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Abstract

In this project, we conducted design of experiments on the Proximal Policy Optimization (PPO)

reinforcement learning algorithm, with the aim of optimizing its performance for robotic learning

tasks. We considered different hyperparameters of PPO as factors and used a factorial design to

explore their effects on the algorithm’s performance. We specifically focused on the CartPole-V1 task

in the OpenAI Gym classic control environment and measured the time it took for the learning to

reach 95% success as the primary performance metric. Our results show that some hyperparameters

have a significant impact on PPO’s performance, while others have little effect. Overall, our project

demonstrates the usefulness of design of experiments for optimizing RL algorithms for robotic learning

tasks and provides insights into the hyperparameter tuning process.
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1 Introduction

Reinforcement learning (RL) is a popular tech-

nique used in robotics to train agents to per-

form tasks through interaction with their envi-

ronment. However, optimizing the hyperparam-

eters of RL algorithms can be challenging and

time-consuming. In this report, we investigate

the use of design of experiments (DOE) to op-

timize RL algorithms for solving robotic tasks in

a more efficient manner. Specifically, we focus

on the Proximal Policy Optimization (PPO) algo-

rithm and use fractional factorial design to screen

for the most influential hyperparameters on the

CartPole-V1 task in RLZoo.

A lot of previous works that utilize RLBench

and other benchmarks for testing, either lack sta-

tistical analysis or present insufficient evidence.

Yet, some still claim their result is significant

without providing statistical proof of significance.

In a paper by Cedric Colas et al. [1], they started

questioning previous papers in this regard. After

reproducing the results of a project, they deter-

mined that a type-II error had taken place, which

means that the hypothesis was not rejected de-

spite being false. They later concluded that the

cause of this was wrongful choice of statistical

methods and lack of an adequate number of test

simulations.

With this in mind, it is important to be critical

when reading papers stating significance without

proof since it might be incorrect. The lack of sta-

tistical analysis in previous work serves as a strong

motivation for the current project. By using the

principles of design of experiments, we strive to

bridge the gap between limited simulations and

robust statistical evidence. Our method offers a

user-friendly framework and provides straightfor-

ward statistical analysis. Additionally, our ap-

proach can be adapted to suit different research

tasks and is flexible in its application.

The project was conducted at the Robotic and

Semantic Systems research group at LTH, in an

attempt to contribute to the research directly re-

lated to an initial workshop publication [2].

1.1 Related Work

Several studies in the past have compared rein-

forcement learning algorithms [3][4][5], and more

studies are continuously being conducted on the

topic. Since RL can be used in a wide range of

applications and tested on different benchmarks

[6][7][8] there is no guarantee an RL algorithm

will have similar performance on different tasks.

It is therefore wise to make several assessments of

a RL algorithm by fitting the model to different

tasks in different environments.

Out of the known RL algorithms, we focus in

this thesis on the model-free algorithm Proximal

policy optimization (PPO) [9], which has been fre-

quently used in research [3][5]. With this algo-

rithm we investigate its performance for different

tasks. This should give a good indication on its

performance, and the identified factors guide us

to suitable hyperparameter values for optimiza-

tion and testing [10].

Since our work puts great effort into design of

experiments, a lot of methods come from course

literature [11][12]. Using experimental design in

RL for generating and analyzing data appears

to be beneficial but rarely done to standards.

We found work using other experimental methods

[13][4]. Closely related work can be found in [14]

with application on Clustering algorithms. Our

project will use factorial design similar to [14].

In addition, we perform the analysis of factor ef-

fects, perform a separate screening to first iden-

tify important factors and apply response surface

methodology. Our factors are in continuous space,

allowing center point data in the design.
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1.2 Research Questions

The initial plan for this thesis was to explore im-

portant relationships when optimizing RL algo-

rithms used for solving real world problems in the

benchmark environment RLBench. But due to

staff availability issues at the department of Com-

puter Science, this idea had to be buried and in-

stead left for future work.

The new aim of the project was therefore to

focus on a more simple task, i.e. investigating, if

design of experiments can be used for hyperpa-

rameter optimization, which factors matter the

most and to use the resulting model to optimize

the hyperparameters, allowing for non-linear ef-

fects, if needed.

2 Theory/Background

2.1 Reinforcement Learning

Reinforcement learning is a type of machine learn-

ing where an agent learns to make decisions by

interacting with an environment. It has been suc-

cessfully applied to a wide range of problems, from

playing games to controlling robots. It is a pow-

erful technique for developing intelligent systems

that can adapt and learn from experience.

2.1.1 Key Elements

Agent-Environment Interaction

One of the most important key components in re-

inforcement learning involves the interaction be-

tween a learner, also known as an agent, and its

surrounding environment [15][16]. Based on ac-

tions taken by the agent in the environment, it

receives feedback in the form of rewards. The

agent’s goal is to learn a policy that maximizes

the cumulative reward over time.

To achieve this goal, the agent performs a se-

ries of time steps t as illustrated in Figure 1. First,

the agent observes the environment’s state st ∈ S,
for S possible states. Second, it selects an action

at based on the available actions A(st) in the cur-

rent state. Third, it receives a reward Rt+1 based

on the action taken and ends up in a new state

st+1. Finally, it updates its policy based on the

reward received and the new state of the environ-

ment.

Agent

Environment

action
at

reward
Rt

state
st

st+1

Rt+1

Figure 1: General interaction between agent and

environment [15] in reinforcement learning

Policy

Policy is the strategy or rule applied by the agent

and is denoted by πθ(at|st), which maps the prob-

ability of selecting a certain action at given the

current state st at time step t.

A big challenge in reinforcement learning is

the exploration-exploitation trade-off. The agent

needs to explore new actions to discover the op-

timal policy, but it also needs to exploit actions

that have already been tried and tested to maxi-

mize the cumulative reward.

Reward- & Value Function

As mentioned, the goal is to maximize the cumu-

lative reward over time. A reward function solves

this problem by determining which action gener-

ates the highest reward at each time step. Dif-

ferent from the reward function, which focuses on
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immediate success, the value function predicts the

expected rewards in the long run. This allows the

agent to compare future actions and helps in de-

ciding which action to take in each state. By com-

bining the reward and value functions, the agent

can learn to make decisions that maximize the ex-

pected cumulative reward in the long run.

2.1.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [9] is one of

the most popular and widely used reinforcement

learning algorithms since it is simple to use and

reliable.

On-Policy

PPO is an on-policy method which means that it

learns by updating its policy based on the actions

it takes while following that same policy. This ap-

proach is more time consuming than alternative

methods since the updates are more conservative

but with the upside of being more stable.

Policy Gradient Method

Policy gradient method directly learns a policy

by optimizing its parameters through stochastic

gradient ascent. It works by first computing an

estimate of the policy gradient and then passing

it to a stochastic gradient ascent algorithm. The

policy is updated iteratively to maximize rewards.

One frequently used gradient estimator is given by

ĝ = Êt[∆θlogπθ(at|st)Ât] (1)

where πθ is a stochastic policy and Ât is an es-

timator of the advantage function at timestep t.

Furthermore, ĝ in equation (1) is obtained by dif-

ferentiating the objective function

LPG(θ) = Êt[logπθ(at|st)Ât] (2)

The advantage function Ât can be generalized as

Ât = δt + (γ)δt+1 + ...+ γT−t+1δT−1 (3)

where δt = rt + γV (st+1)− V (st) (4)

and γ is the discount factor, timestep t in the in-

terval [0,T ] and the estimated value V in state

st.

Clipped Surrogate Objective

PPO utilizes a surrogate function, denoted L(θ)

in eq. (5). The function puts a constraint on the

policy in order to avoid unnecessarily large pol-

icy updates, causing the probability ratio rt(θ) =
πθ(at|st)

πθold
(at|st) being carried to far away from 1. The

function is given by

L(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]

(5)

where ϵ the clip range. The probability ratio is

clipped so it stays within the interval [1−ϵ, 1+ϵ].

2.2 RLBench

RLBench [8] is a benchmark and learning envi-

ronment for robot learning, designed to, among

other things, be able to compare and evaluate

different reinforcement learning algorithms. The

benchmark offers 100 unique tasks covering dif-

ferent skills such as reaching, pushing and plac-

ing objects. These tasks are supposed to resem-

ble real world problems including realistic physics,

with the ambition to advance the development of

vision-guided manipulation.

Environments

Tasks are performed by a Franka Emika Panda

arm with 7 movable joints, attached to a wooden

table [8]. It is supplied with a stereo- and a

monocular wrist camera that provides visual in-

formation about the scenery in the form of rgb,

depth and segmentation mask data as shown in
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Figure 2. Proprioceptive data such as joint an-

gles, velocities, torques and the end-effector pose

are available as well.

In order to improve training and task comple-

tions, one or more variations are added to each

task. This shifts the focus away from specific ob-

jects and instead emphasizes the task itself. It

would not be particularly useful if the agent would

be really good at grasping a red ball but fail miser-

ably if the ball was blue. A reward of +1 is only

given upon task completion, making the reward

system completely sparse for each task.

Figure 2: Observation space [8] in RLBench

2.3 RLZoo

RLZoo [17] is a versatile library that can be used

for a wide range of RL applications, including

robotics and game playing. It is designed to en-

courage the development, testing, and comparison

of RL algorithms by offering a selection of pre-

implemented RL algorithms, which can be cus-

tomized according to the users needs.

RLZoo supports a collection of environments,

such as OpenAI Gym [6], which makes it easy

to benchmark different algorithms and compare

their performance. Figure 3 shows an image of the

CartPole-V1 task available from OpenAI Gym en-

vironment, where the objective is to balance the

pole.

Figure 3: CartPole-V1 from OpenAI Gym [6]

2.4 Design of Experiments

When striving to achieve a model’s desired perfor-

mance, we often resort to trial and error by tun-

ing hyperparameters and observing the results of

running the program. The success of our choices

is determined by the higher or lower performance

achieved, but it can be difficult to tell whether

any improvements are due to luck or a genuinely

better choice of parameters. This can result in a

confusing search process and relying on getting a

lucky run that meets a desirable threshold.

By conducting an experimental design at

the beginning of a survey instead, the researcher

can plan, conduct and analyze all tests in a struc-

tured manner. With help from statistical meth-

ods, the results are easy to interpret and provides

strong statistical evidence. The purpose of DOE

is to understand the relationship between the in-

puts and outputs, which are referred to as factors

and response, and to determine the optimal com-

bination of inputs that lead to the best solution.

Finding these relationships can be explained as a
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series of processes as in Figure 4, where control-

lable factors can be set for each experiment while

uncontrollable factors act more like noise.

Process Response
variable

Controllable
input factors

Uncontrollable
input factors

Figure 4: The experimental process in design of

experiments [11]

2.4.1 Factorial Design

When conducting DOE, the first step is usually a

screening experiment. The idea is to analyze

several factors in a cost efficient way. Factors and

interactions with significant influence on the re-

sponse are then selected for a new, more detailed

experiment. One of the most common and widely

used screening methods is factorial design [11].

A factorial design with two levels is represented

by 2k, where k refers to the number of factors.

The two levels are defined as low (-1) and high

(+1), which can take on either quantitative- or

qualitative values. The specific values assigned to

the levels depend on the factor being studied.

Tables 1 and 2 provide an example of how to

set up a 23 design with three factors. First, the

low and high levels of each factor are identified,

and then a design matrix is created. Each row in

the design matrix represents a single experimental

run and specifies the levels at which each factor

should be set. This specific design can be visual-

ized in the shape of a cube as in Figure 7a, where

each corner represent one experiment. The com-

pletion of all experimental runs is considered as

one replication of the test, and the data collected

from these runs are referred to as the response.

Factors

Level A B C

-1 x1 u1 z1

+1 x2 u2 z2

Table 1: Level of the three factors

Factors Response

Exp no. A B C y

1 -1 -1 -1 (1) = y1

2 +1 -1 -1 a = y2

3 -1 +1 -1 b = y3

4 +1 +1 -1 ab = y4

5 -1 -1 +1 c = y5

6 +1 -1 +1 ac = y6

7 -1 +1 +1 bc = y7

8 +1 +1 +1 abc = y8

Table 2: 23 Design Matrix

Calculating the (fixed) main effect of factor A for

instance, is then

A = ȳA+ − ȳA− = (6)

(a+ab+ac+abc)
4n − ((1)+b+c+bc)

4n =

a+ab+ac+abc−(1)−b−c−bc
4n

where ȳA+ is the mean value of all high level op-

erations of A, ȳA− the low level and n number of

replications.

Similarly, the factor effect of B is given by

B = ȳB+ − ȳB− = (7)

b+ab+bc+abc−(1)−a−c−ac
4n

Lastly, the interaction effect between A and B is

given by

AB =
abc+ ab+ c+ (1)− a− ac− bc− b

4n
(8)

i.e. the effect of A is different for different levels

of B (and vice versa). For the interested reader,

further information on factor effect computation
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is available in Montgomery’s Design and Analysis

of Experiments [11].

In a full factorial design as exemplified in

Table 2, all permutations are tested which can be

cumbersome when increasing the number of fac-

tors. A 25 design requires 32 experiments, add one

additional factor and suddenly 64 experiments are

needed. Beside from being a costly procedure,

performing this many experiments usually serves

little purpose. In reality we are most interested in

factor’s main effects A, B & C and their two-way

interactions with each other AB, AC & BC. The

reason behind neglecting third or higher factor in-

teractions is simply because they rarely have an

impact [13]. In total, 7 experiments are sufficient

to estimate 3 main effects, 3 two-way interactions

and the model intercept (grand average from all

tests).

Base Fac. ABC

Exp no. A B C =D

1 -1 -1 -1 -1

2 +1 -1 -1 +1

3 -1 +1 -1 +1

4 +1 +1 -1 -1

5 -1 -1 +1 +1

6 +1 -1 +1 -1

7 -1 +1 +1 -1

8 +1 +1 +1 +1

Table 3: 24−1 Design Matrix

The natural solution for reducing the number of

experiments is fractional factorial design, de-

noted as 2k−p, where p is the size of the frac-

tion. When reducing a design this way, some

combinations are lost in the process, compared

to a full factorial design where all combinations

are present. In order to minimize the informa-

tion loss, p independent factors are generated by

taking the product of the base factors.

For example, in Table 3, a 24−1 design is rep-

resented. Instead of conducting 16 runs to test 4

factors, this fractional design requires only 8 runs.

(k−p) factors, in this case A, B and C, are consid-

ered as base factors and their levels are structured

as usual. The p independent factors however, fac-

tor D in this example, need to account for the

missing combinations. Selecting which combina-

tions to include is done by letting D be the prod-

uct of the base factors A, B, and C. In general,

the last p independent factors are generated by

taking products of the first (k − p) base factors.

As a side effect of this, higher order interac-

tions are now assumed to be negligible when es-

timating main effects. Table 4 shows the alias

structure of this, all main effects are confounded

with three-factor interactions, thus, these effects

must be ignored. Furthermore, all two-factor in-

teractions are confounded with another interac-

tion, making it difficult to estimate them sepa-

rately.

A = BCD

B = ACD

C = ABD

D = ABC

AB = CD

AC = BD

AD = BC

Table 4: Alias structure of a 24−1 design with

factor generator D=ABC

Factor effects can be established by methods such

as analysis of variance (ANOVA) and linear re-

gression.

In a screening experiment, these effects can

be analyzed with a normal probability plot and a

Pareto chart. The normal plot, depicted as in Fig-

ure 5, represents the factor effects assuming nor-

mal distribution. A normal line is fitted to align

with as many points as possible. Points deviating
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from this line are considered as outliers, indicat-

ing significant influence, which is of great interest

for further analysis. Additionally, the magnitude

of the calculated factor effects can be presented in

a bar diagram known as a Pareto chart, as shown

in Figure 6. This chart provides further clarity

regarding the size of the effects.

Outlier

Outlier
Normal line

Effect magnitude

N
or

m
al

 s
co

re

Figure 5: Normal probability plot. Points fol-

lowing the line can be considered normally dis-

tributed, outliers indicate significant effect

Magnitude of effect

Ef
fe

ct

Figure 6: Bar diagram of the magnitude of fac-

tor effects. Positive effects in blue and negative in

red

Another useful output parameter from ANOVA

or linear regression is the p-value, which usually

tests a null hypothesis H0 against an alternative

hypothesis H1 such as

H0 : µ1 = µ2 = ... = µk

H1 : µ1 ̸= µ2 ̸= ... ̸= µk

Here H0 states that there is no difference in mean

µ for k factors, while H1 states that there is a

significant difference. The p-value is then used

to determine if an hypothesis can be rejected or

not. If p-value > α, the hypothesis H0 can not

be rejected, which is inline with that the samples

can be considered coming from the same distribu-

tion. If p-value ≤ α we reject the null hypothesis

on level α and conclude that there is a significant

difference between observations. Typically α is

set to test at 0.05 significance level, meaning that

in each test the risk is 5% to reject a true null

hypothesis.

2.4.2 Center Points

A risk when running factorial design is missing

out on non-linear relationships between factors

and the response [18]. An unreplicated design has

even bigger flaws since replications are necessary

in order to estimate experimental error.

By introducing center points to the facto-

rial design, the model gains the ability to detect

second-order effects and adds well needed replica-

tions for error estimate. The idea is very simple,

a 23 factorial design can be visualized as a cube as

in Figure 7a, where each corner represents one ex-

periment. A center point is then placed in the ab-

solute center of the cube, creating a point between

all levels. Important here is that all factors have

to be quantitative and continuous, where a center

value between two levels can be found. Comple-

menting the design matrix from Table 2 with cen-

ter points results in Table 5. It is recommended

to spread the center points out during the exper-

iment, preferably at the beginning, in the middle

and in the end. If possible, center points should

always be included in a factorial design.
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B

A

C

-1
-1

-1

+1

+1

+1

(a) 23

B

A

C

-1
-1

-1

+1

+1

+1

(0,0,0)

(b) 23 with center point

Figure 7: Factorial design cubes

Factors

Exp no. A B C

1 0 0 0

2 -1 -1 -1

3 +1 -1 -1

4 -1 +1 -1

5 +1 +1 -1

6 0 0 0

7 -1 -1 +1

8 +1 -1 +1

9 -1 +1 +1

10 +1 +1 +1

11 0 0 0

Table 5: Design Matrix with added center points

Apart from being able to estimate the experimen-

tal error, and for checking drift in the experimen-

tal setup, an additional benefit with center points

is that they make it possible to check if there is a

linear relationship between factor levels. By draw-

ing a line between the high- and low levels, we can

compute the distance from the drawn line to the

center points as shown in Figure 8. If the dis-

tance is significant, curvature between points can

be assumed.

0-1 1
Factor

R
es

po
ns

e

Distance

Total mean

Linear model

Figure 8: Using center points to assess the de-

viation from linearity

To confirm this, we can use a statistical tool

called a permutation test. This test does not

make any assumptions about the distribution of

the data and is useful for testing curved rela-

tionships. How permutation tests work can be

explained with an example. Figure 9 shows a

group receiving treatment in red and a control

group in blue. This is the observed data and a
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test statistic (such as mean) can be calculated by

Test statistic = µT − µC , where µT & µC are the

mean of the treatment and control group, respec-

tively. This value will be important for later and

therefore saved in the second image in Figure 9.

Treatment Control

0 x-x

Figure 9: Observed data. Treatment and con-

trol group above and test statistics below

Treatment Control

0 x-x

Figure 10: Permutation distribution. Re-

sampling data above and permutation distribu-

tion below

Then in Figure 10, a permutation distribution

is created by re-sampling the data many times.

Each time, the treatment and control group are

randomly shuffled, and a new test statistic is com-

puted for the re-sampled data. After enough col-

lected samples we are left with a, in this case one-

sided, permutation distribution as the bottom im-

age in Figure 10. Here the green dots represent

the number of test statistics that are more ex-

treme than the observed value. Based on this

number, the p-value can be calculated to deter-

mine whether it can be explained by chance or

not.

2.4.3 Residuals & normality testing

When performing ANOVA, we make the assump-

tion that our data is normally distributed. Before

any conclusions can be drawn, it is important to

verify if this assumption is true. A convenient way

to do so is by computing the difference between

the measured values and the predicted values, also

known as residuals. Noting the residuals as ϵ, are

then calculated by (9)

ϵij = yij − ŷij (9)

where ŷij is the estimated value of observation yij

for treatment i and observation j.

Residuals are then analyzed through graph-

ical visualization. A normal probability plot is

an effective approach for visual assessment of the

distribution of the data, where the residuals are

plotted against the theoretical values, i.e. it helps

determine whether the residuals follow a normal

distribution.

The advantage of using residuals to check nor-

mality opposed to raw data is that potential noise

and errors can be seen as normally distributed if

residuals are. A second tool is the residuals vs

fitted values plot, used to assess the linearity and

constant variance assumptions of a linear regres-

sion model. It plots the residuals against the fit-

ted values, i.e. the expected values. A random

scatter of points with no clear pattern indicates

that the assumptions are met, while an appar-

ent pattern, such as a heteroscedastic or quadratic

9



shape, suggests that the model needs further at-

tention.

2.4.4 Response Surface Method

In a scenario where the assumption of linearity

is violated, quadratic effects can be assessed us-

ing Response surface methodology (RSM). RSM

is a technique for modeling and analyzing how a

response variable of importance is influenced by

different factors. The aim is to find the relation

between factors and response that optimizes the

response.

Describing the result of such relation for a

linear function, a first-order model can be rep-

resented as the response function (10)

y = β0 +

k∑
j=1

βjxj + ϵ (10)

where y is the response, xj factors, βj coefficients

and an error term ϵ. However, this representa-

tion only include main effects, it is therefore wise

to extend the equation with the interaction term

xixj .

y = β0 +
k∑

j=1

βjxj +
∑∑

i<j

βijxixj + ϵ (11)

Since assuming perfect linearity is often problem-

atic, this addition gives more flexibility because

first-order interactions can be approximated. At

times when the quadratic effect is too prominent

to fit equation (11), a second-order response func-

tion is more suitable.

y = β0+

k∑
j=1

βjxj +
∑∑

i<j

βijxixj +

k∑
j=1

βjjx
2
j + ϵ

(12)

After choosing the appropriate response function,

the surface is represented graphically and ana-

lyzed.

Calculating the coefficients βi, i = 0...k to fit

the regression model is related to equation (6), by

taking 1/2 of the (fixed) effects

β0 = y β1 = A/2

β2 = B/2 β12 = AB/2

with exception of the intercept β0 that is the aver-

age of all responses. Center points only contribute

to the intercept and will not interfere when calcu-

lating normal factor effects.

Central Composite Design

(+1,+1)

(+1,-1)

(-1,+1)

(-1,-1)

(0,0) x1

x2

Figure 11: CCD with 2 factors [11]

When conducting RSM, it is common to use cen-

tral composite design (CCD) to add additional

data points that allow for building a second-order

response surface. It usually consists of a 2k facto-

rial design with 3-5 center points and 2k so called

axial points. In Figure 11 we see an example of

a 22 design with the regular corner- and center

points. The axial points are placed at (±α, 0) and

(0,±α), where the choice of α depends on how we

want to model the design.
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Figure 12: Effects of spreading out factors [11]

2.4.5 The unreplicated test

In reinforcement learning, the number of tests has

gradually decreased over the years due to the in-

creasing computational expense [19]. However,

the importance of replications was demonstrated

by Colas et al. [1], who reviewed several papers on

deep RL and made a concerning discovery. None

of the surveys used more than 5 seeds, which re-

sulted in a 51% chance of false negatives (i.e. fail-

ing to reject a false null hypothesis). Furthermore,

inappropriate statistical methods were used when

evaluating. Although cutting corners may be un-

avoidable due to practical limitations, assuming

that any method works for analysis is a danger-

ous practice. Instead, it is important to choose

an appropriate method based on the specific sit-

uation.

In terms of DOE there are several helpful tools

if resources are limited that still allow for interest-

ing observations given few tests. When perform-

ing an unreplicated factorial design during screen-

ing, a smart trick is to aggressively spread out fac-

tors as depicted in Figure 12. This increases the

chances of detecting important effects that might

have been missed otherwise. Imagine doing the

factorial design in Table 2 without replications,

i.e. only one test for each combination. The clear

risk of this is introducing undesirable noise to the

system, which in turn can cause misleading out-

put. By embracing the uncertainty and using ag-

gressive factor spreading, we can make the most

of limited resources and still obtain valuable in-

formation from unreplicated factorial designs.

Secondly, factorial design cannot estimate ex-

perimental error unless some runs are replicated.

To provide these replications without replicating

all permutations in the design, some center points

are added to the test. This does not influence fac-

tor effects βi (i > 0) but adds to the grand average

β0 in Eq. (10).
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Figure 13: A diagram showcasing the method for the planned execution of experiments
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3 Method

The method for this thesis can be divided into

three separated parts, namely screening followed

by an optimization experiment and lastly an op-

tional response surface for optimization. Figure

13 shows a general approach on how this thesis

was conducted in order to answer the research

questions.

3.1 Screening Experiment

The experiment began by deciding which factors

to investigate and the most appropriate response

to measure. Testing multiple factors at a low cost

is key, therefore a fractional factorial design was

appropriate. Factors were spread out to increase

the chance of detecting significant effects as well

as including center points.

The sampled data were fitted to a linear re-

gression model and factor effects were visualized

using a normal probability plot and Pareto chart,

as previously shown in Figure 5&6. In the nor-

mal probability plot, all effects are spaced as if

they were normally distributed, closer near the

center and with increasing distance towards the

tails. If no effect is present, the effect estimates

would come from a normal distribution with mean

0, and would thus form a straight line in this

diagram. Interesting observations that can be

made here are points that deviate from this line,

so called outliers. Outliers are the primary sub-

jects when identifying the most important fac-

tors, and assumptions can be verified further by

a Pareto chart, which plots the magnitude of all

effects in a descending bar graph. The best can-

didates from these graphs were analyzed further

using ANOVA, where factors showing statistical

significance would be selected.

The last step after reducing the model to only

include significant factors was residual analysis,

to analyze if the assumptions of the ANOVA and

linear regression are fulfilled, i.e. that error terms

are normally distributed, independent and with

constant variance. Normal distribution was as-

sessed by illustrating the residuals in a normal

plot, e.g. Figure 14, which compares the observed

quantiles of the residuals to the expected quan-

tiles of a normal distribution. Residuals following

a straight line indicate normality. Also present in

the plot is a shaded area, it represents the range

of values that would be expected if the residuals

followed a normal distribution.
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Figure 14: Normal plot for assessing the nor-

mality of the residuals

Independence and constant variance was assessed

by plotting residuals against their expected val-

ues. Ideally all data points are scattered randomly

around zero with no visible pattern, behaving as

they are expected to. In a scenario where the

residuals did not behave linearly nor normally,

log-transformation of the data was necessary.

If everything looked good we could proceed to

the following step which was a more detailed ex-

periment on the significant factors. New levels

were determined based on factor levels with best

performance.
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3.2 Optimization Experiment

Depending on the number of factors, either a frac-

tional or a full factorial experimental design would

be used here. A difference from the screening

experiment is that multiple replications were re-

quired here in order to get a good and trustworthy

estimate of factor effects. Ideally the model has

been reduced so it will not be too computation-

ally expensive running all replications. Given the

number of replications, there is no longer any need

of preselecting factor effects through normal prob-

ability or Pareto plots, like in the screening. Thus

we can jump straight to ANOVA and analyze the

result and residuals.

After conducting all the necessary analyses,

we assess whether the data exhibited linearity. If

that was the case, we would have reached the end

of the survey and chosen the factor levels yield-

ing the best response. But if the data showed

signs of non-linearity, we performed a permuta-

tion test to confirm its significance. If the per-

mutation test yielded a significant outcome, we

proceeded to the next phase, which involved im-

plementing response surface methodology.

3.3 Response Surface Experiment

Optionally, if there is evidence of the model be-

ing non-linear, more testing is required in order

to determine optimal settings. Response surface

method was applied using central composite de-

sign. Data collected from the optimization was

complemented with new runs in the so called ax-

ial points. By fitting all data to a second order

response function it could be analyzed the exact

same way as before and determined which factors

caused non-linearity to occur. The best solution

could be obtained through modeling response sur-

faces graphically. When done and optimal hyper-

parameters were found, a comparison was made

with the default hyperparameters to see if any

improvements were made.
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4 Experiments

4.1 Environment and Conditions

In this thesis, simulations were carried out us-

ing RLZoo which is a collection of reinforcement

learning algorithms, frameworks and applications

[17]. In this case, the implementation from Ope-

nAI Gym [6] was used and experiments were con-

ducted on the CartPole-V1 task from the classic

control environment which are written in Python.

For all experiments, the agent was trained us-

ing the algorithm PPO with clipping. The avail-

able default hyperparameters for this algorithm

are shown in Table 6 which comes from RLZoo’s

PPO documentation. Some of these hyperparam-

eters were then used as factors for the experi-

ments.

Hyperparameter Value

train episodes 1000

max steps 200

save interval 50

gamma 0.99

batch size 32

actor update steps 10

critic update steps 10

clip range 0.2

actor learning rate 1e-4

critic learning rate 2e-4

Table 6: Default hyperparameters PPO

4.2 CartPole-V1

In the Cartpole task, an agent tries to balance

a pole, earning rewards upon success. The mea-

sured response for the experiments was the time

it takes for the agent to reach a success rate of

95 % (episode reward 190 of 200), with a running

average over the last 100 episodes.

The experiment began with a screening in or-

der to detect the most prominent factors in a

cost efficient way. From Table 6, the five hyper-

paramters batch size, actor update steps, critic

update steps, actor learning rate, and critic learn-

ing rate were selected as factors. Their respective

factor levels are visible in Table 7, which were

based on their default settings and then aggres-

sively spread apart.

Levels

Factors -1 +1 0

A: batch size 50 300 175

B: a. update steps 10 150 80

C: c. update steps 10 150 80

D: actor lr 1e-4 1e-3 5.5e-4

E: critic lr 1e-4 1e-3 5.5e-4

Table 7: Selected factor levels for screening

Factors

Exp no. A B C D E

1 0 0 0 0 0

2 -1 -1 -1 1 -1

3 1 1 -1 -1 1

4 -1 1 1 -1 1

5 -1 -1 -1 -1 1

6 1 -1 -1 -1 -1

7 1 -1 1 1 -1

8 1 1 -1 1 -1

9 -1 1 -1 -1 -1

10 0 0 0 0 0

11 -1 -1 1 1 1

12 -1 -1 1 -1 -1

13 -1 1 -1 1 1

14 1 -1 -1 1 1

15 1 -1 1 -1 1

16 -1 1 1 1 -1

17 1 1 1 1 1

18 1 1 1 -1 -1

19 0 0 0 0 0

Table 8: 25−1 Design matrix with

added center points
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In order to estimate all main effects & first or-

der interactions, a minimum of 16 experimental

runs were required. Therefore a 25−1 fractional

factorial design with 3 center points was the most

suitable choice and can be spotted in Table 8. The

design matrix was fully randomized so chances of

order influencing the result could be eliminated.

Upon completing the screening, the method

from Figure 13 was followed closely. The choice of

the next model and factor levels depended on our

findings from analyzing the result and the num-

ber of factors to be included for further testing.

Factors that did not show any signs of significance

were set to their default values in Table 6 for the

remainder of the project.

The new experiment with reduced number of

factors differentiates a little bit from the screen-

ing. The factor levels were narrowed down to

simplify the search of optimal settings. Sec-

ondly, multiple replications of each data point al-

lowed for good error estimate and a more reliable

ANOVA test. In a scenario were assumptions of

linearity are violated, a permutation test on the

center points would be required in order to de-

termine if further analysis was necessary. In that

case the sampling was extended to allow for re-

sponse surface estimation.
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5 Analysis of Result

5.1 Screening

Using the outputs measured in the screening ex-

periment of Table 8, we began by estimating

all factor effects (including two-way interactions).

These were visualized in the normal probability

plot in Figure 15. Factor A (batch size) and B

(actor update steps) look like outliers since they

deviate more from the rest, which makes them

good candidates for further testing. The first or-

der interaction between B and D (actor learning

rate) is a little bit in the gray zone, close but not

too close to the rest and showing a fairly large

effect. It is worth noting that the data had to be

log-transformed after an initial analysis, in which

the data exhibited signs of non-linearity as well as

non-normality.
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Figure 15: Normal probability plot of factor ef-

fects in the screening experiment

The effect magnitude of A, B, and B:D is made

more clear after plotting a Pareto chart in Fig-

ure 16. Factor A and B stand out a lot from the

rest which is in line with our assumptions. As for

the interaction B:D, the large factor effect can not

be ignored and the same goes for Factor E (critic

learning rate). As a consequence of including B:D,

factor D should be analyzed as well.
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Figure 16: Pareto Chart of factor effects in the

screening experiment

We performed ANOVA on a reduced model only

containing factors A, B, D, E and the interac-

tion B:D. This works to some extent since enough

degrees of freedom are available to estimate er-

rors, compared to before where the model was

saturated. Keep in mind that since no replica-

tions of the data points were made except for

the center points, the result may not be conclu-

sive. However, they will give additional informa-

tion whether or not our expectations about the

factors are correct. The obtained p-values for the

factors were

Factor Effect p-value

A: batch size 10.533 0.00638

B: a update steps 14.245 0.00232

D: actor lr 0.024 0.87848

E critic lr 3.850 0.07153

B:D 6.377 0.02535

Table 9: Output from ANOVA in the screening

experiment

Both A and B are significant with p-value < 0.05

just like we suspected, while the evidence of an

effect of E is very weak (p-value> 0.05). Since

there is not enough evidence to include factor E

further, we neglect it along with all factors whose
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effects are smaller than the effect of E in Figure

16. Interestingly, the interaction B:D is signifi-

cant but since factor B has a very large effect and

factor D is almost non-existent, it is possible that

B completely dominates and would require more

testing to say for sure. However, given the negligi-

ble influence of factor D, as indicated by its large

p-value of 0.87848, we find it of little interest to in-

clude it in subsequent analysis and therefore also

the interaction B:D. The aim is always to reduce

the number of factors if possible, which is why we

choose to only proceed with factor A and B.
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Figure 17: Residuals plotted against fitted val-

ues in the screening experiment
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Figure 18: Normal probability plot of residuals

in the screening experiment

Residual analysis was performed on factors A and

B, as depicted in Figure 17, which shows the resid-

uals against the fitted values. It looks good with

data points scattered randomly around zero, be-

having as expected, and the assumption of linear-

ity holds. The normal probability plot in Figure

18 looks fine as well, the residuals follow the line

and stays within the shaded area. The sampled

data can be considered normally distributed and

trustworthy.

5.2 Optimization
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Figure 19: A and B main factor effects from the

screening experiment

For the optimization experiment, new factor levels

were selected based on the main effects of A and

B from the screening in Figure 19. Low run time

was desired, which occurred when factor A was

high and B was low. The new levels were there-

fore narrowed down and set according to Table

10.

Levels

Factors -1 +1 0

A: batch size 200 300 250

B: a update steps 10 50 30

Table 10: Selected factor levels in the optimiza-

tion experiment
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With only two factors to investigate, a 22 full fac-

torial design was chosen as in Table 11. Each test

was replicated 5 times and conducted in a fully

randomized order, resulting in a total of 25 ex-

perimental runs of which 5 were center points.

Factors

Exp no. A B

1 -1 -1

2 1 1

3 1 -1

4 -1 1

5 0 0

Table 11: 22 full factorial design in the optimiza-

tion experiment

Neither factor A or B showed any significance af-

ter performing ANOVA, with p-values of 0.975

and 0.131, respectively. This lack of significance

probably depends on our newly set levels be-

ing too close to each other. This means that it

does not matter which values we choose but be-

fore drawing conclusions we need to analyze the

data. The sampled data looks fairly normally dis-

tributed in Figure 20.
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Figure 20: Normal probability plot of residuals

in the optimization experiment

More concerning are the residuals versus the fit-

ted values in Figure 21. A clear visible pattern

is formed and the center points are not behaving

as expected if the model were to be linear. Log-

transformation of the data had no effect here, so

we suspect there is a potential curvature in the

model. To verify if the deviation from linearity

in Figure 21 can be explained by chance, we per-

formed a permutation test. The test measures the

distance from the mean value of the center points,

marked with a blue cross in Figure 22, to the red

line which is the mean of all corner points. The

plot shows the main effect of factor B since it had

the most noticeable effect of the two.
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Figure 21: Residuals plotted against fitted val-

ues in the optimization experiment
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points to assess deviation from linearity
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Figure 23 shows the (absolute value of) two-sided

permutation distribution with our sample in red

located quite close to the tail. The obtained p-

value from the test was 0.03715 which is signifi-

cant on a 0.05 significance level, we conclude that

the model is non-linear. More experiments were

required in order to determine what the curvature

looks like.
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Figure 23: Permutation test for investigating

quadratic effects

The reason we experience curvature now and not

during the screening, can be due to the increased

sample size. Even a model with significant cur-

vature can appear almost linear when examined

within a small area of a point. Therefore, we be-

lieve that the increased sample size, both overall

and specifically for the center points, enables us

to detect the deviation from linearity. This sug-

gests that the larger sample size provides a more

accurate representation of reality.

5.3 Response Surface Method

When performing response surface method, a cen-

tral composite design was used. All previous col-

lected data was reused and complemented with

the additional axial points from Table 12, result-

ing in the design matrix in Table 13. All axial

points were replicated 5 times just like previously

sampled data.

Levels

Factors −
√
2

√
2

A: batch size 179 321

B: a update steps 2 58

Table 12: Axial points in central composite de-

sign

Factors

Exp no. A B

1 -1 -1

2 1 -1

3 -1 1

4 1 1

8 −
√
2 0

9
√
2 0

10 0 −
√
2

11 0
√
2

12 0 0

Table 13: Central composite design matrix

The results of the ANOVA on a second-order re-

gression model (see Table 14) indicate that there

is a significant main and quadratic effect caused

by factor B. We can conclude the assumption of

non-linearity to be correct. Analyzing the residu-

als after accounting for the curvature, the residu-

als vs fitted plot in Figure 24 looks much better

than Figure 21 in the optimization experiment,

with points randomly scattered around zero.

Factor Effect p-value

A: batch size -1.80005 0.4968

B: a. update steps -11.68966 6.877e-05

A:B -0.08205 0.9825

A2 -3.08060 0.4832

B2 20.42495 3.277e-05

Table 14: ANOVA output in response surface

experiment, significant in bold
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Figure 24: Residuals vs fitted values in the re-

sponse surface experiment
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Figure 25: Contour plot in the response surface

experiment
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Figure 26: 3D plot in the response surface ex-

periment

A response surface of the result was modeled both

as a contour plot in Figure 25 as well as in 3D,

Figure 26. A saddle like shape was formed with a

stationary point when batch size is 235 and actor

update steps is 36. Since batch size has no signif-

icant impact here, we can consider this point as

the optimal solution to the problem.

5.4 Performance with Optimal Hyper-

parameters

With the optimal hyperparameter values found

for this specific case, a final evaluation was done

by comparing our experimental hyperparameters

and the default hyperparameters. The final re-

sult can be seen in Figure 27, where the blue line

is our optimized hyperparameters, the red line is

from default settings and shaded area is the stan-

dard error. Both were simulated 13 times and the

mean value from the runs are shown here. Our

settings performed a little bit better by the looks

of it, reaching the threshold of 95% success rate

(when episode reward hits 190) after 38,361 sec-

onds compared to the default model’s 109,037 sec-

onds, making it 2.85 times faster.

6 Discussion and Conclusion

6.1 Conclusion

The aim of this project was to investigate if de-

sign of experiments could be implemented for op-

timizing reinforcement learning algorithms used

for solving robotic tasks.

Based on the final comparison between our

optimized hyperparameters and default hyperpa-

rameters in figure 27, we can conclude that the

use of design of experiments was successful. A no-

ticeable difference can be observed, as our model

achieved the desired success 2.85 times faster than

the default model.
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Figure 27: Comparing performance from simulations between optimized hyperparameters and de-

fault hyperparameters

The chosen method, as depicted in Figure 13,

effectively detected the significant factors batch

size and actor update steps which allowed for

model reduction and optimization. We were able

to identify the non-linearity caused by the actor

update steps factor and assess the curvature, us-

ing response surface methodology.

In conclusion, our project successfully inves-

tigated the implementation of design of experi-

ments for optimizing reinforcement learning algo-

rithms in robotic tasks.

6.2 Discussion

In this study, different hyperparameters from the

RL algorithm PPO were chosen as factor for

a screening experiment using fractional facto-

rial design. Experiments were conducted on the

CartPole-V1 task from the benchmark environ-

ment RLZoo, where the response was measured as

the time it takes until success rate reached 95%.

The goal of the screening was to analyze which

factors had the biggest effect on the response in a

less computationally expensive way. By including

only the important factors for subsequent testing,

the model could be reduced, requiring fewer ex-

periments for optimization.

Batch size and actor update steps were the

most influential factors from the screening exper-

iment, and therefore selected for the following op-

timization experiment. In the resulting residual

analysis, the factors formed a non-linear relation-

ship, which was also verified through a permu-

tation test. In order to account for the quadratic

effect, additional experiments were conducted and

a response surface was created. It could be deter-

mined that actor update steps was the cause of

said second order effects. Through response sur-

face modulation, optimal hyperparameters were

found and a final comparison was made between

default- and experimental hyperparameters. The
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importance of adding center points was put on dis-

play here, as without them, we would have likely

missed the curved relationship.

After analyzing the final comparison between

our model and the default one in Figure 27, we can

see a raise in performance. As a result of this, we

can consider the use of design of experiments as

successful. The choice of factors and their levels

yielded significant effects. Spreading out factors

aggressively during the screening was really help-

ful in reducing the risk of missing effects.

Deciding on a good way to measure the re-

sponse was a bit more challenging. Since not all

experimental runs experienced the same success,

there were difficulties finding an equally fair way

to evaluate and compare the outcomes across dif-

ferent runs. Ultimately, we found a performance

metric that fulfilled the criteria of consistency, but

figuring out better alternatives could produce a

more accurate representation of the factor effects

and elevate the result further.

Obviously, the training can be optimized fur-

ther. In our experiment we neglected factors with-

out statistical significance, this does not mean

these factors are completely irrelevant. They can

still be tuned to enhance the performance to a

higher degree, but that is not what design of ex-

periments is all about. Our goal was to achieve as

much as possible with minimal effort by system-

atically selecting what we consider important.

Design of experiments is most commonly used

in real-world problems such as manufacturing pro-

cesses, pharmaceutical testing, and agriculture.

In a simulated environment as in this project,

methods for optimizing hyperparameters exist but

there is always room for quality improvements.

Using this approach might offer a refreshing per-

spective on how optimization can be done, and in

combination with existing optimization methods,

allow for interesting discoveries as well as deeper

understanding that would not be possible without

design of experiments.

The principles and methods demonstrated can

be generalized beyond the scope of hyperparame-

ter optimization and any researcher can use them

in a way they see fit. All in all, experimental de-

sign is relatively unknown in general and deserves

some recognition since it is versatile and applica-

ble in numerous fields.

6.3 Future Work

The natural continuation of this work is to con-

duct the RLBench experiments that never took

place. The limitation with the design of experi-

ments I conducted was the requirement of quanti-

tative and continuous factors. It would therefore

be interesting with a comparative study on differ-

ent qualitative settings. In my planned RLBench

experiment I would only test for the same algo-

rithm and action- & observation abstraction on

one task. Making a statistical analysis and com-

paring different algorithms and action- & observa-

tion abstractions for multiple tasks in an efficient

way would result in some interesting findings.
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Appendix

RLBench Experiment

In this experiment, the benchmark environment RLBench was used together with the algorithm

implementations from Stable-Baseline3 [20]. The measured response was the number of environment

steps required for the accounted episode rollout reward to converge.

Task Reach target

Algorithm PPO

Action abstraction Cartesian control end effector with planning

Observation abstraction Proprioceptive task information

Table 15: Test setup

Levels

Factors -1 +1 0

A: gamma 0.5 0.999 0.7495

B: gae lambda 0 0.98 0.49

C: max episode timesteps 1 101 51

D: learning rate 1 ∗ 10−4 1 ∗ 10−3 5.5 ∗ 10−4

E: clip range 0.1 0.3 0.2

F: n episode rollout 50 450 250

Table 16: Selected factor levels for screening. Batch size was kept static at 50

Exp. A B C D E F

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 -1 -1 -1 1 1 1

4 1 1 -1 1 -1 -1

5 1 1 1 1 1 1

6 1 -1 -1 -1 -1 1

7 0 0 0 0 0 0

8 1 -1 1 -1 1 -1

9 -1 1 -1 -1 1 -1

10 -1 1 1 -1 -1 1

11 -1 -1 1 1 -1 -1

12 0 0 0 0 0 0

13 0 0 0 0 0 0

Table 17: 26−3 design matrix for screening experiment with 5 center points
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The intended design matrix in Table 17 shows a 26 − 3 design, which is the smallest possible design

for 6 factors. This design would then be complemented with additional runs, depending on which

factors showed signs of significance after an initial factor effect analysis. A technique called folding,

which has not been discussed in this work, would be applied. Basically, we perform the inverse of

already performed experimental runs, adding new combinations. This is important in order to reduce

confounding effects between main effects and higher order interactions.
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Kan försöksplanering fylla ett tomrum
inom förstärkningsinlärning?

POPULÄRVETENSKAPLIG SAMMANFATTNING Anton Fristedt

Försöksplanering är vanligt förekommande vid optimering av processer inom verkliga
problem, så som tillverkning, hälsovård och jordbruk. I detta arbete undersöktes hu-
ruvida försöksplanering kan användas vid optimering inom en datorsimulerad miljö,
mer specifikt, optimering av förstärkningsinlärningsalgoritmen Proximal Policy Opti-
mization (PPO).

Inom förstärkningsinlärning finns det ingen en-
skild inställning som löser alla problem. Att hitta
optimala hyperparametrar (en algoritms juster-
bara värden vid inlärning) är därför en ständig
utmaning. Optimering är en tidskrävande process
där det finns utrymme för kvalitetsförbättringar
mellan ett begränsat antal simuleringar och till-
räckligt med statistiskt underlag.

I försöksplanering observerar vi hur en förän-
dring i ingångsvärden orsakar en förändring i ut-
gående värden, i jakt efter de mest betydelsefulla
ingångsvärderna, även kända som faktorer. Med
hjälp av statistiska modeller kan vi på ett enkelt
sätt avgöra vilka faktorer som har en signifikant
effekt, och på så sätt minska komplexiteten genom
att bara fokusera på dessa.

Experimenten genomfördes på uppgiften Cart-
pole från OpenAI Gym, där en enhet försöker lära

sig att balansera en stång. Vid lyckade försök er-
håller denna enhet en belöning, med det långsik-
tiga målet att samla ihop så hög belöning som
möjligt. Vi använde hyperparametrar från al-
goritmen PPO som faktorer i experimenten och
mätte tiden det tog för enheten att nå den ön-
skade tröskeln på 95% framgång.

Våra resultat visade att användningen av
försöksplanering var framgångsrik för att förbät-
tra prestandan hos förstärkningsinlärningsalgo-
ritmen. Signifikanta faktorer optimerades, och
utvärderades sedan mot en modell med standard-
inställningar. Resultatet av denna utvärdering
visade att vår modell nådde den önskade tröskeln
för framgång 2,85 gånger snabbare.
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