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Abstract

We fix a minor glitch in a proof recently stated by Ameur. The result shows that
the Coulomb gas is well localized to the vicinity of the “droplet”, created by the
external field, which is described in terms of classical potential theory (“Frostman’s
theorem”). For this reason, the result was termed “Localization theorem” in [1].

Throughout this work it has been my firm intention to give reference to the stated
results and credit to the work of others. All theorems, propositions, lemmas and
examples left unmarked are assumed to be too well known for a reference to be given.
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Chapter 1

Introduction

1.1 The Coulomb Gas in the Plane

Given a lower semi-continuous extended real valued function (external potential)
Q : C → R ∪ {+∞} satisfying

lim inf
|ζ|→∞

Q(ζ)

2 log |ζ|
> 1, (1.1)

we define the Hamiltonian Hn : Cn → R ∪ {+∞} as

Hn =
∑
i ̸=j

log
1

|ζi − ζj|
+ n

n∑
j=1

Q(ζj). (1.2)

The 2D Coulomb gas at inverse temperature β is then defined as the random
point configuration {ζj}nj=1 with law given by the Gibbs measure,

dP β
n (ζ) =

1

Zβ
n

e−βHn(ζ)dAn(ζ), (1.3)

where dAn(ζ) = dA(ζ1) · · · dA(ζn) is n dimensional Lebesque volume measure on Cn

divided by πn, and the partition function

Zβ
n =

∫
Cn

e−βHn(ζ)dAn(ζ), (1.4)

is a normalizing constant. We interpret {ζj}nj=1 as identical and equally charged par-
ticles, and the Hamiltonian (1.2) represents the energy of the configuration {ζj}nj=1.
The particles repel each other by a force proportional to the 2D Coulomb potential
− log |zi − zj|, but are kept away from dispersing to infinity by the external poten-
tial Q. The condition (1.1) precisely means that that the external potential is large
enough at infinity in order to confine the particles, and moreover ensures that (1.4)
is finite.

A natural question is the behaviour of the particles {ζj}nj=1 as n → +∞. In
this thesis we shall analyze this by looking at the one-point function (or more
generally, the k-point function, see below),

Rβ
n(z) = lim

ε→0

Eβ
n [{number of particles in D(z, ε)}]

ε2
. (1.5)
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where

Eβ
n [f ] =

∫
fdP β

n

is the usual expectation with respect to the Gibbs measure (1.3). We see that Rβ
n

is the expected number of particles per unit area, and thus provides a measure of
the expected particle intensity at a given point. It was shown in [1] that outside of
a certain compact set S ⊂ C known as the droplet, we have for sufficiently large n
and β the bound

Rβ
n(z) ≤ Cβn2e−cβnδ(z)2 , (1.6)

with C, c > 0 constants, and δ(z) = inf{|z−w|;w ∈ S} is the distance from z to S.
The goal of this thesis is to go through the proof of (1.6), which we do in Chapter
3. At its core, the proof uses weighted potential theory, which we develop partly in
Chapter 2, in combination with an identity (Lemma 3.2) involving certain weighted
polynomials.

The droplet S has the following interesting interpretation: for any compactly
supported Borel probability measure, we define theweighted logarithmic energy:

IQ(µ) =

∫ ∫
log

1

|z − w|
dµ(z)dµ(w) +

∫
Qdµ. (1.7)

Frostman’s theorem [14] states that that, under some mild conditions on Q, there
exists a unique compactly supported probability measure σ that minimizes (1.7).
The droplet S is precisely the support of this measure. In Chapter 2 we provide a
proof of Frostman’s theorem.

It is a well-known result by Johansson [10] that as n → ∞, we have

Eβ
n

[
1

n

n∑
j=1

f(ζj)

]
→
∫

f dσ,

for all bounded continuous functions f on C, which is a result much along the lines
as the bound (1.6), however without any quantitative statements for large but finite
n. The measure σ also has connections to so-called quadrature domains [12].

Finally, we shall briefly touch upon a subtlety in the definition of the point the
particles {ζj}nj=1. The configuration {ζj}nj=1 is to be understood as the equivalence
class of all vectors (ζj)

n
j=1 modulo permutations of the elements, and any of these

vectors are distributed according to (1.3). Since (1.3) is invariant under permuta-
tions, this is well-defined. When performing calculations with the Coulomb gas it is
often convenient to work with a representative vector ζ = (ζj)

n
j=1 ∈ Cn instead.

1.2 The k-point Function

The marginal probability measure of (1.3) is defined as

P β
n,k(B) = P β

n (B × Cn−k),

for Borel sets B ⊆ Ck. The Gibbs measure (1.3) gives the probability distribution of
an ordered sample (ζj)

n
1 . Suppose we pick out the k first particles from this ordered

sample. Then, the probability of these k particles being in B ⊆ Ck is P β
n (B×Cn−k).
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This is not quite what we want, as we are only interested in the configuration {ζj}n1
since the particles are indistinguishable. There are n!

(n−k)!
ways to pick out k particles

from the ordered sample (ζj)
n
1 , and since P β

n is invariant under permutations we thus
have

P β
n ({ζj}nj=1 ∈ B × Cn−k) := P β

n

(
(ζπ(j))

n
1 ∈ B × Cn−k for any permutation π

)
=

n!

(n− k)!
P β
n (B × Cn−k),

where π is any permutation of the indices 1, . . . , n. We now define the correlation
measure µβ

n,k as.

µβ
n,k =

n!

(n− k)!
P β
n,k. (1.8)

With the preceding argument as motivation, µn,k is more relevant to the quantities
we want to compute.

We can now generalize the one-point function (1.5) to higher dimensions. Let
(z1, . . . , zk) ∈ Ck, and define the k-point function as

Rβ
n,k((z1, . . . , zk)) = lim

ε→0+

µβ
n,k(D(z1, ε)× · · ·D(zk, ε))

ε2k
. (1.9)

Much as the one-point function, the k-point function is a multivariate measure of
the expected intensity of particles at the points z1, . . . , zk simultaneously.

1.3 A Word on Notation

By a domain D we mean an open connected subset of the complex plane C. We
refer to a number x ∈ [−∞,+∞] as an extended real number. If x ∈ R is merely a
real number, we mean that it is finite and thus does not take on the values −∞ or
+∞. The complement of a set A ⊂ C is denoted Ac.

We shall write dA = π−1dxdy for the normalized Lebesgue area measure, so that
the unit disk has area 1. We also use a normalized the Laplacian ∆ := ∂∂, which
is 1/4 times the usual Laplacian (∂2

x + ∂2
y). Here ∂ = 1

2
(∂x − i∂y), ∂ = 1

2
(∂x + i∂y)

are the Wirtinger differential operators.
By P β

n we shall always mean the Gibbs measure (1.3), and Eβ
n will denote expec-

tation with respect to P β
n .
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Chapter 2

Weighted Potential Theory

2.1 Subharmonic Functions

C2-functions h on a domain (open, connected set) D ⊆ C satisfying Laplace’s
equation

∆h = 0, (2.1)

are commonly known as harmonic functions and satisfy a number of interesting
properties, one of the most important ones being the maximum principle: both
the minimum and maximum of u on any compact set K ⊂ D is attained at the
boundary ∂K. There are of course also many different versions and formulations of
this principle.

Harmonic functions possess continuous derivatives of all orders, and are unique
in the sense that if they vanish on any open set, they must vanish on their entire
domain [13]. This form of “rigidness” severely limits the construction of arbitrary
harmonic functions, and it is therefore of interest to instead consider subharmonic
and superharmonic functions which, as we shall see in this chapter, can be very
non-smooth while still satisfying a maximum principle. Their properties will later
aid us in proving the bound on the one-point function (1.6) in Chapter 3.

We begin by discussing a “one-sided” notion of continuity. Recall that an ex-
tended real valued function f on a domain D is said to be continuous at a point
z0 ∈ D with f(z0) = +∞ if for all ω > 0, there is a δ such that |z − z0| < δ implies
f(z) > ω.

Definition 2.1. Let D be a domain. An extended real-valued function u : D →
[−∞,+∞) is said to be upper semi-continuous at the point z0 ∈ D if either of
the following hold:

• u(z0) > −∞ and for every ε > 0 there exists a δ > 0 such that whenever
|z − z0| < δ we have u(z) < u(z0) + ε,

• u(z0) = −∞ and u is continuous at z0.

If u is upper semi-continuous at every point of D, it is said to be upper semi-
continuous on D.

We can also define lower semi-continuous functions analogously.

Definition 2.2. Let D be a domain. An extended real-valued function u : D →
(∞,+∞] is said to be lower semi-continuous at the point z0 ∈ D if −u is upper
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semi-continuous there. Similarly, u is said to be lower semi-continuous on D if −u
is upper semi-continuous on D.

Some simple examples of upper semi-continuous functions are the characteristic
function 1V of any closed set V , any continuous function f and any positive linear
combination of functions of these forms.

While continuity of a function f can be understood as the property that if z is
“close” to z0, then f(z) is “close” to f(z0), upper semi-continuity of u only requires
that for z close to z0, the neighbouring values u(z) are not much higher than u(z0).
From the above definitions we see that a real-valued function is continuous if and
only if it is both upper and lower semi-continuous.

As with continuity, there are a number of equivalent conditions of semi-continuity.

Theorem 2.3. Let D be a domain, u : D → [−∞,+∞). The following are equiva-
lent:

(i) u is upper semi-continuous on D,

(ii) {z ∈ D;u(z) < x} = u−1([−∞, x)) is open for all x ∈ R,

(iii) For every sequence (zn) converging to z0, we have lim supn→+∞ u(zn) ≤ u(z0).

Proof. (i) =⇒ (ii) Suppose u is upper semi-continuous inD, and let z0 ∈ {u(z) < x}.
Assume first that u(z0) > −∞. Given positive ε < x− u(z0) we pick a δ such that
|z − z0| < δ implies u(z) ≤ u(z0) + ε < x. Thus, the disk D(z0, δ) is contained in
{u(z) < x}. Now, if u(z0) = −∞ we may by the continuity of u at z0 directly pick
a δ > 0 such that |z − z0| < δ implies u(z) < x. Since z0 was arbitrary, {u(z) < x}
is open.

(ii) =⇒ (iii) Suppose {u(z) < x} is open for all x ∈ R, and let (zn) in D be a
sequence converging to z0 ∈ D. Then, z0 is contained in the open set {u(z) < u(z0)+
ε} for all ε > 0. Thus, there is a δ = δ(ε) > 0 such that D(z0) ⊆ {u(z) < u(z0)+ ε}.
But this implies that lim supn→+∞ u(zn) ≤ u(z) + ε, and since this holds for all
ε > 0, we must have lim supn→+∞ u(zn) ≤ u(z).

(iii) =⇒ (i) Let z0 ∈ D with u(z0) > −∞ and assume u is not upper semi-
continuous at z0. Then there is an ε such that for each n ∈ Z+ there is a zn ∈ D with
|z − zn| < 1/n and u(zn) ≥ u(z0) + ε. Thus, lim supn→∞ u(zn) ≥ u(z0) + ε > u(z0),
which contradicts (iii). Now let z0 ∈ D with u(z0) = −∞ and assume u is not
continuous at z0. Then there is an ω > 0 such that for every n ∈ Z+ there is a
zn ∈ D with |z − zn| < 1/n and u(zn) ≥ −ω. But then lim supn→∞ u(zn) ≥ −ω >
−∞ = u(z0) and we contradict (iii) also in this case.

A family of upper semi-continuous functions {uv, v ∈ I} have the nice property
that their pointwise infimum

u(z) = inf
v∈I

uv(z), (2.2)

is also upper semi-continuous. Indeed, this follows easily from condition (ii) in the
previous theorem since {u(z) < x} = ∪v∈I{uv(z) < x} is open for all x ∈ R. In the
other direction, we have the following theorem.

Theorem 2.4. Let D be a domain, u : D → [−∞,+∞) an upper semi-continuous
function bounded above, u < C, C ∈ R. Then there is a monotone sequence of real-
valued continuous functions (fn) on D satisfying f1 ≥ f2 ≥ . . . ≥ u that converges
pointwise to u.
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Proof. If u = −∞ everywhere we make simply take fn = −n and we are done. In
the general case, define fn by

fn(z) = sup
w∈D

(u(w)− n|z − w|) .

Then fn are monotonically non-increasing, satisfy u ≤ fn ≤ C for all n and fn(z) >
−∞ everywhere. We show that each fn is also continuous. Fix n ≥ 1, , z ∈ D let
ε > 0, and let z̃ ∈ D be a point such that

fn(z) ≤ u(z̃)− n|z − z̃|+ ε.

Note that this implies u(z̃) > −∞. Then, for all z′ ∈ D,

fn(z)− fn(z
′) ≤ (u(z̃)− n|z − z̃|+ ε)− (u(z̃)− n|z′ − z̃|)
= n (|z − z̃| − |z̃ − z′|) + ε

≤ n|z − z′|+ ε,

where the last inequality is the reverse triangle inequality. Since this holds for all
ε > 0, we must have

fn(z)− fn(z
′) ≤ n|z − z′|.

By switching the roles of z, z′ we conclude that in fact

|fn(z)− fn(z
′)| ≤ n|z − z′|,

so that each fn is Lipschitz continuous, and in particular continuous.
Now, since the (fn) is a monotone sequence, it has a limit satisfying limn→+∞ fn(z) ≥

u(z) everywhere. To show the reverse inequality, we observe that for any fixed r > 0
such that D(z, r) ⊆ D it holds that

fn(z) ≤ max

(
sup

w∈D(z,r)

u(w), sup
w∈D

(u(w)− nr)

)

≤ max

(
sup

w∈D(z,r)

u(w), C − nr

)
In the limit as n → +∞ we thus have,

lim
n→+∞

fn(z) ≤ sup
w∈D(z,r)

u(w).

Let ε′ > 0. The upper semi-continuity of u implies that for all sufficiently small
r > 0,

sup
w∈D(z,r)

u(w) < u(z) + ε′.

Hence, limn→+∞ fn(z) < u(z) + ε′ and since this holds for all ε′ > 0 we must have
limn→+∞ fn(z) ≤ u(z).

Theorem 2.4 allows us to approximate upper semi-continuous functions u from
above with continuous functions. We illustrate a situation when this can be useful:
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suppose (µm) is a sequence of positive Borel measures on some bounded domain D,
such that in the weak-star sense of convergence we have

µm → µ,

for some positive Borel measures µ, that is,

lim
m→+∞

∫
fdµm =

∫
fdµ,

for all continuous bounded functions f on D. Let u be an upper semi-continuous
function on D and (fn) an approximating sequence as in Theorem 2.4. Then,

lim
m→+∞

∫
fndµm =

∫
fndµ,

for all n > 0. Since we always have fn ≥ u, it then holds that

lim sup
m→+∞

∫
u dµm ≤

∫
fndµ,

for all n > 0. Letting n → +∞ and applying monotone convergence theorem, we
obtain

lim sup
m→+∞

∫
u dµm ≤

∫
udµ. (2.3)

Thus, while we generally cannot conclude that
∫
udµm →

∫
udµ, we at least always

have the one-sided bound (2.3).
Upper semi-continuity also implies upper boundedness on compact sets.

Theorem 2.5. Let D be a domain, u : D → [−∞,+∞) an upper semi-continuous
function. If K ⊂ D is compact, there exists a point z0 ∈ K with u(z0) = supz∈K u(z).
In particular, supz∈K u(z) < ∞.

Proof. Let (zn) be a sequence in K such that

lim
n→+∞

u(zn) = sup
z∈K

u(z). (2.4)

By passing to a subsequence we may assume that (zn) converges to some point
z0 ∈ K. In view of condition (iii) in theorem 2.3 this means that

sup
z∈K

u(z) = lim sup
n→+∞

u(zn) ≤ u(z0). (2.5)

Since we trivially also have u(z0) ≤ supz∈K u(z), it must hold that u(z0) = supz∈K u(z).

The advantage of semi-continuity is that it allows us to consider less well behaved
functions while still retaining many of the important properties of continuous func-
tions, although typically such properties are now “one-sided” as in Theorem 2.3 and
2.5.

We are now ready to give our definition of subharmonic functions.
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Definition 2.6. An upper semi-continuous real-valued function u on a domain D
is said to be subharmonic in D if for each ζ0 ∈ D there is a ρ > 0 such that

u(z0) ≤
∫ π

−π

u(z0 + reiθ)
dθ

2π
, (2.6)

holds for all 0 < r < ρ.

One of the most important example of a subharmonic function on C is log |z|.
For z ̸= 0, we have log |z| = ℜ (log z) locally for some branch of log z, and thus
log |z| is harmonic and satisfies the mean value equality there. Moreover, the mean
value inequality (2.6) holds trivially at the origin since log |0| = −∞.

If u is a C2-function we can do a second order Taylor expansion around z0, which
we express in terms of the Wirtinger differential operators ∂ = 1

2
(∂x − i∂y), ∂ =

1
2
(∂x + i∂y) [7],

u(z0 + w) = u(z0) + w∂u(z0) + w∂u(z0)

+ w21

2
∂2u(z0) + w21

2
∂
2
u(z0) + ww∂∂u(z0) + o(|w|2).

Switching to polar coordinates, using that wn = rneinθ and
∫ π

−π
einθdθ = 0 for all

nonzero integers n, we then see that∫ π

−π

u(z0 + reiθ)
dθ

2π
= u(z0) + r2∆u(z0) + o(r2), (2.7)

where we used that ∂∂ = ∆. Thus, u is subharmonic if and only if ∆u ≥ 0
everywhere. The above calculation also gives the intuitive meaning of the Laplacian
∆ as the limiting difference of the mean value around z0,

∫
u(z0 + reiθ) dθ

2π
and the

value there, u(z0).
If u is not C2 but ∆u ≥ 0 is still satisfied in the distributional sense, namely that

for all infinitely differentiable nonnegative functions ϕ : C → [0,+∞) with compact
support we have ∫

u∆ϕdA ≥ 0,

it is still true that u is a subharmonic function. In this case, a famous theorem from
distribution theory [5] tells us that any distribution v satisfying v ≥ 0 everywhere
is a nonnegative Borel measure. Thus, there is a nonnegative Borel measure µ on C
such that

∆u = µ, (2.8)

which, as before, should be interpreted in the sense of distributions. Equation (2.8)
is known as Poisson’s equation, and is the inhomogenous version of Laplace’s
equation. Its fundamental solution on C is well known [13] to be 2 log |z|, and thus
(2.8) implies that on any open diskD(w0, ρ) ⊆ D we can express u as the convolution
of 2 log |z| with µ plus some solution of Laplace’s equation,

u(z) = 2

∫
D(w0,ρ)

log |z − w|dµ(w) + h(z),
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with h harmonic, z ∈ D(w0, ρ). The upper semi-continuity follows from Theorem
2.4 and the representation∫

D(w0,ρ)

log |z − w|dµ(w) = lim
M→+∞

∫
D(w0,ρ)

max (−M, log |z − w|) dµ(w),

which holds by the monotone convergence theorem. The distributional subharmonic-
ity of log |z| together with Fubini also implies that

u(z0) = 2

∫
D(w0,ρ)

log |z0 − w|dµ(w) + h(z0)

≤ 2

∫
D(w0,ρ)

∫ π

−π

log |z0 + reiθ − w|dθ
2π

dµ(w) + h(z0)

=

∫ π

−π

2

∫
D(w0,ρ)

log |z0 − w|dµ(w)dθ
2π

+

∫ π

−π

h(z0 + reiθ)
dθ

2π

=

∫ π

−π

u(z0 + reiθ)
dθ

2π
,

for 0 < r < ρ, and thus the mean value inequality (2.6) is satisfied.
Subharmonicity is preserved under non-decreasing convex maps, a simple conse-

quence of Jensen’s inequality.

Theorem 2.7. Let u be subharmonic in a domain D and φ : [−∞,+∞) →
[−∞,+∞) be a non-decreasing convex function. Then φ ◦ u is subharmonic.

Proof. Let z0 ∈ D and take r > 0 small enough so that D(ζ, r) is contained in D
and that the submean inequality (2.6) holds. Then,

φ(u(z0)) ≤ φ

(∫ π

−π

u(z0 + reiθ)
dθ

2π

)
≤
∫ π

−π

φ
(
u(z0 + reiθ)

) dθ
2π

. (2.9)

The first inequality is due to φ being non-decreasing, the second inequality is
Jensen’s inequality.

An important case is when φ(x) = ex is the exponential function. Suppose f
is some complicated nonnegative function (for example, a large product of other
nonnegative functions), but log f is easier to analyze. Then, if we can show that
log f is subharmonic, Theorem 2.7 tells us that f = elog f = φ(log f) is subharmonic.

The following version of the maximum principle follows fairly easily from the
definition: if u attains its global maximum at z0, the submean inequality (2.6)
forces u to be constant in a whole disk around z0. Since D is connected, we can
iterate this process to exhaust all of D.

Theorem 2.8. Let u be subharmonic in a domain D. If u attains a global maximum
in D, then u is constant.

Proof. We may exclude the case when u = −∞ identically since the theorem is
trivial in that case. Let M > −∞ be the global maximum and consider the sets

A = {u(z) < M} B = {u(z) = M}. (2.10)

Assume that A is nonempty. By the upper semi-continuity of u, A is open. We shall
now show that also B is open; this will contradict the connectedness of D.
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Let z0 ∈ B, such a point exists by assumption. The subharmonicity of u then
implies the existance of a ρ > 0 such that∫ π

−π

u(z0 + reiθ)
dθ

2π
= M, (2.11)

for all 0 < r < ρ. Suppose there is a w0 ∈ D(z0, ρ) with u(w0) < M . Then there
is a small ε such that u(w0) < M − ε, and the upper semi-continuity of u implies
that u(w) < u(w0) +

ε
2
< M − ε

2
for all w in some disk D(w0, δ). Thus, letting

r = |w0 − z0| we have∫ π

−π

u(z0 + reiθ)
dθ

2π
≤ α(M − ε

2
) + (1− α)M < M, (2.12)

where 0 < α < 1 is the proportion of the part of the circle ∂D(z0, r) lying inD(w0, δ).
But this contradicts (2.11), so we must have u(w) = M for all w ∈ D(z0, ρ), that is,
D(z0, ρ) ⊆ B. This shows that B is open.

Using the previous theorem we may also prove the following maximum principle
variant.

Theorem 2.9. Let u be subharmonic in a bounded domain D. If

lim sup
z→w

u(z) ≤ C, C ∈ R, (2.13)

for all w ∈ ∂D, then u ≤ C on D.

Proof. Extend u to ∂D by setting u(w) = lim supz→w u(z) for w ∈ ∂D. Then u
is upper semi-continuous on the compact set D, so by Theorem 2.5 it attains its
maximum at some point z0 ∈ D. If z0 ∈ ∂D we automatically have u ≤ C on D,
and if z0 ∈ D then by the previous theorem u must be constant on D. The condition
(2.13) then ensures that u ≤ C everywhere.

We can extend the previous theorem to unbounded domains if we in addition we
assume that

lim sup
|z|→+∞

u(z) ≤ C. (2.14)

Indeed if we pick a large enough radius R that u ≤ C outside |z| > R, we get the
result by applying the maximum principle to u on the bounded domainD∩D(0, 2R).

Corollary 2.10. Let u be subharmonic in an unbounded domain D. If

lim sup
z→w

u(z) ≤ C, C ∈ R, (2.15)

for all w ∈ ∂D ∪ {∞}, then u ≤ C on D.

For a complete treatment of subharmonic functions, we refer to [13].

2.2 The Equilibrium Measure

Suppose we have a fixed external electric field over Rn, and we insert an arbitrary
(positive) charge distribution of total charge 1. The external electric field will then
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cause said charge to move until a stable configuration is established. This “equilib-
rium configuration” will be such that the energy of the total electric field, given as
the superposition of the external field and the field generated by the point charges,
is minimized. It is a natural mathematical question weather or not the “equilibrium
configuration” is unique, and what conditions on the electric field are needed in
order to guarantee existence of such a configuration. In this section we shall provide
answers to both of those questions in the case of dimension n = 2, which is the
case most relevant to us as we shall use theory from this section to analyze the 2D
Coulomb Gas in Chapter 3. We shall however begin by briefly looking at a general
dimension n, in order to get a feel for the problem as a whole and better understand
the contrast between dimension n = 2 and n ≥ 3.

Consider a compactly supported Borel probability1 measure µ on Rn, which we
shall think of as a distribution of charge over Rn. Maxwell’s famous equations of
electromagnetism [8] state that in a static charge configuration the electric field may
be expressed as the (negative) gradient of a potential Uµ which satisfies Poisson’s
equation,

−2∆Uµ = µ, (2.16)

which for a general µ (not absolutely continuous with respect to Lebesgue measure)
should be interpreted in the sense of distributions [5]. It is well-know [5] that the
fundamental solution g̃n of (2.16) in dimension n is

g̃n(x) =

{
log 1

|x| n = 2

Cn
1

|x|n−2 n ≥ 3
, (2.17)

for constants Cn > 0, where |x| =
√
x2
1 + · · ·x2

n, x ∈ Rn. The function g̃n is also
known as the Coulomb potential in dimension n. The general solution of (2.16)
is thus given by convolving g̃n with µ [5]:

Uµ(x) =

∫
g̃n(x− y)dµ(y), (2.18)

which is well-defined as an extended real-valued function. What is then the energy
of the electric field generated by µ? Since the electric field is the (negative) gradient
of Uµ, the difference Uµ(x)− Uµ(x̃) is precisely the energy it takes to move a unit
charge from x̃ to x. In dimension n ≥ 3 we see from (2.17) and (2.18) that Uµ → 0
as |x| → ∞, and thus the energy to put a unit charge at x in the first place (which is
equivalent to move it in “from infinity”) is simply Uµ(x). The energy of the charge
configuration µ is thus given by2∫

Uµ(x)dµ(x) =

∫∫
g̃n(x− y)dµ(x)dµ(y). (2.19)

This is the energy of µ in a vacuum, that is, without the influence of any external
electric field. If there is an external field present, it too can be expressed as the
gradient of some external potential Q, and the energy contribution from this is
simply

∫
Qdµ, so that the total energy is given by∫∫

g̃n(x− y)dµ(x)dµ(y) +

∫
Q(x)dµ(x). (2.20)

1Recall that a measure µ is a probability measure if it is nonnegative and of total mass 1.
2Actually, there is a factor 1

2
missing in front of the integral (2.19) which accounts for the fact that there is no

charge present when we start to bring in charges “from infinity”. However, this will be of no importance for us.
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Thus, to see how a positive charge distribution of unit mass would redistribute
iteself under Q, we simply have to minimize (2.20) over all compactly supported
Borel probability measures µ. Strictly speaking, (2.20) is not the total energy of
the system but rather the energy increase we get by inserting the charge µ into it.
However, it is still the only portion of the energy dependent on µ, so it is equivalent
for minimization purposes.

From this point on we shall limit ourselves to the case of dimension n = 2, and
identify R2 with the complex plane C. By (2.18), the potential Uµ is then

Uµ(z) =

∫
log

1

|z − w|
dµ(w), (2.21)

where µ is any compactly supported signed Borel measure on C of finite total vari-
ation |µ|(C) = sup{

∑N
n=1 |µ(En)|, Enmeasurable partition ofC}. We shall almost

always take µ to be a probability measure but, as we shall see, there are also some
certain scenarios where signed measures also are of interest, such as when µ is the
difference of two probability measures.

While the argument leading up to the energy (2.19) is only valid for n ≥ 3, we
now simply take (2.19) as the definition for n = 2. Thus, the logarithmic energy
of a compactly supported signed Borel measure µ of finite total variation is defined
as

I(µ) :=

∫∫
log

1

|z − w|
dµ(w)dµ(z). (2.22)

We now examine the potential Uµ slightly closer; outside of suppµ we see that Uµ

is harmonic, and we can make an expansion in z: for |z| > |w| we have that

log
1

|z − w|
= log

1

|z|
+ log

1

|1− z
w
|

= log
1

|z|
− 1

2
log
(
1− w

z

)
− 1

2
log

(
1− w

z

)
= log

1

|z|
+

1

2

∞∑
k=1

1

k

wk

zk
+

1

2

∞∑
k=1

1

k

wk

zk
.

We can pick z, R large enough that |z| > R > |w| for all w ∈ suppµ and observe
that ∫ ∞∑

k=1

1

k

|w|k

|z|k
dµ(w) ≤ |µ|(C)

∞∑
k=1

1

k

Rk

|z|k
,

where |µ|(E) = sup{
∑N

n=1 |µ(En)|, Enmeasurable partition ofE} is the total varia-
tion of µ. Since this is finite, Fubini’s theorem let’s us change the order of integration
and summation to conclude that

Uµ(z) = µ(C) log
1

|z|
+

1

2

∞∑
k=1

1

kzk

∫
wkdµ(w) +

1

2

∞∑
k=1

1

kzk

∫
wkdµ(w), (2.23)

for all z outside some disk D(0, R) containing suppµ. This is known as the multi-
pole expansion of Uµ. In particular, we see that if the total mass µ(C) is positive,
then we always have Uµ(z) → −∞ as |z| → +∞. It is interesting to note that if µ is
uniform over a disk, only the log-term shows up in the multipole expansion (2.23),
as can be seen in the following lemma.
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Lemma 2.11. In the special case when dµ = 1
ρ2
1D(z0,ρ)dA is the uniform probability

measure on the disk D(z0, ρ), we have

Uµ(z) =

{
log 1

|z−z0| , |z − z0| > ρ

− |z−z0|2
2ρ2

+ log 1
ρ
+ 1

2
, |z − z0| ≤ ρ

. (2.24)

Proof. Indeed, for |z− z0| > ρ the function log 1
|z−w| , seen as a function of w ∈ C, is

harmonic in a neighbourhood of D(z0, ρ). It follows from the mean value property
that

Uµ(z) =
1

ρ2

∫
D(z0,ρ)

log
1

|z − w|
dA(w) = log

1

|z − z0|
, (|z − z0| > ρ).

When |z − z0| < ρ, Uµ satisfies −2∆Uµ = 1
ρ2

and can thus be written as

Uµ(z) = − 1

2ρ2
|z − z0|2 + h(z), (|z − z0| < ρ)

with h harmonic in D(z0, ρ). The continuity of Uµ at ∂D(z0, ρ) forces h to be
constant, so

h = log
1

ρ
+

1

2
.

We now consider the situation with an external electric field, which is given by
an external potential Q : C → [0,+∞]. We shall assume that Q satisfies the
following conditions:

1. lim inf |z|→+∞
Q(z)

2 log |z| > 1.

2. The set Σ = {Q(z) < ∞} has nonempty interior.

3. Q is lower semi-continuous on C.

The first condition is a growth condition to ensure that far away from the origin, the
force generated by Q is greater than that of the Coulomb potential log |z|, and thus
that Q is “strong enough” to keep charges from escaping to infinity. Conditions 2
and 3 are mild regularity conditions.

In the influence of the external potential Q, we get the formula (2.20) for the
total energy in dimension n ≥ 3. As for the free energy (2.22), we again now take
this as our definition in dimension 2, and define the weighted logarithmic energy
as

IQ(µ) :=

∫∫
log

1

|z − w|
dµ(w)dµ(z) +

∫
Q(z)dµ(z)

=

∫∫ (
log

1

|z − w|
+

1

2
Q(z) +

1

2
Q(w)

)
dµ(w)dµ(z) (2.25)

again for compactly supported signed Borel measure on C of finite total variation.
We now seek to minimize this energy over the set of all all compactly supported
Borel probability measures µ. We denote the minimal energy by VQ = infµ IQ(µ).
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Lemma 2.12. VQ is finite.

Proof. Since Σ has non-empty interior it contains a disk D(z0, ρ). By Lemma 2.11,
the logarithmic energy of the measure 1

ρ2
1D(z0,ρ)dA is finite, so VQ < ∞.

To show that VQ > −∞, we simply note that the growth condition on Q implies
that

log
1

|z − w|
+

1

2
Q(z) +

1

2
Q(w) ≥ 0,

for all sufficiently large z, w ∈ C.

We shall now show that there does indeed exist a compactly supported probability
measure µ that minimizes (2.25) over all compactly supported Borel probability
measures, and that this µ is unique. The main tool for proving existence is the
following well-known result from functional analysis.

Lemma 2.13. Let K ⊆ C be a compact set, (µn)n a sequence of Borel probability
measures with suppµn ⊂ K for all n. Then there exists a Borel probability measure
µ with suppµ ⊂ K and a subsequence (µnk

)k such that µn → µ in the weak-star
sense, that is, ∫

fdµn →
∫

fdµ,

as n → +∞ for all complex-valued continuous functions f on K.

Proof. Let C(K) = {f : K → C, f continuous} be the vector space of continuous
functions on K equipped with the L∞ norm,

||f ||L∞(K) = sup
z∈K

|f(z)|.

From functional analysis [11], we know that C(K) is a Banach space, and that its
dual M(K) := C ′(K) consists of all signed Borel measures on K of finite total mass,
which certainly contains all Borel probability measures on K. The Banach–Alaoglu
theorem [11] states that any closed ball in M(K) is compact in the weak-star topol-
ogy. Since the sequence (µn)n is contained in such a ball, the result follows.

However, we are considering probability measures over all of C, which is not a
compact set. We thus first need to show the following lemma.

Lemma 2.14. The minimization is of (2.25) over all compactly supported Borel
probability measures is equal to the minimization over all Borel probability measures
µ with suppµ ⊆ DR := D(0, R), for some fixed R ≥ 0.

Proof. Consider the function

log
1

|z − w|
+

1

2
Q(z) +

1

2
Q(w).

The growth condition on Q ensures that

log
1

|z − w|
+

1

2
Q(z) +

1

2
Q(w) → +∞,
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as max{|z|, |w|} → +∞. In particular, we can choose an R > 0 so large that

log
1

|z − w|
+

1

2
Q(z) +

1

2
Q(w) > VQ + 1, (2.26)

whenever max{|z|, |w|} > R. Writing DR = D(0, R), this is equivalent to (z, w) /∈
DR ×DR.

Now, consider a compactly supported probability measure µ having positive mass
outside of DR, that is satisfying µ(Dc

R) > 0, and with sufficiently small logarithmic
energy IQ(µ) < VQ+1. We will show that we then can construct another compactly
supported probability measure µ̃ with supp µ̃ ⊆ DR and IQ(µ̃) < IQ(µ), which in
turn proves the lemma.

Firstly, observe that the condition IQ(µ) < VQ + 1 together with (2.26) implies
that µ(DR) > 0. Indeed, otherwise we would have

IQ(µ) =

∫
Dc

R

∫
Dc

R

(
log

1

|z − w|
+

1

2
Q(z) +

1

2
Q(w)

)
dµ(z)dµ(w)

≥
∫∫

(VQ + 1) dµ(z)dµ(w)

= VQ + 1.

The fact that µ(DR) > 0 then allows us to construct µ̃ as

µ̃(E) = (µ(DR))
−1 µ(E ∩DR).

In other words, µ̃ is simply µ conditioned on DR. Clearly supp µ̃ ⊆ DR, and more-
over,

IQ(µ) =

(∫∫
DR×DR

+

∫∫
(DR×Dc

R

)(
log

1

|z − w|
+

1

2
Q(z) +

1

2
Q(w)

)
dµ(z)dµ(w)

≥ µ(DR)
2IQ(µ̃) + (1− µ(DR)

2)(VQ + 1)

This then implies that IQ(µ̃) < IQ(µ), because if we would have IQ(µ̃) ≥ IQ(µ) the
above inequality would imply that IQ(µ) ≥ µ(DR)

2IQ(µ) + (1 − µ(DR)
2)(VQ + 1),

or equivalently,
IQ(µ) ≥ VQ + 1,

which is a contradiction since IQ(µ) < VQ + 1 by assumption.

We shall also need a result of the type “if the energy (2.22) is zero then µ is
zero”, which is the following lemma.

Lemma 2.15. Let µ be a compactly supported Borel measure on C of zero total
mass. Then, ∫∫

log
1

|z − w|
dµ(w)dµ(z) ≥ 0, (2.27)

with equality if and only if µ = 0.

This lemma is technical to prove, so we refer to [14] for a proof. However the
main idea is somewhat elementary, so we sketch the proof in the special case when
dµ(w) = f(w)dA(w) for some smooth compactly supported function f with zero
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total mass
∫
f(z)dA(z) = 0. Then, using the divergence theorem to integrate by

parts, ∫
Uµ(z)f(z)dA(z) =

∫
Uµ(z) (−∆Uµ(z)) dA(z)

= lim
r→∞

(∫
|z|<r

∇Uµ(z) · ∇Uµ(z)dA(z)

− 2πr

∫ π

−π

Uµ(reiθ)∂rU
µ(reiθ)dθ

)
=

∫
∇Uµ(z) · ∇Uµ(z)dA(z) + 0

=

∫
|∇Uµ(z)|2dA(z) ≥ 0,

where the boundary term in the integration by parts vanishes because the vanishing
of µ(C) in the multipole expansion (2.23) implies that

Uµ(z)∂rU
µ(z) = O

(
1

|z|
· 1

|z|2

)
= O

(
1

|z|3

)
,

and thus decays sufficiently rapidly. Thus, the energy∫
Uµ(z)f(z)dA(z) =

∫ ∫
log

1

|z − w|
f(z)f(w)dA(z)dA(w)

is zero if and only if Uµ is zero, which implies that f = −2∆Uµ is zero.
We are now ready to prove our uniqueness and existence of the equilibrium mea-

sure.

Theorem 2.16. There exists a unique Borel probability measure µ that minimizes
(2.25) among all compactly supported Borel probability measures.

Proof. Let (µn) be a sequence of compactly supported probability measures such
that IQ(µn) → VQ. By Lemma 2.14 we may assume that this sequence is chosen so
that suppµn ⊆ DR with R > 0, for all n. By Lemma 2.13, since DR is compact we
can by passing to a subsequence also assume that (µn) converges to some compactly
supported probability measure µ in the weak-star sense. This also implies that [13]

µn × µn→µ× µ,

in weak-star sense, that is ∫∫
fµn × µn →

∫∫
fµ× µ

for all complex-valued continuous f on DR × DR. Unfortunately, we cannot im-
mediately conclude from this that IQ(µn) → IQ(µ), because log 1

|z−w| and Q are

not continuous, bounded functions. However, we can do a regularization to get a
one-sided bound: for all M > 0 we have∫∫

min

{
log

1

|z − w|
,M

}
dµn(w)dµn(z) →

∫∫
min

{
log

1

|z − w|
,M

}
dµ(w)dµ(z).
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Hence,

lim inf
n→+∞

∫∫
log

1

|z − w|
dµn(w)dµn(z) ≥

∫∫
min

{
log

1

|z − w|
,M

}
dµ(w)dµ(z),

for all M > 0. Letting M → +∞ we have by the monotone convergence theorem
that

lim inf
n→+∞

∫∫
log

1

|z − w|
dµn(w)dµn(z) ≥

∫∫
log

1

|z − w|
dµ(w)dµ(z).

Now we just apply a similar approach to the Q-integral: since by assumption Q
is lower semi-continuous, there is an increasing sequence of continuous functions
f1 ≤ f2 ≤ . . . ≤ Q such that fm → Q pointwise. For each fm we thus have∫

fmdµn →
∫

fmdµ.

By a similar reasoning as before we get that

lim inf
n→+∞

∫
Qdµn ≥

∫
Qdµ.

In total we finally have

VQ = lim inf
n→+∞

IQ(µn)

= lim inf
n→+∞

(∫∫
log

1

|z − w|
dµn(w)dµn(z) +

∫
Qdµn

)
≥
∫∫

log
1

|z − w|
dµ(w)dµ(z) +

∫
Qdµ

= I(µ).

Since µ is a compactly supported probability measure, we have by definition VQ ≤
I(µ), which together with the above result shows that I(µ) = VQ. Moreover, Q is
bounded on suppµ because VQ < +∞, which shows that µ has finite (unweighted)
logarithmic energy:

−∞ <

∫∫
log

1

|z − w|
dµ(w)dµ(z) < ∞.

We now turn to uniqueness. Suppose another measure µ̃ satisfies I(µ̃) = VQ.
Then by the same reasoning as for µ, also µ̃ must have finite logarithmic energy and
satisfy supp µ̃ ⊆ DR. Since (µ− µ̃)(C) = 0, it follow by Lemma 2.15 that

J :=

∫∫
log

1

|z − w|
d
1

2
(µ− µ̃)(z)d

1

2
(µ− µ̃)(w) ≥ 0,

with equality if and only if J = 0. Moreover, we also see that by the monotone
convergence theorem

IQ(
1

2
(µ+ µ̃)) + J =

=

∫∫
log

1

|z − w|
d
1

2
(µ+ µ̃)(z)d

1

2
(µ+ µ̃)(w) +

∫
Q(z)d

1

2
(µ+ µ̃)(z)
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+

∫∫
log

1

|z − w|
d
1

2
(µ− µ̃)(z)d

1

2
(µ− µ̃)(w)

= lim
M→+∞

(∫∫
min

{
log

1

|z − w|
,M

}
d
1

2
(µ+ µ̃)(z)d

1

2
(µ+ µ̃)(w) +

∫
Qd

1

2
(µ+ µ̃)

+

∫∫
min

{
log

1

|z − w|
,M

}
d
1

2
(µ− µ̃)(z)d

1

2
(µ− µ̃)(w)

)
= lim

M→+∞

(
1

2

∫∫
min

{
log

1

|z − w|
,M

}
dµ(z)dµ(w) +

1

2

∫
Qdµ

1

2

∫∫
min

{
log

1

|z − w|
,M

}
dµ̃(z)dµ̃(w) +

1

2

∫
Qdµ̃

)
=

1

2
IQ(µ) +

1

2
IQ(µ̃)

= VQ.

However, by the definition of VQ we must also have

IQ(
1

2
(µ+ µ̃)) + J ≥ VQ + J,

so that in fact J = 0, which shows that µ = µ̃.

On account of Theorem 2.16, we can now define the equilibrium measure as
the unique minimizer of (2.25), which we shall denote by σ, and its support by
S = suppσ. We can also consider the equilibrium potential:

Uσ(z) :=

∫
log

1

|z − w|
dσ(w). (2.28)

Its properties will play a major role in the bound of the one-point function (1.6), to
be proven in Section 3. For a thorough discussion on the equilibrium measure and
potential, we refer to the standard reference [14].
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Chapter 3

Low Temperature Localization

Recall that the droplet S = suppσ where σ is the unique measure minimizing the
logarithmic energy (2.25). In this section we will go through the proof of Theorem
1 in [1], which states that near the outside of the droplet, the one-point function
(1.9) of the Coulomb gas (1.3) satisfies

Rβ
n(z) ≤ Cβn2e−cβnδ(z)2 , (3.1)

where δ(z) = inf{|z−w|;w ∈ S} is the distance from z to S, C, c > 0 are constants
and n, β sufficiently large (exact statement will be given as Theorem 3.8 at the end of
this section). As Rβ

n measures the amount of particles per unit area, (3.1) illustrates
that the particle intensity just outside S will be very low for large n or β, and thus
that the Coulomb gas (1.3) is localized around S as n, β → +∞. The bound (3.1)
is believed to be nearly sharp, see the discussion at the end of this chapter.

For convenience, we restate the conditions on the external potential Q : C →
[0,+∞] given in Section 2.2.

1. lim inf |z|→+∞
Q(z)

2 log |z| > 1.

2. The set Σ = {Q(z) < ∞} has nonempty interior.

3. Q is lower semi-continuous.

Throughout this section, we also impose the following additional assumptions on Q:

(i) Q is strictly subharmonic in a neighbourhood of the boundary ∂S.

(ii) The boundary ∂S has finitely many components.

(iii) Each component of ∂S is an everywhere smooth C1 Jordan curve.

(iv) S∗ = S where S∗ is the coincidence set for the obstacle problem given in section
3.2.

(v) Q is C2 on Σ = {Q < +∞}.

3.1 Weighted Polynomials

By the definition of Rβ
n (1.9), we have

Rβ
n(ζ) = lim

ε→0

Eβ
n [{number of particles in D(ζ, ε)}]

ε2
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= lim
ε→0

n∑
k=1

kP β
n (#(D(ζ, ε) ∩ {ζj}n1 ) = k),

= lim
ε→0

n∑
k=1

k

(
n

k

)
P β
n (ζ1 ∈ D(ζ, ε), . . . , ζk ∈ D(ζ, ε)),

with dP β
n = 1

Zβ
n
e−βHndAn being the Gibbs measure of the Coulomb gas (1.3). Thus,

in order to control Rβ
n we simply need to control the probabilities

P β
n (ζ1 ∈ D(ζ, ε), . . . , ζk ∈ D(ζ, ε)). (3.2)

It turns out that there exists a certain class of “weighted polynomials” that serve
as good tools to deal with this.

Let Wn be the space of functions f of the form f = q · e−nQ/2, where q is a holo-
morphic polynomial of degree at most n−1, and Q as usual is the external potential.
Given a vector z = (zj)

n
1 ∈ Cn, define the (weighted) Lagrange polynomial in z

as

l
(z)
j (z) = e−n(Q(z)−Q(zj))/2

∏
k ̸=j

z − zk
zj − zk

. (3.3)

We then have l
(z)
j ∈ Wn, and these polynomials are intimately connected with the

Coulomb gas density via the following remarkable identity:

|l(z)j (w)|2βe−βHn(z) =

(∏
k ̸=j

∣∣∣∣w − zk
zj − zk

∣∣∣∣2β
)( ∏

1≤k<m≤n

|zk − zm|2β
)

· e−nβ(Q(w)−Q(zj))−nβ
∑n

k=1 Q(zk)

= e−βHn(z|zj=w), (3.4)

where z|zj = w is the z-vector but with the j’th component replaced by w. We now
show how this identity can aid in computing the probabilities (3.2).

Lemma 3.1. [1, Lemma 2.5] Let W ⊆ C be a measurable set and define

XW
j =

∫
W

|l(ζ)j (w)|2βdA(w). (3.5)

Then, for all measurable U ⊆ C

Eβ
n [1U(ζj)X

W
j ] = |U |pβn(W ), (3.6)

where pβn(W ) := P β
n (ζj ∈ W ) = P β

n (ζ1 ∈ W ).

Proof. It follows by Fubini’s theorem that

Eβ
n [X

W
j ] =

∫
Cn

1U(ζj)

∫
W

|l(ζ)j (w)|2β 1

Zβ
n

e−βHn(ζ)dA(w)dAn(ζ)

=

∫
Cn

∫
C
1U(ζj)1W (w)

1

Zβ
n

e−βHn(ζ|ζj=η)dA(w)dAn(ζ)

=

∫
C

∫
Cn

1U(ζj)1W (w)
1

Zβ
n

e−βHn(ζ|ζj=w)dAn(ζ)dA(w)
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= |U |
∫
Cn

1W (w)
1

Zβ
n

e−βHn(ζ|ζj=w)dAn(ζ|ζj = w)

= |U |pβn(W ).

The Lagrange polynomials together with (a version of) Lemma 3.1 were also used
[2] to study the separation of particles for large values of β.

We can extend the identity (3.4) to the two variable case as

|l(z|zj=wj)
k (wk)|2β|l(z)j (wj)|2βe−βHn(z) = |l(z|zj=wj)

k (wk)|2βe−βHn(z|zj=wj)

= e−βHn(z|zk=wk,zj=wj)),

when j ̸= k. This process may be iterated to obtain a generalization of Lemma 3.1.

Lemma 3.2. [1, Lemma 2.6] Let k be an integer, 1 ≤ k ≤ n. It then holds that(
k∏

j=1

|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2β

)
e−βHn(z) = e−βHn(z|ζ1=w1,...,ζk=wk). (3.7)

Furthermore, if W1, . . . ,Wk, U1, . . . , Uk are measurable subsets of C and we define
the random variable

XW1,...,Wk

1,...,k =

∫
W1

· · ·
∫
Wk

k∏
j=1

|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2βdA(w1) · · · dA(wk),

we have that

Eβ
n

[(
k∏

j=1

1Uj
(ζj)

)
XW1,...,Wk

1,...,k

]
= |U1| · · · |Uk|pn,k(W1, . . . ,Wk). (3.8)

Moreover, the identities (3.7) and (3.8) remain valid under any permutation of the
indices 1, . . . , k. Here of course pn,k(W1, . . . ,Wk) = P β

n ({ζ1 ∈ W1, . . . , ζk ∈ Wk}).

Proof. By Lemma 3.1, (3.7) and (3.8) holds whenever k = 1. Suppose (3.7) is valid
up to some k = p, p < n. Then,(

p+1∏
j=1

|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2β

)
e−βHn(ζ) =

= |l(ζ|ζ1=w1,...,ζp=wp)
p+1 (wp+1)|2βe−βHn(ζ|ζ1=w1,...,ζp=wp)

= e−βHn(ζ|ζ1=w1,...,ζp=wp,ζp+1=wp+1),

and thus (3.7) holds also for k = p + 1. By (finite) induction we have thus proven
(3.7) for all 1 ≤ k ≤ n.

To prove (3.8), we note that by (3.7) and Fubini we have

Eβ
n

[(
k∏

j=1

1Uj
(ζj)

)
XW1,...,Wk

1,...,k

]
=
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= |U1| · · · |Uk|
∫
Cn

(
k∏

j=1

1Wj
(wj)

)
1

Zβ
n

e−βHn(ζ|ζ1=w1,...,ζk=wk)dÃn,k

= |U1| · · · |Uk|pn,k(W1, . . . ,Wm),

where dÃn,k = dA(w1) · · · dA(wk)dA(zk+1) · · · dA(zn).
The fact that (3.7) and (3.8) are invariant under permutations of the indices

follows from the invariance of P β
n under permutations.

In the following we’ll write

pn,k(W ) = pn,k(W,W, . . . ,W ).

3.2 The Effective Potential

Lemma 3.1 and 3.1 provide the connection to the probabilities (3.2) in the one-point
function that we need. In order to get the bound on Rβ

n (3.1) we thus only need a

bound on lζj near the droplet S. The key to this will be to analyze a special function
known as the “effective potential”, which is closely related to our external potential
Q.

Let FQ denote the set of subharmonic functions u on C which satisfy u ≤ Q and
u(ζ) ≤ 2 log |ζ|+O(1) as z → ∞, and define Q̌(z) as the pointwise supremum:

Q̌(z) = sup{u(z), u ∈ FQ} (3.9)

The function Q̌ is known as the obstacle function corresponding to the obstacle
Q, the external potential. As we shall soon see, Q̌ is the solution to a certain free
boundary value problem, which is a partial differential equation where both the
function and the boundary of the domain is unknown. More precisely, consider the
problem of determining a function v : C → R and a coincidence set S∗ (which we
for the moment just think of as an arbitrary set, not related to the droplet S) such
that

(a) v ≤ Q everywhere on C.

(b) v = Q on S∗ and harmonic otherwise; ∆v = 0 on C \ S∗.

(c) v(ζ) = 2 log |ζ|+O(1) as |z| → +∞.

The above problem is also known as the obstacle problem. Similar free boundary
value problems also show up in the pricing of American options in finance [4], and
in the study of water waves [6], for example. We now show that v = Q̌ solves this
problem. It follows from the definition that Q̌ ≤ Q, but to prove that the two other
constraints are also satisfied we shall need the following theorem.

Theorem 3.3. Suppose Q is C2 in a neighbourhood of the droplet S = suppσ, with
σ being the equilibrium measure which minimizes the weighted logarithmic energy
IQ(·) in (2.25), and VQ = IQ(σ) is the minimal energy. Define the (modified) Robin’s
constant

γ := 2VQ −
∫

Qdσ, (3.10)
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Then, the potential Uσ of the equilibrium measure σ,

Uσ(z) =

∫
log

1

|z − w|
dσ(w) (3.11)

satisfies
2Uσ(z) +Q(z) ≥ γ, (3.12)

everywhere on C, and
2Uσ(z) +Q(z) = γ, (3.13)

on S.

The proof of Theorem 3.3 above involves theory of capacities of sets, which
would require a slight detour, and we therefore choose to skip it and refer to [14,
Theorem 1.3] for a full proof. For a general Q, Theorem 3.3 is only true “quasi-
everywhere”, that is, up to a set of infinite logarithmic energy. In particular, quasi-
everywhere implies dA-almost everywhere. For details we again refer to [14].

We can now show the following theorem.

Theorem 3.4. Let Q̌ be the obstacle function (3.9). Then

Q̌ = γ − 2Uσ, (3.14)

where Uσ, γ are as in Theorem 3.3.

Proof. Let
Q̃ = γ − 2Uσ,

It follows from Theorem 3.3 that Q̃ ∈ F , and that Q̃ = Q on S (since Q is C2 there).
Moreover, the multipole expansion (2.23) of Uσ shows that Q̃ = log |z|2 + O(1) as
ζ → ∞.

Now, consider an arbitrary u ∈ FQ and form the function

ũ(z) = max(u(z), Q̃(z)) ∈ FQ.

It follows that ũ(z) = log |z|2 + O(1) and ũ = Q̃ on S. The function ũ − Q̃ thus
vanishes on S and is subharmonic and bounded outside S, since Q̃ is harmonic
there. By the maximum principle for subharmonic functions, ũ − Q̃ is constant;
since ũ− Q̃ = 0 on S this constant must be 0. We conclude that ũ = Q̃ everywhere.
Since u ∈ FQ was arbitrary, this shows that

Q̃(z) = sup{u(z), u ∈ FQ} = Q̌(z).

The coincidence set S∗ in the obstacle problem can be expressed as

S∗ = {(Q̌−Q)(z) = 0}. (3.15)

In general it holds that S ⊆ S∗ with possible strict inclusion [9], but our assumption
(iv) eliminates this case. Since S = S∗ by (iv), combining Theorem 3.3 and 3.4
shows that Q̌ satisfies Q̌ = Q on S, and also that Q̌ = 2 log |ζ|+O(1) as |ζ| → +∞
since we by the multipole expansion (2.23) of a potential of a probability measure
have Uσ = − log |ζ|+O(1), as |ζ| → +∞. Thus, (Q̌, S) solves the obstacle problem.
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We now define the effective potential as

Qeff := Q− Q̌. (3.16)

We note that by definition, Qeff = 0 on the droplet S and furthermore that Qeff(z) →
+∞ as |z| → +∞ since the growth condition on Q (1.1) means that Q outgrows
Q̌(z) = 2 log |z| + O(1) at infinity. Furthermore, since Q̌ is harmonic outside of S,
we have

∆Qeff = ∆Q−∆Q̌ = ∆Q,

outside of S. It can be shown [14] that the potential Uσ is C1,1-smooth, meaning
that its gradient satisfies a Lipschitz condition. By Theorem 3.4 this also applies to
Q̌ and, since Q is C2 on Σ = {Q < +∞}, we also have that Qeff is C1,1-smooth.

The effective potential Qeff may be used to study the decay of the Lagrange

polynomials l
(z)
j from Section 3.1 near the droplet with the help of the following

theorem, which is sometimes called the “weighted maximum principle” for its close
resemblance to the usual maximum principle for subharmonic functions, Theorem
2.9.

Lemma 3.5. [1, Lemma 2.3] For f = q · e−nQ/2 ∈ Wn we have the bound

|f(z)| ≤ ||f ||L∞(S) · e−nQeff(z)/2, (3.17)

where
||f ||L∞(S) = sup

z∈S
|f(z)|,

is the supremum norm of f over S.

Proof. Without loss of generality, we may assume ||f ||L∞(S) = 1. Taking the loga-
rithm yields that

1

n
log |q(z)|2 = 1

n
log |f(z)|2 +Q(z). (3.18)

The function u := 1
n
log |q|2 is harmonic everywhere except at a finite number of

points (the zero set of q) where it equals −∞, and is thus subharmonic on C.
Furthermore, it satisfies u ≤ Q on S since f ≤ 1 there. Then, since Q = Q̌ on S
we also have u ≤ Q̌ on S and the harmonicity of Q̌ outside S shows that u − Q̌ is
subharmonic in Sc. By the maximum principle for subharmonic functions u ≤ Q̌
everywhere, which means that

1

n
log |f(z)|2 +Q(z) ≤ Q̌(z), (3.19)

or
|f(z)| ≤ en(Q̌(z)−Q(z))/2, (3.20)

which is (3.17).

Theorem 3.5 is precisely the tool we need to bound the Lagrange polynomials
outside of S, but in order to utilise it we first need one bound on the supremum
norm ||f ||L∞(S), and one more on the effective potential Qeff. We begin with Qeff.

Lemma 3.6. [1, Lemma 2.1] There is a constant a0 > 0 such that

Qeff(z) ≥ 2min{cδ(z)2, a0}, (3.21)

holds for any c < c0, where

c0 = min{∆Q(η); η ∈ ∂S}. (3.22)
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Proof. Consider a boundary point p ∈ ∂S of S, and let N, T be the outwards unit
normal and (positively oriented) unit tangent at p. Our aim is to Taylor expand
Qeff a small distance outside S. Since Qeff is only smooth strictly outside of S, we
let V be a C2 extension of Q|Sc to a neighbourhood of ∂S, and expand V instead.
We let ∂NV (p), ∂TV (p) denote the corresponding directional derivatives at p.

By the C1,1-continuity of Qeff together with the fact that Qeff = 0 on S, we have
that ∂NV (p) = 0. For the same reason we also have V = 0 identically on ∂S, so
that in particular ∂TV (p) = ∂2

TV (p) = 0. However, by assumption (∂2
N + ∂2

T )Q =
4∆Q > 0 in a neighbourhood of ∂S and ∆Q̌ is harmonic outside S, so

∂2
NV (p) = 4∆V (p) = 4∆Q(p) ≥ 4c0 > 0. (3.23)

We are now ready to invoke Taylor’s theorem; consider a small positive number δ,
then

Qeff(p+ δN) = V (p+ δN)

= V (p) +
1

2
∂NV (p)δ + ∂2

NV (p)δ2 + o(δ2)

=
1

2
∂2
NV (p)δ2 + o(δ2) > 2cδ2 > 0 (δ → 0+), (3.24)

holds for all positive δ smaller than some number δ0. Therefore, Q
eff(z) > 2cδ(z on

the set {δ(z) < δ0}.
Now, by the growth assumption (1.1) and Theorem 3.4 we see that Qeff(z) → ∞

as |z| → ∞. Since Q is lower semi-continuous and Q̌ is C1,1, the effective potential
Qeff is lower semi-continuous and thus attains a strict minimum 2a0 over the set
{δ(z) ≥ δ0}. In conclusion,

Qeff(z) ≥

{
2cδ(z) δ(z) < δ0
2a0 δ(z) ≥ δ0,

(3.25)

from which (3.21) follows.

We now turn to analyze the supremum norm ||f ||L∞(S). To this end, let V
be a neighbourhood of S, small enough so that ∆Q is continuous and positive
in a neighbourhood V1 of its closure V . Such a neighbourhood exists because of
assumption (i). We then have the following pointwise bound.

Lemma 3.7. [1, Lemma 2.4] Let f ∈ Wn, let s be any number satisfying

s > max{∆Q(z); ζ ∈ V }. (3.26)

Then for z0 ∈ V ,

|f(z0)|2β ≤ nesβ
∫
D(z0,1/

√
n)

|f |2βdA, (3.27)

holds for all n bigger than some n0 > 0.

Proof. Consider the auxiliary function

F (z) = |f(z)|2βesnβ|z0−z|2 . (3.28)
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Since f = q · e−nQ/2 we have

∆ logF (z) = 2β∆ log |q(z)| − nβQ(z) + snβ∆|z − z0|2

≥ −nβQ(z) + snβ ≥ 0, (3.29)

for z ∈ V , where the first inequality is due to log |q| being subharmonic and ∆|z −
z0|2 = ∂∂(z−z0)(z − z0) = 1. Thus, logF is subharmonic, and by Theorem 2.7 F is
thus itself subharmonic. Now, we apply the mean value inequality for subharmonic
functions to conclude that

|f(z)|2β = F (z0)

≤ n

∫
D(z0,1/

√
n)

FdA

= n

∫
D(z0,1/

√
n)

|f(w)|2βesnβ|w−z0|2dA(w)

≤ nesβ
∫
D(z0,1/

√
n)

|f |2βdA, (3.30)

which holds for any n large enough so that D(z0, 1/
√
n) is strictly contained in

V .

Using Lemma 3.7, we can now obtain the following uniform bound of the Lagrange
polynomials

|l(z)j (z)|2β ≤ nesβ
∫
D(z0,1/

√
n)

|l(z)j |2βdA ≤ nesβ
∫
C
|l(z)j |2βdA,

and thus

||l(z)j ||2βL∞(S) ≤ nesβ
∫
C
|l(z)j |2βdA.

The last integral is familiar to us as it shows up in Lemma 3.1.

3.3 Bounding the One-point Function

We are now in position to prove the bound on the one-point function Rβ
n (3.1). The

idea is to to use Lemma 3.1 and 3.2 to bound the probabilities in the expression

of Rβ
n (3.2) with expectations of Lagrange polynomials l

(z)
j (3.3), and applying the

weighted maximum principle (3.5).

Theorem 3.8. [1, Theorem 1] Write δ(z) = d(z, S) for the distance to the droplet.
There are then constants C and c > 0 such that

Rβ
n(z) ≤ Cβn2e−cβnδ(z)2 ,

for all n greater than some n0 > 0.

Proof. Let ε > 0, small enough so that the disk W = D(z, ε) is contained in V \ S.
Define the random variables

XW
j =

∫
W

|l(ζ)j (w)|2βdA(w) (3.31)
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Zj =

∫
C
|l(ζ)j (w)|2βdA(w). (3.32)

We would like to provide an estimate for Eβ
n [1U(ζj)Xj] and we do so by the following:

by Lemma 3.5 and 3.6 and we have the bound

|l(ζ)j (z)| ≤ ||l(ζ)j ||L∞(S)e
−nQeff(z)/2 ≤ ||l(ζ)j ||L∞(S)e

−ncδ(z)2 . (3.33)

Now, to get a bound for ||l(ζ)j ||L∞(S) we first note that by Lemma 3.7,

|l(ζ)j (z)|2β ≤ nesβ
∫
D(z,1/

√
n)

|l(ζ)j |2βdA ≤ nCβ

∫
C
|l(ζ)j |2βdA = nCβZj, (3.34)

with C = es. This bound is uniform in z, so in particular we have ||l(ζ)j ||2βL∞(S) ≤
nesβZj. In total we thus have

|l(ζ)j (z)|2β ≤ nCβe−2βncδ(z)2Zj. (3.35)

Integrating over W ,

XW
j =

∫
W

|l(ζ)j (w)|2βdA(w)

≤ ZjnC
β

∫
W

e−2βncδ(w)2dA(w)

≤ ε2nCβe−2βncδ2Zj,

where δ = inf{|z − w|;w ∈ W, z ∈ S} is the distance between W and S. Now we
can multiply by 1U(ζj), take expectations and use Lemma 3.1 to conclude that

|U |pβn(W ) ≤ |U |ε2nCβe−2βncδ2 , (3.36)

from which it follows that

pβn(W ) ≤ ε2nCβe−2βncδ2 . (3.37)

What is left is to use Lemma 3.2 to obtain a similar bound for pβn,k(W ), 1 < k ≤ n.
We mimic the idea above: first we define the random variables

X̃W
j =

∫
W

|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2βdA(wj)

Z̃j =

∫
C
|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2βdA(wj),

for 1 ≤ j ≤ k. By the same reasoning as before, we then have the bound

X̃W
j ≤ ε2nCβe−2βncδ2Z̃j. (3.38)

Since X̃W
j , Z̃j are non-negative this implies

k∏
j=1

X̃W
j ≤ ε2kqk

k∏
j=1

Z̃j, (3.39)
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where q = nCβe−2βcnδ. We note that, with notation from Lemma 3.2,

k∏
j=1

X̃W
j =

∫
W

· · ·
∫
W

k∏
j=1

|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2βdA(w1) · · · dA(wk)

= XW,...,W
1,...,k

k∏
j=1

Z̃j =

∫
C
· · ·
∫
C

k∏
j=1

|l(ζ|ζ1=w1,...,ζj−1=wj−1)
j (wj)|2βdA(w1) · · · dA(wk)

= Z1,...,k

Thus, (3.39) together with Lemma 3.2 gives

pβn,k(W ) ≤ ε2kqk. (3.40)

It follows that

Eβ
n(#(W ∩ {ζj}n1 )) =

n∑
k=1

kP β
n (#(W ∩ {ζj}n1 = k))

≤
n∑

k=1

k

(
n

k

)
qkε2k. (3.41)

Sending ε → 0 we now conclude that

Rβ
n(w0) = lim

ε→0

Eβ
n(#(W ∩ {ζj}n1 ))

ε2
≤ Cβn2e−cnβδ(w0)2 . (3.42)

Theorem 3.8 above illustrates again the fact that the configuration {ζj}nj=1 tends
to concentrate at the droplet S as n → +∞ and also at low temperatures (β → +∞).

It was recently shown [16, Theorem 2] that for the specialized case when Q(z) =
|z|2 (and other similar potentials), one has the bound Rβ

n(z) ≤ Cβn for all z ∈ C,
including in the droplet. It is therefore reasonable to conjecture that

Rβ
n(z) ≤ Cβne−cβnδ(z)2 , (3.43)

outside S, for all potentials obeying the standard conditions 1, 2, 3 (compare to the
n2-factor in Theorem 3.8). Indeed, in the case β = 2, (3.43) has been known to hold
in many situations [3].

As a final remark, we shall briefly discuss an alternative formulation of Lemma
3.1. Recall that the marginal density of ζ1 is given by

f1(ζ1) :=
dP β

n,1

dA
=

∫
Cn−1

e−βHn(ζ1,ζ2,...,ζn)

Zβ
n

dA(ζ2) · · · dA(ζn).

If Q is continuous everywhere, which we shall assume from now on, f1 is an every-
where continuous function. For E ⊆ Cn−1 Borel we define the Gibbs probability
measure conditioned on ζ1 as

P β
n (E|ζ1 = z) =

1

f1(z)

∫
E

e−βHn(z,ζ2,...,ζn)

Zβ
n

dA(ζ2) · · · dA(ζn), (3.44)
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for all z ∈ {f(z) > 0}, and P β
n (E|ζ1 = z) = 0 otherwise. Then, mirroring the proof

of Lemma 3.1, we see that

Eβ
n

[
|l(ζ)1 (w)|2β|ζ1 = z

]
=

1

f1(z)

∫
Cn−1

|l(ζ|ζ=z)
1 (w)|2β e

−βHn(z,ζ2,...,ζn)

Zβ
n

dA(ζ2) · · · dA(ζn)

=
1

f1(z)

∫
Cn−1

e−βHn(w,ζ2,...,ζn)

Zβ
n

dA(ζ2) · · · dA(ζn)

=
1

f1(z)
f1(w).

By (1.9) we have the simple relation nf1 = Rβ
n, so we end up with the following

proposition.

Proposition 3.9. Denote by Eβ
n [ · |ζ1 = z] expectation with respect to the conditional

Gibbs measure (3.44). Let Rβ
n be the one-point function (1.5) and l

(ζ)
1 the Lagrange

polynomial (3.3). Then we have

Eβ
n

[
|l(ζ)1 (w)|2β|ζ1 = z

]
=

Rβ
n(w)

Rβ
n(z)

, (3.45)

whenever z ̸= w and z is such that Rβ
n(z) > 0.

While (3.45) conveys the same type of relation as Lemma 3.1, it does so with a
more direct link to the one-point function.
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