
OPTIMIZATION OF THE

RUNGE-KUTTA METHOD FOR

THE STEADY STATE

ADVECTION-DIFFUSION

EQUATION

PAULINA IBEK

Bachelor’s thesis
2023:K12

Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Optimization of the Runge-Kutta Method for the
Steady State Advection-Diffusion Equation

Paulina Ibek

Supervisor: Philipp Birken

Lund
May 26, 2023

Abstract

In this thesis, the steady state version of the advection-diffusion equation is solved

numerically using a Runge-Kutta method. In the advection-diffusion equation, different

terms such as the bulk velocity of the fluid, or the diffusion constant must be defined,

which are problem dependant. Those are collectively called input parameters. In order for

the Runge-Kutta method to converge towards the correct solution, appropriate method

parameters in the method must be chosen. The optimal method parameters, for which the

method converges the fastest, depend on the specific input parameters in question. For a

large set of input parameters, optimal method parameters are found using an optimization

technique called particle swarm optimization. An attempt to find a relation between the

input parameters and method parameters is made, with the goal of developing a procedure

for finding satisfactory method parameters given a specific problem.

Populärvetenskaplig sammfattning

Advektion-diffusion ekvationen beskriver hur partiklar rör sig i flödesströmmar, sam-

tidigt som de sprider ut sig. Den kan användas till att modellera hur föroreningar sprider

sig i atmosfären eller i haven, eller för att förstå hur olika vätskor blandas med varandra.

Advektion-diffusion ekvationen är svår att lösa för hand, och oftast hittas ungefärliga

lösningar med hjälp av datorer istället. En metod som man kan använda sig av heter

Runge-Kutta metoden. Det man behöver göra, utöver att skriva in advektion-diffusion

ekvationen, är att definiera viktiga egenskaper hos problemet, som exempelvis vätskans

hastighet. Runge-Kutta metoden är inte självgående, utan man behöver utöver detta

justera vissa inställningar för att den ska kunna lösa problemet. En svårighet som up-

pstår är att de bästa inställningarna beror på vilket problem som betraktas. Vissa in-

ställningar fungerar utmärkt för vissa flödesprobelm, men kanske misslyckas totalt med

att hitta lösningen för andra flödesproblem. Att hitta bra inställningar för Runge-Kutta

metoden är inte så tidskrävande om man ska göra det en gång, men ska man lösa många

problem blir det väldigt omständligt. Därför vore det fördelaktigt att kunna se direkt på

flödesproblemet ungefär vilka inställnigar Runge-Kutta metoden bör ha för att kunna

hitta en lösning. Syftet med avhandlingen är alltså att försöka hitta ett samband mel-

lan olika flödesproblem och inställningar i Runge-Kutta metoden, för att underlätta hela

problemlösningsprocessen.

Acknowledgements

This thesis marks the last step of my bachelor’s degree in mathematics. The past three

years have been invaluable to me and I am grateful for the knowledge and experiences

gained during my undergraduate studies. I am looking forward to learning even more

during my upcoming master’s degree.

First and foremost, I would like to thank my supervisor Philipp Birken. Thank you

for suggesting such an interesting project, which turned out to be right up my lane. I re-

ally enjoyed working with, and combining the different areas of numerical analysis which

this project entailed. I would also like to thank you for your invaluable time and feed-

back, which helped me improve not only the quality of the content of this thesis, but also

my academic writing style. Last but not least, I would like to thank you for your patience.

Finally, I would like to thank all my friends and family who supported me throughout

my degree.

Contents

1 Introduction 1

2 Background 3

2.1 Runge-Kutta method . 3

2.2 Particle swarm optimization . 6

2.3 Least squares method . 8

2.4 Pseudo transient continuation . 9

2.5 Stationary linear methods . 11

3 Advection-diffusion equation 13

4 Machine learning step 19

5 Results 25

6 Summary and conclusions 39

References . 40

Chapter 1

Introduction

The advection-diffusion equation is a partial differential equation that describes the be-

haviour of a substance that is transported by a fluid and simultaneously undergoes dif-

fusion. It finds applications in various fields and can for instance be used to model the

mixing of two fluids or the distribution of substances such as pollutants in the atmo-

sphere. While there are analytical solutions to some forms of the equation, most are too

complex and require numerical treatment. One way of solving the steady-state version

of the equation is by transforming it to a linear equation system by applying the finite

difference method. One can then perform pseudo transient continuation with the help of

the Runge-Kutta method. With each iteration, the method moves forward in the fictitious

time and closer toward the solution of the equation.

Since the Runge-Kutta method has a couple of in-built parameters, like the size of

the time step, one challenge with this approach is tuning those parameters so that the

method converges. The optimal, so called method parameters, are problem-specific and

depend on various factors such as the velocity of the fluid, the diffusion constant and

the resolution of the domain of interest. Hence, they have to be tuned every time a new

problem is encountered.

1

The aim of this thesis is to find the method parameters for a two step Runge-Kutta

method using an optimization method called particle swarm optimization across various

input parameters in order to solve the steady state version of the advection diffusion

equation. The objective is to find a model that can relate the input parameters and the

method parameters, which is done using the least squares method. The relation found

between the two is used together with the input parameters in order to predict method

parameters for which the Runge-Kutta method should converge. The ultimate goal is to

develop a strategy for predicting the method parameters for any future problem, thus

streamlining the problem solving process.

2

Chapter 2

Background

2.1 Runge-Kutta method

One of the simplest ways to solve ODE’s numerically is the explicit Runge-Kutta method,

which can solve initial value problems of the form

dy
dt

= f(t, y) y(0) = y0.

The equation describes the rate of change of y as a function of the current value of y

as well as the current time. An initial value at y(t = 0) must be defined, otherwise the

equation has infinitely many solutions. The idea behind a Runge-Kutta method is that

the solution to an ODE at time t can be approximated by evaluating its derivative in

different points of the curve in a small time interval. The general formula is given by

yn+1 = yn +∆t

s∑
i=1

biki,

where yn+1 and yn are the solutions at times n + 1 and n, respectively, ∆t is the time

step and ki are the evaluated derivatives which are given the weights bi. The solution to

yn+1 is found by taking the solution from the previous time step, and moving along the

3

calculated derivatives, ki, which are defined as

k1 = f(tn,yn)

k2 = f(tn + c2∆t,yn + (a21k1)∆t)

k3 = f(tn + c3∆t,yn + (a31k1 + a32k2)∆t)

...

ks = f(tn + cs∆t,yn + (as1k1 + as2k2 + · · ·+ as,s−kks−1)∆t),

where ci are called nodes. The number of points in which one evaluates the derivative

varies between the different versions of the method. More accurate results are obtained

with small step sizes [1, chap. 12.5] [2, chap. 6]. For a Runge-Kutta method, one must

specify the number of stages, that is, the number of derivatives which the method utilizes,

as well as the coefficients a, b, and c. Those are usually compiled in a so called Butcher

array, see table 2.1.

0

c2 a21

c3 a31 a32
...

... . . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs.

Table 2.1: Generalized Butcher array for the Runge-Kutta methods.

In this project, a 2-stage Runge-Kutta method will be used, which has the following

Butcher array:

4

0

α α

0 1,

Table 2.2: Butcher array for a 2-stage Runge-Kutta.

where the α parameter (as well as the step size, ∆t) will be optimized.

After selecting the number of stages of the Runge-Kutta method, one can apply

additional constraints in order to achieve a specific order for the method. If a method

has the order p, it means that the local truncation error (i.e. the error caused by the

approximative nature of the method) is O(∆tp+1), where ∆t is the step size used. The

higher the order, the more conditions must be fulfilled by all the parameters in the butcher

array. Since methods with lower stages have very few parameters, it becomes impossible

for them to have a large order. To achieve higher order (and hence better accuracy) for

the method, it is thus required to add more stages, so that there are enough parameters

to fulfill all the requirements that give a higher order. The requirement to have order

p = 1 is
∑s

j=1 bj = 1, which we see is fulfilled by the method chosen in this task. For

p = 2 we must have
∑s

j=1 bjcj =
1
2

together with the previous requirement. This we see

is not fulfilled, but could be if we changed the Butcher array to

0

α α

1− 1
2α

1
2α

.

Table 2.3: Butcher array for a 2-stage Runge-Kutta of order 2.

However, we cannot construct a Runge-Kutta method of stage 2 with an order higher

than 2. In fact, the number of conditions required for a certain order increases faster than

the order itself

5

Order 1 2 3 4 5 6 7 8

Conditions 1 2 4 8 17 37 85 200

Table 2.4: Relation between order of a method and the required conditions.

Up until p = 4, one can find Runge-Kutta methods such that s = p, so the stage can

be equal to the desired order. For p ≥ 5 there are no explicit Runge-Kutta methods of

order p such that p = s. For p ≥ 7 the Runge-Kutta method of order p will have at least

s = p+ 2 and for p ≥ 8 the stage must be at least s = p+ 3.

Apart from the errors from the numerical methods themselves, there are also round

off errors, which arise because the computer performing the calculations must store the

values in a limited number of bits. For a 64-bit machine, these errors will be on the order

of ≈ 10−16, which in most cases, is much smaller than the truncation error [3].

2.2 Particle swarm optimization

Definition: An optimization problem is a problem of determining the best solution from

a set of feasible solutions, where the notion of ’best’ is defined in terms of an objective

function and possibly some inequality and equality constraints. [4]

Optimization problems involve two main components: an objective function, also

known as a fitness function or loss function, and parameters. Broadly speaking, a fit-

ness function is a measure of how well a certain solution performs with regard to an

objective. The aim of an optimization problem is to find parameters, P in a parameter

space Ω, that minimize (or maximize) the fitness function, f

P ∈ Ω ⊂ RM : min f(P), f : RM → R. (2.1)

Finding such parameters is often a difficult task since the parameter space can be very

large. For this purpose, many optimization methods have been developed, one of which

6

is the particle swarm optimization (PSO), which is a population based stochastic opti-

mization technique. The idea behind PSO is that it initializes with multiple so called

particles in different points, Pi, in the parameter space, Ω. Pi is commonly referred to as

the particle’s position, and is simply a set of parameter values. The fitness function, f ,

is evaluated for all Pi, and the particles are then moved towards a new position using a

velocity. The aim is to find a position in the parameter space that minimizes the fitness

function. This position, or set of parameter values, is oftentimes referred to as the best

position. The number of particles is determined by N = 10 + 2
√
10, where M is the

number of dimensions of the fitness function. Both the position and velocity are updated

for each iteration and particle according to

P t+1
i = P t

i + V t+1
i (2.2)

V t+1
i = wV t

i + c1r1(P
t
personal(i) − P t

i) + c2r2(P
t
global − P t

i). (2.3)

Equation (2.2) shows the position update for particle i and iteration t + 1. Equation

(2.3) shows the update of velocity V t+1
i , where w is an inertia term, c1 and c2 are called

cognitive and social terms respectively and r1 and r2 are two random numbers in [0, 1].

P t
personal(i) is each particle’s best position, that is, the P t

i that minimizes f , see equation

(2.1). P t
global is the global best best position. The velocity V t+1

i directs each particle i

towards its own best position, P t
personal(i) with strength c1r1, and the best position of the

entire group P t
global with strength c2r2. The inertia term w together with the velocity from

the previous iteration, V t
i , keeps the motion from being too erratic.

The inertia term, w, determines how easy it is for a particle the change its velocity.

The lower the term, the easier it becomes for the particles to change direction; conse-

quently they become more affected by the best solutions. On the contrary, high inertia

terms facilitate the exploration of the search space. However, one should not set the term

to a value larger than one, since this will cause the particle to diverge. Similarly, the cog-

7

nitive and social terms, c1 and c2, indicate how much each particle gravitates towards its

personal and global best position. With a very high c1 term, the particles will almost ex-

clusively care about their own solutions, which will most likely not lead to convergence of

the method, that is, the particles will not approach the same local minimum. On the other

hand, if c2 is high, the particles will not explore the search space adequately. Finally, r1

and r2 adjust the acceleration towards the personal and global best solution stochastically.

For any optimization method it is important to both target the best position in the

parameter space, as well as look for new, potentially better solutions. If the particles are

strongly drawn to known good solutions, it is quite probable that that they will get stuck

in local minima. On the other hand, if the particles explore the search map with little

regard to the known best positions, the method will become ineffective, since it would

almost be equivalent to testing solutions for randomly chosen parameters. Finding a

balance between the inertia, cognitive and social terms is a crucial step for obtaining good

results. In general, it can be very difficult to tune them since their performance heavily

depends on the shape of the fitness landscape. Luckily, there is a fully automated version

of the particle swarm optimization called Fuzzy Self-Tuning Particle Swarm Optimization,

or FST-PSO, where the aforementioned terms are dynamically controlled. In essence, each

particle has its own terms for inertia, as well as coefficients associated with the social and

cognitive factors and the maximum and the minimum velocity. The exact rules that tune

the different hyper parameters can be found in the appendix [5].

2.3 Least squares method

A common problem in numerical linear algebra, and regular linear algebra for that matter,

is solving the linear equation system Ax = b. Overdetermined systems, that is, systems

with more equations than unknowns, tend not to have a solution, but this problem can

occur in other equations as well. In fact, the equation Ax = b only has a solution iff b ∈

8

range(A). With an appropriate x̂, however, one could minimize the residual, r, which is

defined as

Ax̂− b = r ̸= 0.

Since the residual is a vector, a norm must be chosen for measuring its size. With 2-

norm, we have the so called least squares problem, as defined in [6, p. 77-78]: Given

A ∈ Rm×n,m ≥ n, b ∈ Rm, find

x̂ ∈ R : min ||b− Ax̂||2. (2.4)

As mentioned earlier, Ax = b only has a solution if b lies in the range of A. If it does not,

one can project b onto the range of A. If we let PA be the orthogonal projection from

Rm onto the range of A, we get that x̂ is the solution of Ax = PAb. In this case we want

Ax− b ⊥ range(A), which means AT (Ax− b) = 0. Hence, we have that a solution can be

found through ATAx̂ = AT b, which are called the normal equations of the least squares

problem.

It is important to note that the least square solution must not be unique. In fact, if the

matrix A consists of linearly dependent columns, the least square problem has infinitely

many solutions. In order for the solution to be unique A has to have full rank. In this

case, we have the solution [6, chap. 11]

x̂ = (ATA)−1AT b. (2.5)

2.4 Pseudo transient continuation

In general, the solution of a PDE, such as the advection-diffusion equation, might vary

with time, and it can sometimes be interesting to study the solution when t → ∞. This

is a so called steady state solution of the PDE, and it can be viewed as the solution after

9

the system stabilizes. One method of finding the steady state solution is called pseudo

transient continuation (PTC), which finds

u∗ = lim
t→∞

u(t) (2.6)

for equations of the form

ut = F (u), u(t = 0) = u0. (2.7)

The premise of PTC is that if a steady state solution, u∗, exists, then the derivative of the

solution with respect to time at some point should become zero, ut = 0. This means that

one wants to find F (u) = 0, which is standard problem in numerical analysis and can be

solved using, for instance Newton’s method. Newton’s method, however, relies on a good

initial guess, which is usually not available. Another approach of solving such a problem

is by using the Runge-Kutta method, since equation (2.7) is an initial value problem.

As the solution stabilizes, the Runge-Kutta method will find u* after sufficiently many

iterations [7].

Pseudo transient continuation can be used similarly in solving problems without time

dependence on the form of

F (u) = 0 (2.8)

by introducing a fictitious time. By setting ut = F (u) = 0 and declaring some initial

condition u(t = 0) = u0, the solution to the equation can be found using the Runge-

Kutta method. Since by construction, there is no time dependence and ut = 0, finding

the solution to the original equation (2.8), will be equivalent to finding a steady state

solution of an initial value problem. For each iteration, the Runge-Kutta method will find

solutions in the fictitious time, which will come closer and closer to ut = 0, and hence

the solution to equation (2.8). In this method, the initial condition does not have to be

10

close to the steady state solution, but the better the guess, the fewer iterations needed

for finding the solution.

2.5 Stationary linear methods

Definition: A stationary linear method for solving a linear system Ax = b , is an iterative

method of the form:

xi+1 = Mxi +N−1b (2.9)

with M,N ∈ Rm×m, N nonsingular. It is linearly convergent to the solution A−1b iff

ρ(M) < 1, M = I −N−1A [1]. (2.10)

The purpose of a stationary linear method is to improve the solution to a linear system

through iteration, until it reaches an acceptable level of accuracy. The method involves

starting with some initial guess for the solution (x0), and applying the iterative update

rule until it converges to the solution.

11

12

Chapter 3

Advection-diffusion equation

The advection-diffusion equation is an equation which combines the equations of advec-

tion (also sometimes called convection) and diffusion, into one. Advection is the process of

particles (or other physical quantities) moving due to the bulk motion of a fluid. Diffusion

in turn, is the movement of particles from high concentrations to low concentrations. The

general form of the advection-diffusion equation is

∂u

∂t
= ∇ · (D∇u)−∇ · (v⃗u) +R, (3.1)

where u could be the concentration of the substance of interest, D is the diffusion constant,

v⃗ is the bulk velocity of the fluid as a function of both the spatial and time coordinates,

and R describes if there are so called sources or sinks of the studied quantities. To be

more precise, a positive R indicates that the measured quantity u is created in the system,

while a negative R suggests that the quantity is destroyed [8]. It is also worth mentioning

that the diffusion has a unit of m2/s and usually has a small value. A small molecule like

glucose, for instance, has a diffusivity of around 10−9m2/s [9] and the diffusivity of carbon

dioxide is around 10−7m2/s [10]. The left hand side of equation (3.1) describes how the

measured quantity u changes over time. The first and second term in the equation to

the right hand side describe diffusion and advection respectively. The equation which will

be studied in this paper is the steady state advection-diffusion equation, which means

13

that the quantity measured does not change over time, that is ∂u
∂t

= 0. Since we also just

consider the problem in one dimension, the advection-diffusion equation can be rewritten

as

v
∂u

∂x
= D

∂2u

∂x2
+R,

with the velocity of the bulk v becoming a scalar. By setting R = 1 and b = D/v and by

using the notation ∂u
∂x

= ux, we obtain the final form of the equation

ux = buxx + 1. (3.2)

In this thesis we will only consider the case x ∈ [0, 1]. Instead of solving equation (3.2)

analytically it is treated numerically with the finite difference method. This is done by

dividing the domain into N smaller subsections, each of length ∆x and approximating

the derivative and the second derivative of the function. From this we have

ux(xi) ≈
ui − ui−1

∆x
buxx(xi) ≈ b

ui+1 − 2ui + ui−1

∆x2
,

where the index i signifies the point on the grid. Having discretized the equation, one can

define

u =


u1

...

uN−1

 A =
1

∆x



1 0 · · · 0

−1 1 · · · 0

...
...

0 · · · −1 1



14

and

B =
b

∆x2



−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 . . . 0

...
...

...

0 · · · 1 −2 1


e =



1

1

...

1


.

Equation (3.2) can thus be written as a linear equation system of the form

1

∆x



1 0 · · · 0

−1 1 · · · 0

...
...

0 · · · −1 1




u1

...

uN−1

 =
b

∆x2



−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 . . . 0

...
...

...

0 · · · 1 −2 1




u1

...

uN−1

+



1

1

...

1


(3.3)

which simplifies to (A−B)u = e or e−(A−b)u = 0. This is an equation on the same form

as equation (2.8), which means it can be solved using pseudo transient continuation with

the Runge-Kutta method. The initial condition considered in this thesis will be u(0) = 0.

However, we want to make sure that the method converges towards the solution. Since

the Runge-Kutta method in this case serves the purpose of a stationary linear method,

one can rewrite one step of the Runge-Kutta method on the form of equation (2.9), and

examine if it fulfills the convergence criteria in equation (2.10). A Runge-Kutta update

in our case with the 2-step method can be written as

ui+1 = ui +∆t(b1k1 + b2k2),

where b1 and b2 are taken from the Butcher array and k1 and k2 are the two slopes of

the function. From the Butcher array in table 2.2, we have that b1 = 0 and b2 = 1, which

15

simplifies the expression to

ui+1 = ui +∆tk2.

Using the definition of k2 this becomes

ui+1 = ui +∆tf(u+ α∆tk1),

where f is the function ut = e− (A−B)u. Writing out the definition of k1 as well as the

explicit expression for the function f, we obtain

ui+1 = ui +∆t(e− (A−B)(ui + α∆t(e− (A−B)ui))).

Rearranging the equation we finally obtain the expression

ui+1 = (I −∆t(A−B) + ∆t(A−B)α∆t(A−B))ui + (∆t+∆t(A−B)α∆t)e.

Thus we must show that

ρ(I −∆t(A−B) + ∆t(A−B)α∆t(A−B)) < 1

as well as

I −∆t(A−B) + ∆t(A−B)α∆t(A−B) = I − (∆t+∆t(A−B)α∆t)(A−B).

These equations were examined by plugging them into the code, which will be described

in the nextcoming section. There it was found that the criteria were fulfilled in some

cases, but not in other, which will be discussed later.

In figure 3.1, the convergence of the Runge-Kutta method toward the solution of one

of the discrete points in equation (3.3) is displayed.

16

Figure 3.1: Visualization of how the Runge-Kutta method finds the solution to the prob-
lem over the fictitious time.

The results from the pseudo transient continuation method can be compared to the

exact solution of the linear equation system (3.3). The parameters used in figure 3.2 are

b = 0.5, ∆x = 1
10

and the time step ∆t = 0.00005. The 2-stage Runge-Kutta was used

with α = 0.1 from the Butcher array in table 2.2. The initial conditions are u(t = 0) = 0.

The solution becomes more accurate as the number of iterations increases.

(a) Comparison between the pseudo
time iteration result with the exact so-
lution after 100000 iterations.

(b) Comparison between the pseudo
time iteration result with the exact so-
lution after 1000 iterations.

Figure 3.2: By using pseudo time stepping with t → ∞, we can obtain the solution to
the convection-diffusion problem, with initial conditions 0.

.

17

18

Chapter 4

Machine learning step

We have now found that the Runge-Kutta method used as pseudo transient continuation

can solve the advection-diffusion equation when it is rewritten as a linear equation system.

However, the method does not always converge towards the solution. The convergence

depends on finding appropriate values for the method parameters in the Runge-Kutta

method

∆t α

for each pair of problem parameters (which will be referred to as input parameters in this

thesis) in the advection-diffusion equation (3.3)

∆x b.

In order to find the method parameters given a pair of input parameters, the fuzzy particle

swarm optimization will be used. The objective of the optimization will be not only to find

method parameters for which the method converges, but for which the method converges

the fastest. Hence, for the optimization, we want to find a fitness function which measures

the convergence rate. Even in the case of convergence, the Runge-Kutta must be iterated

multiple times before it reaches the solution. This means that equation (3.3) will have a

19

residual, which should decrease with each iteration j

rj = (A−B)uj − e.

The convergence rate can be measured as a quotient of the residual from the previous

and current iteration. If the quotient is low, it means that the residuals decrease fast.

Consequently, the method should converge quickly. In this case it is not necessary to

iterate the Runge-Kutta method a large number of times. Hence, the fitness function in

this problem will be defined as

f(∆t, α) =
r10
r9

,

which shall be minimized. As the Runge-Kutta method converges, each subsequent resid-

ual will shrink at a decreasing rate. In case the method diverges, the quotient will be larger

than one. An example of how the quotient of residuals and the residuals themselves can

evolve in case of convergence can be seen in figure 4.1.

(a) The residual quotient, or the con-
vergence rate as a function of number
of iterations.

(b) The diminishing residual over
number of iterations.

Figure 4.1: The residual and convergence rate as a function of the number of iterations.
The parameters were ∆x = 1

11
, α = 0.1, b = 0.5, ∆t = 5 · 10−5 and max iterations 10000.

The optimization step will be conducted by inserting a pair of input parameters,

which define the advection-diffusion problem. The fuzzy particle optimization will search

for method parameters in the Runge-Kutta method that minimize the fitness function.

The optimization method is run for 100 iteration, after which the optimized method pa-

20

rameters and the best value for the loss function are stored. This process is repeated for

multiple pairs of input parameters.

Finally, we want to express the optimized method parameters

(
∆t α

)

as a function of the input parameters

(
∆x b

)
.

An initial assumption is that there is a linear relation between the two. Thus, the following

ansatz is made:

(
∆x b

)a11 a12

a21 a22

 =

(
∆t α

)
. (4.1)

Having found such a relation, any pair ∆x and b can be inserted into the left term

of equation (4.1), and ideally obtain parameters ∆t and α for which the Runge-Kutta

method converges. Having optimised all method parameters, all combinations of ∆x and

b are put into a matrix, and all values for the optimized parameters ∆t and α into their

respective vectors. With more than one pair of input parameters and method parameters,

the linear equation system (4.1) becomes overdetermined. Since such equations rarely have

solutions, the problem can be defined as a least squares problem. As an example, for only

two values for each of the two input parameters, the objective would be to find relation

21

vectors

a11

a21

 : min

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣



∆t1

∆t2

∆t3

∆t4


−



∆x1 b1

∆x2 b1

∆x1 b2

∆x2 b2


a11

a21


∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

(4.2)

and

a12

a22

 : min

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣



α1

α2

α3

α4


−



∆x1 b1

∆x2 b1

∆x1 b2

∆x2 b2


a12

a22


∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

. (4.3)

This problem can be solved using for instance equation (2.5).

Having found the relation vectors between the input parameters and the respective

method parameters, one can now multiply the input parameters with the relation vectors

in order to see what method parameters this produces. The method parameters obtained

through these relation vectors will be called calculated method parameters and denoted

αr and ∆tr. In the case that the linear equation system has a solution, αr and ∆tr should

be identical to the method parameters obtained through optimization. Realistically this

will not be the case, but if the relation is in fact linear, then the calculated method pa-

rameters should be close to the optimised parameters. In order to assess the quality of the

linear relation model, one can perform pseudo transient continuation with the calculated

method parameters, αr and ∆tr, and measure the quotient of residuals. If the quotient is

less than one for all αr and ∆tr, the model is satisfactory and can be used to calculate

method parameters for other problems as well.

There is a possibility that the relation between the input and method parameters is

22

not linear and that the predictions made by this model will perform poorly. In this case

an affine as well as a logarithmic relation will be investigated. An affine model is of the

form

(
∆x b 1

)
a11 a12

a21 a22

a31 a32

 =

(
∆t α

)
(4.4)

and the logarithmic model is

(
log(∆x) log(b) 1

)
a11 a12

a21 a22

a31 a32

 =

(
∆t α

)
. (4.5)

These equations can be separated so that each method parameter is treated individually,

in which case they can be turned into least squares problems and solved using equation

(2.5).

23

24

Chapter 5

Results

All code produced for this thesis was written in Python. In-built functions were imple-

mented for the fuzzy particle optimization and for solving the least squares problems.

The rest of the code was written by the author of this thesis.

As a first investigation, the fitness function will be examined for a few chosen pairs of

input parameters, b and ∆x. This is executed by varying the method parameters α and

∆t for each pair of input parameters, and displaying the corresponding residual quotient.

The method parameters which yield the lowest quotient are the ones that should be

found through optimization. The study of the fitness function also helps set reasonable

search spaces for the method parameters in the optimization step later on. In this first

investigation b was set to 0, 0.5 and 1, and ∆x to 1/4, 1/10 and 1/50. In all cases α was

varied between 0 and 1 and ∆t between 0 and 0.05.

25

(a) b = 0, ∆x = 1/4 (b) b = 0, ∆x = 1/10 (c) b = 0, ∆x = 1/50

(d) b = 0.5, ∆x = 1/4 (e) b = 0.5, ∆x = 1/10 (f) b = 0.5, ∆x = 1/50

(g) b = 1, ∆x = 1/4 (h) b = 1, ∆x = 1/10 (i) b = 1, ∆x = 1/50

Figure 5.1: Loss function across varying α and ∆t for different problems.

The values displayed in the heat maps show the loss function, where all values for

which the method diverges (loss values > 1), were set to 0 for clarity. We see that for

b = 0 and large ∆x, the fitness function is smaller than one in all cases, and can reach

very small values for specific method parameters, which results in fast convergence of the

method. In this case it seems like larger time steps yield better results, and perhaps the

best results would be obtained for time steps larger than 0.5, that is values outside of the

investigated interval. For larger b, and especially smaller ∆x, it is noticeable not only that

smaller time steps yield better results, but also that the method diverges for a majority

of method parameters. Since we want to find the best method parameters through opti-

mization, and not by looking at the loss function ourselves, it is essential that we choose a

26

parameter space for which the optimization will be effective. By increasing the time step

interval we might reach lower loss values for certain problems, but since the search space

will be enlarged, it might become difficult to find any good parameters for other prob-

lems, due to the convergence area becoming relatively smaller. Since consistent results

are preferred in this case, the search intervals will be set to [0, 1] for α and [0, 0.05] for ∆t.

In this next step, optimal method parameters for problems with b ∈ [0, 1] and ∆x ∈

[1, 1/50] are found using particle swarm optimization. The intervals are divided into 20

equal sections each, resulting in 400 problems for which the method parameters are found.

The initial condition is u(t = 0) = 0.

(a) Optimized time step for different input
variables.

(b) Optimized α in the RK method for dif-
ferent input variables.

(c) The value of the fitness function at the
end of the optimization for different input
variables.

Figure 5.2: Results for the optimization.

27

In figure 5.2, we notice that with increasing b and decreasing ∆x, the optimal time

step decreases, which is consistent with the behaviour for the fitness functions observed

in figure 5.1. For α we notice a constant behaviour almost throughout all investigated

problems. We also see that the fitness function is the smallest for small b and large ∆x,

which again agrees with the first observation. The largest value observed in the obtained

fitness function is 0.9965, which means that for all the found method parameters the

method will converge. To verify that the optimization method itself converges to the best

value, the fitness value is plotted for b = 1 and ∆x = 1/4 throughout the 100 iterations

of particle swarm optimization.

Figure 5.3: Loss value over 100 iterations of PSO

In figure 5.3 we see that the fitness seems to stabilize already after around 10 itera-

tions. One can also compare this optimized value for the fitness function with the optimal

value in figure 5.1 (g). The optimized fitness lands at a value of 0.514018, while the op-

timal value is around 0.53. By increasing the resolution of the fitness function in Figure

5.1 (g) to 200 · 200, the actual optimal fitness falls to around 0.514018. Therefore, one

can conclude that the optimization works very well for this specific problem.

Having optimized the parameters, equation (4.2) and (4.3) will be solved. The same

input parameters will then be multiplied with the extracted relation vectors to obtain

the calculated method parameters αr and ∆tr. The idea is that if the relation between

28

the input parameters and the method parameters is linear, this will produce calculated

method parameters which are very similar to the optimized ones.

(a) Optimized ∆t (b) Calculated ∆t

Figure 5.4: Comparison between the time step generated by optimization and by the
linear relation function.

In figure 5.4 we see that the calculated time step decreases with ∆x, which is observed

in the optimized time step as well. However, we see very little dependence on b, which is

not observed in the optimal case.

(a) Optimized α (b) Calculated α

Figure 5.5: Comparison between the α generated by optimization and by the linear rela-
tion function.

For α we see that the linear relation worked poorly. The vector that related the input

29

parameters to ∆t is

a11

a12

 =

 0.1489525

0.00268776


which had the residual r∆t = 0.10464933 and the vector that related the input parameters

to α is a21

a22

 =

−0.03653204

0.18822946


with a residual of ralpha = 5.38207431. The predicted values were then inserted into the

Runge-Kutta method, which was iterated 10 times and the fitness function was evalu-

ated. If all the values in the fitness function are below 1, then the Runge-Kutta method

converges for all method parameters found through the linear relation.

(a) Loss function with all values (b) Loss function with converging values

Figure 5.6: Loss function for the calculated method parameters found through the linear
relation

Figure 5.6 (a) displays the values for the loss function when using the method pa-

rameters that were calculated through the linear relation. In figure 5.6 (b) all diverging

results, that is values over 1, were set to 0 in order see clearly for which parameters the

method converges. It is quite clear that although the linear relation could be used to

produce some good parameters, the results are very bad in most cases.

30

Instead of a linear relation, next an affine relation was assumed. Equation (4.4) will

now be solved, again with the intention of comparing the optimized method parameters

with the ones found through the relation. Again, we are looking for similarity between

the two.

(a) Optimized ∆t (b) Calculated ∆t

Figure 5.7: Comparison between the time step generated by optimization and by the
affine relation function.

With the affine relation we see an improvement from the linear. There is a correct

decrease in the size of the time step both with decreasing ∆x and increasing b.

(a) Optimized α (b) Calculated α

Figure 5.8: Comparison between the α generated by optimization and by the affine relation
function.

For α the overall behaviour looks correct, with small values for the largest value of ∆x

31

and almost constant value for the rest of the input parameters. However, the calculated

α looks shifted, so that the majority of the values are too high. The vector that relates

the input parameters to the method parameters for ∆t is


a11

a12

a13

 =


0.11398704

−0.02578615

0.02231511


which had the residual r∆t = 0.05783049 and the vector that related the input parameters

to α is 
a21

a22

a23

 =


−0.30632281

−0.03147297

0.17218164


with a residual of ralpha = 2.59469461. We see that the residuals are lower for this relation

than for the linear. To test if these method parameters work, again we display the loss

function after 10 iterations to see if the method converges for the original problem.

(a) Loss function with all values (b) Loss function with converging values

Figure 5.9: Loss function for the calculated method parameters found through the affine
relation

Comparing to the linear relation, we notice that the overall highest value in the loss

function is lower and occurs for lower values of b. We also see that there are more values

32

for which the method converges.

As a final attempt, the same exact procedure will now be repeated for the logarithmic

relation, equation (4.5).

(a) Optimized ∆t (b) Calculated ∆t

Figure 5.10: Comparison between the time step generated by optimization and by the
logarithmic relation function.

(a) Optimized α (b) Calculated α

Figure 5.11: Comparison between the α generated by optimization and by the logarithmic
relation function.

In both figures we see that the calculated parameters behave very similarly to the

optimized one. As opposed to the affine relation, the logarithmic seems to describe α

better and qualitatively, this looks like the best solution out of the three relations that

have been tested so far. The vector that relates the input parameters to the method

33

parameters for ∆t is


a11

a12

a13

 =


0.04059826

−0.00547204

0.06757667


which had the residual r∆t = 0.02800722 and the vector that related the input parameters

to α is 
a21

a22

a23

 =


−0.07490579

−0.0278398

0.01441217


with a residual of ralpha = 2.09705821. Again, the residuals have improved from the affine

case. Once more we will study the loss heat map to determine whether this logarithmic

relation improves the overall convergence for the original problem.

(a) Loss function with all values (b) Loss function with converging values

Figure 5.12: Loss function for the calculated method parameters found through the log-
arithmic relation

The improvement of the residuals is not reflected in the loss functions as seen above,

even though the calculated parameters looked similar to the optimized ones. One ex-

planation for the failure of this method can be that the input parameters and method

parameters do not have a linear, affine nor logarithmic relation, and are perhaps described

34

by some other function. More functions beside those included in the thesis were tested,

and none of them yielded interesting results.

Another possible explanation is that either of the method parameters ∆t or α are

very sensitive, and/or that the system as a whole is not very robust. This can be assessed

through the so called sensitivity analysis and robustness analysis. Sensitivity analysis

tests how the studied system responds to small variations in the optimal parameters. The

parameters are varied one by one with a small quantity, oftentimes either by increasing or

decreasing them by 10% to see how it affects the result. Robustness analysis, on the other

hand, measures the impact on the model when all parameters are changed at once, which

again is oftentimes done with 10%. For this model sensitivity and robustness analyses

can be done by varying the ∆t and α and investigating how it effects the loss function.

We can start by increasing the time step ∆t by 10% and leaving α optimized.

(a) Loss function with all values (b) Loss function with converging values

Figure 5.13: Loss function with increased ∆t.

In figure 5.13 (a) we see all values in the loss function, while 5.13 (b) displays only

the converging values, while all diverging are set to 0 (colored black). The highest value

is 2.05 and the lowest 0.45. It is quite clear that changing the time step with just 10%

makes a big difference for the convergence- now a vast majority of the method parameters

cannot solve the original problem. We see that the method parameters for lower values of

b, but primarily for high ∆x still perform fairly well. There are also a couple of outliers

35

scattered where the method converges. We can now perform a similar sensitivity analysis

for α to see how it affects the loss function.

(a) Loss function with all values (b) Loss function with converging values

Figure 5.14: Loss function with increased α.

Again, the fitness function has values over one for most of the method parameters and

one can conclude that both ∆t and α are sensitive to variations. Here the highest loss

value is 1.92 and lowest 0.50. Finally a robustness analysis can be performed with both

parameters increased by 10%.

(a) Loss function with all values (b) Loss function with converging values

Figure 5.15: Loss function with increased ∆t and α.

Again, the robustness analysis only confirms what the sensitivity analyses have shown-

a majority of the heat map diverges. It becomes very clear that even small variations to

the parameters prevents the Runge-Kutta method from converging to the right solution.

36

This is a probable explanation for the method investigated in this thesis not working.

Most likely, there is no function that can relate the input parameters and the method

parameters accurately enough to obtain the optimal method parameters. This means that

whatever calculated method parameters, αr and ∆tr the relation vectors produce will be

an approximation. Since it has been shown that the model is very sensitive to small vari-

ations, αr and ∆tr will not be satisfactory for the method. The behaviour found from the

sensitivity and robustness analyses agree with the loss functions found in the initial inves-

tigation in figure 5.1. There we saw that for small b and ∆x the loss function is below one

for essentially all values. Moving slightly in the parameter space did therefore not matter

for the convergence of the method. For high b and small ∆x, however, there was only a

narrow region where the method converged, so small perturbations were expected to have

a larger effect on the quality of the method. In order for this procedure of finding method

parameters to be effective, one would have to find a function which is very accurate in

the sensitive regions, even if it comes at the cost of being less precise in the other regions.

Another approach could be to divide the parameter space into subsections and describe

them with different relations, which would be particularly useful if it happens that the

regions cannot effectively be described by one singular function. It is also a possibility

that there are two different models relating α and ∆t respectively to the input parameters.

Looking back at the primary heat maps in figure 5.1, it seems obvious that different

areas of input parameters would require different search spaces for the method parameters.

With that being said, the technique investigated in this thesis seems to work well for larger

∆x, even if may not be optimal for that region, and there are definitely more approaches

to be explored for finding a successful relation between the input and method parameters

that could solve the advection-diffusion equation.

37

38

Chapter 6

Summary and conclusions

In this thesis the advection-diffusion equation was converted to a linear equation system

using the finite difference method. The linear equation system can be solved with pseudo

transient continuation using the 2-step Runge-Kutta method, which has two method

parameters. The convergence of the Runge-Kutta method toward the solution depends

on the right choice of method parameters, given a pair of input parameters from the

advection-diffusion problem. The method parameters which resulted in the fastest con-

vergence of the Runge-Kutta method given a pair of input parameters were found using

particle swarm optimization. It was found that the method converges for all problems

with the optimized method parameters. Next, a search for a relation between param-

eters in the Runge-Kutta method and parameters in the advection-diffusion equation

was conducted. Linear, affine and logarithmic models were tested, but none consistently

produced method parameters for which the Runge-Kutta method converges. Sensitivity

and robustness analyses were conducted, which showed that the Runge-Kutta model is

very sensitive, and even small perturbations from the optimal method parameters lead

to divergence. It was concluded that none of the relations explored in the thesis could

explain the relation between the two method parameters and the input parameters. In

the future, one could try two different models for the method parameters separately, or

test different models for different ranges of input parameters.

39

40

Bibliography

[1] Suli, E., Meyers, D. An Introduction to Numerical Analysis, Cambridge: Cambridge
University Press; 2003

[2] Sauer, T. Numerical Analysis, Harlow: Pearson; 2014

[3] Birken, P. Numerical methods for stiff problems, Lund; 2022

[4] Bertsekas, D. P. Nonlinear Programming: Concepts, Algorithms, and Applications,
Belmont: Athena Scientific; 2016

[5] Nobile, M. S., Cazzaniga, P. et al. Fuzzy Self-Tuning PSO: A settings-free algorithm
for global optimization, Swarm and Evolutionary Computation, Volume 39, Pages
70-85 (2018)

[6] Trefethen, L. N., Bau III D. Numerical Linear Algebra, Philadelphia: SIAM; 1997

[7] Kelley, C. T., Keyes, D. E. Convergence Analysis of Pseudo-Transient Continuation,
SIAM Journal on Numerical Analysis, Volume 35, Issue 2 (1998)

[8] Stocker, T. Introduction to Climate Modeling, Berlin: Springer; 2011

[9] Koirala, R. P., Dawanse, S., Pantha, N. Diffusion of glucose in water: A molecular
dynamics study, Journal of Molecular Liquids, Volume 345, article id. 117826 (2022)

[10] Haynes, W. M., Dymond, A. E. Diffusion Coefficients in Gases, Journal of Physical
and Chemical Reference Data, Volume 34, Pages 1139-1191 (2005)

41

42

Appendix

FST PSO

In FST PSO the cognitive term ci1, social term ci2, inertia wi and the maximum and

minimum velocity are determined for all individual particles, i, with each iteration based

on two functions- the distance of the particle to the global best, δ, and the improvement

of the fitness compared to the previous iteration ϕ. The maximum velocity is defined

as vimax = U · (P i
max − P i

min) and minimum velocity as vimin = L · (P i
max − P i

min), where

[P i
min, P

i
max] is the interval of the search space for particle i and the so called clamping

values must fulfill U ∈ (0, 1], L < U and L ∈ (0, 1]. The 15 rules that govern the update

of the terms ci1(t), ci2(t), wi(t), Ui(t) and Li(t) are summarised in the table below.

43

Number Rule definition

1 if ϕ worse or δ same −→ w low

2 if ϕ same or δ near −→ w medium

3 if ϕ better or δ far −→ w high

4 if ϕ better or δ near −→ c2 low

5 if ϕ same or δ same −→ c2 medium

6 if ϕ worse or δ far −→ c2 high

7 if δ far −→ c1 low

8 if ϕ worse or ϕ same or δ same or δ near −→ c1 medium

9 if ϕ better −→ c1 high

10 if ϕ same or ϕ better or δ far −→ L low

11 if δ same or δ near −→ L medium

12 if ϕ worse −→ L high

13 if δ same −→ U low

14 if ϕ same or ϕ better or δ near −→ U medium

15 if ϕ worse or δ far −→ U high

Table 6.1: Rules for the updates of the different terms

Low, medium and high values for the respective terms are summarized in the table

below.

44

Variable Low Medium High

w 0.3 0.5 1.0

c2 1.0 2.0 3.0

c1 0.1 1.5 3.0

L 0.0 0.001 0.01

U 0.1 0.15 0.2

Table 6.2: Examples of values for the variables

[5]

45

Bachelor’s Theses in Mathematical Sciences 2023:K12
ISSN 1654-6229

LUNFNA-4046-2023

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

