
Learning Based Road
Estimation

Sanna Amirijoo, Karl Niwong

Master’s thesis
2023:E44

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M



Abstract
The interest in autonomous driving has vastly increased, leading to a surge in research and
development efforts over the past decades. This technology could enhance road safety, alleviate
traffic congestion, and yield numerous environmental and economic benefits. A fundamental
prerequisite to developing and integrating autonomous driving is to obtain information about
the surrounding environment, particularly in terms of detecting lane geometry. Precise lane
detection can be achieved in a number of ways, including with the use of deep learning. This
thesis investigates deep learning-based lane detection by developing models that predict the
center of the ego lane. The problem is treated as a regression problem and is approached by
developing, testing, and comparing several model architectures by using mean squared error as
metric. Lane marker detection coordinates were used to generate bird’s eye views (BEV) used as
input to the different models. Four main models were developed. Model 1 was a convolutional
neural network (CNN) and Model 2 was the CNN with a one-dimensional input fused to the
feature map of the CNN. Model 3 incorporated a long short-term memory (LSTM) after Model
2 to make use of the temporal information in the data. Furthermore, Model 4 was created which
had the same architecture as Model 3 but with another loss function. The experimental results
demonstrated a consistent decrease in loss with the introduction of each subsequent model. The
conclusions could be drawn that the selection of a metric used to train and evaluate networks was
essential in the process of developing a relevant model. From the experience gathered during the
thesis, a learning-based approach seemed to hold a lot of potential for estimating road geometry.



Acknowledgements
We gratefully acknowledge Zenseact for their collaboration on this master thesis project, which
would not have been possible without their resources and support. The opportunity to visit
their office in Gothenburg was invaluable and enabled us to complete this project from Lund.
We are especially grateful to our industrial supervisors Junsheng Fu, Philip Granat, and Markus
Eriksson, for their active dialogue, insightful contributions, and constant support that enabled
us to move forward with the project. Finally, we thank Kalle Åström, our academic supervisor
from the Center of Mathematical Sciences at the Faculty of Engineering at Lund University, for
always being ready to help if needed.



Contents
1 Introduction 6

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fundamentals 8
2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Max-pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Long Short Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Training Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Stochastic Gradient Decent . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Adaptive Moment Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Generalization, Overfitting, and Underfitting . . . . . . . . . . . . . . . . 15
2.4.6 L2 Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.7 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.8 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Random Sample Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Related Work 18

4 Method 20
4.1 Data and Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Grid Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 RANSAC Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 Model 1: CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Model 1 with Weight Decoupling . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 Model 2: CNN + One-Dimensional Input . . . . . . . . . . . . . . . . . . 27
4.3.4 Model 3: CNN + One-Dimensional Input + LSTM . . . . . . . . . . . . . 27
4.3.5 Model 3 as one Trainable Network . . . . . . . . . . . . . . . . . . . . . . 28
4.3.6 Model 4: Model 3 with Weighted MSE . . . . . . . . . . . . . . . . . . . . 28

5 Results 29
5.1 Grid Baseline and RANSAC Baseline . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Cell Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Model 1: CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Model 1 with Weight Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Model 2: CNN + One-Dimensional Input . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Model 3: CNN + One-Dimensional Input + LSTM . . . . . . . . . . . . . . . . . 33
5.7 Model 3 as one Trainable Network . . . . . . . . . . . . . . . . . . . . . . . . . . 33



5.8 Model 4: Model 3 with Weighted MSE . . . . . . . . . . . . . . . . . . . . . . . . 34
5.9 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Discussion 37
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4.1 Model 1: CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4.2 Model 1 with Weight Decoupling . . . . . . . . . . . . . . . . . . . . . . . 39
6.4.3 Model 2: CNN + One-Dimensional Input . . . . . . . . . . . . . . . . . . 39
6.4.4 Model 3: CNN + One-Dimensional Input + LSTM . . . . . . . . . . . . . 39
6.4.5 Model 3 as one Trainable Network . . . . . . . . . . . . . . . . . . . . . . 40
6.4.6 Model 4: Model 3 with Weighted MSE . . . . . . . . . . . . . . . . . . . . 40

7 Conclusion 42

8 Future Work 43

9 Appendix 44



1 Introduction
According to the World Health Organisation, approximately 1.3 million people die every year in
road traffic accidents [1]. This is one of the reasons why the interest in autonomous driving has
vastly increased in the past decades. With the recent developments of high-precision sensors,
computer vision, and machine learning algorithms, road vehicles are being implemented with
more advanced autonomous driving functionalities. The end goal often is to become fully auto-
mated or to enable accurate advanced driving assistance systems (ADAS) [2] [3]. This can result
in increased road safety because of the reduction of human error by having constant vigilance
and an improved reaction time. Human errors such as sudden braking or improper lane changes
can also be reduced and therefore result in less congestion. These advantages would benefit the
environment and the economy but also result in new behavioral patterns and inventions with
carpools and infrastructure integration. Such technology might also benefit people currently
unable to drive [4] [5].

One of the basic requirements for developing and integrating autonomous driving is to obtain
information about the surrounding environment [3]. An accurate understanding of the road
ahead is especially important in order for the vehicle to plan the route and prevent accidents [2].
It is also important in features such as lane-keeping assist systems, which keep the vehicle in the
proper lane and avoid collisions, and autonomous emergency braking and steering, which prevent
or reduce the damage in an accident [6]. These ADAS are usually vision based, which is often
a good option because cameras provide rich and detailed information about the surrounding
environment whilst being relatively cost-effective. As an example, lane detection may be trivial
when the road has a well-defined geometry and is clear of obstacles. However, this is not always
the case because of natural reasons such as shadows from vehicles or trees, bad road conditions,
or poor weather [7].

Precise lane detection can be achieved in a number of ways. An example is the use of high-
definition (HD) maps. However HD maps are currently expensive and difficult to implement, and
challenges with outdated maps or road work scenarios are problems that need to be addressed
[8]. Because of this, it is important to be able to detect the road in real-time by using the outputs
from sensors such as cameras, LiDAR, and radar, mounted on the ego vehicle [9]. These sensors
can for example be used to detect traffic, pedestrians, or traffic hazards but also to find where
the lane markers are located relative to the car.

There are several different methods to estimate the road geometry. Some statistical methods
use Hough transforms in combination with a Kalman filter [10]. The benefit of transforming the
image into the Hough space is that straight lines can be detected using statistical probability,
with a limitation that it requires significant time to obtain an accurate result [7]. Different
implementations of random sample consensus (RANSAC) methods have also been used in lane
detection tasks to remove outliers [11] [12]. A weak point for tracking methods with strong
smoothness assumptions, e.g. Kalman filters, is that some methods assume a stable camera
and a flat ground surface. Vibrations from the vehicle and changes in the terrain inject noise
into the data, making abrupt changes to the time series, posing difficulties for these kinds of
methods [13]. Another limitation with some statistical methods is that it can be challenging
to add new inputs to the models because it may require a redefinition of the state variables
and a change of the filter’s equation [14]. With these limitations in mind, as well as the last
decade’s improvements, deep learning approaches have become more commonly used in the field
of autonomous vehicles.

Deep learning involves training a neural network to recognize complex patterns in data.
The advantages of neural networks include being able to detect complex nonlinear relationships
between dependent and independent variables, as well as the availability of multiple training

6



algorithms [15]. Deep learning has also shown promising results for handling image data, where
convolutional neural networks (CNNs) are commonly used [16]. In traditional image processing,
feature engineering is often used which is a time-consuming process that is not required in
deep learning [17]. Furthermore, deep learning can also be used to handle sequential data,
such as video data, often with the use of recurrent neural networks (RNNs). With different
combinations of CNNs and RNNs, various deep learning architectures have been explored for
numerous autonomous driving solutions, including lane estimation, and so far the results have
been promising [18].

1.1 Purpose
This thesis investigates learning-based road estimation by developing a model that predicts the
center of the ego lane, which is the lane the vehicle is driving in. The problem is treated as
a regression problem and is approached by developing, testing, and comparing several model
architectures by using mean squared error as a metric.

1.2 Collaboration
This master thesis has been done in collaboration with the software company Zenseact, which
develops solutions for autonomous driving and advanced driving assistance systems. Zenseact
believes in automation as the solution to human errors in traffic. Currently, their solution aids
the driver, but with a future goal of the driver assisting the vehicle [19].

7



2 Fundamentals

2.1 Artificial Neural Networks
A neural network consists of layers of connected nodes, starting with the input layer and ending
with the output layer. In between these, there can be one or more hidden layers of nodes. An
illustration of a neural network with two hidden layers can be seen in Figure 1, where each circle
represents one node. The network is fully connected, meaning that each node in every layer is
connected to all nodes in the next layer [16].

Figure 1: A fully connected neural network with an input and output layer, both with three
nodes, and two hidden layers with five nodes.

2.1.1 Nodes

Nodes produce their outputs by applying an activation function to a weighted sum of their
inputs. The main purpose of an activation function is to introduce non-linearity into the network
computations, allowing the network to capture non-linear patterns, which are often found in
real-world data. A node is illustrated in Figure 2.

Figure 2: An artificial node. The node sums over the K inputs multiplied with their respective
weights, adds the bias, and applies the activation function to produce its output.

8



The mathematical operations performed in a node can be formulated as,

y = φ

(
K∑

k=1

ωkxk + b

)
,

where y is the output, φ is the activation function, ωk is the weight corresponding to the input
xk, and b is the bias. A bias introduces a shift in the activation function to allow for more
accurate predictions.

The goal when training a network is for the trainable parameters, which are the weights and
the biases, to be chosen by the network such that the network performs sufficiently well on the
given task [16].

2.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) are commonly used for image analysis because they
are designed to handle spatial relations of the input. The network uses a mathematical linear
operation called convolution which is usually denoted with an asterisk,

h(t) = (f ∗ g)(t) =
∫

f(τ)g(t− τ)dτ,

where f and g represent the input and the kernel respectively. h is called the feature map. If it
is assumed that t can only take on integer values and that f and g are only defined for integer
t, the discrete convolution can be defined as,

h(t) =
∑

f(τ)g(t− τ).

In machine learning applications, the input and the kernel are usually multidimensional and the
convolution is performed over several axes. Using a two dimensional kernel, K, of size m × n
and a two dimensional input image, I, a convolution for pixel (i, j) of the input can be written
as,

H(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n).

Every node in each feature map is thus a linear combination of nodes in the previous layer
within the receptive field, where the receptive field is defined by the kernel.

In PyTorch, a machine learning framework in Python, which was used for this master the-
sis, the kernel is redefined such that a convolution is instead implemented as a discrete cross-
correlation,

H̃(i, j) = (K̃ ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K̃(m,n).

Using cross-correlation instead of convolution changes the values learned in the network but
does not affect the actual result. It is implemented for efficiency. In this thesis, a discrete
cross-correlation will be called a convolution in accordance with related work and literature in
the area of machine learning [16] [20] [21] [22].

2.2.1 Filters

The combination of a convolution result and an activation function is called a filter. Furthermore,
an input may have multiple channels and the filter will have the same depth as the number

9



of channels. The operations of a filter, F , with multiple channels on a pixel (i, j) can be
mathematically represented as,

F (i, j) = φ

(
b+

∑
c

∑
m

∑
n

Ic(i+m, j + n)K̃(m,n, c)

)
,

where b is a bias, c iterates over the number of channels and Ic represents the corresponding
input channel. The number of filters applied to the input image equals the number of channels
in the output. This is illustrated with an example in Figure 3 where four filters of depth two
are applied to an input, also of depth two, to produce an output of depth four [16].

Figure 3: Four filters, with the same depth as the input, produce an output of depth four.

2.2.2 Max-pooling

A max-pooling reports the maximum value within a rectangular neighborhood and is used with
a set stride over the input. It is applied to all channels independently. Thus, it does not change
the number of channels [16].

2.3 Recurrent Neural Networks
Recurrent neural networks (RNNs) are neural networks designed to deal with sequential data.
Because of this, RNNs can be used in processing speech data, time series data, and text data.
An RNN contains feedback connections such that the output from a node can affect the next
input to the same node, thus allowing information to persist. Figure 4 shows a simple RNN
consisting of one node with a feedback connection.

10



Figure 4: A node with a feedback connection to itself.

In Figure 5 the node in Figure 4 has been unfolded, and it can more clearly be seen why the
structure of an RNN is suitable to handle data that comes in sequences. However, in practice,
RNNs cannot seem to learn long-term dependencies because of the vanishing gradient problem.
This occurs when the weights of the network are no longer updated effectively based on the
earlier inputs in the sequence, meaning that the network forgets information from earlier time
steps [16].

Figure 5: A node with a feedback connection that has been unfolded in time.

2.3.1 Long Short Term Memory

Long short-term memory (LSTM) networks are a subset of RNNs designed to handle long
sequences of data. An important aspect of the LSTM is the cell state, Ct, which is the top
horizontal line seen in Figure 6.

11



Figure 6: An LSTM cell. It consists of interconnected gates ft, it, and ot that control the flow
of information into and out of the cell.

Information can be added to or removed from the cell state by three structures called gates.
They all use the sigmoid function, σ(·), which outputs a value between 0 and 1, where 0 means
removing all of the information and 1 means keeping all of the information. There is the forget
gate, ft, the input gate, it, and the output gate, ot,

ft = σ (Wfht−1 + Ufxt + bf )
it = σ (Wiht−1 + Uixt + bi)
ot = σ (Woht−1 + Uoxt + bo) ,

where ht−1 is the hidden state at time t− 1 and xt is the input at time t. bf , bi, and bo are the
biases, Wf , Wi and Wo are the weights for the hidden state, and Uf , Ui and Uo are the weights
for the input, where the subindices denote the forget, input and output gate.

The information that is to be removed from the cell state is decided by the forget gate. The
input gate decides what information in the cell state is to be updated and C̃t contains new
candidate values that could be added to the cell state,

C̃t = tanh (WCht−1 + UCxt + bC) ,

where WC and UC are the weights for the hidden state and input respectively, and bC , is the
bias. The updated cell state is now given by,

Ct = ft ⊙ Ct−1 + it ⊙ C̃t,

where ⊙ is the Hadamard product.
The output gate, which is a filtered version of the cell state, decides the final output together

with tanh(·),

ht = ot ⊙ tanh (Ct) .

The above equations are formulated for a single LSTM node. In practice, many LSTM nodes
are used in a network, meaning that the weights used in the above equations should be replaced
by matrices and the gates should be replaced by vectors of values between 0 and 1. Figure 7
shows a network with two layers and hidden size t + 1. The number of layers describes how
many LSTMs are stacked on top of one another, meaning that the input to the second layer is

12



the output from the first, and the hidden size is the number of features in each layer [16] [23]
[24].

Figure 7: An unfolded RNN network with two hidden layers and hidden size t+ 1.

2.4 Training Neural Networks
During the training of a neural network, the weights and biases are adjusted to minimize a
chosen loss function. Usually, the available data is divided into a training set, a validation set,
and a test set. The training set is used for training different networks, whereas the validation
and test set are used for evaluating the networks’ performances. The validation set is used to
compare the performance of networks, and the test set should only be used once, and not until
a final network has been obtained. This is to obtain an unbiased evaluation result. After the
test set has been used it would be misleading to continue to make adjustments to the network
[16].

If the training set distributions do not match the validation and test set distribution it can
lead to the network getting a higher loss for unseen data. This is called domain mismatch
and can occur because the model learns to recognize patterns and make predictions based on
the features that are present in the training domain. Hence, by having data sets with similar
distribution, the model can usually perform better for unseen data but also gets evaluated on a
wide set of data [25].

2.4.1 Loss Function

A loss function, E, is used to measure how well a network models the data. For regression
problems, a commonly used loss function is the mean squared error (MSE),

E(θ) =
1

N

N∑
n=1

(yn − dn)
2
,

where N is the number of samples in the data set, y represents the output of the network and
d is the corresponding target. θ is all the weights and biases that the output is dependent on
[16] [26].

13



2.4.2 Gradient Descent

An algorithm for minimizing the loss function is called gradient descent. It can be roughly
explained as computing the gradient of the loss function for randomly initialized weights and
biases, taking a small step in the direction of the gradient, and then repeating until a minimum
is reached.

A change of the loss function, ∆E, with respect to small changes in the weights and biases
can be written,

∆E ≈ ∂E

∂θ1
∆θ1 +

∂E

∂θ2
∆θ2 + . . .+

∂E

∂θp
∆θp, (1)

where θi is either a weight or a bias and p is the total number of trainable parameters in the
network. The goal is to find parameters such that ∆E becomes negative.

Let a vector of changes in the trainable parameters, ∆θ, and the gradient of the loss function,
∇E, be defined as,

∆θ ≡ (∆θ1,∆θ2, . . . ,∆θp)
T (2)

∇E ≡
(
∂E

∂θ1
,
∂E

∂θ2
, . . .

∂E

∂θp

)
. (3)

Using Equations (2) and (3), Equation (1) can be written,

∆E ≈ ∇E ·∆θ. (4)

To repeat, the goal is to find a change in the parameters, ∆θ, such that the change in the loss,
∆E, is negative. So choosing,

∆θ = −η∇E, (5)

where η is the learning rate, which is a small positive parameter, Equation (4) can be written
as,

∆E ≈ ∇E · (−η∇E) = −η||∇E||2.

Since ||∇E||2≥ 0, it implies that ∆E will always decrease given that θ is chosen as described in
(5), and taking into account the limitation of the approximation in Equation (4).

To summarize the gradient descent algorithm, the gradient of the loss is calculated and the
trainable parameters are updated in the negative direction of the gradient such that the loss
decreases until a local or global minimum is reached [27].

2.4.3 Stochastic Gradient Decent

Stochastic gradient descent (SGD) is a way of speeding up the training of a network. The idea
is to estimate the gradient by computing the gradient of a small, randomly chosen subset of the
training samples instead of computing it for the whole set. This subset is called a mini-batch.

The approximation of the gradient is computed as,

∇E ≈ 1

M

M∑
n=1

∇
(
(yn − dn)

2
)
,

where M is the number of training samples in the mini-batch.
After the gradient is computed for a mini-batch, the weights and biases are updated in

accordance with Equation (5). Then another randomly chosen mini-batch is used to compute
the gradient until all training samples have been used. When all training samples have been
used, one training epoch has been completed. This is repeated for a set number of epochs.

14



The speedup happens because instead of applying one gradient and updating the weights
one time, N/M gradients are applied and the weights are updated N/M times. SGD is thus
a factor N/M faster than conventional gradient descent. In this way, the network can reach
similar performance by training for fewer epochs [27].

2.4.4 Adaptive Moment Estimation

Adaptive moment estimation (Adam) optimization is an extension of SGD. It is efficient when
working with a lot of data or parameters and requires less memory.

The algorithm works by also considering the past gradients when computing the weight and
bias updates for the network,

m(t+ 1) = β1m(t) + (1− β1)∇E(t)

v(t+ 1) = β2v(t) + (1− β2) (∇E(t))
2
,

where β1 and β2 are two tuneable parameters, m(t) is the weighted average of past gradients
for all parameters at time t and v(t) is the weighted average of squared past gradients for all
parameters at time t. With,

m̂(t+ 1) =
m(t+ 1)

1− βt
1

v̂(t+ 1) =
v(t+ 1)

1− βt
2

,

and using Equation (5), the trainable parameters can be updated as,

∆θ(t+ 1) = −η
m̂(t+ 1)√
v̂(t+ 1) + ϵ

,

where ϵ is a small number to avoid division by zero [16].

2.4.5 Generalization, Overfitting, and Underfitting

A model that can generalize well is able to properly adapt to previously unseen data drawn from
the same distribution as the one used to train the model. A model’s capability to generalize
can be improved by avoiding overfitting during training. Overfitting occurs when the network
conforms in too much detail to the training data. When this happens the training loss continues
to decrease whilst the validation loss stagnates or increases. Underfitting is the opposite of
overfitting and implies that the model has not yet learned enough and the loss is therefore not
as low as it could be [28].

In the first epochs seen in Figure 8, the model is underfitted and is still learning, which
can be seen by the negative slope of the losses. For later epochs, the network starts to overfit
to the training data such that the validation loss starts to increase. The ideal model for the
given hyperparameters during the training process can be found when the validation loss is at
its minimum, which in the figure is approximately at epoch 25.

15



Figure 8: A theoretical learning curve that showcases both underfitting and overfitting to the
training data.

2.4.6 L2 Norm Regularization

L2 regularisation is a commonly used technique in machine learning to prevent overfitting. The
technique involves adding a penalty term to the cost function that the model is being optimized
to minimize. This penalty term is proportional to the square of the magnitude of the weights in
the model. The effect of the penalty is to penalize bigger weights and therefore yields a model
with smaller weights, which can help reduce overfitting by making the model more robust [29]
[16].

In essence, L2 regularisation adds a constraint to the optimization problem, which encourages
the model to find a solution that balances between fitting the data well and having small weights.
The regularisation term is given by,

Ω = λ

K∑
k=1

ω2
k,

where K is the number of weights in the network. The trade-off is controlled by a hyperparam-
eter, λ, which determines the strength of the regularisation penalty. Larger values of λ result in
stronger regularisation and smaller weights, while for smaller values the opposite is true [16].

2.4.7 Dropout

Dropout is another popular regularization technique in machine learning. It is designed to
prevent overfitting by randomly deactivating a set fraction of nodes during training. By in-
troducing dropout regularization, the network becomes more robust and less reliant on specific
nodes, leading to improved generalization. [30]

2.4.8 Batch Normalization

A problem that can occur while training a neural network is internal covariance shifting, which
refers to the distribution of each layer’s input changes during the training when the parameters

16



get modified. To address this problem, one can normalize the layer inputs as,

y =
x− E[x]√
Var[x] + ϵ

γ + β.

The normalization in every layer is done for each training mini-batch. Batch normalization
allows for less careful parameter initialization and can also remove the need for dropout. Higher
learning rates can also be used, thus speeding up the training process [31].

2.5 Random Sample Consensus
Random sample consensus (RANSAC) is a method to remove outliers. The idea of RANSAC is
that if the number of outliers is small, there is a high probability to pick an outlier-free set. An
outline of the algorithm can be seen in Algorithm 1 [32].

Algorithm 1 RANSAC Algorithm
1: Randomly select a small subset of the data points.
2: Fit a model to the selected points.
3: For the model, count the number of points that are inbound a predefined threshold.
4: Repeat step 1-3 several times and select the model with the most inliers or the smallest

error.

The probability of randomly selecting a set of inliers depends on the proportion of the inliers
and the size of the set. If the probability of selecting an inlier is x and the number of points in
the set is z. Then the number of iterations, n, needed for the RANSAC algorithm in order to
find a set with only inliers with a probability of p, can be calculated as follows.

Firstly, it is assumed that the number of points is large, such that the portion of inliers
and outliers do not change when removing a point. The probability of selecting an inlier set
can be calculated to xz. This yields a probability of failing to select an inlier set to 1 − xz.
To find an inlier set at least once is the complement of failing to find an inlier set all n times.
The probability of failing n times is (1− xz)

n. With this in mind, the number of iterations,
n, needed in order to have a probability p to have found at least one set of only inliers can be
calculated as,

(1− xz)
n ≤ 1− p ⇒ n log (1− xz) ≤ log (1− p) ⇒ n ≥ log (1− p)

log (1− xz)
. (6)

Because of noise, not all inlier sets work equally for estimating the solution. So in practice,
it is good to run more iterations than above [32].

17



3 Related Work
Examples of past successful CNN architectures which have been shown to generalize well to
other data sets include U-Net, SegNet, and VGG [33] [34] [35]. U-Net and SegNet are encoder-
decoder networks developed for semantic segmentation, which is the classification of every pixel
in an input image [33] [34]. VGG was developed in order to investigate the effect of depth on
the accuracy of the network. The network was characterized by its simplicity as it used 3 × 3
filters in 13 convolutional layers, some layers had 2 × 2 max pooling. The network had 3 fully
connected layers before the output. All layers had the rectified linear unit (ReLU) as activation
function except for the last one which had softmax [35].

Since CNNs are suitable for handling images, they have been used for road estimation with
image inputs [7] [36]. One such paper took a single image, taken from a camera mounted on
the front of the ego vehicle as input, and outputted a set of 3D curves as lane descriptors. This
was done without assuming a constant lane width or the height or pitch of the camera. The
network was evaluated at a set of anchor points, meaning predefined evaluation distances from
the car [36]. They also used inverse perspective mapping (IPM) which has been used for lane
detection before [37] [11]. The IPM transforms the captured images in the camera perspective
to a bird’s-eye view (BEV) and enabled mapping between pixels in the image plane and world
coordinates [11].

BEV is a 2D representation of information. It can be used to give an intuitive understanding
of a surrounding scene or to fuse different kinds of data into a unified representation. It has
several times been used in autonomous driving tasks [38] [39] [40] [41] [42] [43]. Furthermore, a
BEV representation can also be used to simplify perception problems since it provides a consis-
tent representation of the data [44]. For autonomous driving, the sensors capturing information
about the environment do so from the ego vehicle and are often directed parallel to an assumed
flat ground. Because of this, the information is captured in a perspective view that is perpen-
dicular to the plane of the BEV. The transformation between the two views is ill-posed and
therefore, using BEV in autonomous driving is often a challenge [39].

Many lane detection methods have focused on single images and have thus performed badly
on images containing non-ideal conditions, such as heavy shadow or vehicle occlusion. Since lanes
are continuous structures, using information from previous frames may improve lane detection
in the current frame. To make use of the temporal information, papers have used LSTMs [2]
[45] [46].

One paper did semantic segmentation and used an encoder-decoder network structure for
the CNN to ensure that the output had the same size as the input. In between the encoder-
decoder, they used an LSTM network to recursively predict the lane. In this way, they created
an end-to-end trainable network that combined the benefits of using CNNs on images with the
time series properties of RNNs. Their proposed networks performed better on almost all their
metrics compared to baseline architectures and other networks, which were different variations
of U-Net and SegNet [2].

In another paper, a CNN was implemented to detect the lanes. Then an expectation line was
constructed and lastly an LSTM was applied to predict the future trajectory of the autonomous
vehicle. The two networks were thus trained separately. The results verified the effectiveness of
the proposed method [45].

In order to be able to use data that was not optimal to represent as an image, like single
values for a frame, the authors created a CNN that took an input image and then concatenated
single value parameters, such as BMI, age, and gender, with the image data when the spatial
resolution of the feature map was 1 pixel [47].

Other modifications to more conventional CNN architectures have also been tested. Tradi-

18



tional CNN architectures use square kernels, but it has been found that unconventional kernel
shapes can result in improved performance for classification problems compared to square convo-
lution kernels alone [22]. Furthermore, papers have suggested using non-square kernels designed
to work with the geometry of the input data [48] [49].

In order for the network to learn, an optimizer needs to be used. Adam is a common opti-
mizer and has previously been used in lane detection tasks [46] [2] [50]. There are suggestions
that Adam leads to worse generalization than SGD with momentum [51]. When using adaptive
gradient algorithms, L2 regularization, and weight decay are not equivalent. However, by de-
coupling the weight decay from the optimization steps the original formulation of weight decay
is recovered. There has been empirical evidence that the generalization performance improved
on image classification tasks compared to only using Adams [29].

19



4 Method

4.1 Data and Data Preprocessing
The data was collected by special vehicles and saved in logs. Figure 9 shows a picture of a
vehicle that collects different kinds of data, such as camera and LiDAR data, which can be
used to develop driving-assisted systems in normal cars [52]. It also collects data that can be
modified offline to ground truth, GT, used in the company for the development of such systems.
The logs used in the project were 30 second splits of longer logs and ordered from when the logs
were recorded.

Figure 9: One of Zenseact’s data collecting vehicle [53].

The main data for the project consisted of coordinates, (x, y, z), for detected lane markings
from highways. These lane markings were detected by another team. For each frame, they
output several detections in the ego vehicle’s local coordinates. Figure 10 shows the coordinate
system which had the origin in the middle of the rear axis of the ego vehicle and the x-axis
in the heading direction of the car. The y-axis was an extension of the car’s rear axis with a
positive direction left of the ego vehicle. Given a positive right-oriented coordinate system, the
z-axis pointed up relative to the ego vehicle.

Figure 10: The orientation of the local coordinate system for the ego vehicle with the origin
in the middle of the rear axis.

The GT was given in global coordinates and needed to be transformed into the local coor-
dinate system. This was done by extracting the ego vehicle’s position and orientation in global
coordinates to get a reference point and orientation of the coordinate system. Converting the
GT to the local coordinate system was then done by calculating the translation vector between
the ego vehicle and the GT points, which represented the displacement of GT relative to the

20



ego vehicle. To align the local coordinate system, a rotation transformation was applied to the
translation vector. This rotation was given by the negative of the ego vehicle’s heading angle
and yielded that the GT was adjusted to the ego vehicle’s perspective, and thereby transformed
to local coordinates.

4.1.1 Data Distribution

To get an even distribution of data in the training, validation, and test set of where and when
the logs were recorded, the first two logs were sent to the training set, the third to validation
and the fourth to test, and so on until all logs had been assigned to a set. The distribution of
when and where the logs were recorded for each of the sets can be seen in Figure 11. It can be
seen that the distributions are similar for the three data sets for these metrics.

(a) (b)

Figure 11: The distribution over the location (a) and the time divided in quarters (b) for the
split of data sets.

The distribution in deviation from y = 0 of the GT points for the anchor point at 0 and 100
meters away from the car can be seen in Figure 12 and shows that they were similar for the
three data sets. The distribution for the other anchor points can be seen in the Appendix.

21



(a) (b)

Figure 12: The distribution in deviation from y = 0 of the GT points 0 meters (a) and 100
meters (b) ahead of the vehicle.

The variance of the GT in the anchor points can be seen in Figure 13.

Figure 13: The variance of the GT at the anchor points for all data.

4.1.2 Input

The number of detections in each frame was not constant because of factors such as traffic and
weather conditions. Therefore, to represent the data in an understandable way, BEVs were
generated. The BEV approach assumed a flat surface and created a grid in local coordinates in
front of the car, where each cell of the grid represented an area. If that area had at least one
detected lane marking in it, the cell got the value 1, otherwise 0. The BEV used had a cell size
of 0.2 m × 0.2 m and dimension 20 m × 120 m. The dimension of the BEVs were chosen after
doing an analysis of the data, where most of the lane marker detections were in the range of the
BEV and it covered all the anchor points. A binary BEV for a frame can be seen in Figure 14.

22



Figure 14: A binary BEV for a frame in local coordinates. Each cell in the grid has the size
1 m × 1 m for clearer visualization. The cells with at least one detection in them were marked
orange, forming a two-lane road.

Since the number of grid cells was dependent on how big of an area was covered by the BEV,
as well as how fine the grid was, two more BEVs were created for each frame. These BEVs
were also initialized to all zeroes, but every cell that had detections was filled with the mean
deviation from the middle of the cell. One BEV for the deviation in the x-direction and one for
the deviation in the y-direction. The addition of the BEVs with deviation in x- and y-direction
also made BEVs with different cell sizes more comparable, which was interesting because fewer
cells would be computationally more efficient.

Another data point used as input to the network was the median of the heading angle of
detected vehicles. For the vehicles detected on the opposite side of the road, the angle was
rotated π radians before determining the median.

Data that was not included was frames before a lane change. More specifically, all frames
where the lane change was 100 m or less in front of the ego vehicle were removed. This was
necessary because the GT was only recorded in the ego lane, and therefore the targets would be
in the wrong lane if the frames before a lane change were not removed. A removed frame can
be seen in Figure 15 where the data collection vehicle changed lanes approximately 60 meters
ahead.

Figure 15: An invalid frame where the GT was not in the ego lane 100 meters ahead of the
ego vehicle.

4.2 Baselines
A baseline model is used as a sanity check and as a first comparison. It does not matter how
complicated the developed model is, if it cannot beat the baseline it is definitely not a good

23



model. Usually, a baseline is simple to interpret and implement, creating an understandable
reference for the development of new models.

4.2.1 Grid Baseline

With the BEV as an inspiration, an initial baseline was created. The grid baseline was based
on a grid around the 11 evaluation distances, as can be seen in Figure 16. For every evaluation
distance, there were 2 rectangular areas. The upper rectangle had its limits at x = ±5, y = 0,
and y = 3. The lower rectangle had the same limits multiplied with −1, generating a symmetric
grid reflected in y = 0 for every evaluation distance. These limits were chosen because, in
the x-direction all relevant lane marker detections would be used and, in the y-direction all
detections for the closest lane markers to the left and right would be covered but not the ones
in the next lanes. For all lane marker detections in each rectangle, the mean of the y-coordinate
was calculated. For a case where there were lane marker detections in the area above and below
the evaluation distance, the mean of the y-coordinates was calculated for each rectangular area
before calculating the mean between the two values to get a result of where the lane center
was estimated to be located at the anchor point. However, if no lane marker detections were
in a certain area for a specific anchor point the lane center was estimated by the lane center
estimation of the anchor point closer to the car. If there were no anchor points closer to the
car, the estimation was that the car was driving in the lane center, i.e. y = 0.

Figure 16: The evaluation distances and the grid for the grid baseline.

4.2.2 RANSAC Baseline

An additional baseline was created. It was a modified RANSAC method that estimated the lane
markers closest to the left and right of the ego vehicle which would result in the final baseline, see
Algorithm 2. The RANSAC was modified so the fitted lines’ intercepts were in certain intervals,
making it likely to find the ego lane’s lane markers. These intervals were chosen to [−3, 0] for
the lower estimate and [0, 3] for the upper estimate with the same argument for the boundaries
as for the grid baseline limits in the y-direction.

24



Algorithm 2 Modified RANSAC Algorithm used as Baseline
1: Randomly select a small subset of the data points.
2: Fit a straight line to the selected points.
3: If the intercept of the line is within the wanted interval, continue. Otherwise, repeat step 2

until a line with the wanted intercept is found.
4: For the fitted line, count the number of points that are inbound a predefined threshold.
5: Repeat step 1-4 several times and select the line with the most inliers.

A rough estimate for the number of iterations needed for the RANSAC method can be
calculated from Equation (6). Given 2 lanes, one third of the lane markers would be inliers for a
line estimate using the RANSAC baseline, yielding x ≈ 0.3. To fit a straight line, z = 2 points
are needed, and with a probability p = 0.95, Equation (6) yields an approximation of n = 26.
However, because of noise, different number of lanes, and the fact that not all inlier sets worked
equally well for estimating the lane marker, n was set to 300. For each iteration, the algorithm
had 100 chances of fitting a line with an intercept within the desired range.

In an edge case where the RANSAC algorithm did not fit an estimate for one of the lane
markers, the lane marker was approximated to be parallel to the other fitted estimate with the
car driving in the middle of the lane. If there were no detections, or so few that the RANSAC
did not find an estimate for any lane, the middle of the lane was estimated at y = 0 for all
anchor points.

Different modifications of the RANSAC method were also tried, one included trying to fit
several lines to the data points and then find the two closest to the car. The problem with that
modification was that it was not trivial to determine the number of lines that should be fitted
for each frame and the computation time was higher.

4.3 Network Architecture
4.3.1 Model 1: CNN

Several different CNN architectures were tested. The ones that performed the best were encoder
networks. Model 1 was inspired by VGG and the architecture in paper [47]. Both of these
networks were designed to handle classification problems but the difference between networks
designed for classification and regression is a change in loss function and activation function
after the last convolutional layer.

The architecture of Model 1, which had ∼ 13 890 000 trainable parameters, can be seen in
Table 1.

25



Table 1: The architecture of Model 1 with ∼ 13 890 000 trainable parameters. Every convolu-
tional layer consisted of a convolution, a batch normalization, with β = 0, γ = 1 and ϵ = 10−5,
and a ReLu activation function.

Layer Kernel Size Stride Padding Channels Output Shape
Convolutional 1 5 × 25 1 0 64 96 × 576
Convolutional 2 25 × 5 1 0 64 72 × 572

MaxPool 1 2 × 2 2 0 64 36 × 286
Convolutional 3 5 × 5 1 1 128 34 × 284
Convolutional 4 5 × 5 1 1 128 23 × 282

MaxPool 2 2 × 2 2 0 128 16 × 141
Convolutional 5 5 × 5 1 1 256 14 × 139
Convolutional 6 5 × 5 1 1 256 12 × 137
Convolutional 7 5 × 5 1 1 256 10 × 135

MaxPool 3 2 × 2 2 0 256 5 × 67
Convolutional 8 3 × 3 1 1 512 5 × 67
Convolutional 9 3 × 3 1 1 512 5 × 67
Convolutional 10 3 × 3 1 1 512 5 × 67

MaxPool 4 2 × 2 2 0 512 2 × 33
Convolutional 11 3 × 3 1 1 512 2 × 33
Fully Connected - - - - 1 × 11

In accordance with the findings about using non-square kernels mentioned in Related Work,
the kernels in the first and second layer of the CNN in Model 1, Model 2, and Model 3 were
chosen to have the shapes 5× 25 and 25× 5 respectively. The size and shape of the kernels were
also chosen in regard to the restriction of the number of trainable parameters as well as the size
of the input image.

A grid search was done to determine the mini-batch size and learning rate. The final learn-
ing rate and mini-batch size were 0.002 and 200 respectively. Taking into consideration the
computation time and the memory limits of the computer, but also wanting to reduce both the
time and memory consumption, cell sizes for 0.2 m × 0.2 m, 0.3 m × 0.2 m, 0.4 m × 0.4 m and
0.5 m × 0.5 m were tested. The different cell sizes were tested for a network similar to the one
above except for the kernel sizes. The kernel sizes for the two first convolutional layers were
5× 15 and 15× 5 respectively, and the kernel sizes of the remaining layers were 3× 3. Moving
forward, cell size 0.2 m× 0.2 m was chosen and the final network did not allow for a higher cell
size than 0.2 m × 0.2 m. MSE was used as loss function and Adam was used as optimizer with
(β1, β2) = (0.9, 0.999) and ϵ = 10−8. A high variance of results was observed when training the
network for different seeds so L2 regularisation was used to lower the variance. After testing
different weight decays, L2 regularisation with weight decay 10−6 was used. All models were
trained for 30 epochs and during the training process, the model with the lowest validation loss
was saved.

4.3.2 Model 1 with Weight Decoupling

Inspired by the paper [29], decoupling the weight decay from the Adam optimizer was tested.
This was done by using a prebuilt function in Pytorch’s library and for several different combi-
nations of hyperparameters including the same as when no weight decoupling was used.

26



4.3.3 Model 2: CNN + One-Dimensional Input

Some inputs are not well represented as an image, such as single values for a frame. In the
provided data, detected vehicles were attached with their coordinates and heading angle. These
heading angles were used to create a one-dimensional input to concatenate with the encoded
images later in the CNN. Two inputs for each frame were created, a binary input describing
if there were any detected vehicles in the range of the BEV, and the median of the detected
vehicles’ heading angle within the range of the BEV. The binary input was added to be able to
distinguish between a 0 because of no detected vehicles and a 0 because of a car that is driving
with that heading angle. Vehicles’ heading angles detected going in the other direction were
rotated π radians before determining the median.

The median of the heading angle of the detected vehicles and the binary input was represented
as a 1×1 image of 2 channels and concatenated after the feature map from the last convolutional
layer had been flattened. After this, there was one fully connected layer to produce the output.
The architecture of Model 2 is shown in Figure 17 where it can be seen that the number
of channels increases with two when the one-dimensional input has been concatenated. The
number of trainable parameters was ∼ 13 890 000.

Figure 17: The modification of Model 1 resulting in Model 2. The modification was fusing
single value data when the spatial resolution of the feature map in the CNN was 1.

A grid search was done to test different learning rates and batch sizes and were found to be
the same as for Model 1. L2 regularization was used as well but was increased to 10−4 to obtain
the best validation loss.

4.3.4 Model 3: CNN + One-Dimensional Input + LSTM

To make use of the temporal information of the data, an LSTM was implemented after Model 2
such that the output from the CNN was used as input to the LSTM. Several different network
architectures were tested, including 1, 2, and 3 number of layers and hidden sizes 200, 300, 400,
and 500. For the most promising networks, 1, 2, and 3 fully connected layers with different
combinations of ReLU and Tanh as activation functions were also tested. During the training
of the network, sequence lengths of 20, 50, and 80 were tested with different combinations of
learning rates and mini-batch sizes. Furthermore, L2 regularization was used with weight decay
10−6, as well as dropout with a dropout probability of 0.2 between the two fully connected
layers.

The final network had an additional ∼ 506 000 trainable parameters because of the LSTM.
The LSTM had two layers and a hidden size of 200. It used two fully connected layers with
ReLU before the first and Tanh before the last. The network was trained using Adam and MSE
loss with batch size 100 learning rate 0.005 and sequence length 50. Similar to the CNN, the

27



LSTM outputted a vector containing the deviation in y-direction measured in meters. In the
cases where the sequence length was not fulfilled, for example, at the beginning of a file, the
output of the CNN was used as output from Model 3. The sequence length was reset for each
file because of the splitting of the data. This splitting led to the logs being fed into the network
were not necessarily consecutive.

Furthermore, experiments combining the CNN from Model 2 and different LSTMs into one
trainable network were also conducted.

4.3.5 Model 3 as one Trainable Network

The CNN and LSTM in Model 3 were trained separately. Because of this, it was also tested to
train the two networks as one trainable network such that backpropagation is performed for the
whole network. Different learning rates were tested.

4.3.6 Model 4: Model 3 with Weighted MSE

The metric used to evaluate the performance of the networks was MSE over all evaluation
distances which valued all anchor points equally. A weighted MSE was therefore used on Model
3 to increase the importance of the points closer to the car. The LSTM in Model 3 were retrained
with the weighted MSE before being evaluated on the same loss as the other models. The weight
vector was set to the inverse of the variance of the GT at each anchor point, seen in Figure 13,
and then normalized to get the Euclidean length of 1.

28



5 Results

5.1 Grid Baseline and RANSAC Baseline
Figure 18 shows the performance of the grid baseline for two frames.

(a) (b)

Figure 18: The output of the grid baseline for two frames. In the frame shown in (a), the
performance of the grid baseline for a straight lane can be seen. The performance of the grid
baseline for a lane that turns a lot can be seen in the frame shown in (b).

The performance of the RANSAC baseline can be seen for the same frames as above in
Figure 19.

(a) (b)

Figure 19: The output of the RANSAC baseline for the same two frames as for the grid
baseline. In the frame shown in (a), the performance of the RANSAC baseline for a straight
lane can be seen. The performance of the RANSAC baseline for a lane that turns a lot can be
seen in the frame shown in (b).

29



The difference in results between the grid baseline and the RANSAC baseline was small.
The results were measured in RMSE to obtain a more interpretable unit of measure. For the
validation data, they had an RMSE of 1.78 m and 1.76 m respectively, which was the lateral
error for all the anchor points. Because of the results, as well as the academic literature in the
field, the RANSAC baseline was henceforth used as baseline.

5.2 Cell Size
The RMSE results on the validation data when using the different cell sizes are presented in
Table 2. Cell size 0.2 m × 0.2 m gave the lowest validation result. An earlier version of the
final network was used for these experiments since the network seen in Table 1 did not allow for
larger cell sizes.

Table 2: Lowest validation loss when using the same model architecture but different cell sizes.

Cell size [m2] 0.2 × 0.2 0.3 × 0.3 0.4 × 0.4 0.5 × 0.5
RMSE [m] 0.861 0.937 1.094 1.157

5.3 Model 1: CNN
The loss curve for Model 1 can be seen in Figure 20, where the lowest validation loss was 0.846
m.

Figure 20: Loss curve for Model 1 with the lowest validation loss of 0.846 meters.

For the two frames, one with straight lanes and one with a turn, the performance of Model
1 can be seen in Figure 21. Since it would be difficult for the naked eye to see any further
improvements in these frames, no more model predictions for these frames will be shown.

30



(a) (b)

Figure 21: The output of Model 1 for the same two frames as for the baseline models. In the
frame shown in (a), the performance of Model 1 for a straight lane can be seen. The performance
of Model 1 for a lane that turns a lot can be seen in the frame shown in (b).

For Model 1, the validation errors at each anchor point can be seen compared to the baseline
in Figure 22, as well as Figure 32 in the Appendix. The test errors can be seen in Figure 23 and
Figure 33. For each anchor point, the RMSE and the median absolute error can also be seen.

(a) (b)

Figure 22: Histograms showing the validation errors from Model 1 and the baseline at 0 meters,
(a), and 100 meters, (b), ahead of the car. The RMSE and the median absolute error for its
respective evaluation distance can be seen in the top left corner.

31



(a) (b)

Figure 23: Histograms showing the test errors from Model 1 and baseline at 0 meters, (a), and
100 meters, (b), ahead of the car. The RMSE and the median absolute error for its respective
evaluation distance can be seen in the top left corner.

5.4 Model 1 with Weight Decoupling
Decoupling the weight decay from the optimizer did not lead to any improvements, as can be
seen in Figure 24. The lowest validation loss for this network was 0.880 m.

Figure 24: Loss curve for Model 1 with decoupled weight decay and the lowest validation loss
of 0.880 meters.

5.5 Model 2: CNN + One-Dimensional Input
Model 2 resulted in improvements in the validation loss compared to Model 1. The lowest loss
for the validation set using Model 2 was 0.746 m and the loss curve can be seen in Figure 25.

32



Figure 25: Loss curve for Model 2 with the lowest validation loss of 0.746 meters.

5.6 Model 3: CNN + One-Dimensional Input + LSTM
The loss curve for Model 3 can be seen in Figure 26. The lowest validation loss was 0.691 m,
which was a decrease both compared to Model 1 and Model 2.

Figure 26: Loss curve for Model 3 with the lowest validation loss of 0.691 meters.

5.7 Model 3 as one Trainable Network
Combining Model 3 into one trainable network and doing backpropagation through both the
CNN and the LSTM did not lead to any improvements. The lowest validation loss for the
combined network trained as one was 1.538 m and the corresponding loss curve can be seen in
Figure 27.

33



Figure 27: Loss curve for the model using a CNN and an RNN combined and trained as one
network. The lowest validation loss was 1.538 meters.

5.8 Model 4: Model 3 with Weighted MSE
The loss curve for Model 4 can be seen in Figure 28. The total validation loss was 0.753 which
was higher than Model 3.

Figure 28: Loss curve for Model 4 with the lowest validation loss of 0.753 meters.

5.9 Summary of Results
The validation and test errors at each anchor point for the baseline and Model 1 can be seen in
Figure 22 and 32 and Figure 23 and 33 respectively. Similar error histograms for Model 1, 2, 3,
and 4 can be seen in Figure 29 and 34 and Figure 30 and 35. The baseline result was removed
from these graphs because of the decreased resolution when including it.

34



(a) (b)

Figure 29: Histograms over the validation errors from Model 1, Model 2, Model 3, and Model
4 at 0 meters, (a), and 100 meters, (b), ahead of the car. The RMSE and the median absolute
error for its respective evaluation distance can be seen in the top left corner.

(a) (b)

Figure 30: Histograms over the test errors from Model 1, Model 2, Model 3, and Model 4 at
0 meters, (a), and 100 meters, (b), ahead of the car. The RMSE and the median absolute error
for its respective evaluation distance can be seen in the top left corner.

All the RMSE results can be seen summarized in Table 3 and 4 for the validation data and
test data respectively. The results are presented at a short, middle, and far range of 0 - 30 m,
40 - 60 m, and 70 - 100 m respectively.

35



Table 3: Validation losses for all models in the short, middle, and far range, as well as the
total RMSE. Model 1 consisted of a CNN, Model 2 added a one-dimensional input to the CNN,
Model 3 added an LSTM after Model 2, and Model 4 had the same network architecture as
Model 3 but trained with a weighted MSE.

Baseline Model 1 Model 2 Model 3 Model 4
RMSE 0 - 30 m [m] 0.607 0.149 0.183 0.152 0.145
RMSE 40 - 60 m [m] 1.329 0.438 0.414 0.381 0.409
RMSE 70 - 100 m [m] 2.594 1.342 1.170 1.088 1.189

RMSE Total [m] 1.759 0.846 0.746 0.691 0.753

Table 4: Test losses for all models in the short, middle, and far range, as well as the total
RMSE. Model 1 consisted of a CNN, Model 2 added a one-dimensional input to the CNN,
Model 3 added an LSTM after Model 2, and Model 4 had the same network architecture as
Model 3 but trained with a weighted MSE.

Baseline Model 1 Model 2 Model 3 Model 4
RMSE 0 - 30 m [m] 0.596 0.178 0.200 0.169 0.167
RMSE 40 - 60 m [m] 1.448 0.539 0.517 0.497 0.523
RMSE 70 - 100 m [m] 2.671 1.395 1.304 1.248 1.353

RMSE Total [m] 1.814 0.894 0.840 0.803 0.867

36



6 Discussion

6.1 Data
The distribution of the data was evaluated in terms of location and time the logs were recorded,
as well as deviation from y = 0 in the ego vehicle coordinate system. The location was relevant
because of weather conditions, but also because different countries could have different color lane
markings. The time the logs were recorded was relevant to be able to make sure that all three
data sets contained different road conditions. These location and time differences could create
variability in the data sets so the data was split in this way to obtain a similar distribution of
data in the training, validation, and test set and avoid unwanted cases where, for example, all
data in the test set was from the fourth quarter in Region A and all training data from Region
B and Region C was from the summer months.

Looking at the deviation of the GT from y = 0 at the different anchor points was relevant
because this demonstrated the curvature of the lane. It was wanted for all data sets to contain
roads with different geometry and not for one set to contain, for example, only straight roads.

6.2 Input
Converting the lane marker detections to a BEV with a set cell size meant that the precise
location of the lane marker detections, as well as the number of lane marker detections in each
cell, were lost. The bigger the cell size, the more information would be lost. The cell size for the
final network was set to 0.2 m×0.2 m. A smaller cell size was not feasible due to computational
time and memory restrictions. This meant that there was a limitation in the resolution of the
input data and thus, a limitation in the performance of the network. However, more information
was added as input in terms of the second and third channel of the BEV that described the
mean deviation from the center of each cell in the x- and y-direction. There was however an
uncertainty in the lane marker detections, which were used to generate the input to the network.
The further away from the car the bigger the uncertainty in the detections. This could therefore
also have contributed to limiting the performance of the network, especially at further distances.

From Table 2 it can be seen that a cell size of 0.2 m × 0.2 m outperformed the other cell
sizes for that network, which as mentioned, was expected. However, changing the cell size also
changed the number of trainable parameters in the network. The smaller the cell size the bigger
the input, and the bigger the input, the more trainable parameters in the network. This may
have affected the performance of the network since, in general, a large number of trainable
parameters could allow a neural network to capture more complex patterns and relationships
in the data, which could potentially lead to better performance. Trying to keep the number
of trainable parameters constant would however have required a reconstruction of the network
architecture. Either way, not all factors could have been kept constant when investigating the
effects of different cell sizes. Therefore, it is difficult to draw a certain conclusion as to why there
was an improvement in network performance, other than reasoning that this should have been
because more information from the input was used, as well as possibly because the network had
more trainable parameters.

For Model 2, Model 3, and Model 4 the median of the heading angle of detected vehicles
was also used as input. The median resulted in a single value for each frame, removing the need
for padding the input. The median was also chosen because detected vehicles could be in the
middle of a lane change or in a nonparallel lane, making the median value a more reasonable
choice than the mean.

37



6.3 Baseline
A frame where the grid baseline gave a reasonable result can be seen in Figure 18a, which was
expected considering how the grid baseline made predictions. In Figure 18b a limitation of the
grid baseline can be seen. When the road turned so that the lane marker detections crossed
y = 0, the estimates from the grid baseline became bad. Another limitation of the grid baseline
was that it estimated the center of the lane straight ahead after the last lane center estimation
that was based on lane marker detections instead of taking the shape of the lane up until that
point into consideration. This becomes a relevant problem for frames with few lane marker
detections since these frames usually only had detections close to the ego vehicle. This meant
that the lane center would be predicted straight for several evaluation distances, resulting in a
large RMSE, even if the curvature of the lane, based on the detections, suggested otherwise.
Furthermore, the grid baseline almost always predicted the center of the lane to be at y = 0
for the first anchor point since there were very few detections in that range, as can be seen in
Figure 18a.

From Figure 19a it can be seen that the RANSAC baseline, like the grid baseline, gave a
reasonable result for the frame with a straight lane. Comparing Figures 18b and 19b it can be
seen that the RANSAC baseline outperformed the grid baseline for the frame with a turn.

However, the RANSAC baseline had some limitations too. For example, the fitted polynomial
was of degree one. This is not ideal for representing lane markings, especially when the lane is
turning because the lane shape cannot accurately be represented in the far field by a straight
line. However, not fitting a first-degree polynomial could lead to unwanted behavior far away
from the car. One such example occurs when there are only detections relatively close to the
car, making a higher degree polynomial fit the points well but further away where there are no
detections, making the output deviate significantly from the GT. Another reason for the choice
of a first-degree polynomial was that the computational cost increased with a higher-degree
polynomial making it more time-consuming as well as needing more iterations of the algorithm
due to Equation (6).

The results in combination with the support from other papers using RANSAC in the field
of estimating lanes made the RANSAC baseline to be the baseline used for this project. The
grid baseline was however used as a sanity check since it was easy to implement and understand.

6.4 Results
6.4.1 Model 1: CNN

From Figure 20 it can be seen that the loss curve for Model 1 looks reasonable. It does however
look like the model might still have been able to learn more since the validation loss had not
stagnated or begun to increase. Because of this, the model could have been trained for more
epochs in order to investigate if the validation loss could have been further lowered.

Looking at Figure 22 and 23 it can be seen that the baseline deviated more from the GT
compared to Model 1, both for the validation and the test data.

Model 1 beat the baseline on all distances when measuring in RMSE. This could be explained
by the baseline being worse than Model 1 when the road was curved, and that Model 1 was
most likely not much worse in the cases it was worse, which is shown when looking at the RMSE
and the median absolute error. Furthermore, large errors were penalized more since they were
squared in MSE. If the error of the baseline was large, which it would have been for roads with
a large curvature, this would have had an even greater effect on the error.

However, Figure 22b and 23b show that at x = 100 m the baseline beat Model 1 when
measuring in median absolute error. From Figure 32 and Figure 33 in the Appendix it can be

38



seen that this was also the case for distances x = 60 m to x = 90 m. This could be explained by
the fact that the baseline fitted straight lines to the data and was hence good at estimating the
middle of the road when the road was straight. Because the data was collected on highways, the
roads were mostly straight, which can be seen in Figure 12, as well as Figure 31. Furthermore,
Model 1 did not have the limitation of only fitting straight lines and could thus perform well
on both straight and curved roads which can be seen in 21. The fact that it did not perform as
well as the baseline on further distances, measured in absolute median error, could be explained
by the fact that there were oftentimes very few detections on further distances from the car,
which could have made it difficult for Model 1 to make accurate predictions. The baseline was
not limited by the fact that there were few detections further from the car since it could fit the
straight lines to the detections closer to the car and would thus still make accurate predictions
further away from the car, provided that the road was straight. The median was hence a
beneficial measure for the baseline when using data consisting predominantly of straight roads.

6.4.2 Model 1 with Weight Decoupling

From Figure 24 it can be seen that the model might have been overfitting since the training
loss decreased while the validation loss began to slightly increase. However, this was the best
obtained result, measured in validation loss, for the different tested combinations of hyperpa-
rameters. It was concluded that for this network architecture weight decoupling might not be
suitable to incorporate into Model 1. Because of the results and the time limitation, weight
decoupling was only tested for this model.

6.4.3 Model 2: CNN + One-Dimensional Input

From Figure 25 it can be seen that the loss curve for Model 2 looks reasonable. In contrast to
the loss curve of Model 1, Model 2 looks as though it had finished training for the set number
of epochs since the validation loss had stagnated. Furthermore, comparing Figures 20 and 25,
Model 2 seemed to be better at generalizing since the training loss and validation loss were
more similar, which might have occurred because of the higher weight decay used. This is a
very beneficial property for real-world applications. Moreover, comparing the lowest validation
and test loss for the two models, Model 2 outperformed Model 1 with 11.8% on the validation
set and 6.04% on the test set, measuring in RMSE. However, looking at Table 3 it can be seen
that Model 1 outperformed Model 2 on evaluation distance 0 - 30 m. The addition of the median
heading angle was the only thing that differed between Model 1 and Model 2. The heading angle
of the other vehicles in the range of the BEV could add information about the geometry of the
road at the location of these vehicles. If a heading angle was detected, it was always from a
vehicle further down the road, thus, adding information about the lane geometry further from
the ego vehicle. Moreover, since the loss used for training the models was MSE, which valued
each anchor point equally, the network was not optimized for adding more importance to the
anchor points closer to the vehicle. On the contrary, since the largest errors, which affected the
MSE the most, were found furthest away from the vehicle, the MSE would decrease more by
minimizing these. As a result, it is not unreasonable that Model 2 did not perform as well on
closer distances compared to Model 1.

6.4.4 Model 3: CNN + One-Dimensional Input + LSTM

For the LSTM in Model 3, it was not needed that the CNN outputted the location of the lane
center at the evaluation distances. The LSTM could have taken a feature map from the CNN of
arbitrary size. Because of this, there are many architectures for Model 3 that remain unexplored.

39



However, the LSTM was added in order to see if the output from the CNN could be improved
so it would be counterintuitive to change the architecture of the CNN in Model 3 since it would
not be as comparable to the CNNs in Model 1 and Model 2.

From Figure 26 it can be seen that the validation loss was lower than the training loss. This
can be explained by the fact that dropout regularization was used during the training process,
making it more difficult for the model to fit to the training data. Dropout was not used during
validation so the difference in losses is not unreasonable. Another explanation for the training
loss being higher than the validation loss could be that the training data was more difficult for
the model to adapt to. However, it has been seen that the training, validation, and test set came
from a similar distribution when measuring in deviation from y = 0, as well as from when and
where the data was gathered. Furthermore, a higher training loss than validation loss was not
observed when training Model 1 and Model 2, but these did not use dropout. However, there
is still a possibility that for this model architecture in particular, fitting the training data was
more difficult than the validation data.

Looking at Table 3 it can be seen that Model 3 outperformed all previous models on all
evaluation metrics when using the validation data except the closest where Model 1 performed
the best. This could be for the same reason as discussed above. Table 3 shows that Model 3
was better than all previous models on all evaluation metrics when using the test data. This
was expected since it also makes use of the temporal information in the data. Compared to
Model 2, Model 3 performed 7.37% better on the validation data and 4.40% on the test data,
measured in total RMSE.

Figure 29 and Figure 30, as well as Figure 34 and 35 in the Appendix, show that Model 3,
contrary to Model 1 and Model 2, beats the baseline on all evaluation distances for both the
validation and test data when measuring in median absolute error. This further speaks to Model
3 being the best model thus far.

6.4.5 Model 3 as one Trainable Network

The results when combining the CNN and the LSTM in Model 3 into one trainable network
can be seen in Figure 27. It can be seen that the training and validation losses were slowly
decreasing but were still very high compared to the results from all previous models. It is
difficult to draw a conclusion as to why these results were observed other than that it seemed
like the model architecture of the CNN was not compatible with the different LSTMs tested
when combining them into one network. However, from Figure 27 it seems like the network was
slightly underfitted and could improve with more epochs. It would however need to find a loss
of more than half the size to outperform Model 3 which seemed unlikely considering that the
network did not seem to efficiently learn based on the slight slope of the graph. Because of this,
it was decided to not focus more time and computational resources on finding a network that
combined a CNN and an LSTM into one trainable network.

6.4.6 Model 4: Model 3 with Weighted MSE

The results raised the question of what a good metric is since, depending on what metric was
used, the results could imply different conclusions depending on how they were interpreted.
Different metrics also produce models that are optimized for different tasks. It can be argued
that, in this case, MSE was a good choice of metric. When using the MSE, the predictions
further away from the actual middle of the lane were penalized more because of the square
term. For the task of autonomous driving, this could be a good representation of how the
penalization would look in reality since estimating the middle of the road a little off would most
likely not have any big consequences but a big error in estimation could lead to the vehicle

40



possibly steering out off lane. Furthermore, MSE valued all anchor points equally, which was
not desired when estimating the lane. For the anchors closer to the car it was more critical to
have accurate estimates. If the estimates were inaccurate for an anchor point close to the car,
it could potentially lead to the car veering of course. Conversely, for an anchor point far away
from the ego vehicle, small inaccuracies may not have a significant impact. To account for this
a weighted MSE was tested after having developed Model 3, where the errors closer to the car
were given more weight than those further away. This ensures that the model was optimized for
accuracy where it mattered the most and less sensitive to inaccuracies further away where the
car was less likely to be affected.

For Model 4, only the LSTM from Model 3 was retrained with the new loss. This was
because when training both the CNN and the LSTM gave bad results. This could be because
the learning rate was too low to find a good minimum. Ideally, the hyperparameters should
have been retuned, but because it was time-consuming to train both networks since the LSTM
needed the output from the CNN, there was no time to tune the hyperparameters and continue
to retrain both networks.

Table 3 and 4 show that Model 4 outperformed all models in the close range, which was
expected since the closer evaluation distances were weighted heavier. In the middle and far
range, the evaluation distances had smaller weights leading to Model 3 outperforming Model
4, which was reasonable. For all models, the losses were higher further away from the vehicle.
This was expected because there were fewer and less accurate lane markings at further distances
from the ego vehicle.

It is difficult to draw a conclusion as to which model was the best. Model 4 was the best
at the close range but Model 3 outperformed Model 4 on the middle and far range, as well as
overall. To determine the best model, it is important to take the real-world implementation into
account and asses what qualities a good model would have. Furthermore, more testing using
several metrics in edge cases, such as highly curved roads or isolated frames with few detections,
would be beneficial to more rigorously evaluate the performance of the models.

41



7 Conclusion
In conclusion, this master thesis proposes different neural network models in order to investigate
a learning-based road estimation approach. The results indicate that the more relevant data is
used, and the more complex the models are, the better the models perform. The model that used
a CNN and LSTM combined with fused one-dimensional data, improved the loss by 10.2% on the
test data compared to the model using only a CNN. Furthermore, the selection of a metric used
to train and evaluate networks is essential in the process of developing a task-relevant model. At
last, from the experience gathered during the thesis, a learning-based approach seems to hold a
lot of potential for estimating road geometry.

42



8 Future Work
Future work in the field could encompass combining a CNN and an LSTM into one trainable
network, instead of training them separately. This would probably require another CNN archi-
tecture than the one presented in this project since the current architecture did not seem to be
compatible with the LSTMs tested when combining them into one network.

Moreover, the input to the CNN, the BEV, was very sparse which was very computationally
inefficient. Because of this, other model architectures such as sparse CNNs, could be investi-
gated. Other approaches could include using only an LSTM and not converting the lane marker
detections to a BEV such that no information is lost in the transformation. Alternatively, using
sensor data, such as images, directly instead of using them to generate object detection data.

Another interesting addition to the deep learning approach would be to make use of the
knowledge that clothoids are a good representation of roads [54]. This would put a limitation
on the output of the network, compared to the 11 independent anchor points used in this thesis,
and potentially increase the accuracy.

Lastly, transformer models are expected to continue advancing and revolutionizing various
fields, including lane estimation. These models, known for their ability to capture complex
patterns in sequential data, have the potential to enhance the accuracy and robustness of lane
estimation algorithms.

43



9 Appendix

(a) 10 meters (b) 20 meters (c) 30 meters

(d) 40 meters (e) 50 meters (f) 60 meters

(g) 70 meters (h) 80 meters (i) 90 meters

Figure 31: The distribution in deviation from y = 0 of the GT points 10 to 90 meters ahead
of the car.

44



(a) 10 meters (b) 20 meters (c) 30 meters

(d) 40 meters (e) 50 meters (f) 60 meters

(g) 70 meters (h) 80 meters (i) 90 meters

Figure 32: Histograms over the validation errors from Model 1 and Baseline, 10 to 90 meters
ahead of the car. The RMSE and the median absolute error for its respective evaluation distance
can be seen in the top left corner.

45



(a) 10 meters (b) 20 meters (c) 30 meters

(d) 40 meters (e) 50 meters (f) 60 meters

(g) 70 meters (h) 80 meters (i) 90 meters

Figure 33: Histograms over the test errors from Model 1 and Baseline, 10 to 90 meters ahead
of the car. The RMSE and the median absolute error for its respective evaluation distance can
be seen in the top left corner.

46



(a) 10 meters (b) 20 meters (c) 30 meters

(d) 40 meters (e) 50 meters (f) 60 meters

(g) 70 meters (h) 80 meters (i) 90 meters

Figure 34: Histograms over the validation errors from Model 1, Model 2, Model 3 and Model
4, 10 to 90 meters ahead of the car. The RMSE and the median absolute error for its respective
evaluation distance can be seen in the top left corner.

47



(a) 10 meters (b) 20 meters (c) 30 meters

(d) 40 meters (e) 50 meters (f) 60 meters

(g) 70 meters (h) 80 meters (i) 90 meters

Figure 35: Histograms over the test errors from Model 1, Model 2, Model 3, and Model 4
10 to 90 meters ahead of the car. The RMSE and the median absolute error for its respective
evaluation distance can be seen in the top left corner.

48



References
[1] W. H. Organization, Road traffic injuries: Key facts, 2021. [Online]. Available: https:

//www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.

[2] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, “Robust lane detection from
continuous driving scenes using deep neural networks”, CoRR, 2019. doi: 10.1109/TVT.
2019.2949603.

[3] Y. Dong, S. Patil, B. van Arem, and H. Farah, “A hybrid spatial–temporal deep learning
architecture for lane detection”, Computer-Aided Civil and Infrastructure Engineering,
2022. doi: 10.1111/mice.12829.

[4] W. D. Montgomery, “Public and private benefits of autonomous vehicles”, 2018.

[5] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: Opportu-
nities, barriers and policy recommendations”, Transportation Research Part A: Policy and
Practice, pp. 167–181, 2015. doi: 10.1016/j.tra.2015.04.003.

[6] S. Patil, “Robust lane detection using deep learning model-literature survey”, 2021. doi:
10.13140/RG.2.2.24871.01445.

[7] Y. Y. Ye, X. L. Hao, and H. J. Chen, “Lane detection method based on lane structural
analysis and cnns”, IET Intelligent Transport Systems, 2018. doi: https://doi.org/10.
1049/iet-its.2017.0143.

[8] B. E. Soorchaei, M. Razzaghpour, R. Valiente, A. Raftari, and Y. P. Fallah, “High-
definition map representation techniques for automated vehicles”, Electronics (Switzer-
land), 2022. doi: 10.3390/electronics11203374.

[9] A. Ziębiński, R. Cupek, D. Grzechca, and L. Chruszczyk, “Review of advanced driver
assistance systems (adas)”, AIP Conference Proceedings, 2017. doi: 10.1063/1.5012394.

[10] V. Voisin, M. Avila, B. Emile, S. Begot, and J. Bardet, “Road markings detection and
tracking using hough transform and kalman filter. advanced concepts for intelligent vision
systems”, doi: https://doi.org/10.1007/11558484_10.

[11] A. Borkar, M. Hayes, and M. T. Smith, “Robust lane detection and tracking with ransac
and kalman filter”, IEEE, 2009. doi: 10.1109/ICIP.2009.5413980.

[12] J. Guo, Z. Wei, and D. Miao, “Lane detection method based on improved ransac algo-
rithm”, IEEE, 2015. doi: 10.1109/ISADS.2015.24.

[13] A. Bar Hillel, R. Lerner, D. Levi, M. Trapp, and E. Yechiam, “Recent progress in road and
lane detection: A survey”, Machine Vision and Applications, 2014. doi: 10.1007/s00138-
011-0404-2.

[14] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman filter and its application”, IEEE, 2015. doi:
10.1109/ICINIS.2015.35.

[15] T. JV, “Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes”, Clinical Epidemiology, 1996. doi: 10.1016/
s0895-4356(96)00002-9.

[16] M. Olsson and P. Edén, “Introduction to artificial neural networks and deep learning”,
2021.

[17] S. F. Ahmed, M. S. B. Alam, M. Hassan, et al., “Deep learning modelling techniques:
Current progress, applications, advantages, and challenges”, 2023. doi: 10.1007/s10462-
023-10466-8.

49



[18] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network for structural prediction
and lane detection in traffic scene”, IEEE, 2017. doi: 10.1109/TNNLS.2016.2522428.

[19] 2023. [Online]. Available: https://zenseact.com/people-at-heart/.

[20] M. Jordà, P. Valero-Lara, and A. J. Peña, “Performance evaluation of cudnn convolution
algorithms on nvidia volta gpus”, IEEE, 2019. doi: 10.1109/ACCESS.2019.2918851.

[21] 2023. [Online]. Available: https://pytorch.org/tutorials/advanced/numpy_extensions_
tutorial.html#parametrized-example.

[22] Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “A multi-objective evolutionary
approach for efficient kernel size and shape for cnn”, 2022. doi: 10.1109/IJCNN55064.
2022.9892201.

[23] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent neural network
architectures for large scale acoustic modeling”, Proceedings of the Annual Conference of
the International Speech Communication Association, 2014.

[24] 2023. [Online]. Available: https://pytorch.org/docs/stable/generated/torch.nn.
LSTM.html.

[25] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Vaughan, “A theory
of learning from different domains”, Machine Learning, 2010.

[26] 2023. [Online]. Available: https://pytorch.org/docs/stable/generated/torch.nn.
MSELoss.html.

[27] M. Nielsen, “Neural networks and deep learning”, 2019. [Online]. Available: http : / /
neuralnetworksanddeeplearning.com/chap1.html.

[28] H. K. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-fitting in su-
pervised machine learning (comparative study)”, Computer Science, Communication &
Instrumentation Devices, 2015.

[29] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization”, 2019. [Online]. Avail-
able: https://arxiv.org/abs/1711.05101.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”, 2015.

[32] C. Olsson, “Lecture notes in computer vision”, p. 88, 2022.

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation”, 2015. [Online]. Available: http://arxiv.org/abs/1505.04597.

[34] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation”, IEEE, 2017. doi: 10.1109/TPAMI.2016.
2644615.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition”, 2014. [Online]. Available: http://arxiv.org/abs/1409.1556.

[36] N. Garret, R. Cohen, T. Pe’er, R. Lahav, and D. Levi, “3d-lanenet: End-to-end 3d multiple
lane detection”, 2019. [Online]. Available: https://arxiv.org/abs/1811.10203.

[37] M. Aly, “Real time detection of lane markers in urban streets”, IEEE, 2014. [Online].
Available: http://arxiv.org/abs/1411.7113.

50



[38] A. Hu, Z. Murez, N. Mohan, et al., “Fiery: Future instance prediction in bird’s-eye view
from surround monocular cameras”, 2021. [Online]. Available: http://arxiv.org/abs/
2104.10490.

[39] Y. Ma, T. Wang, X. Bai, et al., “Vision-centric bev perception: A survey”, 2022. [Online].
Available: http://arxiv.org/abs/2208.02797.

[40] “Delving into the devils of bird’s-eye-view perception: A review, evaluation and recipe”,
2022. [Online]. Available: http://arxiv.org/abs/2209.05324.

[41] A. W. Harley, Z. Fang, J. Li, R. Ambrus, and K. Fragkiadaki, “Simple-bev: What really
matters for multi-sensor bev perception?”, 2022. [Online]. Available: http://arxiv.org/
abs/2206.07959.

[42] Z. Liu, H. Tang, A. Amini, et al., “Bevfusion: Multi-task multi-sensor fusion with unified
bird’s-eye view representation”, 2022. [Online]. Available: http://arxiv.org/abs/2205.
13542.

[43] P. Wu, S. Chen, and D. Metaxas, “Motionnet: Joint perception and motion prediction
for autonomous driving based on bird’s eye view maps”, 2020. [Online]. Available: http:
//arxiv.org/abs/2003.06754.

[44] S. Fadadu, S. Pandey, D. Hegde, et al., “Multi-view fusion of sensor data for improved
perception and prediction in autonomous driving”, 2022. [Online]. Available: https://
arxiv.org/abs/2008.11901.

[45] Z. Wu, K. Qiu, T. Yuan, and H. Chen, “A method to keep autonomous vehicles steadily
drive based on lane detection”, International Journal of Advanced Robotic Systems, 2021.
doi: 10.1177/17298814211002974.

[46] Y. Jeong, “Interactive lane keeping system for autonomous vehicles using lstm-rnn con-
sidering driving environments”, 2022. doi: 10.3390/s22249889.

[47] I. Arvidsson, N. C. Overgaard, K. Åström, et al., “Prediction of obstructive coronary
artery disease from myocardial perfusion scintigraphy using deep neural networks”, IEEE,
2021. doi: 10.1109/ICPR48806.2021.9412674.

[48] J. Luo, W. Zhang, J. Su, and F. Xiang, “Hexagonal convolutional neural networks for
hexagonal grids”, IEEE, 2019. doi: 10.1109/ACCESS.2019.2944766.

[49] Y. Wu, K. Namdar, C. Chen, et al., “Automated adolescence scoliosis detection using
augmented u-net with non-square kernels”, Canadian Association of Radiologists, 2023.
doi: 10.1177/08465371231163187.

[50] A. A. Mamun, E. P. Ping, J. Hossen, A. Tahabilder, and B. Jahan, “A comprehensive
review on lane marking detection using deep neural networks”, Sensors, 2022. doi: 10.
3390/s22197682.

[51] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The marginal value of
adaptive gradient methods in machine learning, 2018. [Online]. Available: https://arxiv.
org/abs/1705.08292.

[52] M. Alibeigi, W. Ljungbergh, A. Tonderski, et al., Zenseact open dataset: A large-scale and
diverse multimodal dataset for autonomous driving, 2023.

[53] Photograph, 2021. [Online]. Available: https://zenseact.com/2021/07/14/.

[54] M. Fatemi, L. Hammarstrand, L. Svensson, and Á. F. García-Fernández, “Road geometry
estimation using a precise clothoid road model and observations of moving vehicles”, 2014.
doi: 10.1109/ITSC.2014.6957698.

51



Master’s Theses in Mathematical Sciences 2023:E44
ISSN 1404-6342

LUTFMA-3513-2023

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


