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Abstract

The aim of this master thesis project is the study and evaluation of the design of cavity beam
position monitors (BPM) for the International Linear Collider (ILC) project. The state-of-the-
art of BPMs is investigated to determine the most appropriate existing BPM design for the
requirements of the ILC. The theoretical background on resonant cavities, including the beam
coupling to the BPM, is examined. This knowledge enables the understanding of how certain
parameters can a�ect the performance of the detector. To this end, a design investigation
is carried out by analyzing the frequency spectrum of the beam for choosing the operational
frequency of the resonator. Di�erent common-mode-rejection methods are evaluated as well.
Theoretical predictions are con�rmed by 3D electromagnetic simulations, with the commercial
software CST, based on a basic design of cavity BPM. The simulations are also performed in
order to understand the impact of the cavity geometry on the BPM. The identi�cation of the
dipole mode signal for an o�set beam corroborates the working principle of the cavity BPM. The
particle-in-cell (PIC) solver from CST is revealed to be the most adequate for the simulation
of the cavity BPM, allowing an e�cient extraction of the dipole �eld induced by the beam.
The state-of-the-art and the numerical results support the design of a cylindrical cavity with
operational frequency of 1.495 GHz, with rectangular waveguides output ports used as �lters to
reject the monopole mode signal.
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Nomenclature and acronyms

a radius of the cavity cylinder

c0 speed of light in vacuum

fmnp resonance frequency of an mnp mode

fRF acceleration frequency of the RF cavities

frep repetition frequency of the macro bunches

Jm m-th Bessel function

jmn n-th zero of the m-th Bessel function Jm

kmnp wavenumber of an mnp mode

L length of the cavity cylinder

lx, ly dimensions of the rectangular waveguide

Pwall power dissipated in the cavity walls

Pout power dissipated out of the cavity

Q0 internal or unloaded quality factor

Qext external quality factor

QL loaded quality factor

qbunch bunch charge

(R/Q) normalized shunt impedance

Tr transit time factor

tbeam macro pulse length

tbunch bunch spacing

Vb→m voltage induced from the beam to a mode

Vmnp voltage of the cavity mode mnp

Vout,mnp output voltage of the cavity for the mode mnp

Ws energy stored in the cavity

δx, δy transverse o�sets of the beam

τ time constant

ωmnp angular resonance frequency of an mnp mode

σ standard deviation of the bunch on the time domain

σz bunch length

BPM beam position monitors

CM common-mode

EM electromagnetic

FT Fourier transform

FWHM full width half maximum

ILC International Linear Collider

IP interaction point

LHC Large Hadron Collider

PEC perfect electric conductive

PIC particle-in-cell

Q-value quality factor

RF radio frequency

TE transverse electric

TM transverse magnetic

UHV ultra-high vacuum
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Introduction

The International Linear Collider (ILC) project considers two large (∼ 20 km) linear accelerators
intersecting at the interaction point (IP), where electrons and positrons collide at nearly the speed
of light. The project's goal is to upgrade our knowledge on the basic constituents of matter and
uncover fundamental questions on particle physics, such as the nature of dark matter and the
existence of supersymmetry [ILC]. In order to achieve the collision at the IP, since the ILC
beam's dimensions on the vertical direction are on the nm range, high-resolution beam position
monitors (BPMs) are required. This device's task is to resolve, as accurately as possible, the
position of the travelling beam on the transverse plane.

Traditional BPMs detect the beam's position by identifying the E-�eld generated by the
charged particles at speci�c locations in the pipe. These detectors present some limitations on
the resolution they are able to perform in the position reading (∼ 1 µm). Resonant BPMs
operate under the principle of detection of special �eld con�gurations (resonant modes) induced
by an o�-centered beam on a cavity. Because of the resonating behavior, these BPMs o�er a
higher position sensitivity, allowing to determine the beam's position with greater resolution (in
the order of hundred nanometers), matching the ILC requirements [Lor98] [Nak08]. However,
the proper-functioning of cavity BPMs (their ability to perform the measurement precisely and
accurately) requires several considerations to be made during the design process.

Outline of the thesis

First, the state-of-the-art on beam position monitoring is presented on chapter 1. The operation
modes of existing types of BPMs are brie�y described such as button, split-plane and stripline
BPMs. Further focus is given on resonant cavity BPMs. The di�erent BPMs are then compared
according to the ILC beam diagnosis requirements.

Due to the complexity of the cavity BPMs, chapter 2 is dedicated to the theory of the working
principle. The expression of the output signal is derived by analyzing the eigenmodes existing
on the cavity, the BPM parameters and the beam coupling to the cavity.

In chapter 3, design considerations for the ILC requirements are carried out. The operational
frequency is evaluated by analyzing the frequency spectrum of the beam and by evaluating the
cavity geometry. Additionally, some common-mode (CM) rejection methods are analyzed.

Finally, results of 3D electromagnetic simulations are presented on chapter 4 performed by
using the commercial software CST Studio Suite. An eigenmode study allows the comparison
of theoretical and simulated resonating modes in a speci�c cavity geometry. CST wake�eld and
PIC solvers were compared by analyzing the beam simulation results and the extraction of the
resonating signal used to resolve the beam o�set.

To conclude, the results are discussed as well as the future opportunities for further development
of the project.

1



Chapter 1

State-of-the-Art of BPMs

BPMs are non-invasive electromagnetic pick-ups that can be used to derive the center of mass
of the beam with respect to the center of the beam pipe. Generally, a BPM consists of a BPM
pick-up, the electrodes that retrieve the electrical signal, and the read-out electronics, to
process the signals and provide the beam position [Wen20].

1.1 Broadband BPMs

All broadband BPMs are considered to be non-resonating BPM pick-ups. This section aims to
give a brief description of some of these BPMs and their working mechanisms. Advantages and
disadvantages of these BPMs are described in greater detail in section 1.3.

1.1.1 Working principle and characteristics

For a basic BPM, one can retrieve the beam position in both transverse planes, by arranging
4 electrodes symmetrically around the vacuum pipe: horizontal and vertical electrodes allow to
retrieve the position along the x and y axis, respectively. The goal of the measurement is to
evaluate the charges induced by the E-�eld of the beam on the insulated plates. One will detect
a uniform E-�eld in the case that the beam is perfectly centered on the pipe, and a non-uniform
distributed �eld on the other case. The closer the beam is to one of the plates, the higher the
image current will be. This is called the proximity e�ect [FKL08]: the current density depends
on the distance of the beam with respect to the center of the pipe. In the horizontal direction

Figure 1.1: Scheme of a traditional BPM pick-up [Wen20].

one can extract the di�erence of voltage between plates A and B (�gure 1.1) to retrieve the

2



1.1. BROADBAND BPMS 3

horizontal o�set of the beam (δx):

V∆,x = VA − VB ∝ Ibeam × δx

By normalizing by the sum of the signals VΣ,x, it is possible to obtain the position information
independently of the beam intensity Ibeam: V∆,x/VΣ,x ∝ δx. In particular, the horizontal position
can be expressed as

δx =
1

sx

V∆,x

VΣ,x
+ ϵx

where sx is the horizontal sensitivity and ϵx is the error in the horizontal direction [Wen20].

In general, each horizontal electrode retrieves a signal:

Velec,x(δx, δy, ω) = sx(δx, δy)Z(ω)Ibeam(ω) (1.1)

where Z is the transfer impedance, representing the transfer of beam current to voltage signal,
which depends on the frequency ω of the beam. sx(δx, δy) is the sensitivity function in the
horizontal direction, re�ecting the coupling strength between the beam and the electrode, which
depends on the transverse o�sets of the beam (δx, δy).

The following characteristics are essential for the good-functioning of a BPM [FKL08] [Wen11]:

� Integration time: time during which the measurement is taken to resolve the beam
position of a single bunch or all bunches, or the average over one or several pulses.

� Position resolution: the minimum beam displacement di�erence the BPM can statistically
resolve.

� Position sensitivity: proportional constant sx(δx, δy) between the beam displacement δx
or δy and the output signal. Yet, in some cases the sensitivity can depend on the position
of the beam:

� if sx depends on δx one talks about non-linearity of the position sensitivity.

� if sx depends on δy one talks about horizontal-vertical coupling or cross-coupling.

Both these cases limit the position resolution and can lead to inaccurate measurements.
The same reasoning can be done for the vertical position sensitivity sy in the case of vertical
electrodes.

� Accuracy: ability of position reading relative to a �x-point such as the center of the beam
pipe (in�uenced by cryogenic environments).

� Dynamic range: range of beam current or beam position to which the system can provide
a valid measurement.

� Reproducibility and long term stability.

� Signal-to-noise ratio: ratio of desired signal to unwanted noise that limits the position
resolution.

1.1.2 Button BPM

Button BPMs are the simplest type of BPM, and therefore are straightforward to understand.
The device follows the working principle explained before with 4 symmetrically arranged buttons
around the pipe. It is usual to rotate the position of the buttons around the pipe (as shown in
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(a) Scheme of the BPM
(b) Output signal as a function of the beam
displacement

Figure 1.2: Button-type BPMs [FKL08].

�gure 1.2) in order to avoid the synchrotron radiation emitted in the horizontal plane [Wen20].
However, this technique is prone to reduce the linear behavior of the detector.

For a rotation of α = 30 degrees, the detector's signal shows a slightly linear behavior when it
is normalized. The linearity can be improved by logarithmic ampli�cation of the plate signals as
shown in �gure 1.2b. Another disadvantage of this BPM is the fact that the position sensitivity
s(δx, δy) depends on the frequency ω, which can lead to errors in the position reading.

1.1.3 Split-plane BPM

Split-plane BPMs are constituted by consecutive plates with a diagonal cut surrounding the
beam (�gure 1.3a). For these BPM, the signal strength is not obtained by proximity e�ect. As
shown in �gure 1.3b, the fraction of beam coverage on the electrodes gives a particular signal
strength which allows one to derive the position. For instance, the voltage in the horizontal
position Vx is proportional to the length of the beam projected on the electrode surface [FKL08].

(a) Scheme the BPM (b) Scheme of the working principle

Figure 1.3: Split-plane BPMs [Wen20] [FKL08].

The position sensitivity of this BPM is given by s ∼ 1/R where R is the radius of the
detector, for a normalized signal. Very strong linearity and signal strength can be achieved with
the inclusion of "guard rings" on the ground potential of the BPM. This prevents undesirable
interaction between devices and circuits.

1.1.4 Stripline BPM

Stripline BPMs use long electrodes arranged around the beam allowing to distinguish between
directions of propagation. Because of the length of the electrodes, this kind of BPM is suitable



1.2. RESONANT BPMS 5

for very short bunches [Wen20]. Since the length of the electrodes is known, one can compute
the speed of the beam thanks to this BPM. For the previously considered BPMs, the e�ect of
the signal propagation was not considered. This characteristic becomes more important when
the size of the bunch is comparable to the size of the detector. It is also possible to distinguish
beams propagating in opposite directions, which is particularly useful for synchrotron colliders.

Figure 1.4: Scheme of a stripline BPM [Wen20].

As shown in �gure 1.5, the upstream ports produce two counter-propagating signals when the
beam passes. The two signals are produced on port 1 at t = 0. At t = l/c0 (where l is the length
of the electrodes), the beam reaches port 2, where one of the two counter-propagating signals
produced is canceled because of a destructive interference with the �rst signal. Both signals
propagating in the opposite direction as the beam are recorded at port 1, with a di�erence in
timing that leads to the calculation of the speed of the beam. The length of the electrodes has
to be chosen carefully to avoid the case in which the bunch repetition tbunch = 2l/c0. In this case
the signal generated by the �rst bunch can be canceled by the signal generated by the second
bunch, producing no net signal recorded [FKL08].

Figure 1.5: Working principle of a stripline BPM [FKL08].

1.2 Resonant BPMs

Resonant BPMs or cavity BPMs operate under the principle of measurement of special �eld
con�gurations resonating at speci�c frequencies on a cavity. Indeed, the cavity constitutes a
discontinuity along the pipe where stationary waves can be induced by the passage of the beam.
The amplitude of these di�erent resonating modes depends on the bunch charge (qbunch), on
the cavity orientation, and on the beam position δx or δy [Vit09]. In the context of this study,
cylindrical or "pill-box" cavities are considered, but the mechanism is almost identical to the one
of rectangular cavities.
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1.2.1 Working principle

An in�nite number of electromagnetic modes can resonate inside a perfect electric conductive
(PEC) cavity [Gus22]. The short bunches of a beam can couple with the so-called transverse
magnetic (TM) modes of the cavity (this is explained with more detail on chapter 2). In
particular, two speci�c modes are of interest: TM010, also called the monopole; and TM110, the
dipole. These modes are degenerate, which means that two di�erent polarizations are generated.
A schematic representation of these modes can be observed in �gure 1.6a.

(a) Transverse view of the TM010 and TM110 modes
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(b) Schematic representation of a cavity BPM
with the E-�eld (in red) of the TM110 mode

Figure 1.6: Cylindrical cavity BPM [Vit09].

A beam completely centered will excite the
monopole mode only, since the amplitude of the
dipole is zero on the pipe axis. Therefore, an
o�set on the beam induces the dipole mode.
In fact, the voltage induced by the dipole
mode is proportional to the beam displacement
(demonstration on chapter 2). In the horizontal
case,

VTM110 ∝ Ibeam × δx

As shown in �gure 1.7, for the dipole mode,
a beam with a greater o�set (continuous line)
generates a higher signal than a beam with
a smaller o�set (dashed line). Additionally,
one will observe signals with opposite phases
for o�sets of the same magnitude but opposite
sign (continuous and dotted lines), hence the
importance of retrieving both amplitude and
phase of the excited �elds for the position
reading.

pipe axis

a

L

δx

TM110

TM010

beam
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L
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Figure 1.7: Schematic representation of the
E-�eld induced for the monopole (blue) and
dipole (red) in a cavity BPM [Vit09].

Essentially, to perform a beam position measurement in a cavity BPM, one has to consider
the following:

� The magnitude of the dipole mode leads to the value of beam o�set δx or δy.

� The sign of this o�set can be reconstructed with the phase of the signal.

� The dipole mode has di�erent polarizations. By di�erentiating them one can distinguish
horizontal δx or vertical δy displacements.
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The excited signals are extracted through coupling to an external circuit where amplitude of
the di�erent modes can be separated on the frequency domain.

1.2.2 Advantages

Cavity BPMs are well suited for two di�erent scenarios: when high-resolution is required, since
measurements up to the nm-range can be resolved, or when the beam current is very low, down
to 1 nA. These applications are possible since these BPMs can achieve a very high impedance
(kΩ) and high sensitivity. For the dipole mode, there is a strong linearity on the beam position
over a wide dynamic range (several mm). The position resolution that can be achieved with a
cavity BPM is in the nm range according to the literature [Nak08] [Hay19]

A mechanical advantage of this BPM is the ability to extract the measurement with a single
output. Cavity BPMs also save longitudinal space since the length of the cavity is usually small
(some cm).

1.2.3 Disadvantages

In order to reach the high resolution that a cavity BPM guarantees to achieve, there are some
corrections needed on the basic design of the detector.

Noise components

As stated before, the output signal is evaluated in the frequency domain where one can perform
a mode separation. However, the output signal does not contain only VTM110 revealing the
position of the beam, but also the sum of many other signals that were induced on the cavity
by the beam, or that occur in the extraction process. In particular, the output signal at the
resonance frequency of the dipole mode f110, can present the following noise components [SW10]:

Vout(f110) = V110(δx) + V0n0 + V110(δx
′) + VTN

where V110(δx) is the signal of interest yielding the beam position, V0n0 is the common-mode
(CM) contamination, V110(δx

′) is the e�ect of the beam angle and VTN is the thermal noise.

CM-contamination

Since the maximum amplitude of monopole modes TM0n0 is in the pipe axis (�gure 1.7), the
excited E-�eld of TM0n0 modes is higher in amplitude than the TM110 E-�eld. It is possible to
observe monopole contamination: the monopole TM010 signal overlaps the dipole signal in the
frequency domain as shown in �gure 1.8a.

(a) Output signals in the frequency domain (b) Cavity BPM with waveguides attached

Figure 1.8: CM-contamination in a cavity BPM [Lor98] [Wen+09].
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Other monopoles such as TM020 can pollute the dipole signal as well if the resonance frequency
f020 is close enough to f110. In order to exclude the monopole signals, one can attach a waveguide
capable of high-pass �ltering the contamination as shown in �gure 1.8b [Wen+09]. Methods of
CM-rejection are explained with more detail on section 3.2.

E�ect of the beam angle

A beam traversing the cavity with an angle δx′ induces an error on the position reading.
According to [Lor98], for a mode with wavelength λ, and a cavity with radius a and length
L, this o�set error is estimated to be

δx

δx′
=

2244.5

sin(πL/λ)

L3

a2λ

[ m

mrad

]
Transient response

It is important that the energy induced on the cavity by a passing bunch vanishes before the
arrival of the next bunch. Therefore, the energy on the cavity must not last longer than the
bunch spacing. For the ILC case, this parameter corresponds to tbunch = 360 ns. This can
be achieved, by lowering the quality factor Q0 of the cavity by using less conductive materials.
However, low Q-value causes wider signals in the frequency domain and therefore leakage of the
CM at f110 which limits the resolution [Wen06].

Cross-talk

To obtain the beam displacement δx and δy, one has to measure both polarizations of the
dipole mode. However, coupling to a polarization to extract the o�set value can a�ect the
other polarization. This low isolation between both polarizations is called cross-talk. This is
problematic since a beam displacement in only one direction can give a non-zero response in
the other direction, and lead to reading errors [Wen06]. According to the literature, this can
be solved by using two separate cavities to extract both measurements independently, or use a
transformation matrix to solve it [Luo+10].

Wake�elds and heat-load

One of the most troublesome issues with
cavity BPMs is the increase of beam induced
wake�elds in the cavity. As shown in �gure
1.9, the �eld of a charged bunch can remain
captured in a pipe discontinuity. Higher
modes excited by the beam trapped on the
cavity may cause transverse and longitudinal
kicks on the beam, a�ecting its dynamics. In
particular, a trapped monopole can raise the
temperature in the cryomodule. This issue
generally imposes a large e�ect on the beam
and a�ects the overall performance of the
accelerator [Wen+09].

Figure 1.9: Wake �elds induced by the
passage of a bunch of charged particles
[Fuj+07].
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In addition to the previous considerations, one has to consider that the resonant frequency
of the cavity is chosen to be di�erent from the radio frequency (RF) accelerating frequency to
avoid interferences. Furthermore, cavity BPMs usually cost a considerable amount of transverse
space because the cavity radius is usually three times the pipe radius.

1.3 Best suitable BPM for the ILC

To accurately choose the most suitable BPM for the ILC requirements, it is relevant to �rst
evaluate the design beam parameters and performance.

1.3.1 ILC characteristics and requirements

beam energy 2× 250 GeV

luminosity 2× 1034

repetition frequency (frep) 5 Hz

macro pulse length (tbeam) 800 µs

bunch spacing (tbunch) 369 ns

bunch charge (qbunch) 3.2 nC

bunch length (σz) 300 µm

hor. beamsize (IP) (σx) 500 nm

vert. beamsize (IP) (σy) 5 nm

Figure 1.10: ILC beam parameters
[Wen06].

The ILC beam is a bunched beam,
separated into macro pulses that have a
repetition frequency frep (�gure 1.11). The
accelerating RF superconducting cavities
have a resonant frequency of 1.3 GHz. The
radius of the beam pipe is 39 mm. The
bunch sizes at the IP are speci�ed in table
1.10. To achieve the design luminosity
for the particle physics experiments, it is
vital to preserve the low vertical emittance
εy along the Main Linac. High resolution
BPMs are therefore essential [Wen06].

Figure 1.11: Structure of a bunched beam [Wen11].

Requirements for the ILC beam position monitoring can be divided into two types of requisites:
measurement requirements and physical requirements.

Measurement requirements:

� Position resolution in the submicron range (< 1 µm) is required to preserve the vertical
emittance [SW10].

� A position linearity of 2% is needed.

� The measurement has to be executed for single bunches, meaning that the measuring time
has to be < 350 ns (inferior to tbunch) so the signal in the cavity fades away in between
bunches [Wen06].
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� The dynamic range has to be large enough, so the detector can perform over a wide range
of beam displacement (from 0 to ± 35 mm) and a full range of beam intensities as well
(from 0 to 3.2 nC).

Physical requirements:

� The physical installation is limited to ∼ 200 mm of length (z direction) and ∼ 250 mm
of diametric size in the transverse direction [Wen+09].

� The alignment error between the physical center of the BPM and the magnetic center of
the quadrupoles must be < 200 µm.

� The detector needs to operate in ultra-high vacuum (UHV) and in a cryogenic environment
(around 4 K), then the cool-down process has to be considered since it is prone to modify
the Q-values because of the material shrinkage [Lor98].

� To prevent pollution of the neighboring RF cavities, cleanroom class 100 certi�cation is
necessary.

1.3.2 BPM Comparison

According to characteristics described previously for the di�erent kinds of BPMs, table 1.1
describes advantages and disadvantages of the BPMs relative to the requirements of the ILC.

BPM type Button Split-plane Stripline Cavity

Coupling
Capacitive coupling
to the beam E-�eld

EM coupling
to the beam

Resonant

Resolution Limited at 1 µm
< 1 µm

(some nm [Nak08])

Facilities

Electron
accelerators and
proton linacs

Proton synchrotron
with low
frequencies

Synchrotron Colliders

Free-electron
lasers and
electron-positron
colliders

Advantages

- Short bunches
- Short
installations
- Simple
mechanics

- Large signal
amplitude
- High linearity
- Non H-V coupling

- Consideration of
signal propagation
- Short bunches
- Distinguish counter-
propagating beams

- Higher
resolution
- Short bunches
- Low
intensity beams

Disadvantages
- Non-linearities
- H-V coupling

- Limited to bunches
much longer than
the BPM length
- Hard mechanical
realization

- Strong mechanical
requirements
- Cost longitudinal
space

- Increment of
wake�elds
- Cost transverse
space

Table 1.1: Comparison table of existing BPMs according to ILC requirements. On red are
characteristics that are not suitable for ILC and on green are requirements that are ful�lled.

The main characteristic that makes cavity BPM eligible for the position monitoring in the
ILC is the position resolution. Despite the several considerations that have to be made for
their proper functioning, cavity BPM are the only BPM shown to be able to reach some nm of
resolution, essential to conserve the vertical emittance of the ILC beam.



Chapter 2

Cavity BPMs Theory

Proper design studies of a cavity BPM require deep understanding of the coupling of the beam
with the resonator. The comprehension of the �eld con�gurations on the cavity, allows to choose
a proper geometry producing a speci�c resonance frequency and to improve the signal extraction
for an accurate position measurement. Resonant cavities are simply waveguides enclosed by two
short-circuiting planes where boundary conditions have to be met. Allowed modes in the cavity
oscillate between pure electric and pure magnetic energy [Lor98]. The �eld patterns that can
exist inside a cavity can be:

� transverse magnetic (TM) modes (no longitudinal H-�eld component).

� transverse electric (TE) modes (no longitudinal E-�eld component).

TM modes are of interest since the E-�eld is longitudinal, following the beam direction. Their
resonance frequency depends on the sizes on the geometry and can be analytically calculated in
the case of simple geometries (such as rectangular or cylindrical).

2.1 Eigenmodes of a resonant cavity

The electromagnetic �elds that can resonate in a cavity can be calculated from Maxwell equations
in the frequency domain. The calculation of the resonant modes in a PEC cylindrical cavity can
be found in the appendix section A. From this result (equation A.10), resonance frequency of an
mnp mode (fmnp) is found to be

fmnp =
c0kmnp

2π
where kmnp =

√(
jmn

a

)2

+
(pπ
L

)2
(2.1)

where kmnp is the wavenumber of the mode, m,n,p are node numbers in r, ϕ, and z directions
respectively, a is the radius of the cylinder, L is the length of the cavity, c0 is the speed of light
in vacuum and jmn is the n-th zero of the m-th Bessel function (Jm) [Gus22]. The mode TM010

is the monopole mode, which is usually used for accelerating charged particles in RF cavities or
for normalization of the signal in the case of BPMs. The expression of the E-�eld along the z
direction is (from equation A.8)

Ez,010 = C010J0

(
j01r

a

)
eiω010t (2.2)

11
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The E-�eld of the dipole mode TM110, which is used for position detection, can be expressed as

Ez,110 = C110J1

(
j11r

a

)
cosϕeiω110t (2.3)

where Cmnp is the amplitude and ωmnp is the angular frequency of the TMmnp mode [Vit09]. A
transverse view of both �elds can be seen in �gure 1.6a.

2.2 Cavity BPM parameters

In order to derive the output voltage of the cavity, it is �rst important to de�ne the following
cavity-BPM parameters:

2.2.1 Quality factors

On a cavity BPM, one can de�ne three di�erent quality factors (Q-values) [Lor98]:

Internal or unloaded quality factor (Q0)

It is the Q-value of the cavity itself: a dimensionless parameter describing how underdamped the
oscillations of a resonator are. It depends on the wall material, and it is de�ned as

Q0,mnp =
ωmnpWs

Pwall
(2.4)

where Ws is the energy stored in the cavity and Pwall is the power dissipated in the cavity walls.

External quality factor (Qext)

It describes the strength of the cavity coupling to the output network. Similarly to Q0,

Qext,mnp =
ωmnpWs

Pout
(2.5)

where Pout is the power dissipated out of the cavity.

Loaded quality factor (QL)

It considers the total dissipation power of the cavity and output network. It is de�ned as

QL,mnp =
ωmnpWs

P
(2.6)

where P = Pwall + Pout
One can �nd the relation

1

QL

=
1

Q0
+

1

Qext
or QL =

Q0

1 + β
(2.7)

where β = Q0/Qext = Pout/Pwall is the coupling strength representing how e�ectively energy can
be extracted from the cavity. To improve β, high Q0 and low Qext is necessary.
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2.2.2 Time constants

Time constant (τ)

It can be shown that the stored energy in the cavity Ws decays exponentially [Nak08] with a
time constant de�ned as

τ =
QL

ωmnp
(2.8)

Indeed, since the power dissipated in the cavity is de�ned as P = −dWs
dt , by taking the de�nition

of QL in equation 2.6, Ws satis�es a di�erential equation that is solved as

Ws = W0e
−ωmnp

QL
t

where W0 is the initial energy stored in the cavity.

Transit time factor (Tr)

Since the electric �eld excited in the cavity is a function of time (equations 2.2 and 2.3), there is
a phase shift during the time that the beam passes through the cavity. The voltage induced in
a cavity of length L is

V =

∫ L/2

−L/2
E0e

iωmnptdz = TrLE0

where Tr is the representation of the e�ect of the phase transition during the passage of the
beam [Vit09].

Tr =
sin(ωmnpL/2c0)

ωmnpL/2c0
(2.9)

2.2.3 Normalized shunt impedance

The shunt impedance R is a magnitude representing the accelerating e�ciency for an RF cavity
[Lor98].

R =
|
∫
Eds|2

Pwall
(2.10)

Usually, the normalized shunt impedance (R/Q) is used to evaluate the e�ect of the beam in
the cavity. [

R

Q0

]
mnp

=
|
∫
Eds|2

Pwall

Pwall
ωmnpWs

=
|Vmnp|2

ωmnpWs
(2.11)

It depends only on the cavity geometry and not the conductive quality or the condition of the
walls. The shunt impedance is however unique for every mode excited in the cavity. It can be
shown that (R/Q) is proportional to (δx)2 (the beam o�set squared) for the dipole mode, and
that (R/Q) it is constant for the monopole mode [Nak08].

TM110 dipole mode

For calculating the normalized shunt impedance one needs to compute the voltage Vmnp and the
stored energy in the cavity Ws for this mode. First, by using the expression of the E-�eld along



14 CHAPTER 2. CAVITY BPMS THEORY

the z direction from equation 2.3, one can compute the voltage excited in the cavity when a
beam passes with an o�set δx:

V110(δx) =

∫ L

0
Ez,110(r = δx, ϕ = 0) dz

= C110J1

(
j11δx

a

)∫ L/c

0
eiω110tc dt

= C110J1

(
j11δx

a

)
c

iω110

[
ei

ω10L
c − 1

]
which leads to

V110(δx) = C110J1

(
j11δx

a

)
LTre

i
ω110L

2c (2.12)

Then, one can compute the stored energy in the cavity from the dipole mode:

Ws,110 =

∫
V

1

2
ε0 |Ez,110|2 dV

=
1

2
ε0C

2
110

∫
z

∫
ϕ

∫
r

∣∣∣∣J1(j11r

a

)
cos(ϕ)

∣∣∣∣2 rdrdϕdz
=

π

2
ε0C

2
110L

∫
r

∣∣∣∣J1(j11r

a

)∣∣∣∣2 rdr
Yet, Bessel functions are orthogonal:∫ a

0
Jk

(
jkm

ρ

a

)
Jk

(
jkn

ρ

a

)
ρdρ =

1

2
a2Jk+1 (jkm)2 δmn

and, since J2 (j11)
2 = J0 (j11)

2 [Wol], the stored energy in the cavity is

Ws,110 =
π

4
ε0C

2
110a

2LJ0 (j11)
2 (2.13)

Recalling the de�nition of the normalized shunt impedance in equation 2.11 and using
equations 2.12 and 2.13, one can derive

[
R

Q

]
110

=
4J1

(
j11δx
a

)2
LT 2

r

ω110πε0a2J0 (j11)
2

however, since Jn(x) ≃ 1
n!

(
x
2

)n
for x ≈ 0 [Wol], for the Bessel function J1 one can approximate

J1(
j11δx
a ) ≃ j11δx

2a . This leads to [
R

Q

]
110

≃ 2 (j11δx)
2 LT 2

r

ω110πε0a4J0 (j11)
2 (2.14)

and thus, [R/Q]110 ∝ (δx)2 for δx small enough.

TM010 monopole mode

Similarly, one can derive for the monopole mode the voltage excited in the cavity from equation
2.2

V010(δx) =

∫ L

0
Ez,010(r = δx, ϕ = 0) dz = C010J0

(
j01δx

a

)
LTre

i
ω010L

2c (2.15)
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the energy stored in the cavity for the monopole mode

Ws,010 =

∫
V

1

2
ε0 |Ez,010|2 dV =

π

2
εC2

010a
2LJ1 (j01)

2 (2.16)

and then, the normalized shunt impedance is

[
R

Q

]
010

=
2J0

(
j01δx
a

)2
LT 2

r

ω010πε0a2J1 (j01)
2 ≃ 2LT 2

r

ω010πε0a2J1 (j01)
2 (2.17)

Since the Bessel function J0 can be approximated to a constant, according to Jn(x) ≃ 1
n!

(
x
2

)n
for x ≈ 0, it leads to [R/Q]010 ∼ constant for δx small enough.

2.3 Beam coupling to the cavity

2.3.1 Fundamental theorem of beam loading

A charge travelling through a beam pipe induces a mirror charge in the pipe. When the charge
passes through a cavity, short bunches can excite an in�nite number of stationary electromagnetic
modes [Vit09]. A key element to derive the expression of the output voltage (for each mode)
is the fundamental theorem of beam loading. It states that "the voltage induced by a charge
travelling through a cavity is twice the e�ective voltage seen by the charge itself". The aim of
the following section (taken from [Nak08]) is to provide a demonstration of this theorem.

Let's consider a cavity (with no energy loss) where initially there is no E-�eld, where a bunch
of charge q passes through. The bunch excites Vexc and then feels Ve� (called the wake�eld)
which will cause a deceleration on it. In order to relate Vexc and Ve�, one can de�ne A and ε
as the ratio and the phase shift between them respectively.

Vexc =− Vb→meiε

Ve� =−A Vb→m

Vb→m is the voltage induced from the beam to a mode. The minus sign represents the e�ect of
deceleration the bunch experiences.

When one considers the passage of a second bunch (with a phase transition of θ with respect
to the �rst bunch), this one will feel the wake�eld of the �rst bunch and its own excited �eld.
Considering this, one can evaluate the �eld bunches 1 and 2 experience:

V1 =Vexc

V2 =Ve� +Vexce
iθ

It is pertinent to compute the acquired energy of two bunches ∆Wbeam and the energy stored in
the cavity ∆Wcavity as well. The �rst one can be computed by taking the real part of the �eld
both bunches experience:

∆Wbeam = qRe (V1) + qRe (V2) = −2qAVb→m − qVb→m cos(θ + ε)

And ∆Wcavity can be calculated by taking the voltage in the cavity, which is the addition of the
voltage excited by both bunches: Vcavity = Vexc e

iθ + Vexc . Thus, the stored energy in the
cavity can be computed by using the de�nition of (R/Q) (equation 2.11):

∆Wcavity =
|Vcavity |2

ω(R/Q)
=

∣∣Vexce
iϵ
(
eiθ + 1

)∣∣2
ω(R/Q)

=
2V 2

b→m(1 + cos θ)

ω(R/Q)
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By conservation of energy

∆Wcavity = ∆Wbeam ⇔
2V 2

b→m(1 + cos θ)

ω(R/Q)
= 2qAVb→m + qVb→m cos(θ + ε)

Since θ varies arbitrarily, the previous equation leads to the system:
qVb→m sin ε = 0
2V 2

b→m
ω(R/Q) − qVb→m cos ε = 0
2V 2

b→m
ω(R/Q) − 2qAVb→m = 0

⇔


ε = 0

Vb→m = ω
2

(
R
Q

)
q

A = 1
2

Therefore, Vexc = −Vb→m and Ve� = −1
2Vb→m; there is no phase shift between Vexc and Ve�

and the ratio between them is 1/2, which provides the proof of the fundamental theorem of beam

loading.

2.3.2 Voltage of a resonant mode excited by the beam

The theorem stated before also provides an expression of voltage of a resonant mode in the cavity
excited by a passing beam

Vb→m =
ω

2

(
R

Q

)
q (2.18)

The demonstration does not consider the e�ect of the bunch length σz. Since it is not in�itely
small, the entirety of the bunch does not travel through the cavity at the same time. This
provokes a phase shift during the passage which is ωz/c0. Considering a gaussian distribution of
the bunch in the beam direction:

1√
2πσz

exp

(
− z2

2σ2
z

)
By integrating the gaussian distribution representing all the particles in the bunch, the total
voltage induced in the cavity can be deduced

Vtotal,b→m =

∫ ∞

−∞
Vb→m

1√
2πσz

exp

(
− z2

2σ2
z

)
exp

(
i
ωz

c0

)
dz = Vb→m exp

(
−ω2σ2

z

2c20

)
Thus by using equation 2.18, the total voltage of a resonant mode mnp in the cavity excited by
a passing beam is

Vtotal,b→m =
ωmnp

2

(
R

Q

)
mnp

q exp

(
−
ω2
mnpσ

2
z

2c20

)
(2.19)

Then, if the bunch is not in�nitely small, the excited voltage is reduced by the factor exp
(
−ω2σ2

z

2c20

)
.

2.4 Output signals

2.4.1 Output voltage

The expression in equation 2.19 shows that the voltage induced from the beam to the cavity
depends on the mode since the normalized shunt impedance (R/Q) is proper to each mode. The
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energy stored in the cavity after passage of the beam can be derived from the de�nition of (R/Q)
from equation 2.11 [Vit09]

Ws =
V 2
total,b→m

ωmnp(R/Q)mnp
=

ωmnp

4

(
R

Q

)
mnp

q2 exp

(
−
ω2
mnpσ

2
z

c20

)
(2.20)

The output power can then be obtained from the de�nition of Qext (equation 2.5)

Pout =
ωmnpWs

Qext
=

ω2
mnpq

2

4

1

Qext

(
R

Q

)
mnp

exp

(
−
ω2
mnpσ

2
z

c20

)
(2.21)

And �nally, the amplitude of the output voltage of the cavity for the mode mnp in the readout
electronics with impedance Z is de�ned as

Vout,0 =
√
ZPout =

ωmnpq

2

√
Z

Qext

(
R

Q

)
mnp

exp

(
−
ω2
mnpσ

2
z

2c20

)
(2.22)

Because of the expression of the normalized shunt impedances for both monopole and dipole
modes, in equations 2.17 and 2.14, where [R/Q]110 ∝ (δx)2 and [R/Q]010 ∼ constant, it is then
proven that

Vout,110 ∝ δx and Vout,010 ∼ constant

Since the recovered signal out of the cavity oscillates with the frequency of the mode ωmnp

and decays exponentially with decay constant τ [Nak08], one will have at the output

Vout(t) = Vout,0 sin(ωmnpt+ φ) exp

(
− t

2τ

)
(2.23)

2.4.2 Coupling to external circuits

To retrieve the output signal from a cavity one can implement di�erent methods so the EM �eld
couples with the exterior.

Figure 2.1: Schematic representation of the di�erent magnetic and electric couplings to the
exterior of the cavity [Lor98].

Schemes a) and b) from �gure 2.1 show a magnetic coupling where the H-�eld can induce a
voltage by passing through a loop for a) and where the H-�eld penetrates through a hole to an
external waveguide for b). Electric couplings are shown in c) and d). The E-�eld can cause a
current on a dipole (coaxial line) for c) or can induce a voltage through a hole for d) (similarly
as b)). By choosing the right length of the antennas or its position, the coupling strength β can
be improved. For the actual study, coupling mostly through holes are considered.



Chapter 3

Design Investigation of the Cavity BPM

This section's goal is the evaluation of the in�uence of parameters such as resonance frequency
and geometry on the cavity's design and performance. First, in order to understand the choice
of the operational frequency of the cavity, the ILC beam-type frequency spectrum is simulated.
Then, the most recurring CM-rejection methods are described.

3.1 ILC frequency spectrum

3.1.1 ILC beam simulation

Table 1.10 summarizes the main ILC beam parameters. The described bunched beam has a
bunch length σz = 300 µm. Thus, the standard deviation of a bunch in the time domain is σ
= σz/c0, considering the beam travels at c0. The spacing between the bunches is tbunch = 369
ns. The number of bunches in a macro-pulse is n = tbunch×fRF ∼ 480 bunches, where fRF = 1.3
GHz is the frequency of the RF cavities [Wen06]. Therefore, the duration of a macro-pulse is
tbeam = n× tbunch ∼ 177 µs. Finally, the beam is separated into macro-bunches with a repetition
frequency frep of 5 Hz, which makes trep = 0.2 s.

A Python code was developed to simulate the beam signal (B.1). Because of the di�erence
in order of magnitude of the parameters, the easiest way to simulate the bunched beam is by
performing a convolution of the Gaussian pulse over a Dirac comb: a periodic impulse function
with the corresponding spacing tbunch. Then, the obtained signal can be multiplied by a squared
signal de�ning the length of the macro-pulses and the spacing between them.
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Figure 3.1: ILC bunched beam simulation technique and Fourier transform.

As showed in �gure 3.1, the Fourier transform (FT) of the bunched beam can then easily

18
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be simulated by using the FT properties. When going from the time domain to the frequency
domain, a convolution becomes a multiplication and vice versa.

In the time domain, the Gaussian bunch is simulated as

ibunch(t) =
qbunch

σ
√
2π

e−
t2

2σ2 (3.1)

where σ is the standard deviation of the bunch in the time domain.

The Dirac comb (the impulse train) is simply de�ned as a function CT , returning 1 whenever
there is a bunch (every multiple of T = tbunch) and 0 otherwise.

CT (t) =
∞∑

n=−∞
δ(t− nT ) (3.2)

Similarly, the rectangular pulse returns 1 inside a macro-pulse and 0 in the spacing between
macro-pulses.

R(t) =

{
1 if (k × trep ) < t < (k × trep + tbeam )
0 otherwise

k ∈ N (3.3)

Those three elements of the beam were computed on Python as shown in �gure 3.2.

(a) Gaussian bunch (b) Dirac comb (c) Rectangular pulse

Figure 3.2: Decomposition of the ILC beam signal in the time domain simulated with Python.

3.1.2 Fourier Transform of the beam signal

In order to obtain the frequency spectrum of the beam, a FT can be implemented. The FT F
of a function f(t) can be de�ned as

F {f(t)} =

∫ ∞

−∞
f(t)e−2πiftdt (3.4)

As shown in �gure 3.1, due to the FT properties, on can compute separately the di�erent
components of the beam signal and then perform a multiplication and a convolution to reconstruct
the entirety of the signal.

First, the FT of a Gaussian pulse is simply another Gaussian pulse. It can be shown that

F {ibunch (t)} = q · e−2σ2π2f2
(3.5)

Thus, the FT of the Gaussian bunch, is another Gaussian bunch with standard deviation 1/(2πσ)
(�gure 3.3a).
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The FT of the Dirac comb can be computed as

F {CT (t)} =
1

T
C1/T (f) =

1

T

∞∑
n=−∞

δ
(
f − n

T

)
(3.6)

which represents another Dirac comb of period 1/T = 1/tbunch.

The FT of a rectangular pulse with height A, rectangle length k = 177 µs and a period
T = 0.2 s gives a Fourier series. According to the synthesis equation, any periodic function g
can be reconstructed from cosine and sine waves as

g(t) = a0 +
∞∑
n=1

an cos(2πftn)−
∞∑
n=1

bn sin(2πftn) (3.7)

where frequencies are multiples of the fundamental frequency f . According to [Smi+97], the
Fourier series of the rectangular pulse is a frequency spectrum consisting of harmonics every
frep, with

a0 = Ad, an =
2A

nπ
, bn = 0 (3.8)

where an and bn coe�cients are the real and imaginary part of the frequency spectrum on the
synthesis equation, and where d = k/T .

(a) Gaussian bunch (b) Dirac comb (c) Rectangular pulse

Figure 3.3: FT of the decomposed ILC beam signal on the frequency domain simulated with
Python.

As explained by �gure 3.1, by convolution of the FT of the Dirac comb with the FT of the
rectangular pulse, and by multiplying that result with the FT of the Gaussian bunch, one can
reconstruct the FT of the ILC beam signal by means of a developped Python code.

The obtained result is a Gaussian pulse with
FWHM = 376 GHz, �lled with harmonics
repeated every 2.7 MHz (�gure 3.4). It is noted
that the operational frequency of the cavity
BPM should be contained inside this spectrum.
This does not represent an important limitation
on this case since the spectrum is broad. For
other beam signals, such as the Large Hadron
Collider (LHC), where the frequency spectrum
is extended up to 3 GHz, since the bunch length
is bigger (σLHC = 1.3 ns) [BC03], this has to be
taken in consideration.

Figure 3.4: Frequency spectrum of the
ILC beam signal with Python.
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According to literature, cavity BPMs usually have an operational frequency of about 1-2
GHz [Hay15] [SW10]. The operational frequency can be chosen by modifying the dimensions
of the cavity itself as shown in quation 2.1. The main limitation when choosing the resonance
frequency of the cavity is the available physical space to place the detector. Moreover, the
monopole and dipole frequencies of the cavity BPMs are chosen to be separated symmetrically
from the acceleration frequency: fRF = 1.3 GHz in the case of ILC. This means that fRF is in the
middle of f010 and f110. A cavity with L = 15 mm and a = 113 mm give resonance frequencies of
approximately f010 = 1.01 GHz and f110 = 1.62 GHz, which are well situated on the frequency
spectrum of the beam.

3.2 CM-rejection methods

In practice, the material of the cavity walls is not PEC, which leads to a �nite dissipation of
energy into the cavity walls (Joule e�ect). For this reason, one will obtain a broad spectrum of
frequencies when retrieving the signal out of the BPM. In addition, there is a strong excitation
of the monopole mode, as explained in section 1.2, the signal of the monopole TM010 can overlap
with the signal of interest (the dipole TM110) in the frequency domain. In order to account
for these e�ects and improve the accuracy of the position reading, rejection methods of the CM
(monopole mode) are implemented. Since the dipole mode generates a �eld transverse to the
z-axis, it can have a strong coupling with a properly designed waveguide. This waveguide acts
then as a �lter, removing the CM.

3.2.1 Cavity coupling to the waveguide

The �eld inside the cavity can couple to the attached waveguides (�gure 1.8b) by passing through
a rectangular slot. The modes from the cylindrical cavity can couple magnetically to the TE01

and TE10 modes of the rectangular waveguide (which corresponds to case b in �gure 2.1, presented
on the theory section). Yet, this is only possible when the magnetic �eld of the modes is parallel
to the slot direction. One can use this property to read only the desired modes in the desired
direction, as the ports to extract the signals are situated inside the waveguides [Nak08].
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(b) TM110 mode (horizontal)
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(c) TM110 mode (vertical)

Figure 3.5: Schematic representation of the cavity modes coupling with the waveguide slot.

Four symmetrically arranged rectangular waveguides can be used for extracting the dipole
signals, rejecting the monopole signal. As the magnetic �eld of the monopole mode is always
perpendicular to the slot direction, it will never couple successfully to the waveguide, leading to
a proper CM-rejection. The slots arranged vertically only couple with the horizontal polarization
of the dipole mode, allowing one to read the beam position along the x-axis. Similarly, the slots
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arranged horizontally grant beam position along the y-axis. Two waveguides per direction are
necessary in order to keep the BPM symmetry, reducing the x-y coupling [Li+03].

3.2.2 Cut-o� frequency of the waveguide

On top of the selective magnetic coupling, the waveguide can act as a very e�cient high-pass
�lter. Indeed, every mode on the waveguide has a cut-o� frequency that can be computed as

fc =
c0kt,mn

2π
where kt,mn =

√(
mπ

lx

)2

+

(
nπ

ly

)2

(3.9)

where lx and ly are the horizontal and vertical dimensions of the rectangular waveguide [Gus22].
For TE modes, one can have m = 0 or n = 0 but not both m = n = 0 at the same time.

In the following, the example of the horizontal polarization of TM110 is presented. That
polarization will couple to the fundamental mode of a waveguide with lx < ly (�gure 3.5b), the
TE01 mode. The cut-o� frequency of this mode in the waveguide is then calculated as

kt,01 =
π

ly
⇒ fc,01 =

c0
2ly

(3.10)

One can choose the height of the waveguide ly so that the cut-o� frequency is higher than the
monopole mode frequency and lower than the dipole mode frequency. This way the waveguide
acts as a high-pass �lter.

f010 < fc,01 =
c0
2ly

< f110 (3.11)

For example, a waveguide height of ly = 122 mm, the cut-o� frequency of the TE01 mode is
well included between the monopole and dipole cavity frequencies.

f010 = 1.01 < fc,01 =
c0
2ly

= 1.23 < f110 = 1.62 GHz (3.12)

These methods were successfully implemented and showed a proper CM-rejection, improving
the performance of the cavity BPM in [Wen11] [Wen+09].



Chapter 4

3D-EM Simulations on CST Studio

Suite

CST Studio Suite is an e�cient 3D electromagnetic (EM) analysis software used for the design
and optimization of EM systems [Glo]. By using this commercial software, one can evaluate the
working principle of a regular cavity and then simulate the cavity BPM performance. In this
study, CST parametric simulations have been performed to evaluate the impact of the cavity
BPM geometry on its operation mode and its performance.

4.1 Eigenmode study

An eigenmode study is initially implemented in order to observe the allowed modes on a resonating
cavity, according to its geometry. The beam is therefore not simulated in this study. Results
obtained with the eigenmode solver on CST are then compared to theoretical predictions.
Additionally, this study allowed as well the computation of the detector's dynamic range and
the behavior of the shunt impedance R/Q.

Dimensions of the cylindrical cavity are chosen to be a = 113 mm and L = 15 mm as
suggested by [Wen+09] [SW10] and [Wen06].

4.1.1 Resonance frequencies of monopole and dipole modes

Cavity geometry

Resonant frequencies of the di�erent TM modes can be analytically calculated by means of
equation 2.1. A MATLAB code (C.1), calculating jmn the n-th zero of the m-th Bessel function
Jm, was developed to compute the 6 lowest resonance frequencies of the mentioned geometry.

Mode TM 010 TM 110 TM210 TM020 TM310

fmnp(GHz) 1.0161 1.6190 2.1700 2.3324 2.6958
Type Monopole Dipole Quadrupole Monopole Sextupole

Table 4.1: TM modes resonance frequencies for a cavity with a = 113 mm and L = 15 mm
computed with MATLAB.

With this geometry, frequencies of the �rst monopole and �rst dipole are well separated from
the following frequencies. This will avoid having more noise components on the output signal.

23
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The eigenmode solver in CST requires the de�nition of the geometry, the material and some
boundary conditions [Com19b]. The material of the cavity is chosen as vacuum and its boundaries
are PEC. For the boundary conditions one can de�ne electric or magnetic walls, where the electric
and magnetic transverse �elds are equal to zero. The walls can be de�ned at:

The boundaries: electric wall (Et = 0)
(in green in �gure 4.1) for all boundaries,
since the structure is embedded in PEC
material.

The symmetry planes:

� electric wall (Et = 0) for the XY
plane: this is done to obtain the TM
modes only

� magnetic wall (Ht = 0) (in blue in
�gure 4.1) for the XZ plane: to obtain
only the horizontal polarization of the
modes

Figure 4.1: Boundary conditions de�nition
on CST for the cavity geometry.

Conventionally, the mesh is de�ned to be tetrahedral for the eigenmode solver. The eigenmode
solver on CST gives as results for the resonance frequencies:

f010 = 1.01543± 3× 10−8 GHz and f110 = 1.61793± 1× 10−11 GHz

(a) Monopole mode (b) Dipole mode

Figure 4.2: E-�eld distribution on the cavity geometry computed with CST.

Numerical frequency errors are given by CST. These preliminary results show the precision
of the software and allow to verify the analytical calculation of the resonance frequencies.

Beam Pipe inclusion

Since the cavity geometry is intersected by the beam pipe, the full geometry has to be considered.
The resonance frequencies are prone to change due to the "hole" in the cavity. CST is now used
to numerically compute those frequencies that will be in practice the operational frequencies of
the cavity. To simulate the pipe, the geometry is then modi�ed by including a cylinder of radius
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Rp = 39 mm (according to the ILC parameters) and a length Lp = 200 mm (long enough to not
in�uence the results). The material and boundary conditions are de�ned exactly the same way
as before. CST gives as results:

f010 = 1.122857± 9× 10−7 GHz and f110 = 1.494874± 3× 10−9 GHz

(a) Monopole mode (b) Dipole mode

Figure 4.3: E-�eld distribution on the cavity geometry with the beam pipe computed with CST.

It is noticeable that the inclusion of the pipe brings the values of the two frequencies closer
together. This is problematic because it makes the CM-rejection harder to achieve.

4.1.2 Dynamic range

The dynamic range of the detector is the range in which it is able to provide a valid position
measurement. In this case, it corresponds to the x and y range in which the approximation
Jn(x) ≃ 1

n!

(
x
2

)n
for x ≈ 0 is valid, giving equations 2.14 and 2.17. In other words, the dynamic

range corresponds to the range for which the E-�eld along the x and y-axis can be approximated
to a linear function (for the dipole mode) and can be approximated to a constant (for the
monopole mode).

In �gure 4.4, the Ez-�eld along the x-axis, extracted from the E-�eld distribution at y = 0
and z = 0 obtained with CST, is depicted.

(a) Dipole mode (b) Monopole mode

Figure 4.4: Ez-�eld along the x-axis for the cavity geometry with and without the beam pipe.

One can notice that there is indeed a linearity of Ez(x) for the dipole mode with or without
the pipe. This linearity can be approximated to be on the range x = ±22 mm. As discussed
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before, the output dipole signal is normalized by the monopole signal assuming the latter is
constant. One can approximate that this signal is constant again on the range x = ±22 mm
from the result including the beam pipe.

The same calculation can be performed on the y-axis observing the vertical polarization of
the dipole. The result is the same due to the symmetry of the geometry.

4.1.3 (R/Q) behavior

Figure 4.5: CST con�guration to compute
(R/Q).

When de�ning the cavity BPM parameters,
it was shown that the normalized shunt
impedance (R/Q) is linear to the beam
o�set squared (δx)2 for the dipole mode
(eq. 2.14), and constant for the monopole
mode (eq. 2.17). To corroborate this,
the post-processing tools of CST Studio
allow computing (R/Q) by integrating the
Ez-�eld along a direction at a speci�c
position, for the monopole and dipole
modes. From the de�nition of the shunt
impedance, the integration is performed
along the z direction. The coordinate y
is kept constant, equal to zero, and (R/Q)
is evaluated along a range of values of x
coordinates:

x = (0.0, 0.1, 0.2, ..., 1.0) mm

The output voltage is obtained from
√
(R/Q) (equation 2.22). Then, by taking the CST

results of normalized shunt impedance presented before, one can compute
√
(R/Q) as a function

of x. This con�rms:

� the linearity of the output signal for the dipole mode

� that the output signal is constant for the monopole modes.

Additionally, the results extracted from CST can be contrasted with the theoretical expressions
of (R/Q). Expressions 2.14 and 2.17:[

R

Q

]
110

≃ 2 (j11δx)
2 LT 2

r

ω110πε0a4J0 (j11)
2 and

[
R

Q

]
010

≃ 2LT 2
r

ω010πε0a2J1 (j01)
2

are computed on Python (B.2) along with the CST results, by using:

� a = 113 mm and L = 15 mm

� j11 ≃ 3.8317 and j01 ≃ 2.4048, the �rst zeros of Bessel functions J1 and J0

� w110 ≃ 2π × 1.494874 GHz and w010 ≃ 2π × 1.122857 GHz, according to the CST results

� ε0 the vacuum permittivity.
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(a) Dipole mode (b) Monopole mode

Figure 4.6:
√

(R/Q) along the x-axis for the cavity geometry with the pipe.

Results in �gure 4.6, corroborate the linearity of
√

(R/Q) for the dipole mode, and the
constant behavior for the monopole mode. However, there is a discrepancy on the comparison
with the theory. This can be explained by the fact that the theoretical expressions consider a
closed resonant cavity without the pipe. Since the (R/Q) calculations from CST were performed
on the geometry including the pipe, one can �nd again the di�erences spotted previously on
�gure 4.4.

4.2 Comparison of Wake�eld and PIC solvers

The wake�eld and PIC solvers have a di�erent dynamic than the eigenmode solver presented
previously. The eigenmode solver simply solves the allowed EM modes inside a geometry by
solving the Maxwell Equations with certain boundary conditions. The wake�eld and solver
compute the interactions between an EM source and its surroundings [Com19a]. This is done
by computing the �elds created by a charged bunch travelling though a geometry. The PIC
solver is implemented for the design of EM components used for the acceleration and guidance
of charged beams. This solver provides a transient simulation by evaluating the space charge
and the relativistic e�ects of particles propagating though high frequency EM �elds [Glo].

These solvers have suitable tools for an electron beam simulation. Their performance with
regard to the cavity BPM case are compared by �rst, analyzing their particle beam de�nition,
and then by the identi�cation of the dipole signal in the case of an o�set beam.

4.2.1 Setup comparison: de�nition of the beam

For the simulation, the geometry presented before for the eigenmode study is reproduced. Then,
for each of the solvers one can de�ne a particle source di�erently. Figure 4.7 shows that both
solvers allow the de�nition of a particle beam with a Gaussian shape, a charge q = 3.2 nC and
a standard deviation σz = 300 µm. The wake�eld solver de�nes a transmission line where the
beam passes, whereas the PIC solver de�nes the beam from a source point. In general the PIC
solver requires more information and is more precise on the beam de�nition. Other parameters
such as the number of bunches, the distance between them and the beam energy can be speci�ed.
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(a) Wake�eld solver (b) PIC solver

Figure 4.7: De�nition of the particle beam comparison for both solvers.

The de�nition of the mesh in these case is hexagonal. Its size is extremely narrow since it
considers the size of the bunch on the mesh de�nition: σz = 300 µm.

4.2.2 Identi�cation of the dipole signal

In order to identify the dipole signal, an E-
�eld probe is placed inside the cavity, to
collect the �eld produced by the beam. It is
placed at coordinates (a/2, 0, 0). The signal
collected by the E-probe is the electric �eld
as a function of time, at the point where
the probe is placed. The di�erent modes
existing in the cavity can be identi�ed by
performing a FT of the signal. Since the
resonance frequency of every mode is known,
they can be identi�ed in the frequency
domain. Simulations are run �rst by placing
a beam completely centered on the pipe, and
then with an o�set beam with coordinates
(0.5, 0, 0) mm. By comparing both results
one can identify the apparition of the dipole
signal when the beam has an o�set on the
x-axis. Figure 4.8: CST con�guration of the E-

probe.

Wake�eld solver

The wake�eld simulation is performed so that CST provides a result over 40 ns. The Ez �eld
as a function of time is retrieved and processed by an in-house developed Python code (B.3), to
obtain the result in the frequency domain.
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Figure 4.9 shows the FT for the centered and o�set beam. Both results present a large peak
around 1.127 GHz, corresponding to the monopole mode signal. One can distinguish a small
peak at 1.519 GHz, corresponding to the dipole mode, for the case of the o�set beam. Yet,
the dipole mode is barely perceivable. This can be improved by increasing the simulation time.
However, because of the small bunch size and the narrow mesh implemented, this requires very
large calculation times on CST.

(a) Centered beam (δx = 0 mm) (b) O�set beam (δx = 0.5 mm)

Figure 4.9: FT of the CST result from the E-probe for the wake�eld solver.

PIC solver

The PIC solver simulation is obtained over 40 ns as well. Again, one can identify the monopole
mode frequency around 1.254 GHz, and the dipole mode frequency at 1.5 GHz when there is
an o�set. The obtained frequencies for this solver are more consistent with the results obtained
on the eigenmode study. However, it is noticeable that the spectrum presents broader frequency
peaks. Nevertheless, the dipole peak is more clearly de�ned than for the wake�eld solver, making
simpler the identi�cation of the beam o�set.

(a) Centered beam (δx = 0 mm) (b) O�set beam (δx = 0.5 mm)

Figure 4.10: FT of the CST result from the E-probe for the PIC solver.

Overall, the PIC solver is preferred since this solver allows to make a thorough de�nition
of the particle beam. For instance, one can specify the bunch separation tbunch. This can be
particularly useful when observing the detector's behavior at the passage of many bunches, since
the energy inside the cavity needs to dissipate before the arrival of the next bunch.
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4.3 Output results

4.3.1 Result improvement

From here on, only the PIC solver is implemented. As explained previously, because of the bunch
size σz = 300 µm, the mesh de�nition is extremely narrow, which increases the calculation time
considerably. It was noticed that [SW10] employed a bunch size of σz = 24 mm for the ILC
beam-type. This bunch size was tested on CST, which allowed to decrease the simulation time
substantially.

Figure 4.11 shows the result on the frequency domain obtained directly from CST. The
simulation result is obtained over 300 ns. Because the simulation time is longer, one can observe
that the spectrum presents more detail than the ones obtained from shorter studies. The
frequency peaks are narrower, in particular for the dipole mode, which improves the position
reading.

(a) Centered beam (δx = 0 mm) (b) O�set beam (δx = 0.5 mm)

Figure 4.11: CST result from the E-probe for the PIC solver with σz = 24 mm.

However, it is important to recall that these results are obtained considering a PEC material
for the cavity. Therefore, the losses are not taken into account. For this reason, there is almost
no CM-contamination on the dipole frequency. Nevertheless, the choice of a longer bunch with
σz = 24, gives the possibility to perform longer simulations, giving more satisfying results. It is
convenient to keep using this simulation settings on further studies.



Conclusion and Discussion

Classical BPMs measure the charges induced by the beam on an insulated plate, where the
strength of the signal leads to the beam position. These BPMs are however limited by their
resolution and consequently, they are not suitable for the ILC project requirements. Because
of their resonating behavior, cavity BPMs allow a better resolution on beam position reading
(on the order of the nm). These BPMs work under the principle of excitation of special �eld
con�gurations, the TM modes, by the passage of the beam through a cavity. According to the
theory, a centered beam excites only the monopole modes of the cavity. The o�set of a beam is
identi�ed by the generation of the dipole signal, whose amplitude is proportional to the beam
displacement (until a certain range).

A proper functioning of the cavity BPM requires a careful geometry design. By choosing the
cavity dimensions, one can adjust the resonance frequency of the monopole and dipole modes
in such way that they are included on the frequency spectrum of the beam, and that they are
evenly separated from the accelerating frequency, as suggested by the bibliography as an optimum
working point based on the performance of existing designs. In the context of the ILC project,
a radius of 113 mm and a length of 15 mm are shown to be optimal. This leads to operational
frequencies of 1.01 GHz for the monopole mode and 1.62 GHz for the dipole mode.

An eigenmode study performed with CST con�rms these theoretical predictions: it provides
the right mode frequencies and con�rms the linearity of the output signal for the dipole mode
by means of an evaluation of the normalized shunt impedance behavior. Since the theory does
not consider the geometry of the beam pipe, CST is used to compute the actual operational
frequencies for the full geometry: 1.123 GHz for the monopole mode and 1.495 GHz for the
dipole mode. The study also yields the dynamic range of the detector, ±24 mm.

Wake�eld and PIC solvers are compared on the identi�cation of the dipole mode signal in
the case of an o�set beam. Because the PIC solver allows a thorough de�nition of the particle
beam, and since the frequency peaks are sharper, it seems to be the most suitable solver for the
cavity beam study. Nevertheless, the solvers can be complementary, since the wake�eld solver
computes the wakepotential left by the particles after passage. It is important to evaluate this
e�ect as well since the wake�elds constitute one of the main disadvantages of the cavity BPM,
because they negatively a�ect the performance of the accelerator.

Another issue to tackle when designing a cavity-BPM is the CM-contamination. As the
maximum amplitude of the monopole mode is on the beam axis, this mode is strongly excited
compared to the dipole mode. When using a lossy material for the cavity walls, the signal of
the monopole mode can overlap the dipole mode signal on the frequency domain. Rectangular
waveguides that only couple magnetically to the dipole mode, and with a cut-o� frequency higher
than the monopole mode frequency, work as very e�cient high-pass �lters.

A waveguide with height 122 mm is able to suppress the monopole mode �eld and retrieve the
dipole mode signal for position reading. It may be relevant to perform a parametric simulation
on the waveguide height and compute the spectral densities of both modes at f110, to derive

31



32 CONCLUSION AND DISCUSSION

the optimal height of the waveguide to reject the common mode, preserving the integrity of the
dipole signal.

A potential area of further study would be the cavity material. The energy dissipation on
the cavity must be high enough so the E-�eld inside the cavity disappears in between bunches,
and it must be low enough so that the peaks in frequency spectrum are narrow enough to reduce
the CM-contamination.

Moreover, it would be convenient to carry out studies in the resolution of the designed cavity
BPM, since it is the main requirement for an accurate position monitoring for the ILC. For a
detector with a proper CM-rejection the position resolution is mainly limited by the signal to
thermal noise ratio. Components of the signal processing electronics can also contribute to the
noise. An appropriate evaluation of the noise components would enable the calculation of the
position resolution.

Finally, other geometry designs of cavity BPM remain to be studied and understood. A
hybrid between a cylindrical and rectangular resonator is implemented on [SW10], leading to a
very e�cient CM-rejection inside the cavity itself. Additionally, re-entrant cavities are developed
as well on the context of the ILC project [Sim+08] and [Luo+11]. They have a smaller system
size and lower Q-value than a regular cylindrical cavity BPM.
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Appendix A

Electric Field on Cavities

A.1 Maxwell equations and wave equation

In electromagnetism, Maxwell equations are de�ned in the vacuum by Faraday's, Ampère's and
Gauss's laws [Gus22]:

∇×E(r, t) = −∂B(r, t)

∂t

∇×B(r, t) = µ0

(
ε0

∂E(r, t)

∂t
+ J(r, t)

)
∇ ·E(r, t) =

ρ(r, t)

ε0
∇ ·B(r, t) = 0

with spatial coordinate r, time t and nabla operator ∇. E and B are de�ned as the electric and
magnetic �elds and have units V/m and As/m2 respectively. J is the current density, ε0 is the
permittivity of free space and µ0 is the permeability of free space.

In vacuum, one �nds the relations:

D(r, t) = ε0E(r, t) and B(r, t) = µ0H(r, t)

where D is the electric displacement and H is the magnetic �eld intensity.
One considers only harmonic solutions of waves trinsmitting in the z direction, so that E ∝

ei(ωt±kzz) and H ∝ ei(ωt±kzz) where k = ω/c0 is the wavenumber and ω is the angular frequency.
It can be proven that each Cartesian component of E satis�es a scalar wave equation. Indeed,
from Maxwell equations one can derive

∇× (∇×E) + ε0µ0
∂2E

∂t2
= 0

And by means of the curl of the curl identity,

∇2E − 1

c20

∂2E

∂t2
= 0 with ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

where c0 = 1/
√
ε0µ0 is the speed of light in vacuum.

Thus, the Maxwell equations in vacuum lead to the vector Helmholtz equations for E and H:

∇2E(r) + k2E(r) = 0

∇2H(r) + k2H(r) = 0
(A.1)
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A.2 Boundary conditions and modes

One can consider a hollow waveguide along the z-axis with surface S and with vector normal
to the surface n̂ [Gus22]. The EM �elds can be decomposed into transverse and longitudinal
vectors as

E(r) = ET(r) + ẑEz(r)

H(r) = HT(r) + ẑHz(r)

The boundary conditions are su�cient to determining the waves that can exist inside the
waveguide. For the perfectly conducting surface S, the boundary conditions can be reduced to{

n̂×E(r) = 0
n̂ ·H(r) = 0

r on S ⇒
{

Ez(r) = 0
∂Hz(r)

∂n = 0
r on S (A.2)

where ∂Hz(r)
∂n = n̂ · ∇THz(r).

One can separate Ez and Hz on the previous conditions (equation A.2), along with the
Helmholtz equations (A.1). Then, one considers two cases:

� the transverse magnetic (TM) case, where the magnetic �eld has no z component

� the transverse electric (TE) case, where the electric �eld has no z component

Solutions in the two cases do not couple since there is no coupling via the boundary conditions
or the di�erential equations. The conditions can be summarized as{

∇2Ez(r) + k2Ez(r) = 0
Ez(r) = 0 r on S

(TM-case){
∇2Hz(r) + k2Hz(r) = 0
∂Hz
∂n (r) = 0 r on S

(TE-case)

(A.3)

Longitudinal components of the �elds are of interest. One can de�ne Ez(r) = v(ρ)eikzz and
Hz(r) = w(ρ)eikzz where ρ = x̂ + ŷ and where v(ρ) and w(ρ) are always real. Thus, one can
identify two eigenvalue problems for the hollow waveguide{

∇2
Tv(ρ) + k2t v(ρ) = 0

v(ρ) = 0
(TM-case) and

{
∇2

Tw(ρ) + k2tw(ρ) = 0
∂w
∂n (ρ) = 0

(TE-case)

(A.4)
There are non-trivial solutions v and w for discrete values of k2t where k2t = k2 − k2z .

A.3 Waveguides with circular cross-section

Let's consider a circular waveguide with geometry depicted in �gure A.1. For the TM mode, one
can reformulate the problem in equation A.4 in polar coordinates. For the TM mode{

∇2
Tv(ρ) + k2t v(ρ) =

1
ρ

∂
∂ρ

(
ρ∂v(ρ)

∂ρ

)
+ 1

ρ2
∂2v(ρ)
∂ϕ2 + k2t v(ρ) = 0

v(a, ϕ) = 0

And for the TE mode{
∇2

Tw(ρ) + k2tw(ρ) =
1
ρ

∂
∂ρ

(
ρ∂w(ρ)

∂ρ

)
+ 1

ρ2
∂2w(ρ)
∂ϕ2 + k2tw(ρ) = 0

∂w
∂n (a, ϕ) = 0
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Figure A.1: Geometry of a waveguide with circular cross-section [Gus22].

By inducing v(ρ, ϕ) = F (ρ)G(ϕ), one can use the separation of variables method, which leads to

ρ

F (ρ)

∂

∂ρ

(
ρ
∂F (ρ)

∂ρ

)
+ k2t ρ

2 = − 1

G(ϕ)

∂2G
(
∂ϕ2

)
ϕ

Since the right side depends only on ϕ and the left hand only on ρ, then both have to equal a
constant, here denoted C. This leads to the di�erential equations ρ ∂

∂ρ

(
ρ∂F (ρ)

∂ρ

)
+
(
k2t ρ

2 − C
)
F (ρ) = 0

∂2G(ϕ)
∂ϕ2 + CG(ϕ) = 0

The solution to the eigenvalue problem for the azimuthal part G(ϕ) (with condition G(ϕ) =
G(ϕ+ 2π)) is

G(ϕ) = Am cos(mϕ) +Bm sin(mϕ), C = m2, m = 0, 1, 2, . . .

The solution to the equation for the radial dependence with boundary conditions F (a) = 0 and
|F (0)| < ∞, is

F (ρ) = Jm(ktρ)

where Jm is the Bessel function of order m. Thus, the TM eigenvalues are given by Jm(kta) = 0
for m = 0, 1, 2, . . . , which gives

kt,mn =
jmn

a
and kz,mn =

√
k2 − k2t,mn (A.5)

where jmn is the n-th zero of the m-th Bessel function Jm.
Similarly, it can be shown that the eigenvalues of the TE modes are given by J ′

m(kta) = 0
for m = 0, 1, 2, . . . , which gives

kt,mn =
ηmn

a
and kz,mn =

√
k2 − k2t,mn (A.6)

where ηmn is the n-th zero of the derivative of the m-th Bessel function J ′
m.

It can be shown that the normalized eigenfunctions are
vmn =

√
εmJm(ξmnρ/a)√
πaJ ′

m(ξmn)

(
cosmϕ

sinmϕ

)
, TM-case

wmn =
√
εmηmnJm(ηmnρ/a)√

π(η2mn−m2)aJm(ηmn)

(
cosmϕ

sinmϕ

)
, TE-case ,

(A.7)

where εm = 2− δm,0.
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A.4 Cylindrical cavities

A �nite volume of vacuum enclosed by a metallic surface constitutes a resonance cavity. One
considers a cavity consisting of a hollow cylindrical waveguide terminated by metallic plane
surfaces at z = 0 and z = L. This induces additional boundary conditions{

∂Ez(x,y,0)
∂z = ∂Ez(x,y,L)

∂z = 0
Hz(x, y, 0) = Hz(x, y, L) = 0

A mode circulating in a cylindrical cavity is the superposition of a waveguide more propagating
in the positive and negative z-directions. Thus,{

Ez(r) =
(
a+nνe

ikzz − a−nνe
−ikzz

)
vn(ρ) ν = TM

Hz(r) =
(
a+nνe

ikzz + a−nνe
−ikzz

)
wn(ρ) ν = TE

Boundary conditions give a+nν = −a−nνand sin kzd = 0. Therefore kz can only take the discrete
values: kz,p = pπ/L where p = 0, 1, 2, . . . for the TM modes and p = 1, 2, . . . for the TE modes.
Then, frequencies that can exist inside a cylindrical cavity are

fnp =
c0
2π

√
k2tn +

(pπ
L

)2
In the case of a circular-cylindrical cavity, also known as pill-box cavity, with radius a and

length L, one can derive the expressions of Ez and Hz by means of equations A.7. It is shown
that the TE modes have an Ez �eld

Ez,mnp(ρ, ϕ, z) = CmnpJm (ξmnρ/a) cos(mϕ) cos
(pz
d

)
,m = 0, 1, . . . , n = 1, 2 . . . , p = 0, 1 . . .

(A.8)
and the TE-modes have an Hz �eld

Hz,mnp(ρ, ϕ, z) = CmnpJm (ηmnρ/a) cos(mϕ) sin
(pz
d

)
,m = 0, 1, . . . , n = 1, 2 . . . , p = 1, 2 . . .

(A.9)
where Cmnp is their amplitudes.

By merging this result with the one obtained for the cylindrical waveguides, one can derive
that the eigenfrequencies are given by

fmnp =


c0
2π

√(
jmn

a

)2
+
(pπ

L

)2
TM

c0
2π

√(ηmn

a

)2
+
(pπ

L

)2
TE

(A.10)
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Developed Python codes

B.1 Simulation of the ILC beam signal and its FT

1 import numpy as np

2 from scipy.integrate import quad

3 import matplotlib.pyplot as plt

4 from decimal import Decimal

5

6 #_____________________________________________________#

7 ## Variable definition

8 #_____________________________________________________#

9 q_bunch = 3.2 # nC charge of a bunch

10 sigma_z = 300 # microm lenght of a bunch

11 c = 3e5 # microm/ns speed of light

12 t_sigma_z = sigma_z/c # ns length of a bunch in time

13 t_bunch = 369 # ns spacing between bunches

14 f_bunch = 1/ t_bunch # frequency of repetition of bunches

15 f_rep = 5e-9 # GHz frequency of repetition of macro -pulses

16 t_rep = 1/f_rep # ns spacing between macro -pulses

17 f_RF = 1.3 #GHz frequency of RF cavities

18 n = t_bunch*f_RF # number of bunches

19 t_beam = n*t_bunch # ns lenght of a macro -pulse in time

20 fs = 10/ t_sigma_z # sample frequency

21 step = 1

22

23 #______________________________________________________#

24 ## Function definition

25 #______________________________________________________#

26 def i_bunch(t):

27 # gaussian pulse for a single bunch

28 return q_bunch /( t_sigma_z*np.sqrt (2*np.pi)) * np.exp(-(t)**2/(2* t_sigma_z

**2))

29

30 def i_bunch_FT(f):

31 # FT of the gaussian pulse for a single bunch

32 return q_bunch * np.exp(-2*( t_sigma_z*np.pi*f)**2)

33

34 def train_delta1(t):

35 # dirac comb pulse

36 deltas = np.zeros(len(t))

37 indices = np.where(t%t_bunch ==0)

38 deltas[indices [0]] = 1

39

39
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40 return deltas

41

42 def train_delta2_FT(f):

43 # FT of dirac comb pulse in GHZ

44 deltas = np.zeros(len(f))

45 for i in range(len(f)):

46 A = str(round(f[i],9)) # round to Hz

47 if Decimal(A)%Decimal('0.0027 ')== Decimal('0.0'):

48 deltas[i]=1

49 return deltas

50

51 def rect_pulse(t):

52 #rectancular pulse for macropulse

53 res = np.zeros(len(t))

54 for k in range (0,5):

55 indices = np.where((t>k*t_rep) & (t<k*t_rep+t_beam))

56 res[indices [0]] = 1

57 return res

58

59 def rect_pulse_FT(A,d,N):

60 # FT of rectancular pulse for macropulse (synthesis equation)

61 res = []

62 for k in range(N):

63 if k==0:

64 res.append(A*d) #a_0

65 else:

66 a_k = 2*A/(k*np.pi)*np.sin(k*np.pi*d)

67 res.append(abs(a_k))

68 return res

69

70 #_______________________________________________________#

71 ### TIME DOMAIN

72 #_______________________________________________________#

73 # Time definition

74 t_end = 1e4 # ns

75 time = np.arange(0,t_end ,step) # time vector

76

77 # Gaussian pulse

78 t_in = -0.005

79 t_fin = 0.005

80 time_gauss = np.arange(t_in ,t_fin ,1e-5)

81 bunch = i_bunch(time_gauss)

82 # Check value integral:

83 charge_bunch = quad(i_bunch , t_in , t_fin)

84 print(charge_bunch)

85 plt.plot(time_gauss ,bunch)

86 # plt.title('Single Bunch ')

87 plt.xlabel('Time (ns)')

88 plt.ylabel('Intensity (A)')

89 plt.grid()

90 plt.show()

91

92 # Delta train 1

93 dirac_comb = train_delta1(time)

94 plt.plot(time ,dirac_comb)

95 #plt.title('Dirac Comb ')

96 plt.xlabel('Time (ns)')

97 plt.ylabel('Intensity (A)')

98 plt.grid()

99 plt.show()
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100

101 # Rectangular pulse

102 time_rect = np.arange (0,6e5 ,1e3) # time vector

103 rect = rect_pulse(time_rect)

104 plt.plot(time_rect ,rect)

105 #plt.title('Rectangular function ')

106 plt.xlabel('Time (ns)')

107 plt.ylabel('Intensity (A)')

108 plt.grid()

109 plt.show()

110

111 #________________________________________________________#

112 ### FOURIER TRANSFORMS

113 #________________________________________________________#

114 # Frequency definition

115 f_end = 6e2

116 freq_delta = np.arange(0,f_end ,1e-4) # GHz ; step = 0.1 MHz

117

118 # Gaussian pulse

119 f_in = 0

120 f_fin = 8e2

121 freq_gauss = np.arange(f_in ,f_fin ,1e-4)

122 bunch_FT = i_bunch_FT(freq_delta)

123 plt.plot(freq_gauss ,bunch_FT)

124 #plt.title('Single Bunch FT ')

125 plt.xlabel('Frequency (GHz)')

126 plt.ylabel('Intensity (A)')

127 plt.grid()

128 plt.show()

129

130 # #Delta train 1

131 dirac_comb_FT = train_delta2_FT(freq_delta)

132 plt.plot(freq_delta ,dirac_comb_FT)

133 # plt.title('FT of Dirac Comb ')

134 plt.xlabel('Frequency (GHz)')

135 plt.ylabel('Intensity (A)')

136 plt.grid()

137 plt.show()

138

139 # Multiplication in the frequency domain

140 FT_BS_mult = dirac_comb_FT*bunch_FT

141 plt.plot(freq_delta ,FT_BS_mult)

142 # plt.title('Fourier Transform of Beam signal (without rectangular pulse)')

143 plt.xlabel('Frequency (GHz)')

144 plt.ylabel('Intensity (A)')

145 plt.grid()

146 plt.show()

147

148 # Rectangular pulse

149 A = 1 # amplitude of rectangular pulse

150 d = t_beam/t_rep #variable

151 N = int(5e3) # number of harmonics

152 freq_pulse = np.linspace(0,f_rep*N,N) # has to have 5 Hz step to work

153 rect_FT = rect_pulse_FT(A,d,N)

154 plt.bar(freq_pulse ,rect_FT ,width =2e-9)

155 #plt.title('FT of rectangular pulse ')

156 plt.xlabel('Frequency (GHz)')

157 plt.ylabel('Intensity (A)')

158 plt.grid()

159 plt.show()
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B.2 (R/Q) calculation and comparison with CST results

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from numpy import loadtxt

4 from scipy.special import jv

5

6 ## Read R/Q as a function of x coordinate for CST results

7 file_name = "data_CST/eigenmode_study/R-Q_TM010_TM110.txt"

8 data = loadtxt(file_name , comments="#", delimiter="\t", unpack=False)

9 modes = data [:,0]

10 R_Q = data [:,1]

11 # Monopole mode

12 R_Q_010 = np.copy(R_Q)

13 R_Q_010[modes ==2] = 0

14 R_Q_010 = R_Q_010[R_Q_010 !=0]

15 # Dipole mode

16 R_Q_110 = np.copy(R_Q)

17 R_Q_110[modes ==1] = 0

18 R_Q_110 = R_Q_110[R_Q_110 !=0]

19

20 # x-coordinate

21 x = np.arange (0 ,1.1 ,0.1) # mm

22

23 ## Theory

24 delta_x = np.linspace (0 ,1.1) # mm

25 # Variable definition

26 j11 = 3.8317

27 j01 = 2.4048

28 L = 15 # mm cavity length

29 a = 113 # mm cavity radius

30 w_110 = 2*np.pi *1.494874 # GHz

31 w_010 = 2*np.pi *1.122857 # GHz

32 c = 300 # mm/ns

33 Tr = (np.sin(w_110*L/(2*c)))/( w_110*L/(2*c))

34 ep_0 = 8.8541878128e-6 # vacuum permitivity nF/mm

35 J0_j11=jv(0, j11)

36 J1_j01=jv(1, j01)

37

38 # Dipole mode

39 R_Q_110_th = (2*( j11*delta_x)**2 * L * Tr**2)/(w_110*np.pi*ep_0*a**4 *J0_j11 **2)

40 # Monopole mode

41 R_Q_010_th = (2* L * Tr**2)/(w_010*np.pi*ep_0*a**2 *J1_j01 **2)

42 R_Q_010_th = np.full(np.shape(delta_x),R_Q_010_th)

43

44 ## Plot

45 plt.figure ()

46 plt.plot(delta_x ,np.sqrt(R_Q_010_th), label='theory ', color ='k')

47 plt.scatter(x,np.sqrt(R_Q_010), label='CST results ')

48 plt.xlabel('x (mm)')

49 plt.ylabel(r'$\sqrt{R/Q}$ (V/A)')

50 # plt.title(r'$\sqrt{R/Q}$'+' as a function of x (monopole)')

51 plt.legend ()

52 plt.show()

53

54 plt.figure ()
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55 plt.scatter(x,np.sqrt(R_Q_110), label='CST results ')

56 plt.plot(delta_x ,np.sqrt(R_Q_110_th), label='theory ', color ='k')

57 plt.xlabel('x (mm)')

58 plt.ylabel(r'$\sqrt{R/Q}$ (V/A)')

59 # plt.title('Sqrt of R/Q as a function of x (dipole)')

60 plt.legend ()

61 plt.show()

B.3 E-probe CST results and FT

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from numpy import loadtxt

4 from scipy.fft import fft , fftfreq

5

6 ## Read and plot the signal as a function of time

7 file_name = "data_CST/pic_study/E_z(t)_pic_centered_sigma24.txt"

8 data = loadtxt(file_name , comments="#", delimiter="\t", unpack=False)

9 time = data [:,0]

10 E_probe = data [:,1]

11

12 plt.figure ()

13 plt.plot(time ,E_probe)

14 plt.xlabel('Time (ns)')

15 plt.ylabel('Ez-field on Probe (V/m)')

16 # plt.title('Ez-field as a function of time on probe ')

17 plt.show()

18

19 ## Fourier Transform

20 N = len(time)

21 duration = time[-1] # ns

22 sample_rate = N/duration #GHz

23 normalize = N/2

24 E_probe_f = fft(E_probe)

25 freq_ft = fftfreq(N, 1 / sample_rate)

26 # Fix results

27 E_probe_f[freq_ft <0] = 0 # minimum freq

28 E_probe_f[freq_ft >10] = 0 # maximum freq

29 E_probe_f = E_probe_f[E_probe_f !=0]

30 freq_ft[freq_ft <0] = 0 # minimum freq

31 freq_ft[freq_ft >10] = 0 # maximum freq

32 freq_ft = freq_ft[freq_ft !=0]

33 freq_ft= np.append(0,freq_ft) # add the lost zero

34

35 plt.figure ()

36 plt.plot(freq_ft , np.abs(E_probe_f)/normalize)

37 plt.xlabel('Freq (GHz)')

38 plt.ylabel('Ez-field on Probe (V/m)')

39 # plt.title('FFT of the Ez-field on probe ')

40 plt.xlim (0,4)

41 plt.ylim(1e0 ,3e4)

42 plt.yscale('log')

43 plt.show()
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Developed MATLAB codes

C.1 Computing the TM eigenfrequencies

1 clc

2 clear all

3

4 global c0

5 c0 = 3e2; % speed of light [mm/ns]

6

7 a = 113; % radius of the cavity [mm]

8 L = 15; % length of the cavity [mm]

9

10 kmn_010 = wave_num (0,1,0,a,L); % wavenumber monopole [1/mm]

11 kmn_020 = wave_num (0,2,0,a,L); % wavenumber second monopole [1/mm]

12 kmn_110 = wave_num (1,1,0,a,L); % wavenumber dipole [1/mm]

13

14 f_010 = freq(kmn_010); % eigenfrequency of the monopole [GHz]

15 f_020 = freq(kmn_020); % eigenfrequency of the second monopole [GHz]

16 f_110 = freq(kmn_110); % eigenfrequency of the dipole [GHz]

17

18 function res = freq(k)

19 % returns the resonance frequency for a wavenumber k

20 global c0

21 res = c0*k/(2*pi);

22 end

23

24 function res = wave_num(m,n,l,a,L)

25 % returns the wave number of a pillbox cavity of dimensions a and L

26 eps = eps_mn(m,n);

27 res = sqrt((eps/(a))^2 + (l*pi/L)^2);

28 end

29

30 function res = eps_mn(m,n)

31 % returns the root n of the bessel function of order m

32 eps_list = besselzero(m,5);

33 res = eps_list(n);

34 end

44
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