Due to the complexity of the physics

involved in reality even further simplifications or assumptions are needed to be able

to handle the problem at a reasonable level. The assumptions used are therefore the

following:

• No fouling at wall surfaces since this operation condition is not needed for the

evaluation of the designed heat transfer.
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• Shape of contact points assumed to form uniform ellipses with chamfers in order

to get a good mesh.

• Uniform plate thickness is assumed whereas in reality the thickness will vary due

to the manufacturing process where the plate shape is pressed with tools.

• Isotropic and homogeneous thermal properties of walls even though pressing can

cause anisotropy and the material itself could have defects.

• Fully developed flow due to the translational periodic condition which mimics a

flow domain of infinite length, no inlet and outlet effects.

• Effects of end walls are disregarded since the periodic domain can be seen as

having an infinite width.

• Negligible gravity and Buoyancy forces are excluded.

• No conjugate heat transfer, the ambient environment outside the plate channels

are treated as a constant temperature heat source. The simplified heat problem

is deemed sufficient to evaluate the heat transfer performance of the unit cell.

Otherwise the problem would become to complex and expensive which would

take away focus on the main objective.

• Thermal radiation is negligible at the relatively low temperatures used.

3.3 Numerical Setup

The settings and motivations for the numerical schemes used to solve the problem are

presented here and the theory behind them were previously presented in the theory

section (see section 2).

• Simulation type: LES which is chosen because it gives detailed results which will

help the evaluation of the unit cell method. LES was also chosen to see if it works

well with the unit cell setup from a accuracy and a computational cost stand

point since one of the aspirations with the unit cell method is that the reduced

cost will enable LES to be used.

• Subgrid-scale model: Wall-Adapting Local Eddy-Viscosity (WALE) is used to

account for strain and rotations of the smallest sub-grid scale eddies. Another

advantage is that the subgrid-scale model produces the correct asymptotic wall

behavior (νt = O(y3)) [17]. If implemented correctly these properties should make

the model suitable for the current wall-bounded flow problem where large rota-

tions are created due to the geometry as well as large strains due to impingement.
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This model was also used by the benchmark which will make the comparison more

direct.

• Pressure-Velocity Coupling: Pressure-Implicit with Splitting of Operators (PISO).

This scheme was chosen to reduce the large number of iterations required for con-

vergence associated with transient simulations [6].

• Mass Flux: Rhie-Chow: distance based (interpolation) to prevent checkerboard

oscillations [4].

• Gradient evaluation: Least Squares Cell Based gradient is chosen because it is

better than the cell based gradient and has similar accuracy to the node based

gradient at a lower cost for skewed meshes [6].

• Pressure: Second Order Central Differencing of the pressure is good for handling

swirling flow while maintaining second order accuracy [6]. This is suitable for

this problem which has a swirling nature and require higher accuracy due to LES

being used.

• Momentum: Bounded Central Differencing For higher order spatial accuracy re-

quired for LES while maintaining stability [6].

• Energy: Second Order Upwind (default) [6].

• Transient Formulation: Bounded Second Order Implicit is chosen to handle the

transient term of Equation 25 for improved temporal accuracy and stability [6].

3.4 Procedure

• The finest mesh was ran to 20 flow through times (tf ) to ensure convergence. The

flow through time here is the time taken for the bulk flow to pass through the

entire domain once.

• Convergence quantities where mean (over time) pressure, velocity and tempera-

ture averaged over a vertical line through the center of the cell domain (see fig.25)

as well as the total mass flow rate in the main flow direction and the Fanning

friction factor.

• The 20tf solution file was used as an initial condition for the following simulations

of all three meshes where a transition time of 5tf was used after which sampling

began for 50tf .

• CFL based adaptive time stepping is used to control the time step size and keep

stability and temporal accuracy. Where the Courant number is defined as CFL =
U∆t
∆x

and ∆x is the grid spacing.
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Table 5: Time advancement and sampling configuration.

Time parameter Value

Courant–Friedrichs–Lewy number CFL = 1

Flow through time tf = 0.033 s

Initial time ti = 20tf s

Transition time tt = 5tf s

Sampling time ts = 50tf s

3.5 CAD to CFD

The method for setting up a simulation of the unit cell is as follows:

• Import plate CAD geometry into Spaceclaim.

• Cut out a unit cell from the geometry and name the periodic inlet and outlet

patches.

• Export the unit cell CAD geometry into Ansys Fluent Meshing with Watertight

Geometry Workflow.

• Generate a surface mesh.

• Map each periodic face/patch pair using the option: boundary -> recover periodic

-> translational and set the correct offset between the periodic faces.

• After this inflation layers and volume mesh are set up and generated.

• The mesh is then imported into Fluent and the necessary boundary conditions

and numerics are set according to previous subsections (see subsection 3.1 and

subsection 3.3) after which the case is ready to be simulated.
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3.6 Mesh Convergence Study

To ensure that the results are not affected by the mesh size a mesh study of the flow and

heat transfer has been conducted. The meshes are done in the same meshing program

with the same settings as the benchmark for consistency. A total of three mesh sizes

or cell counts have been included in the study: 60k, 140k and 250k cells. These meshes

correspond to 3M, 11M and 45M cells respectively of the benchmark. The meshes are

shown on a slice cut through two contact points normal to the main flow direction in

figure 12.

Figure 12: Mesh sizes of 60k, 140k and 250k cells are shown in sequential order from

left to right.

The meshes used are of type poly hex-core which combines poly cells with hexahe-

dral cells at the core of the domain. All meshes use 3 inflation layers to capture

sharp gradients of the near wall flow and structured hexahedral mesh at the core to

improve accuracy by improving element quality reducing interpolation errors between

cells. Polyhedral cells are used as a buffer to transition from the inflation layer to the

hexahedral cells. The y+ values which indicates the near wall resolution are shown in

Table 6.

It is expected that the discretization error will decrease asymptotically as finer and

finer elements are used. The goal of the mesh convergence study is then to find a mesh

size where the solution is adequately independent of the size. However in this case it

is observed that the asymptotic behavior is missing in figures 14, 15 and 16 but seems

promising for the velocity in figure 13.
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Table 6: y+ values for the unit cell meshes and for the respective mesh sizes of the full

plate.

Unit Cell Mesh min y+ max y+ avg. y+

60k 0.0843 3.8 1.19

140k 0.0409 3.42 1.02

250k 0.0665 1.73 0.68

Full Plate Mesh

3M 0.0192 8.39 2.07

11M 0.0043 6.02 1.71

45M 0.0006 3.19 0.96

Figure 13: Mean velocity average over

the vertical probe (see fig.25).

Figure 14: Mean pressure drop between

inlet and outlet faces.

Figure 15: Mean Nu/Pr1/3.

Figure 16: Mean convective heat transfer

coefficient α2.
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4 Results and Discussion

In this section the results of the unit cell simulations are presented. First the obtained

fields and profiles will be shown of both the unit cell and the whole plate for comparisons

to be made. In the following subsection the Darcy friction factor and Nu/Pr1/3 are

plotted against data from the full plate and experiments. After that the unit cell results

from RANS, URANS and LES for different mesh resolutions are displayed. Next, the

anisotropy of turbulence in the unit cell is shown in the Lumley triangle followed by

the wake and vortex structures and lastly the sources of errors are discussed.

4.1 Comparison with Full Plate

4.1.1 Velocity Field

The instantaneous, mean and fluctuating velocity fields are shown through different

sections of both the unit cell and the full plate. First a slice taken at the middle of

the channel height of the full plate is shown in figure 17. The same plate is then cut

out into the same shape as a unit cell in figure 18 where it is directly compared to the

actual unit cell. The same thing as figure 18 is shown in figure 19 but through a slice

normal to the mean flow direction instead. Note that the cutouts of the full plate are

done in the middle centre part of the plate since this is where the flow would be most

developed and thus give the best comparison with the unit cell.

Figure 17: The velocity field of the full plate is shown in terms of instantaneous (left),

mean (middle) and root-square mean of fluctuating (right) velocity magnitudes respec-

tively.
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(a) (b) (c)

(d) (e) (f)

U Magnitude, UMean Magnitude [m/s]

UPrime2Mean Magnitude [m/s]

Figure 18: The velocity field of the full plate (upper) and the unit cell (lower) is shown

in terms of instantaneous (a,d), mean (b,e) and root-square mean of fluctuating (c,f)

velocity magnitudes respectively. The velocities are shown in a mid-plane at half the

channel height.
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(a) (b) (c)

(d) (e) (f)

U Magnitude, UMean Magnitude [m/s]

UPrime2Mean Magnitude [m/s]

Figure 19: The velocity field of the full plate (upper) and the unit cell (lower) is shown

in terms of instantaneous (a,d), mean (b,e) and root-square mean of fluctuating (c,f)

velocity magnitudes respectively. The velocities are shown in plane which is cut through

two contact points normal to the mean flow direction.
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(a) (b) (c)

(d) (e) (f)

U Magnitude, UMean Magnitude [m/s]

UPrime2Mean Magnitude [m/s]

Figure 20: The velocity field of the full plate for Re = 1273 (upper) and the unit cell for

Re = 841 (lower) is shown in terms of instantaneous (a,d), mean (b,e) and root-square

mean of fluctuating (c,f) velocity magnitudes respectively. The velocities are shown in

a mid-plane at half the channel height.

The velocity field seems to agree with the benchmark showing higher velocities around

the side of the contact points. This is probably due to the flow not following the

corrugations but instead reflects into the opposite corrugation direction due to the high

chevron angle [18]. The back and fourth reflection would then form a helix structure

that goes between the contact points shifting between upper and lower corrugation in

the direction of the mean flow causing the high velocity between the contact points.

Acceleration of the flow around the sides of the contact points due to their curvature is

probably also a contributing factor to this. Therefore it seems that the velocity field is

captured qualitatively when looking at the mean and instantaneous ones (see figures 18

and 19). For the instantaneous velocity, the characteristics and dynamics look similar

where vortex shedding seems to be captured at the sides of the contact points. It can

be seen from the same figures that low velocity regions are observed at the stagnation

point in front of the contact point and in the wake region behind it which seems to be

well captured. Interestingly the root square mean of the fluctuating velocity field also

have the same contour but is largely overpredicted by an order of ten (see figures 18

and 19).
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4.1.2 Wall Shear Stress & Heat Flux

The shear stress and heat flux on the walls of the unit cell and full plate are shown in

figures 21-22 and figures 23-24 respectively.

(a) (b)

wallShearStress [Pa]

Figure 21: Instantaneous wall shear stress of the upper plate for the unit cell (left) and

the full plate (right).

(a) (b)

wallShearStress [Pa]

Figure 22: Mean wall shear stress of the upper plate for the unit cell (left) and the full

plate (right).
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(a) (b)

wallHeatFlux [W/m2]

Figure 23: Instantaneous surface heat flux stress of the upper plate for the unit cell

(left) and the full plate (right).

(a) (b)

wallHeatFlux [W/m2]

Figure 24: Mean surface heat flux stress of the upper plate for the unit cell (left) and

the full plate (right).

The overall contours of the wall shear stress agrees with the benchmark (see fig.22)

showing high shear stresses around the sides of the contact points and a streak of high

shear along the front side of the corrugation. This seems reasonable since the velocities

around the contact points are high and the flow is impinging where the corrugation

is contracting. In contrast, low shear stresses are captured in the wake region, at the

stagnation point and on the back-side of the corrugation where the velocities are low.

When looking at the instantaneous heat flux it looks like the dynamics is captured

but more pronounced similar to what was observed for the fluctuating velocity (see

fig.23). The mean heat flux captures the high thermal spot in front and to the sides

of the contact point a and the streaks of high heat flux mainly on the front-side of the

corrugation (see fig.24). Interestingly, it appears that the mean heat flux is much more

diffusive for the unit cell which is not really seen for the velocity and wall shear stress.
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Perhaps this indicates that the discretization schemes for the velocity and pressure are

managing to preserve sharper gradients while the second order upwind scheme for the

energy equation is too diffusive. It is expected that the schemes are implemented in a

conservative or diffusive way because it is a commercial software that perhaps would

be biased towards providing convergence more easily at the cost of accuracy.

4.1.3 Probe Velocity & Temperature Profiles

The velocity profile from top to bottom plate in the middle of the unit cell is presented

in figure 26. Similar profile for the temperature through half the channel height is

shown in figure 27.

Figure 25: The vertical probe going from top to bottom plate in the middle of the unit

cell is shown in yellow.

Figure 26: Velocity profile along the vertical probe line displayed in figure 25. The data

from the unit cell is plotted for meshes 60k (grey), 140k (orange) and 250k (yellow)

and the full plate data is plotted in blue. The velocity magnitude is normalized by the

bulk velocity and the height (z) is normalized with the total channel height 2h.
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From the velocity profile taken from the probe (see fig.25) it can be seen that there is

an asymmetry between the velocity peaks for the full plate and the medium and course

mesh of the unit cell while the finest mesh is seemingly symmetrical. The asymmetry

of the full plate is probably due to it only having heat transfer on one of the plates,

instead of both as done with the unit cell, which would cause higher velocities on the

hot plate side. It is possible that the asymmetry of the coarser meshes of the unit

cell could be due to the fact that all sampling simulations where initialized based on

a previous solution of the finest mesh. In doing so the finest mesh will have been

simulated for a longer total time even though the sampling time is the same meaning

that the flow perhaps is fully developed while it might not be yet for the coarser meshes

which could explain the asymmetry. However due to limitations in computational time

the cases could not be simulated enough to verify this. Additionally the asymmetry

would perhaps disappear if two pressure gradients along the corrugations where set

instead of one since this would ensure that the flow had equal driving forces in both

directions. Lastly, the peak velocity of the coarsest mesh is a bit lower compared to the

other two meshes which are closer which is probably due to a more diffusion caused by

the coarser mesh.

Figure 27: Temperature profile along the vertical probe line displayed in figure 25. The

data from the unit cell is plotted for meshes 60k (grey), 140k (orange) and 250k (yellow)

and the full plate data is plotted in blue. The temperature is normalized to be equal

to one at the wall and zero in the middle of the channel.

In figure 27 the normalized temperature profile is shown for the full plate and the three

meshes along the same probe as the velocity profile. Note that only half of the probe

length is used here. Therefore the mean channel height h is used to normalize the height
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(z) so that it is equal to zero at the wall and one in the middle of the channel. The

profile looks to be consistent for the three meshes. The full plate seems to get a thicker

thermal boundary layer which could be because the wall treatments are different in

OpenFoam compared to Fluent.

4.1.4 Darcy Friction Factor and Nu/Pr1/3

Experimental as well as full plate data for Darcy Friction Factor and Nu/Pr1/3 is plotted

against the unit cell results in fig.28 and fig.29 respectively.

Figure 28: The Darcy friction factor of the unit cell with the three available meshes are

plotted for the Reynolds number 841 (circles) in a log-log scale. Results of the full plate

(Karlsson et al. [1] and Focke et al. [7]) as well as the unit cell of Zhu & Haglind [19]

are also plotted for a wide range of Reynolds number to provide context.
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Figure 29: The average Nu/Pr1/3 over the two walls of the unit cell is plotted for the

Reynolds number 841 (circles) in a log-log scale. The values are taken from results of

the three meshes. Additionally, results of the full plate (Karlsson et al. [1] and Focke

et al. [7]) are plotted for different Reynolds number to give context.

Table 7: Percentage difference of Darcy friction factor f and Nu/Pr1/3 for the three

mesh sizes when comparing with experimental data from Focke et al. [7].

Re = 841

Number Mesh60k Mesh140k Mesh250k Focke exp.

f 4.64 4.6 4.48 3.92

∆ 19.0 % 18.0 % 14.9 % -

Nu/Pr1/3 45.7 46.1 45.1 36.1

∆ 26.4 % 27.5 % 24.7 % -

The global flow and heat transfer evaluation of the unit cell shows that both the Darcy

friction factor and the Pr1/3 normalized Nusselts number for the three meshes are close

to a eachother relative to the spread of data from the benchmark [1] and experiments [7]
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for different Reynolds numbers (see fig.29 and fig.28). However when looking at table

7 it can be seen that the Darcy friction factor and the Nu/Pr1/3 for finest mesh are

overpredicted by by 14.9 and 24.7 percent respectively when comparing with the ex-

perimental data.

To summarize the results of the unit cell when comparing with the full plate, the

global evaluation parameters Darcy Friction Factor and Nu/Pr1/3 are overpredicted.

These are relevant parameters since they can be used to evaluate performance of PHE:s

with regards to overall heat transfer and flow losses. The fact that they are both over-

predicted is consistent with the results of the velocity field where it was shown that

instantaneous and mean velocity agree somewhat whereas the fluctuations of the veloc-

ity are largely overpredicted. Higher fluctuations in velocity indicates higher turbulence

which could explain the overprediction of the heat transfer and flow losses.

Why the turbulence is overpredicted could be because the periodic feedback loop some-

how allows it the build up too much or perhaps the wall treatment overpredicting the

strain rates and therefore the production of turbulence. A counter argument to this is

that the periodic implementation would be expected to preserve the total energy going

into the system.

The discrepancy in results could also be due to the sub-optimal boundary conditions

where the pressure gradient is not aligned with the periodic directions and the periodic

heat transfer for convective boundary condition being unknown in the software (Flu-

ent). However, the results show that the overall dynamics and characteristics, when

looking at instantaneous and mean quantities, are well captured which suggests that

the boundary conditions are able to reproduce the larger scale physics. Perhaps it is the

smaller scale physics that are the root cause of the problem which are more dependent

on how the modeling and numerics are done.

Moreover, the overall flow in terms of velocity, wall shear stress, and Darcy friction

factor seem to agree better than the heat transfer in terms of surface heat flux, tem-

perature profile and Nu/Pr1/3. It was for example observed that the wall heat flux

was more diffusive than the wall shear stress which could be due to the discritezation

of the energy equation being too diffusive. Or it could be due to the different wall

treatment used in OpenFoam and Fluent where the thermal boundary layer is thinner

than expected which supports the overprediction of the heat transfer.

Another reason that the heat transfer is further from the experimental and bench-

mark data compared to the Darcy friction factor is perhaps because it is more sensitive
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to deviations in Reynolds number or turbulence. It can be seen from the slope around

Reynolds number used (841) in figure 29 and figure 28 that it is steeper for the Nu/Pr1/3

number compared to the friction factor which supports that the heat transfer is more

sensitive to the predicted turbulence.

One final possibility is that the turbulence is not overpredicted but instead the cal-

culated Reynolds number is lower than the actual one since it is calculated based on

the bulk velocity which is taken from a slice in the middle of the unit cell normal to the

main flow direction. If the current method of obtaining the bulk velocity is faulty it

will give the wrong Re number and thus another level of turbulence as a consequence.

However when comparing the unit cell results of Re 841 to the full plate of a higher

Re 1273 the full plate the fluctuating velocity component is still higher for the unit cell

even though the instantaneous and mean velocities are much lower. This shows that

it is in fact the fluctuations of the velocity which are overpredicted in relation to the

mean and instantaneous velocity.

4.2 Mesh Resolution and Model Comparisons

4.2.1 LES Meshes

Mean and instantaneous velocity fields taken from a slice at half the total channel height

for the three meshes using LES are shown in fig.

LES 60k mean LES 140k mean LES 250k mean

LES 60k instant LES 140k instant LES 250k instant

Figure 30: Mean (upper) and instantaneous (lower) velocity fields are shown from the

coarsest 60k mesh (left) to the finest 250k mesh (right).
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4.2.2 RANS vs URANS

Results of the velocity fields in a plane taken at the mean channel height for RANS

and URANS (see fig.31).

(a) RANS 140k (b) RANS 250k

(c) URANS 250k mean (d) URANS 250k instant

Figure 31: RANS velocity contours for the 140k cell (a) and 250k cell (b) mesh respec-

tively. URANS with the fine 250k cell mesh is shown in terms of mean velocity (c) and

instantaneous velocity (d).

When running steady state RANS it turns out that the finest mesh of 250k cells did not

converge while the lower mesh resolutions did. When comparing the velocity fields of

the finest and medium mesh it seems like the medium mesh displays a smooth contour

(see fig.31) similar to the one obtained from the LES simulation (see fig.18). In contrast,

the finest mesh shows a less smooth contour with nonphysical velocity branches that

are not observed in the LES results (see fig.31). This indicates that the finest mesh

is too fine for the RANS solution to converge where appears to attempt to solve finer

structures that does not exist.
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4.2.3 URANS vs LES

URANS and LES simulations shown for the fine 250k cell mesh in terms of wall shear

stress and surface heat flux in figures 32-33 and figures 34-35 respectively.

Figure 32: Instantaneous wall shear stress contour for URANS (left) and LES (right).

Figure 33: Mean wall shear stress contour for URANS (left) and LES (right).

Figure 34: Instantaneous wall heat flux contour for URANS (left) and LES (right).
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Figure 35: Mean wall heat flux contour for URANS (left) and LES (right).

Comparing the heat flux and wall shear stress contours for URANS and LES of the unit

cell there is clearly more dynamic turbulence in the LES results for the instantaneous

values (see fig.34 and fig.32). The mean values look similar with URANS having slightly

higher shear stress peak values (see fig.35 and fig.33).

4.3 Lumley Triangle

Here the invariants ξ and η of the Reynolds stress anisotropy tensor (see subsection 2.12)

are plotted in the Lumley triangle to visualize the anisotropic turbulence and its com-

ponents of the flow.

Figure 36: The different turbulence components for the unit cell are plotted in the

Lumley triangle. A colormap ranging from one to zero shows how often each component

occurs where higher values indicate more frequent occurrence.
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The Lumley triangle seem reasonable showing axisymmetric prolate and 1-component

anisotropic turbulence which is similar to a canonical channel flow (see fig.36 and fig.9)

[20]. There is also almost no isotropic turbulence which is expected due to the high

strain rates caused by the complex plate geometry.

4.4 Wake

Figure 37 is a contour of the dynamic pressure which illustrates the instantaneous wake

and stagnation point behind and in front of the contact point respectively where the

velocity and thus dynamic pressure are low.

Figure 37: Instantaneous dynamic pressure of a slice taken at the mean channel height

(upper) and a slice between the front and back contact points normal to the spanwise

direction (lower).
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4.5 Vortex Structures

The high heat flux in front of the contact point from figure 38 seems to arise from a

horseshoe vortex that makes the thermal boundary layer thinner which was discovered

in the benchmark article [1].

Temperature [K]

Heat Flux [W/m2]

Figure 38: Iso-surfaces of the Q-criterion illustrating vortex core structures and instan-

taneous wall heat flux.
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4.6 Sources of Errors

The discretized equations might be too diffusive causing inaccurate results. For exam-

ple the bounded central differencing scheme could switch to lower order schemes such

as first order upwind to preserve stability of the solution without the user knowing.

The benchmark solely simulates one set of plate channels only one plate has heat

transfer. Meanwhile the heat transfer on the other plate is disregarded to mitigate

the discrepancy of having inlet and outlet ducts on that side. This causes a skewed

temperature distribution since the distance along which the fluid is heated by the wall

is no longer independent of the path it takes. In contrast, the skewness effect is not

taken into account in the unit cell and both top and bottom plates contribute to the

heat transfer. The two-sided heat transfer is used because this is how the method is

going to be used in the future since it is closer to how it is inside a real PHE. This

might cause a difference when comparing the heat transfer of the unit cell to the full

plate and is thus two sources of errors. However it is assumed that the heat transfer

coefficients of the evaluated plate would not be significantly affected by the adiabatic

plate of the benchmark. Furthermore, the skewness of the temperature field is assumed

to alter the global heat transfer coefficients negligibly.

The implementation of the periodic boundary conditions for the flow and heat transfer

in Fluent is an uncertainty and could cause errors in the results and explain why the

mesh sensitivity study did not converge. To begin with, the fixed pressure gradient con-

dition applied to drive the correct mass flow can only be set in one direction in Fluent.

Ideally the pressure gradient would be fixed in the two periodic directions i.e. along the

corrugations. Secondly, the fluent user guide recommends constant wall heat flux or

temperature for periodic flow. However in order to resemble the benchmark convective

boundary conditions were used which means that how the heat transfer is solved can

only be speculated (see subsection 3.1) since the implementation is confidential.

The heat transfer and Darcy friction factor should be greatly affected by the ther-

mal and momentum boundary layer. The corrugation causes a complex behaviour by

thinning, separation and reattachment of the boundary layers. If these phenomenons

are not captured consistently it could explain the discrepancy in heat transfer and fric-

tion factors between the unit cell and the full plate simulations. The benchmark and the

unit cell model the wall differently due to the different software which means the near

wall behaviour is treated differently and could explain the differences observed in the

results. This might also explain the difference in fluctuating velocity, since if the damp-

ening of the local eddy viscosity near the wall is underpredicted or the strain rate is

overpredicted the turbulence could be underdamped or its production could be too high.
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One last source of error is typically in OpenFoam a turbulent Prandtl number is used to

model the subgrid turbulent heat transfer whereas in fluent an additional wall turbulent

Prandtl number is used which seems to be used in the wall modeling which could affect

the heat transfer near the wall.

5 Conclusion and Future Work

A method for doing LES of a unit cell of PHE:s have been developed. The results have

been compared to simulations of a full plate in order to evaluate the accuracy and level

of detail.

5.1 Advantages

Using the current unit cell setup a reduction in computational cost is obtained since

the computational domain is many times smaller and the setup has the potential to

become very cheap. This can enable LES simulations to be done within a reasonable

time compared to the full plate method. Being able to use LES will give a more

accurate and detailed insight into the flow behaviour and heat transfer mechanisms.

This could be a great tool for researching and developing future plate patterns and

textures at Alfa Laval. Additionally, the reduced simulation time could be useful when

for example iterating and comparing many different design parameters approximately.

5.2 Disadvantages

Some information is lost where inlet, outlet and side wall interactions are disregarded.

However, the results of the large-scale physics seem to agree with the full plate which

is a good sign that this assumption is reasonable. Additionally, larger plates with

more contact points than the benchmark plate which is relatively small should lose

less information since the assumption of fully developed flow would hold over a larger

portion of the plate. The same goes for high theta since the spanwise distribution of the

flow will be more evenly distributed. The periodic domain will constrict information to

ta travel with a wavelength equal to the periodic length of the unit cell at maximum

for steady state simulations while transient simulations could perhaps capture longer

wavelengths than the periodic length by solving a cyclic time evolution.

5.3 Future Work

It would be a good idea to investigate whether some of the resulting discrepancies

mainly come from the differences between OpenFOAM and Fluent or the unit cell and

48



full plate approach or if it is a combination of both. Therefore a more direct comparison

should be made between the two methods using either Fluent or OpenFoam for both

cases.

Optimize the computational cost of the current unit cell setup used in Fluent in or-

der to run more simulations at a reasonable time. Once this is done a wall treatment

study for different y+ values can be done to see if this is a contributing factor to the

overpredictions discussed. Also trying different subgrid models would be a good idea to

see if there is a substantial sensitivity between the models contributing to the current

deviation in results.

Do a Reynolds number sweep to see if the friction factor and Nusselt Prandtl num-

bers obtain to see if there is a systematic deviation from the benchmark results.

Try unit cells with different numbers of contact points to see how the prediction of the

heat transfer and flow resistance changes with increased periodic domain size. However,

with the current meshing tool the periodic faces will have to be cut at an angle for the

face mapping to work as previously discussed (see subsection 3.1). It would be good

to instead use unit cells with faces normal and tangential to the mean flow direction

to align the pressure gradient with the periodic direction which has the added benefit

of simplifying how to define the flow and heat transfer numbers. For example the five

contact point cell with another meshing program like Ansys meshing could be done to

better align the periodic faces.

Once the single channel unit cell is well understood and tested, the next step could

be to try conjugate heat transfer which would be a more expensive but realistic bound-

ary condition. Then heat transfer between two different fluids could be analysed.

5.4 Summary

To sum up, creating a unit cell geometry and setting up the boundary conditions

according to subsection 3.4 can be a bit tricky at first but is a pretty short and simple

process after it’s been done once. Moreover, the unit cell method seems to capture

the large-scale physics and flow characteristics indicating that the boundary conditions

are somewhat appropriate which is promising. Furthermore, it could be a good idea

to align the pressure gradient with the periodic directions as this could improve the

results. The smaller-scale physics, turbulence and heat transfer are overpredicted by a

significant amount indicating that the method needs to be refined with regards to the

more intricate modeling and numerics. Before investigating the modeling and numerics
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which can be time consuming and require a lot of simulation runs it is recommended

that the simulation time of the current setup is optimized as the computational cost

is unreasonably excessive relative to how small the computational domain is. The

computational cost could probably be immensely reduced compared to the current one

after optimization. If these things are resolved the method has a great potential to be

a simple case to set up that drastically reduces the computational cost while providing

detailed and accurate results using LES.
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