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Abstract
Exposure modelling is a critical aspect of managing counterparty credit risk, and banks
worldwide invest significant time and computational resources in this task. One approach
to modelling exposure involves pricing trades with a counterparty in numerous potential
future market scenarios. Suitable for this type of pricing is a framework presented in
2020 by Huge and Savine, which they call differential machine learning. It approximates
the pricing function with a neural network that trains on Monte Carlo paths and the
gradients along these paths. This thesis aims to demonstrate the application of differential
machine learning in the context of exposure modelling. To better comply with this context,
training is done on market variables, rather than some hidden model state. Simulated
data is used from Heston type models to estimate the future exposure distribution of a
portfolio consisting of European options. The conducted experiments reveal that training
the machine learning model on market observables yields similar results to those obtained
when training on hidden model states. Furthermore, the exposure modelling approach
is subject to stress testing by evaluation of its performance under different levels of
compatibility between the pricing model and future market scenarios in which the portfolio
is priced. Results show that low compatibility leads to decreased accuracy of the predicted
exposure distributions.

Keywords: Counterparty credit risk, Differential machine learning, Exposure modelling,
Heston model, Option pricing.
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List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in alpha-
betical order.

AAD Automatic Adjoint Differentiation

ANN Artificial Neural Network

ATM At the Money, i.e. option with moneyness m = 1

CCR Counterparty Credit Risk

DML Differential Machine Learning

EE Expected Exposure

FX Foreign Exchange

GBP Pound Sterling

MSE Mean Squared Error

MtM Mark-to-Market

PCA Principal Component Analysis

PFE Potential Future Exposure

ReLU Rectifier Linear Unit

RMSE Root Mean Squared Error

USD US Dollar



Nomenclature

Below is the nomenclature of parameters and variables that have been used throughout
this thesis.

Heston model variables and parameters

St Spot asset price at time t

νt Stochastic variance at time t

µ Drift of spot asset price process
κ Mean reversion rate of variance process
θ Long-term mean of variance process
ξ Volatility of variance process
ρ Correlation between spot asset price and variance processes
ρ̃ij Correlation between spot asset price processes of asset i and j

Variables and Parameters

K Option strike price
m Option moneyness
T Option time of expiry
τ Option time to expiry, τ = T − t

P Number of observed option prices
N Number of modelled assets
NT Number of simulated time steps in each scenario
M Number of simulated market scenarios
ϵ1 Threshold of eigenvalues in traditional PCA
ϵ2 Threshold of eigenvalues in differential PCA
ci

m,τ (t) Value of European call option on asset i with moneyness m and
time to expiry τ at time t
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1
Introduction

This chapter begins by providing a brief background to the topic of this thesis in section
1.1. We then proceed to specify the objective in general terms in section 1.2, followed by a
study of previous work on related topics in section 1.3. The chapter is then concluded by
a procedural overview of the thesis as a whole in section 1.4.

1.1 Background

A central part of banking activities is managing risk. Risks come in many shapes and
forms, and a great deal of time and effort is put into computing, quantifying and assessing
these everyday by banks all over the world. In 1988 eleven countries known as the Group
of Ten (G-10), there amongst the United States, the United Kingdom, Germany, France,
and Switzerland, agreed to the ”Basel Capital Accord” [3], also known as ”Basel I”, aiming
to regulate banks’ risk appetite by restricting the amount of acquired credit risk, namely
the risk of e.g. a private person or a company, also known as a counterparty, not being
able to pay what is owed. The Basel framework was subsequently adopted by virtually all
countries with active international banks. The framework has since been updated twice,
the most recent of which, ”Basel III” [2], followed after the 2007-09 financial crisis. Basel
III introduced stricter requirements on regulatory capital, i.e. how much capital a bank
needs to hold at any given time.

The quantity of regulatory capital legally required to be held by any bank is dependent
on the bank’s credit risk, which in turn is a risk whose magnitude is determined by two
primary factors. The first factor is the probability that a given counterparty defaults
before completing the last transaction. However, in this thesis, we will focus on the second
factor, which is the credit exposure, namely the size of what is owed to the bank [11]. For
example, in a conventional loan with a fixed interest rate and predetermined instalments,
credit exposure can be estimated at any future time in a straightforward manner. However,
a bank and a counterparty may enter into contracts, the values of which are dependent on
the market price of some underlying asset, or assets, say a given stock price or a foreign
exchange (FX) rate. In such a setting, credit exposure estimation may be more complicated.
In figure 1.1, we find a schematic illustration of how credit exposure estimation may be
performed, where the flow from generation of market scenarios to exposure distribution
estimation found in the top half presents a traditional approach. In this case, potential
market scenarios are generated in the order of tens of thousands, and then, for each
market scenario, a pricing model is calibrated and used to price all contracts between
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1. Introduction

the bank and its counterparties. Although this approach may result in reliable exposure
distribution estimations, calibration of pricing models is a computationally expensive, and
thus time-consuming, endeavour. However, in this thesis, a framework called differential
machine learning (DML) [16] will be employed, which is illustrated in the bottom half of
figure 1.1. In the given setting, the method may be utilised to produce swift estimations.
As seen in the illustration, the otherwise computationally expensive model calibration in
the traditional approach is replaced by additional market scenario generation, which in
turn may be time-consuming as well. However, the trained DML model can then be used
to rapidly price contracts for each market scenario.

Figure 1.1: Schematic illustration of conventional credit exposure estimation,
and credit exposure estimation using a DML approach.

Furthermore, in the application of the DML method, we use market observables, i.e.
observed market prices of instruments dependent on the underlying asset being modelled,
in order to promptly provide information on the driving forces in the spot price process.
To maintain authenticity of the data, the instruments used as market observables are those
typically traded in the market.

1.2 Objective

The objective of this project is to provide insights into how the DML framework can be
used for counterparty credit risk applications, and more specifically how it can be used
for the purpose of exposure modelling. In doing so, the effectiveness of using market
observables, previously defined in section 1.1, will be investigated. We aim to show that
the methodology can be efficiently applied in exposure modelling of a set of European put
options and European call options. The reason for limitation to sets of European options
is that these are the most common and relevant instruments to model using the suggested
framework. Furthermore, we wish to investigate circumstances under which the framework
is less suitable or yields less accurate results.

2



1. Introduction

1.3 Previous work

Exposure modelling for risk management poses a great problem to practitioners because
of the high computational cost. Various methods to reduce the computational cost has
been developed, for example in Glau et al. [9] and Stein [25]. On a more general level,
exposure modelling is concerned with two major research areas: model calibration and
derivative pricing. The application of machine learning in these areas is a topic which
has recently been under research. The main advantage of machine learning approaches is
that they may easily be generalised and may reduce the computational cost of various
procedures by utilising a pre-trained prediction model. An example of this can be found
in Horvath et al. [14].

Calibration of a model is the task of finding parameter values such that the model produces
values close to the observed market data. This is in general solved by minimisation of a cost
function that measures the discrepancy between the values produced by the model and the
observed market data, a minimisation procedure which can be computationally expensive.
Hernandez [12] introduces a machine learning approach where mapping from market data
to model parameters is approximated by a pre-trained neural network. Horvath et al.
[14] suggests to instead first approximate the pricing function, i.e. map parameters and
variables to derivatives prices. This fast pricing function approximation is then used to
speed up the calibration procedure. Several applications of feedforward artificial neural
networks (ANN) as pricing function approximators have been presented, for example in
Liu et al. [20] and McGhee [23].

This thesis will, to a large extent, build on the work presented in Huge and Savine [16],
where a fast method to approximate a pricing function together with its gradient by an
extension of the classical feedforward ANN. The speed of the training of the method
enables it to be trained online, just prior to application, in contrast to previously discussed
works which use a pre-trained model. This is achieved by leveraging gradients of labels
with respect to inputs in the training of the network. These gradients are cheaply produced
by using automatic adjoint differentiation (AAD), which is a computerised algorithm that
retrieves the gradient of a function by sequential application of the chain rule [24].

1.4 Procedural overview

The thesis will begin in a relatively simple setting to progressively introduce more com-
plicated models and netting sets. Throughout the thesis, artificially generated data is
used, the details of which may be found in section 3.3 and 3.4. We will only use data and
instruments which would normally be observable in the market, whilst maintaining the
benefit of knowing the underlying model and model parameters governing the dynamics in
the artificial data, allowing for a more intricate analysis of the results.

Firstly, we perform exposure modelling of a netting set consisting of instruments with a
single underlying asset to prove functionality of the market observables methodology in
this relatively simple setting. This is done by comparing results using different levels of
information, first giving the prediction model information about hidden states, i.e. data

3



1. Introduction

which cannot be seen in the market, to then proceed to only give data which can be
observed in the market. Having access to the two results allows for analysis of the ability
of market observables to capture hidden dynamics. Thereafter, we perform exposure
modelling of portfolio consisting of multiple assets. Once again, results using different
levels of information are compared to investigate the accuracy of using market observable
data. Lastly, we stress test the general framework by altering model dynamics in an
underlying asset to investigate circumstances under which the methodology is potentially
less accurate.

Python is the programming language used for all code implementations in this thesis.
Data generation and manipulation are performed using the NumPy, SciPy, and AlgoPy
packages. Furthermore, neural network models are implemented using the TensorFlow
package. Lastly, the Matplotlib and seaborn packages are used for data visualisation
purposes. For further implementation details, the complete code is available on GitHub.†

†https://github.com/swagnerutb/mastersthesis
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2
Theory

This chapter presents underlying theory and related research relevant to the topic of this
thesis. We begin by introducing exposure modelling in section 2.1, along with relevant
metrics and bank regulation. We then proceed to define the Heston model, along with
a multi-asset generalisation of the model in sections 2.2 and 2.3. Thereafter, machine
learning methods are discussed, starting with a short review of feedforward artificial neural
networks (ANN) in section 2.4.1. Central to this thesis is an extension of the feedforward
ANN architecture presented in Huge and Savine [16], which they call differential machine
learning, discussed in section 2.4.2. The chapter ends with section 2.4.3 containing a
presentation of the data preprocessing technique differential principal component analysis
(PCA), also introduced in Huge and Savine.

2.1 Exposure Modelling

All concepts, definitions, and theory presented in this section build on Gregory [11]. We
begin by defining credit risk, which is a general concept defined as the risk that a counter-
party will not fulfil contractual obligations, or in other words, default. The subcategory
counterparty credit risk (CCR) is the credit risk between derivatives counterparties. Most
often, at least one of the counterparties is a bank, and the other might be another bank or
a large corporation. Assessing CCR is a difficult task and demands answers to two general
questions. Firstly, what are the potential losses in the event of the counterparty defaulting?
Secondly, what is the probability of such an event? This thesis will only concern the former
question. Furthermore, CCR is relevant in different settings, such as in pricing CCR in
different valuation adjustments (xVA), or for risk management purposes. The setting
one considers affects how CCR should be examined. An example of risk management
applications is to decide the amount of capital a bank must hold because of its CCR. This
thesis will treat CCR for risk management purposes.

Having described the general area of interest, we will define some central concepts relating
to CCR. The Mark-to-Market (MtM) of a trade is the cost of entering an identical trade
with another counterparty, ignoring any potential transaction costs. MtM can identically
be viewed as the net present value of all future transactions with the counterparty, i.e.
the difference between future payments by and future payments to the counterparty.
These transactions may very well depend heavily on market risk factors, for example
interest rates, FX rates, implied volatility surfaces, etc. Furthermore, a netting agreement
is a legal contract between two parties allowing aggregation of trades in the event of

5



2. Theory

default of a party. Given that there is a netting agreement with the counterparty, the
MtM with respect to this counterparty is the sum of the MtM of all the trades with the
counterparty. Throughout this thesis it is assumed that there is a netting agreement with
the counterparty and that the trades can be treated together in what is called a netting set.
The value of the netting set is referred to as the MtM with respect to the counterparty
and is defined as

MtM =
B∑

i=1
MtMi,

where MtMi is the MtM of trade i, and B is the total number of trades with the counterparty.
If the MtM with respect to the counterparty is positive and the counterparty defaults with
zero recovery rate, referring to the percentage of outstanding transactions retrieved from
a defaulting counterparty, the MtM equals the loss. Throughout this thesis a recovery
rate of zero is assumed. However, if the MtM is negative, meaning that the counterparty
is owed money, and the counterparty defaults, the loss is zero. This is because in the
event of a defaulting counterparty, one still has to fulfil contractual obligations. This
characterisation of a minimum loss of zero in the event of default leads us to the concept
of exposure. Exposure with respect to a counterparty is defined as

E = max{MtM, 0} = MtM+,

where MtM is with respect to the counterparty. In reality, exposure is only relevant in the
event of default, as the amount of exposure with respect to a counterparty becomes an
actual loss first when that counterparty defaults. However, exposure in this thesis will be
considered independently of the event of default.

Exposure clearly varies with time and stochastic future values. Since default of a coun-
terparty may occur at any time point, it is of interest to model the distribution of the
exposure at different time points in the future. Hence, Et refers to the exposure at time
point t. If t is in the future, Et is a random variable. These time points are referred to
as exposure dates. The modelling of exposure can be done in many different ways with
varying degree of approximation. In this thesis, the general framework of Pykhtin and
Zhu [28] is followed:

1. For exposure dates of interest t = T1, . . . , TNE
, generate market scenarios i = 1, . . . , M

of the relevant market risk factors xit.

2. For all scenarios i = 1, . . . , M and exposure dates t = T1, . . . , TNE
, price the netting

set to obtain MtMit.

3. For each exposure date t = T1, . . . , TNE
, the empirical distribution formed by the set

{MtM+
it : i = 1, . . . , M} serves as an approximate distribution of the exposure Et.

As this thesis considers CCR and exposure modelling for risk management purposes, the
scenarios generated in step 1 above should come from a scenario generating model with
real-world probabilities, not some risk neutral pricing model. This is important, as risk
metrics, such as expected exposure computed under a risk neutral measure of today can be
manipulated by changing numéraire, leading to very different results [25]. In Pykhtin and
Zhu, the pricing in step 2 above should be done according to a risk neutral pricing model
calibrated to the specific values of the market risk factors in that scenario xit. However, a
different approach to this step will be presented in section 3.1.

6



2. Theory

2.1.1 Basel Regulation

Exposure modelling for risk management purposes is an exceedingly important practice
by banks. For example, it is needed to calculate economic and regulatory capital the bank
needs to hold. If the exposure modelling approach proposed in this thesis would be used
in a bank for these purposes it would fall under chapter CRE53 in the Basel Framework:
”Internal models method for counterparty credit risk” [2]. The framework stipulates that
it is up to the bank to choose the distribution of Et, under certain conditions. This means
that the bank could use the risk neutral measure in calculating exposure in this context,
according to regulation.

2.1.2 Exposure Metrics

The exposure modelling approach previously described in section 2.1 approximates the
entire exposure distribution by an empirical distribution. Often, it is only specific metrics
from this distribution that is used for various purposes. Note that since we consider
exposure modelling for risk management purposes, the following measures are computed
under the real-world measure P [25]. An important metric is the expected exposure at a
exposure date t and is defined as

EEt = EP[Et].
Other metrics used for risk management purposes include various percentiles of the
distribution. The metric potential future exposure (PFE) at a confidence level of α at time
t is defined as

PFEα
t = inf{x ∈ R | P(Et ≤ x) ≥ α}.

In other words, the exposure at time t does not exceed the PFEα
t with a probability of α.

By convention, exposure date t is given in years, but to facilitate notation, the exposure
date will be given in months, as, for example, t = 6M denoting t = 0.5 years.

2.2 Heston Model

We begin by modelling a netting set with a single underlying asset. In order to generate
data and to be able to price options, we assume the price process of an underlying asset to
be described by a given model. In a single asset setting, we will assume the underlying spot
asset price process to be described by the Heston model, introduced in Heston [13], where
it is applied to bond options and FX options. The Heston model is a stochastic volatility
model, i.e. both the evolution of the spot asset price and its volatility are assumed to be
stochastic processes [13]. More specifically, the Heston model is defined by the stochastic
differential equations

dS(t) = µS(t)dt +
√

ν(t)S(t)dW S(t)

dν(t) = κ (θ − ν(t)) dt + ξ
√

ν(t)dW ν(t)
(2.1)

for t > 0 and S(0), ν(0) > 0, where S(t) is the spot asset price, ν(t) is the stochastic
variance, both at time t, and W S(t), W ν(t) are Wiener processes with correlation ρ.

7



2. Theory

Furthermore, µ describes the drift of S(t), θ is the long-term mean of ν(t), κ is the mean
reversion rate of ν(t), and ξ is the volatility of ν(t). Observing the diffusion of ν(t),
assuming ν(0) > 0, we see that it is guaranteed to be non-negative. However, if the Feller
condition given by

2κθ > ξ2 (2.2)

is fulfilled, the process is guaranteed to be strictly positive [6].

2.2.1 Heston Call Price Formula

Given the Heston model, there exists an expression for the price at time t of a European
call option with strike price K and time of expiry T . The formula takes advantage of the
known characteristic function of the logarithm of the spot asset price from (2.1), which,
as seen in [1], is given by

ϕ(u, t, T ) = E [exp (iu log(S(T ))) | S(t), ν(t)]
= exp (iu (log S(t) + µτ))

× exp
(

θκξ−2
(

(κ − iρθu − d)τ − 2 log
(

1 − ge−dτ

1 − g

)))

× exp
(

ν(t)ξ−2 (κ − iρξu − d) 1 − e−dτ

1 − ge−dτ

)
,

d =
√

(iρξu − κ)2 + ξ2 (iu + u2),

g = κ − iρξu − d

κ − iρξu + d
,

τ = T − t,

(2.3)

where parameters are defined as seen in (2.1). The formula of the European call price in
the Heston model is then given by

C(S(t), ν(t), K, t, T ) = S(t) −

√
S(t)K e−µτ/2

π
I(S(t), ν(t), K, t, T ) (2.4)

where

I(S(t), ν(t), K, t, T ) =
∫ ∞

0
ℜ
[
eiu(log(S(t)

K )+µτ)ϕ(u − i12 , t, T )
] 1

u2 + 1
4
du

as seen in [19]. The evaluation of the formula requires a numerical computation of the
integral.

2.3 Multi-Asset Heston Model

When modelling multiple assets with correlated spot asset prices, such as foreign exchange
(FX) pairs in a Heston model setting, the Heston model seen in (2.1) can be extended to

8



2. Theory

the multi-asset Heston model [7]. The multi-asset Heston model for N assets is defined by

dSi(t) = µiSi(t)dt +
√

νi(t)Si(t)dW S
i (t)

dνi(t) = κi (θi − νi(t)) dt + ξi

√
νi(t)dW ν

i (t)
(2.5)

for t > 0 and Si(0), νi(0) > 0, where Si(t) is the spot asset price, and νi(t) is the
instantaneous variance for asset i = 1, . . . ,N at time t. Furthermore, W S

i (t), W ν
i (t) are

Wiener processes with correlation ρi. In cases of correlated spot prices, W S
i (t) and W S

j (t),
for i ≠ j, have correlation ρ̃ij ∈ [−1, 1]. Similarly to (2.1), µi is the drift of Si(t), θi is the
long-term mean of νi(t), κi is the mean reversion rate of νi(t), and ξi is the volatility of
νi(t).

We notice that for N = 1, the multi-asset Heston model is equivalent to the Heston model
described in section 2.2. Moreover, the Heston call price formula, described in section
2.2.1, may be used to price European call options on assets modelled by the multi-asset
Heston model individually. Similarly, the Feller condition, as described for the Heston
model in (2.2), generalises to the multi-asset Heston model for each asset i = 1, . . . , N as
well.

2.4 Neural Networks

2.4.1 Feedforward Artificial Neural Network

We now proceed to a brief review of feedforward artificial neural networks (ANN), where
all concepts and definitions are based on Goodfellow [10]. A feedforward ANN, also
called multilayer perceptron, is a machine learning model that attempts to approximate
a function f : Rp → R, where inputs x ∈ R1×p and labels y ∈ R could be virtually any
kind of numerical data. The network architecture is built up by an input layer of p nodes,
L − 1 hidden layers of potentially varying number of nodes, and an output layer of 1 node.
A feedforward ANN is defined by the feedforward equations

z0 = x
zl = gl−1(zl−1)Wl + bl, l = 1, . . . , L

y = zL

(2.6)

which describes a series of activation functions, gl(·), acting elementwise, such as the
softplus function defined in (2.7), as well as weights, Wl, and biases, bl.

(gl(x))i = ln(1 + exi) (2.7)

In order to train the network, i.e. find optimal values for the weights and biases, we need
a training set of data, consisting of M sample inputs x and label y∗ combinations, or
simply M examples. The sample inputs are gathered as rows in matrix X ∈ RM×p and
sample labels are collected in column vector y∗ ∈ RM . A cost function C(y, y∗), where y
are network predictions given inputs X, is then used to quantify the error in the model on
the training set. Optimal parameter values in the model are then found by

{W∗
l , b∗

l | l = 1, . . . , L} = argmin
{Wl,bl | l=1,...,L}

C(y,y∗).

9
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For example, the cost function can be chosen as the mean squared error (MSE), i.e.

C(y, y∗) = MSE(y, y∗) = 1
M

M∑
i=1

(yi − y∗
i )2.

Minimising C is generally done by some form of iterative method that uses the gradient
of C with respect to the weights and biases. Many methods approximate the gradient
by iteratively considering different subsets of the training set when forming the MSE,
to then use the gradient of this instead. Such a subset is called a batch. An important
hyperparameter in connection to this is the number of epochs, which is how many times a
single sample is used in a gradient approximation.

2.4.2 Differential Machine Learning

The differential machine learning (DML) framework, introduced in Huge and Savine [16],
extends the previously discussed traditional feedforward ANN structure of section 2.4.1 and
incorporates knowledge of the gradient of label y∗ with respect to input x, in the context
of pricing an arbitrary portfolio. The DML framework has its main advantage when
alternative pricing methods are very time consuming and when pricing of the portfolio is
required in many different scenarios. In such cases it can prove to be much faster than
performing e.g. Monte Carlo pricing in each scenario, as shown in Huge and Savine [16].
The framework is also highly flexible, as the portfolio as well as the underlying stochastic
models can be of virtually any type.

The goal in the DML framework is to approximate a pricing function f given by

f(x) = E[Y | x],

where the expectation is taken under a risk neutral pricing measure, Y is the discounted
payoff of the portfolio and x is the initial state of the market, such as initial values of
market variables. The framework requires a training set consisting of examples (x, y∗,
x̄∗), where y∗ is a sampled payoff of the portfolio given x, and x̄∗ is the gradient of the
sampled payoff with respect to the initial state of the market and is henceforth referred to
as the pathwise gradient.

One attains the sample payoff y∗ by a simulation scheme starting in x. By considering the
simulation of y∗ as a sequence of mathematical operations, one can view the sampled payoff
y∗ as a function of x. Furthermore, if the simulation scheme is a sequence of operations
such as addition, multiplication, or application of the exponential function, which most
computerised simulations are, the gradient of y∗ with respect to x, can be computed by
sequential application of the chain rule. An algorithm that solves this automatically and
efficiently is called Automatic Adjoint Differentiation (AAD) [24].

The DML architecture is built in two parts. Firstly, we wish to approximate the pricing
function f : Rp → R. Its approximate function f̂ : Rp → R is a standard feedforward ANN
defined by the feedforward equations, as seen in (2.6). Secondly, as we wish to efficiently
compute the gradient of f̂(x) = y with respect to input x, i.e. ∇xy. To do so, we define h

10
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as
z̄L = ȳ = 1

z̄l−1 = (z̄lW⊤
l ) ◦ g′

l−1(zl−1), l = L, . . . , 1
x̄ = z̄0,

(2.8)

where weights are shared with f̂ , ◦ is the Hadamard (elementwise) product, g′
l−1 denotes

the elementwise derivative of activation function gl−1 from f̂ , and

x̄ = ∇xy, z̄l = ∇zly, ȳ = ∇yy = 1. (2.9)

The second network h is then used in conjunction with the standard feedforward network
f̂ to form a twin network, where f̂ forms the first half and h forms the second half of
the twin network, as seen in figure 2.1. In this twin network, there are certain layers of
particular interest, firstly the layer consisting of a single neuron, namely the output of
the standard feedforward ANN, y, and secondly the output layer furthest to the right in
figure 2.1, containing the predicted gradient x̄.

Figure 2.1: Example structure of a twin network with inputs in R3 (green neurons
to the left), 3 hidden layers on each side of 5 hidden units each (blue neurons).
The output of the feedforward ANN defined in (2.6) is the orange neuron in
the middle of the network. The output of the section of the network defined in
(2.8), i.e. the gradient of prediction y with respect to input data x, is the orange
neurons furthest to the right.

In training the twin network, we are reminded that the first and second half of the network
share the same weights, as seen in (2.6) and (2.8). With this in mind, we realise that the
training efforts are proportionate to that of a standard feedforward ANN, while we increase
the amount of information about the structure of the function f we wish to approximate.
However, in order to incorporate the pathwise gradients in the training of the network, we
need to amend the cost function. Continuing the example of using MSE, the amended
cost function may be set as

C(y, y∗, X̄, X̄∗) = α MSE(y, y∗) + β
p∑

i=1
MSE(aiX̄i, aiX̄∗

i ),

where X̄i denotes the ith column of X̄, and α, β, a1, . . . , ap ≥ 0 are fixed constants. Optimal
weights and biases, {W∗

l , b∗
l : l = 1, . . . , L}, in the network are then found by minimising

11
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the cost function, i.e.

{W∗
l , b∗

l : l = 1, . . . , L} = argmin
{Wl,bl : l=1,...,L}

C(y,y∗,X̄, X̄∗).

Huge and Savine [16] argue that the specific values of hyperparameters α and β used in
the cost function are not crucial to the optimisation procedure. Therefore, as suggested in
the code implementation of Huge and Savine’s article [15],

α = 1
1 + p

, β = p

1 + p
,

will be used. We note that α + β = 1, making the cost function a linear combination of
the cost of incorrectly approximating both the function and its gradient, where the error
of the predicted gradient is given greater significance as the dimensionality of the input
data increases. Furthermore, as also seen in the code implementation of Huge and Savine’s
article [15], the constants a1, . . . , ap can be set to

ai = 1√
MSE(X̄∗

i , 0)
, i = 1, . . . , p.

For the purpose of using the DML methods in exposure predictions, it is beneficial, if
possible, to use smaller network structures. This is because a smaller network can be
trained and used for predictions in a more rapid manner than larger, more complex
architectures. Therefore, a smaller network structure will be employed in this thesis, the
details of which are discussed in section 3.6.

2.4.3 Differential PCA

Differential principal component analysis (PCA) is a dimension reduction scheme, in-
troduced in Huge and Savine [16], leveraging the information of pathwise gradients.
Meaningful dimension reduction schemes are relevant in many different scenarios, but more
specifically for the purpose of performing DML, we recognise that input dimensions may in
many applications become rather large and in need of dimension reduction. Furthermore,
we would like to comply with standard practice within machine learning to perform some
kind of data normalisation, as without such a step, it may be difficult to train a network
[18].

To illustrate differential PCA, we begin by assuming that we have a data collection
consisting of input data X0 ∈ RM×p with corresponding labels y0 ∈ RM×1, and X̄0 ∈ RM×p,
following the notation seen in (2.9), where p is the number of features in the input data
and M is the number of samples. We start by centring X0 data, normalising y0 labels,
and since we want the pathwise gradients to still be gradients after these operations we
scale X̄0 accordingly, such that

X1 = X0 − µx, y1 = y0 − µy

σy

, X̄1 = X̄0

σy

.
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where µx is a vector of mean values of all features of X0, µY is the mean value of the
labels y0, and σy is the standard deviation of y0. We then proceed to apply traditional
PCA by performing eigenvalue decomposition of the sample covariance matrix

X⊤
1 X1

M
= P1D1P−1

1 .

obtaining the P1 and D1 matrices. We note that D1 is a diagonal matrix containing
eigenvalues and P1 is a matrix with corresponding eigenvectors in each column. We
proceed by truncating dimensions of P1 and D1 where the corresponding eigenvalues in
D1 are below a prespecified threshold ε1, the reason being that eigenvalues correspond to
variance in the later transformed dimensions. The threshold should not be too large, as
that could risk removing important information, and the primary filtering is performed
in the next step. From this we obtain the two matrices P̃1 and D̃1, possibly in a lower
dimension p1 ≤ p. We transform X1 by

X2 = X1P̃1D̃
− 1

2
1 .

Furthermore, we update the differentials X̄1 to

X̄2 = X̄1P̃1D̃
1
2
1

completing the traditional PCA, where we have effectively removed redundant information.
Having obtained X̄2, we can initialise the differential PCA step. The purpose of this step
is to filter dimensions that in general have little impact on the label, i.e. small absolute
pathwise partial derivatives. We start by performing eigenvalue decomposition of

X̄⊤
2 X̄2

M
= P2D2P−1

2 . (2.10)

Now, to understand what the eigenvalues in the D2 matrix tell us we define X̄3 = X̄2P2,
and since P2 is an orthonormal matrix, we rewrite (2.10) as

P−1
2 X̄⊤

2 X̄2P2

M
= (X̄2P2)⊤X̄2P2

M
= X̄⊤

3 X̄3

M
= D2.

Hence, the diagonal entries of D2 are given by

(D2)j,j = 1
M

M∑
i=1

(
(X̄3)i,j

)2
,

where (X̄3)i,j denotes the entry at row i, column j of matrix X̄3. This means that the
eigenvalues found in D2 show the average squared size of a certain transformed pathwise
partial derivative found in the columns of X̄3. Since labels y1 have been normalised and
the transformed input data X3 = X2P2 has undergone traditional PCA, a diagonal entry
in D2 of e.g. 10−4 for a certain dimension implies that, on average, approximately a
change of 100 standard deviations in this input dimension is needed to produce a change
of 1 standard deviation in the label. Therefore, eigenvalues less than a given threshold ε2
are truncated from D2. Based on the mentioned example, one can set ε2 relatively large,
compared to ε1. Once again, P2 is truncated accordingly, and we obtain P̃2. X2 and X̄2
are then linearly transformed, such that

X4 = X2P̃2, X̄4 = X̄2P̃2.

which completes the differential PCA process. We obtain the modified input data X4,
with sample covariance matrix equal to the identity matrix. The transformed data X4, y1,
and X̄4 is then used as training data in the network structure described in section 2.4.2.
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3
Methods

Having presented necessary background information and underlying theory in chapter 2,
this chapter concerns the concrete design and construction of the examples brought up
in the thesis, the results of which is presented in chapter 4. In section 3.1, we begin by
explaining the exposure modelling approach, which is the core of this thesis. To illustrate
the use of DML in exposure modelling, the framework is applied on a certain kind of
exposure modelling examples, as discussed in section 3.2. In sections 3.3 and 3.4, the
discretisation schemes used to simulate from the Heston type models considered in this
thesis are presented. Section 3.5 discusses computation of pathwise gradients, also relevant
to the simulation of samples. Thereafter, we declare settings of various hyperparameters
in section 3.6. Design of the last series of experiments is discussed in section 3.7, the
results of which are found in section 4.3, which aims to stress test the exposure modelling
approach. Lastly, section 3.8 defines various performance metrics used in assessing results
in chapter 4. The complete code implementation of the methods presented in this chapter
is available on GitHub.‡

3.1 Exposure Modelling Using Differential Machine
Learning

In employing machine learning for exposure modelling for risk management, the general
method of obtaining an approximate distribution of the future exposure Et, as described
in section 2.1, is followed. The approach to model exposure presented in this section
is henceforth referred to as exposure modelling using DML. The exercise at hand is to,
for each exposure date t = T1, . . . , TNE

, price a netting set in different market scenarios
specified by market risk factors {xS

it | i = 1, . . . , M}, obtaining {MtMit | i = 1, . . . , M}.
Examples of market risk factors includes FX rates, interest rates, various option prices,
etc. The model creating these market scenarios is a risk management model and could
potentially be very different from a pricing model. Such a model is hereafter referred to as
an S-model. The set {xS

it | i = 1, . . . , M, t = T1, . . . , TNE
} is referred to as S-scenarios. The

standard approach to solve this exercise is to calibrate a pricing model to each and every
scenario, hereafter referred to as the Qit-model, to then price the netting set with this
model. In general, this would require M calibrations for each exposure date. In addition,
the pricing method would depend on what contracts the netting set consists of, as well as

‡https://github.com/swagnerutb/mastersthesis
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the pricing model, ranging from analytical functions to Monte Carlo methods. Instead we
propose the following procedure, which also is illustrated in figure 3.1.

1. In a pricing model calibrated to current market conditions, hereafter referred to as
the Q-model, simulate (xit, y∗

it, x̄∗
it) for t = T1, . . . , TNE

and i = 1, . . . , M , where xit

is the market risk factors, y∗
it is the sum of all discounted future cash flows at time t

in scenario i, and x̄∗
it is the pathwise gradient, i.e. the gradient of y∗

it with respect to
xit.

2. For each time t = T1, . . . , TNE
, learn a function f̂t s.t. f̂t(xit) ≈ MtMit. f̂t is a DML

model, as described in section 2.4.2. The training set (xit, y∗
it, x̄∗

it) for i = 1, . . . , M
is preprocessed by differential PCA, as described in section 2.4.3, before it is used to
train f̂t.

3. For each time t = T1, . . . , TNE
, apply f̂t to the S-scenarios, xS

it, for i = 1, . . . , M ,
i.e. f̂t(xS

it) = MtMit, and use these values to form an empirical distribution of the
exposure at time point t.

Figure 3.1: Schematic illustration of exposure modelling using DML.

The main potential benefits of exposure modelling using DML concern flexibility and
speed. Since the S- and Q-models are allowed to be of different type, risk managers that
produce the scenarios in which the netting set must be priced could potentially put an
increased focus on creating scenarios that are relevant for the risk assessment, not having
to adapt as much to the pricing aspects. Meanwhile, it potentially allows pricing models
to be chosen with greater freedom. This means that the presented methodology could
possibly lead to more accurate risk management. In addition, the only restriction on what
type of netting sets can be treated by the framework is that payoffs and pathwise gradients
of this netting set can be simulated. Secondly, DML is shown to be a computationally
efficient method, as discussed in Huge and Savine [16]. Furthermore, generation of training
sets by the Q-model is efficient in the sense that the same simulation paths are used for
all training sets, only at different exposure dates.

The main potential drawbacks of exposure modelling using DML concern guarantees of
performance. Firstly, the performance of the method is stochastic. Both the generation of
the training sets and the training of the DML model are stochastic procedures, inevitably
leading to varying performance of the model from time to time. Secondly, f̂t learned in
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step 2 above approximates the pricing function of the netting set under the Q-model,
since it is only trained on data from that model. This Q-model may very well have
different parameter values than the Qit-models, where we remind ourselves that the latter
is achieved by calibrating a pricing model of same type as the Q-model to S-scenario xS

it.
This means that although f̂t may be a close to perfect approximator, in terms of what it
has trained on, it might provide non-satisfactory results in pricing the netting set in the
S-scenarios. In other words, it may not be a good approximator of the pricing function
under the Qit-model. This is caused by a discrepancy between the S- and Q-model, and
how this discrepancy affects performance is a difficult question to answer. Additionally,
the answer most certainly differs from case to case. In practice, this demands extensive
testing and backtesting to ensure that the method works as intended.

3.2 Example Settings

To illustrate the use of exposure modelling using DML, the methodology is employed
to model exposure of a netting set consisting of European call and put options where
both the S- and Q-model are Heston models or multi-asset Heston models, as discussed
in section 2.2 and 2.3, respectively. Underlying assets are thought to be FX pairs, such
as GBP/USD§, influencing the choice of parameter values throughout the thesis. The
market risk factors used to describe the market are limited to the spot asset prices and
prices of European call options with specified moneyness m, meaning that the strike price
is a prespecified proportion of the spot asset price at initialisation, and time to expiry τ
months. These observed call option prices are denoted ci

m,τ (t) for underlying asset i. As
an example, ci

1.10,3(t) denotes the value of a call option on underlying asset i at time t,
initialised at time t with time to expiry 3 months and moneyness m = 1.10, i.e. strike
price K = 1.10 · Si(t). The features of the input data will hence consist of spot asset prices
and prices on European option that has the spot asset prices as underlyings.

Throughout this thesis all experiments shown will share some features. Firstly, only one
exposure date is considered for all exposure modelling at T1 = 6 months. Secondly, all
instruments in considered netting sets have a date of expiry at T = 12 months. Furthermore,
parameter values, as suggested in Heston [13], can be found in table 3.1, henceforth referred
to as standard values, as these parameter values frequently occur throughout the thesis.

Heston type models are chosen as these have been extensively studied, have (almost) closed
form solutions, as seen in section 2.2.1, and have a hidden state, namely the stochastic
variance process. The fact that stochastic variance is a model construction not observable
in the market makes additional observed European call option prices meaningful input to
the network, as these may provide information regarding the hidden state imperative to
the valuation of the netting set. If, for example, a simpler model such as the Black-Scholes
model [5] would be considered, market observables might not be as meaningful to include,
as option prices in this case are functions of spot asset price and fixed model parameters
only. Netting sets consisting exclusively of European options are used as these are the
most relevant, and arguably the simplest, instruments appropriate to price using DML,

§For an FX pair such as GBP/USD, the spot asset price S(t) is the price of 1 Pound Sterling (GBP)
in United States dollars (USD).
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and having (almost) closed form solutions in the Heston model allows for fast verification.
Pricing with DML is only useful if instruments cannot be directly prices from market risk
factors, or, in other words, where the computation of a conditional expectation is needed,
which is the case for a European call option in the Heston model.

Parameter Standard value
Mean reversion κ 2
Long-run average variance θ 0.01
Current variance ν(0) 0.01
Correlation of Wiener
processes in price and
variance processes ρ

0

Volatility of variance
process ξ

0.1

Drift of spot price process µ 0
Option time of expiry T [months] 12

Table 3.1: Standard parameter values in the Heston model, as found in Heston
[13].

3.3 Sample Generation in the Heston Model

To use the exposure modelling approach explained in section 3.1, using the setting of
section 3.2, sampling from the Heston model described in section 2.2 is required. There are
many discretisation schemes for the Heston model, and in this thesis the full truncation
scheme of Lord et al. [21] is employed, suggesting that

S(t + ∆t) = S(t) exp
(

(µ − ν+(t)
2 )∆t +

√
ν+(t)∆t wS

t

)

ν(t + ∆t) = ν(t) + κ(θ − ν+(t))∆t + ξ
√

ν+(t)∆t wν
t

(3.1)

for t = 0, . . . , NT − 1, where [
wS

t

wν
t

]

are simulated realisations of a two-dimensional normal distribution with expectation [0,0]⊤
and covariance matrix

Σ =
[
1 ρ
ρ 1

]
.

Furthermore, NT is the number of time steps, ∆t is the size of one time step, and
ν+(t) = max{ν(t), 0}. Although the Feller condition is fulfilled, the discretisation scheme
leads to a non-zero probability of a negative variance ν(t). The full truncation scheme
handles this event by using ν+(t) instead. The presented discretisation scheme was
implemented using the Python package NumPy. Throughout all simulations used in this
thesis, the number of time steps is set to NT = 100.
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3.4 Sample Generation in the Multi-Asset Heston
Model

In order to generate samples of the multi-asset Heston model of N assets, as described in
section 2.3, we use an Euler scheme [7], stating that

Si(t + ∆t) = Si(t) exp
((

µi(t) − 1
2ν+

i (t)
)

∆t +
√

ν+
i (t)∆t wS

i (t)
)

νi(t + ∆t) = νi(t) + κi

(
θi − ν+

i (t)
)

∆t + ξi

√
ν+

i (t)∆t wν
i (t)

(3.2)

for t = 0, . . . , NT − 1 and i = 1, . . . , N , where NT is the number of simulated time steps,
and ∆t is the size of one time step. Once again, the use of ν+

i (t) = {νi(t),0} is required to
handle cases of a negative νi(t) resulting from discretisation.

As previously discussed in section 2.3, the Wiener processes W S
i (t), W ν

i (t) have correlation
ρi, and W S

i (t), W S
j (t) for i ̸= j have correlation ρ̃ij. In generating the Wiener process

increments wS, an N -dimensional multivariate normal distribution with expectation 0 in
all dimensions and covariance matrix Σ1 = (ρ̃ij)i≤N,j≤N is sampled NT times, where N
is the number of assets and ρ̃ij = 1 for i = j. To generate wν , we start by sampling an
N -dimensional standard multivariate normal distribution NT times and obtain w̃. We
then let

wν
i = ρiw

S
i (t) +

√
(1 − ρ2

i ) w̃i

for i = 1, . . . , N , t = 1, . . . , NT , ensuring that corr(wS
i (t), wν

i (t)) = ρi. The presented
discretisation scheme was implemented using the Python package NumPy. Throughout all
simulations used in this work, the number of time steps is set to NT = 100.

3.5 Pathwise Gradients

As seen in section 3.1, the application of DML demands pathwise gradients of labels with
respect to inputs. In this section discuss the computation of these in the setting considered
in the thesis. First, it is explained how the pathwise gradient with respect to the spot
asset price and the stochastic variance, (S(t), ν(t)), is attained. However, as previously
mentioned, we also have option prices, instead of ν(t), as input data, meaning that we
will need pathwise gradients with respect to these. The procedure of finding these are
discussed towards the end of this section.

The pathwise gradients with respect to the spot asset price and the stochastic variance,
(S(t), ν(t)), are obtained by AAD using the Python library Algopy [26]. Firstly, we
emphasise that pathwise gradients are calculated sample by sample, and all notation in
this section refers to a single sample, a single simulation path. Secondly, we note that a
netting set consisting of European put and call options allows us to compute the pathwise
gradients asset by asset, and thus we only consider one asset in this section. Computation
of gradients using AAD were introduced in section 2.4.2, and here follows a more thorough
explanation related to the setting of the thesis.
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Let y be the payoff, then the pathwise gradient of the payoff with respect to the spot asset
price and the stochastic variance  ∂y

∂S(t)
∂y

∂ν(t)


is computed by considering the payoff y as a function of the spot asset price S(t) and
stochastic variance ν(t) at time t. The function for this specific sample mapping (S(t), ν(t))
to y is specified by the progression of the spot asset price and the stochastic variance
according to the discretisation schemes (3.1) or (3.2), and then application of the payoff
function on S(T ), where T is the date of expiry. The progression of the spot asset price
and the stochastic variance involves several realisations of random variables, and these
are considered as constants in the gradient computation. The payoff function is decided
by the instruments in the netting set. For example, if the netting set would contain a
European call option with strike price Kc and a European put option with strike price Kp,
both expiring at time T , the payoff at time T is

y(S(T )) = max{S(T ) − Kc, 0} + max{Kp − S(T ), 0}.

S(T ) is in turn related to (S(t), ν(t)) by the discretisation scheme of the processes, as
previously discussed. AAD then automatically computes the gradient of y with respect to
(S(t), ν(t)).

Instead of stochastic variance ν(t), P European call option prices are used together with
the spot asset price S(t) as input data to the DML framework. The question is how to
get the pathwise gradient with respect to the call option prices. We use the fact that
that the pathwise gradient with respect to (S(t), ν(t)), and gradients of the European call
option prices with respect to (S(t), ν(t)) are known in a given simulation. The call option
prices have a given moneyness m and time to expiry τ , the value of which at time t with
underlying asset i is denoted ci

m,τ (t). As we can consider pathwise gradients asset by asset
in this section, i = 1. Furthermore, since the underlying price process is modelled with
the multi-asset Heston model, option prices, c1

mp,τp
(t), for p = 1 . . . P , are created by using

the Heston call price formula.

Here follows the procedure used to retrieve the pathwise gradient with respect to
(S(t), c1

m1,τ1(t)), i.e. for the case P = 1. We let

y(S(t), ν(t)) = f ◦ g(S(t), ν(t)),
f(S(t), c1

m1,τ1(t)) = y(S(t), ν(t)),
g(S(t), ν(t)) = (S(t), c1

m1,τ1(t)),

where y is the payoff function, and g is a mapping from the model state (S(t), ν(t)) to
(S(t), c1

m1,τ1(t)), the latter being called the market state. Namely, f is the function of which
we want the gradient with respect to the market state. The chain rule gives that

Jy(S(t), ν(t)) = Jf (g(S(t), ν(t)))Jg(S(t), ν(t)) = Jf (S(t), c1
m1,τ1(t))Jg(S(t), ν(t)),

where Ja(b, c) denotes the Jacobian of function a evaluated at the point (b, c). We obtain
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the desired gradient by solving the linear system

∇f(S(t), c1
m1,τ1(t)) = Jf (S(t), c1

m1,τ1(t))⊤ =
(
Jg(S(t), ν(t))⊤

)−1
Jy(S(t), ν(t))⊤ =

=

∂S(t)
∂S(t)

∂c1
m1,τ1 (t)
∂S(t)

∂S(t)
∂ν(t)

∂c1
m1,τ1 (t)
∂ν(t)


−1  ∂y

∂S(t)
∂y

∂ν(t)

 =

1 ∂c1
m1,τ1 (t)
∂S(t)

0 ∂c1
m1,τ1 (t)
∂ν(t)


−1  ∂y

∂S(t)
∂y

∂ν(t)

 =

=


∂y

∂S(t) −
∂y

∂ν(t)
∂c1

m1,τ1 (t)
∂S(t)

∂c1
m1,τ1 (t)
∂ν(t)

∂y
∂ν(t)

∂c1
m1,τ1 (t)
∂ν(t)

 .

∂y/∂S(t) and ∂y/∂ν(t) are computed by AAD when simulating the data set, as previously
discussed. ∂c1

m1,τ1(t)/∂S(t) and ∂c1
m1,τ1(t)/∂ν(t) are obtained by differentiating the Heston

option formula using the finite difference method. A central difference scheme is employed
with h = 10−8, i.e.

∂c1
m1,τ1(t)
∂S(t) ≈ 1

2h
(C(S(t) + h, ν(t), m(S(t) + h), t, T )−

− C(S(t) − h, ν(t), m(S(t) − h), t, T ))
∂c1

m1,τ1(t)
∂ν(t) ≈ 1

2h
(C(S(t), ν(t) + h, m(S(t)), t, T )−

− C(S(t), ν(t) − h, m(S(t)), t, T ))

where the function C is defined as seen in (2.4). For P > 1 we undertake a similar
procedure as for the case of P = 1. We let

y(S(t), ν(t)) = f ◦ g(S(t), ν(t)),
f(S(t), c1

m1,τ1(t), . . . , c1
mP ,τP

(t)) = y(S(t), ν(t)),
g(S(t), ν(t)) = (S(t), c1

m1,τ1(t), . . . , c1
mP ,τP

(t)).

Here, we also get a system of linear equations,

Jg(S(t), ν1(t), . . . , νP (t))⊤∇f(S(t), c1
m1,τ1(t), . . . , c1

mP ,τP
(t)) =

= ∇y(S(t), ν(t)) =

∂S(t)
∂S(t)

∂c1
m1,τ1 (t)
∂S(t) . . .

∂c1
mP ,τP

(t)
∂S(t)

∂S(t)
∂ν(t)

∂c1
m1,τ1 (t)
∂ν(t) . . .

∂c1
mP ,τP

(t)
∂ν(t)




∂f
∂S(t)

∂f
∂c1

m1,τ1 (t)
...

∂f
∂c1

mP ,τP
(t)

 =
 ∂y

∂S(t)
∂y

∂ν(t)

 ,
(3.3)

where we have 2 equations but P + 1 unknowns, and since P > 1, the system is underde-
termined with infinitely many solutions. The solution with smallest Euclidean norm is
chosen and is obtained using the NumPy package in Python. Thus, the problem is viewed
as a high dimensional regression problem using ridge regression. A motivation for this
is that we expect the function to be rather ”nice”, and choosing this solution helps to
spread out the gradient on the different partial derivatives. In contrast, taking a Lasso
approach would encourage setting some partial derivatives low and other high, which does
not correspond to the current definition of a ”nice” function.
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3.6 Differential Machine Learning Hyperparameter
Settings

For the implementation of the twin network discussed in section 2.4.2, the Python library
TensorFlow [22] is used. The same network architecture and training procedure is used
throughout all experiments in the thesis. The inspiration for choosing the given network
specifications stems from Huge and Savine [16] and the code implementation of the article
[15]. The network specifications can be seen in table 3.2.

Parameters Options
Hidden layers 4
Neurons per hidden layer 20
Activation function Softplus
Optimiser Adam
Batch size 256
Epochs 10

Table 3.2: Parameter specifications for the ANN architecture used throughout
the thesis. Definition of the softplus function can be found in (2.7).

Adaptive moment estimation (Adam) [17] is one of the most common optimisers used in
TensorFlow. It is a gradient based optimiser that keeps track of previous gradients in
order to dynamically improve the optimisation procedure.

As high dimensional data is present, thresholds ϵ1 = 10−12 and ϵ2 = 2 · 10−4 for the
standard PCA and differential PCA data preprocessing steps, respectively, will be used in
the differential PCA methodology, as seen in section 2.4.3. The given values were decided
after extensive testing.

3.7 Changing the Q-model Parameters

In one set of experiments, with results given in section 4.3, it is examined how well
exposure modelling using DML performs for Q-models differing from a fixed S-model in a
single-asset setting. More specifically, values of the following parameters in the Q-model
are altered: long-term mean of the variance process θ, mean reversion rate of the variance
process κ, volatility of the variance process ξ, and correlation of Wiener processes in
price and variance processes ρ. To decide which sets of values to include for the Q-model
parameters, reasonable spans for the different parameters with regards to the FX pair
application are required. Secondly, the Feller condition of (2.2) needs to hold. Given these
constraints, we randomly generate the set of Q-model parameters, the details of which are
found in section 3.7.1. Parameter values of the S-model are chosen as an average of the
corresponding parameter values in the Q-model. This is done to effectively demonstrate
when exposure modelling using DML fails.
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3.7.1 Spans of Heston Parameters

In Winter [27], 10 years of daily calibrations of the Heston model to the FX pair GBP/USD
are presented. These calibration results are used as inspiration to set possible spans for
the Heston parameters when applied to a setting of heavily traded FX pairs, as found in
table 3.3.

Parameter Span
Mean reversion κ [0.25, 8]
Long-run average
variance θ [0.005, 0.1]
Correlation of Wiener
processes in price and
variance processes ρ

[-0.9, 0]

Volatility of the
variance process ξ

[0.01, 1.5]

Table 3.3: Considered spans for four different Heston parameters.

As paths are generated from the Heston model according to the discretisation scheme
described in section 3.3, it is important that the Feller condition holds. When the Feller
condition is not fulfilled, cases of negative realisations of the discretised variance processes
become frequent, leading to inadequate samples. This is why all combinations not fulfilling
the Feller condition are filtered out, leaving us with the parameter space B as defined in
(3.4).

B =


(κ, θ, ρ, ξ) |

κ ∈ [0.25, 8],
θ ∈ [0.005, 0.1],
ρ ∈ [−0.9, 0],
ξ ∈ [0.01, 1.5],
ξ2 < 2κθ


(3.4)

To obtain a set of 1,000 Q-model parameter combinations, rejection sampling [8] is used
to draw uniformly from the set B. To be specific, each of the 1,000 combinations are
obtained in the following way:

1. Draw θ ∼ U([0.005, 0.1]), κ ∼ U([0.25, 8]), ρ ∼ U([−0.9, 0]), and ξ ∼ U([0.01, 1.5])
independently.

2. If ξ2 ≥ 2κθ, reject the proposed combination and return to step 1. Otherwise, accept
the parameter combination (κ, θ, ρ, ξ).

Parameter values for the S-model are then set to the average of the corresponding Q-model
parameter values in the generated set.
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3.7.2 Training and Test Set Overlap

It is expected that simulating data from Heston models with different parameter values
may lead to data sets contained in different subregions of the space in question. Since
the Q-model is used to create the training set in the DML approach, and the S-model to
create the test set, i.e. the S-scenarios in which the model will be used, this may lead to
disjoint training and test sets. With this in mind, we may be interested in describing and
measuring the union of the two sets of data points in Rn. A metric that aims to capture
this, referred to as the training and test set overlap, is calculated according to:

1. Get the convex hulls of the training set and the test set. Calculate the Lebesgue
measure of the convex hull of the test set, L1.∗∗

2. Get the intersection of the two convex hulls. Calculate the Lebesgue measure of this
intersection, L2.

3. Set the training and test set overlap to L2/L1.

To implement this procedure, the Python packages SciPy and Shapely are used. See
figure 3.2 for an example illustrating the procedure in two dimensions.

Figure 3.2: Illustration of a training set and a test set together with their convex
hulls. The shaded area is the intersection of the convex hulls.

3.8 Performance Measuring

Performance of the methodology can be measured using different approaches. As previously
discussed in section 3.1, we wish to estimate the future exposure at time T1 ∈ (0,T ], where
T is the expiry time furthest away of any instrument in the netting set. From pricing the
generated S-scenarios, we obtain predictions y of the future value of the netting set. For a

∗∗In two dimensions, the Lebesgue measure coincides with the concept of area, and in three dimensions
it coincides with the concept of volume.
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set of M such scenarios, we can determine the accuracy of a prediction by comparison to
the ”true” value y∗ using e.g. the root mean square error

RMSE(y, y∗) =
√∑M

i=1(yi − y∗
i )2

M
.

By using RMSE, we find a way to quantify the combined accuracy of predictions for all
M paths in a Euclidean fashion. From a machine learning point of view, this might be
interesting as it gives an indication of the accuracy of the prediction model, although it
might be less relevant for risk management purposes.

Instead, a risk manager is in practice most often after specific metrics of the future exposure
distribution, such as its expectation, 95th or 97.5th percentile. In order to test the accuracy
of the overall framework for the purpose of exposure modelling, these distribution metrics
are most relevant. Proceeding, we will use counterparty credit risk terms, as defined in
section 2.1.2, and refer to these metrics as EEt, PFE0.95

t , andPFE0.95
t , respectively, for an

exposure date t months into the future. Furthermore, for illustrative purposes only, kernel
density estimations using a Gaussian kernel will be employed to produce smooth exposure
distributions using the seaborn package in Python.
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4
Results

In this chapter we present the results of various experiments that aim to show the
functionality and performance of exposure modelling using DML, as explained in section
3.1. The chapter can be seen as consisting of two primary parts, the first being covered in
sections 4.1 and 4.2, and the second covered in section 4.3. The first part examines the use
of different sets of market observables and compares performance to information provided
to the DML framework in different settings. It is also shown how the dimensionality of
the problem affects performance. The Heston model and the multi-asset Heston model
are employed in section 4.1 and 4.2, respectively. The second part consists of a series of
experiments aiming to stress test the exposure modelling approach by keeping the S-model
parameters fixed whilst altering parameters of the Q-model for a relatively simple exposure
modelling example.

4.1 Heston Model

We begin in a Heston model setting, as described in section 2.2, where exposure modelling
is performed on a netting set consisting of a single European call option. We wish to
display the applicability of market observables for exposure modelling using DML, as
described in section 3.1. In doing so, we alter the information available to the DML
framework at the exposure date T1. Firstly, we examine how the method performs using
information of S(T1) and ν(T1), where we note that the latter is a hidden state which
cannot be observed in the market. This set of information will henceforth be referred to
as model state information. In this particular case of the same S- and Q-model, we know,
by the Heston call price formula described in section 2.2.1, that the netting set may be
priced directly using only these two factors. Therefore, model state information serves as
a benchmark for the accuracy of DML predictions in terms of the quality and quantity of
information available. Secondly, we take on a somewhat naïve approach and only supply
the DML framework with information about the spot asset price at time T1, i.e. {S(T1)}.
We do so despite knowing that S(T1) is insufficient to accurately price the netting set in
order to obtain a second benchmark for the accuracy of the framework. Lastly, we also
include a number of different market observables combinations, for example the spot asset
price of the underlying at time T1 and the observed price of an ATM call option with time
to expiry τ = 3 months. Such a set of market observables is denoted {S(T1), c1,3(T1)}.
This is in turn compared to supplying the framework with both model state information
and the naïve approach {S(T1)}. It is primarily the exposure modelling performances,
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namely how close the estimated distribution comes to the target distribution, that is
compared.

The netting set is specified by 1 call option with strike price K = 1 and time to expiry
τ = 12 months at time t = 0. The exposure date T1 is 6 months into the future, meaning
that the the call option will have a time to expiry τ = 6 months at time T1. The progression
of the underlying asset is described by the Heston model with the standard parameter
values found in table 3.1. These parameter values are used for both the Q-model and
the S-model. Samples are created according to the discretisation scheme described in
section 3.3. Furthermore, a total of M = 4,096 scenarios are evaluated in all cases, where
initial values of the spot asset price process and the variance process are set to S0 = 1 and
ν0 = 0.01, respectively. M was chosen such that the twin network will be given enough
data to produce meaningful predictions, whilst still being rather restrictive to display the
full capabilities of the DML method. In connection with this, it should be noted that the
longest training time of any network in this section was 3.2 seconds, running on a machine
with 2,3 GHz Dual-Core Intel Core i5 CPU and 16 GB 2133 MHz LPDDR3 RAM. For
visualisation purposes, the same single seed is used to produce all figures shown in this
section. Towards the end of the section, general results for a larger number of seeds are
shown.

In figure 4.1, we see predictions when supplying the DML framework with model state
information {S(T1), ν(T1)}. In figure 4.1a, we see the training data as well as test data,
i.e. S-scenarios where the true MtM of the netting set in these scenarios are obtained
using the Heston call price formula described in section 2.2.1. In order to assess the DML
prediction performance, the netting set is priced in the S-scenarios using the twin network,
and we find the corresponding predictions in figure 4.1a as well. We see that a relatively
accurate prediction is produced. We also see that the shape of the test data is captured,
indicating that the DML methodology operates as intended. Furthermore, while barely
being noticeable, predictions tend to be somewhat less accurate in the upper interval of
X1, caused by a scarcity of training data in this region.

Although results of figure 4.1a are not presented in this manner for the purpose of exposure
modelling, it is important from a machine learning perspective and helps to illustrate
how the DML operates. The target values and predictions of figure 4.1a are then used to
form the future exposure distributions seen in figure 4.1b. Here, we see that the target
distribution is captured rather closely.

Proceeding to a more realistic, albeit naïve, setting, the twin network is now given {S(T1)}
only, which may be observed directly in the market. In figure 4.2a, we see the resulting
MtM predictions in the S-scenarios. As only one variable is supplied to the network,
the pricing function we aim to approximate is, in the perspective of the twin network, a
function R → R, which is why the resulting predictions only depend on S(T1), as seen in
figure 4.2a. In figure 4.2b, we see the predicted future exposure distribution, which is not
quite as accurate in the tail, i.e. predicted values of PFE0.95

6M and PFE0.975
6M , as that seen in

figure 4.1b, where the network was supplied with model state information. Nevertheless,
the prediction of EE6M is, in fact, more accurate than in the model state information case.
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(a) Training data (payoffs) of all M train-
ing paths, predictions on test set, and tar-
get values (MtM using the Heston call
price formula) of test set. RMSE =
0.00065.

(b) Target and predicted future exposure
distribution. Relative deviation between
predicted and target EE6M is −1.016%,
PFE0.95

6M is −0.822%, PFE0.975
6M is −0.270%.

Figure 4.1: Netting set consisting of 1 call option with strike K = 1 at time T1,
where the network was given {S(T1), ν(T1)} in M = 4,096 simulated scenarios.
Data from (a) is used to form the future exposure distribution for time T1 seen
in (b).

(a) Training data (payoffs) of all M train-
ing paths, predictions on test set, and tar-
get values (MtM using the Heston call
price formula) of test set. RMSE =
0.00303.

(b) Target and predicted future exposure
distribution. Relative deviation of EE6M

is −0.763%, PFE0.95
6M is −1.216%, PFE0.975

6M

is −0.522%.

Figure 4.2: Netting set consisting of 1 call option with strike K = 1 at time T1,
where the network was given {S(T1)} in M = 4,096 simulated scenarios. Data
from (a) is used to form the future exposure distribution for time T1 seen in (b).

We now proceed to introduce additional market observables including observed call option
prices, as previously discussed in section 3.2. At first, we investigate a set of spot asset
price and the price of an ATM call option at time T1 on the same underlying asset as that
which the value of our netting set is dependent on. In figure 4.3, we see the predicted
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future exposure distribution when supplying the DML framework with {S(T1), c1,3(T1)}.
Once again, we show the predicted and target MtM in the S-scenarios, along with the
training data, in figure 4.3a. The corresponding predicted and target future exposure
distributions are seen in figure 4.3b. It should be noted that the choice of τ can be
made in different ways. In table 4.1, we see the absolute relative deviation of the EE6M ,
PFE0.95

6M , and PFE0.975
6M between the predicted distribution and the target distribution for

sets {S(T1), c1,τ (T1)} with τ = 1, 3, or 12 months. For this given seed, we find that τ = 1
month provides data resulting in the most accurate prediction of EE6M and PFE0.95

6M , and
τ = 3 months results in the most accurate predictions of PFE0.975

6M . We note that for
all values of τ , we obtain a more precise prediction of the tail metrics than in the case
previously seen for only supplying the network with S(T1). However, predictions of the
EE6M are less accurate than in figure 4.2, but approximately the same as seen in figure 4.1
where the twin network was given model state information. Despite the decreased accuracy
in EE6M predictions when using {S(T1), c1,3(T1)} data instead of {S(T1)}, it seems the
shape of the predicted exposure distribution replicates the shape of the target distribution
more closely in the case of the observed call option price, as seen in comparing figure 4.3b
to 4.2b, particularly the modes.

(a) Training data (payoffs) of all M train-
ing paths, predictions on test set, and tar-
get values (MtM using the Heston call
price formula) of test set. RMSE =
0.00066.

(b) Target and predicted future exposure
distribution. Relative deviation EE6M is
−1.048%, PFE0.95

6M is −0.678%, PFE0.975
6M is

−0.133%.

Figure 4.3: Netting set consisting of 1 call option with strike K = 1 at time T1,
where the network was given {S(T1), c1,3(T1)} in M = 4,096 simulated scenarios.
Data from (a) is used to form the future exposure distribution for time T1 seen
in (b).

As noted in the previous paragraph, the predicted distribution reflected the target dis-
tribution more accurately when introducing an additional market observable. With this
in mind, we continue to introduce market observables and now investigate results for
supplying the DML framework with information of S(T1) and 3 additional market observ-
ables, where we examine two different combinations. Firstly, we have market observables
{S(T1), c0.95,3(T1), c1,3(T1), c1.05,3(T1)}, i.e. time to expiry τ = 3 months is kept constant in
observed call option prices and moneyness is varied for m = 0.95, 1.00, 1.05. Secondly, we
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Market
observables

Abs. rel. dev.
from EE6M

Abs. rel. dev.
from PFE0.95

6M

Abs. rel. dev.
from PFE0.975

6M

{S(T1), c1,1(T1)} −1.029% −0.649% −0.472%
{S(T1), c1,3(T1)} −1.048% −0.678% −0.133%
{S(T1), c1,12(T1)} −1.030% −0.719% −0.176%

Table 4.1: Absolute relative deviation of predicted to target future exposure
distribution when DML method is given three different sets of market observables.

have market observables {S(T1), c1,1(T1), c1,3(T1), c1,12(T1)}, i.e. the moneyness is kept
constant such that all observed call options are ATM at time T1 and times to expiry are
τ = 1, 3, 12. The predictions when using these different combinations of market observables
can be seen in figure 4.4. For this specific seed, we find that having additional market
observables of varying moneyness produces the best prediction of EE6M and PFE0.95

6M .
Meanwhile, varying the τ in the additional market observables, whilst moneyness is kept
constant, produces the most accurate prediction of PFE0.975

6M . Furthermore, we note that
the shape of the predicted distributions continue to reflect the target distribution rather
well, especially in comparison to the naïve case in figure 4.2, although predictions of
EE6M are less accurate in figure 4.4 than in figure 4.2. Moreover, we find that in both of
cases of having 4 market observables, the differential PCA step described in section 2.4.3
successfully truncates the 4-dimensional data to 2 dimensions, as we aim to approximate
the Heston call price formula of section 2.2.1, which is dependent on S(T1) and ν(T1), i.e.
is a 2-dimensional problem. We also note that this is true due to the S- and Q-model
having the same constant model parameters.

As previously stated, results have thus far been restricted to a single seed to display
functionality in a specific case. We proceed to examine results as an average of 100
different seeds for all discussed combinations of input data to the DML framework, found
in table 4.2. We note that when having 2 or more market observables, the differen-
tial PCA described in section 2.4.3 gives 2-dimensional data, which shows us that the
differential PCA method works as intended, since we, as previously mentioned, have a
2-dimensional problem. In predicting EE6M , we find that having market observables
{S(T1), c1,1(T1)} tends to be the most accurate. We also see that data of market ob-
servables {S(T1), c0.95,1(T1), c1,1(T1), c1.05,1(T1)} produces relatively precise estimations.
For other combinations of market observables, we find that the average relative absolute
deviation is greater. Furthermore, predictions of potential future exposure is most accurate
when having market observables {S(T1), c1,3(T1)}. In fact, using data of these market
observables to predict PFE0.975

6M is the only case of greater accuracy than having model
state information, where we see an improvement of 0.1 percentage points. At first glance,
it may seem counter intuitive that greater accuracy can be achieved for a set of market
observables than when using model state information, as the model state is sufficient
to price the netting set as a whole using the Heston call price formula. However, we
note that information of ν(T1) is embedded in the market observables, as the observed
option prices have the same underlying asset as the netting set and are priced using the
Heston call price formula as well. Therefore, from a machine learning perspective, the
same information may be presented in both cases, but in different structures. Lastly, we
note that {S(T1), c1,1(T1), c1,3(T1), c1,12(T1)} is the least accurate in predicting all metrics
of the distribution.
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(a) Market observables {S(T1), c0.95,3(T1),
c1,3(T1), c1.05,3(T1)}. RMSE = 0.00066.
.
.

(b) Market observables {S(T1), c0.95,3(T1),
c1,3(T1), c1.05,3(T1)}. Relative deviation of
EE6M is −0.981%, PFE0.95

6M is −0.595%,
PFE0.975

6M is −0.445%.

(c) Market observables {S(T1), c1,1(T1),
c1,3(T1), c1,12(T1)}. RMSE = 0.00071.
.
.

(d) Market observables {S(T1), c1,1(T1),
c1,3(T1), c1,12(T1)}. Relative deviation of
EE6M is −1.059%, PFE0.95

6M is −0.767%,
PFE0.975

6M is −0.390%.

Figure 4.4: Netting set consisting of 1 call option with strike K = 1 at time T1,
where the network was given one set of market observables in (a) and (b), and
another in (c) and (d) for M = 4,096 simulated scenarios. Figures (a) and (c)
show training data (payoffs) of all M training paths, predictions on test set, and
target values (MtM using the Heston call price formula) of test set. Figures (b)
and (d) show target and predicted future exposure distribution, where data from
(a) and (c), respectively, is used to form the future exposure distribution for time
T1.

In conclusion, supplying the DML method with market observables data seems to produce
rather accurate potential future exposure predictions which are comparable to the case
of model state information. Moreover, we also have several sets of market observables
where predictions are considerably better than the naïve case where spot asset price of the
underlying asset was the only observed market variable.
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Input data
Avg. rel.
abs. dev.
of EE6M

Avg. rel.
abs. dev.
of PFE0.95

6M

Avg. rel.
abs. dev.

of PFE0.975
6M

Post
differential
PCA dim.

{S(T1), ν(T1)} 1.254% 1.045% 1.163% 2
{S(T1)} 1.610% 1.336% 1.233% 1
{S(T1), c1,1(T1)} 1.377% 1.163% 1.198% 2
{S(T1), c1,3(T1)} 1.612% 1.109% 1.063% 2
{S(T1), c1,12(T1)} 1.583% 1.313% 1.299% 2
{S(T1), c1,1(T1),
c1,3(T1), c1,12(T1)}

1.666% 1.398% 1.398% 2

{S(T1), c0.95,3(T1),
c1,3(T1), c1.05,3(T1)}

1.476% 1.182% 1.271% 2

Table 4.2: Average relative absolute deviation of predicted to target future
exposure distribution of netting set of 1 European call option when DML method
is given different sets of market observables in M = 4,096 simulated scenarios.
Results shown are based on an average of 100 randomly sampled seeds.

4.2 Multi-Asset Heston Model

Thus far, we have only examined netting sets where a single underlying asset is modelled
using the Heston model. We now generalise the example setting such that the netting set,
consisting of European put and call options, depends on a larger number of underlying
assets to show continued functionality of a market observables approach. In doing so,
we assume that the underlying assets follow a multi-asset Heston model, as described in
section 2.3. Once again, different sets of market observables are benchmarked against a
model state information case and a naïve case where only spot asset price of the underlying
assets is observed. We note that in a multi-asset setting, observed call option prices are
evaluated for each underlying asset. Performances of the DML method for netting sets
with 2, 16, 32, and 64 underlying assets are investigated to stress test the DML framework
and analyse how prediction accuracy is affected. We note that by the Heston call price
formula, found in section 2.2.1, the problem we aim to solve is of dimension twice the size
of the number of underlying assets. Yet, while increasing the number of underlying assets,
the network architecture, described in section 3.6, and number of training samples are
held constant. This is done to show the effect the dimensionality of the problem has on
prediction performance, where we note that the maximum training time of any network in
this section was 4.4 seconds, running on a machine with 2,3 GHz Dual-Core Intel Core i5
CPU and 16 GB 2133 MHz LPDDR3 RAM.

The investigated netting sets consist of an equal number of European put and call options
with different underlying assets, where each modelled assets is the underlying of a given
option in the netting set. For 2 assets, the strike price is set to K = 1 for both options,
but in all other cases Ki ∼ N (1, 0.052), where Ki denotes the strike price of the put or
call option corresponding to underlying asset i = 1, . . . , N . As in section 4.1, options in
the netting set have a time to expiry τ = 12 months at time t = 0 and exposure date
T1 = 6 months into the future, meaning that all options in our netting set have a time
to expiry τ = 6 months at time T1. As previously mentioned, the underlying assets are
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modelled using the multi-asset Heston model, where standard parameter values shown in
table 3.1 are used. The same model parameter values are used in both the S-model and
the Q-model. Furthermore, correlation between different assets, as discussed in section
2.3, is set such that ρ̃ij = 0 for i,j = 1, . . . , N , i ̸= j. Such a setting might not be the
most realistic, as different FX pairs most likely are correlated in some way. However,
from a DML perspective, having no correlation is the most difficult case, as it becomes
more complicated for the differential PCA to truncate dimensions. A total of M = 4,096
scenarios are evaluated in all cases, where initial values of the spot asset price process
and the variance process are set to Si(0) = 1 and νi(0) = 0.01, respectively, for all assets
i = 1, . . . , N .

4.2.1 Netting set dependent on 2 underlying assets

We begin by examining a netting set consisting of 1 European call option and 1 European
put option with 2 separate underlying assets, both with strike K1 = K2 = 1. In figure
4.5, we see the predicted future exposure distribution for two combinations of market
observables {Si(T1), ci

1,1(T1) | i = 1,2}, and {Si(T1), ci
1,12(T1) | i = 1,2} for the same fixed

randomly selected seed. In comparison to estimated distributions found in section 4.1, such
as figure 4.4b, we find that the target exposure distribution has been shifted rightwards.
The reason is that the netting set now consists of 2 European options, rather than 1, i.e.
in addition to the MtM of the call option, there is a positive MtM of the put option in
this netting set. Thus, the netting set will have a higher MtM than that consisting of a
single call option, as found in section 4.1. Furthermore, figure 4.5a and 4.5b show one of

(a) Market observables {Si(T1), ci
1,1(T1) |

i = 1,2}, relative deviation of EE6M is
0.305%, PFE0.95

6M is −0.527%, PFE0.975
6M is

−0.463%.

(b) Market observables {Si(T1), ci
1,12(T1)

| i = 1,2}, relative deviation of EE6M is
0.275%, PFE0.95

6M is −1.070%, PFE0.975
6M is

−1.248%.

Figure 4.5: Target and predicted future exposure distribution for netting set
consisting of 1 European call option with strike K = 1, and 1 European put
option with strike K = 1 with different underlying assets. Exposure estimation
performed at time T1 derived from M = 4,096 simulated scenarios.
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the most and one of the least accurate predictions of the future exposure distribution,
respectively, for a fixed seed. When comparing the two figures, there are substantial
differences from a visual perspective, although the predicted distribution in figure 4.5b
does not seem to follow the target distribution quite as well around its mode in comparison
to that seen in figure 4.5a.

From a quantitative perspective, the differences are primarily seen in the tail metrics,
namely the PFE0.95

6M and PFE0.975
6M . In fact, the EE6M prediction is more precise in figure

4.5b than in 4.5a, although the difference is rather small. The reason for the difference
between the two figures lies in the information embedded in ci

1,1 and ci
1,12. Call option

prices with a shorter time to maturity is more dependent on the current state of the
variance process νi(T1), and, as seen in the Heston call price formula of section 2.2.1, this
in turn affects the value of the netting set at time T1. Meanwhile, having observed call
option prices further into the future tells us more about the long-term mean of the variance
process θi, as defined in the multi-asset Heston model (2.5). We also note that accurate
results are produced in this case as a consequence of having the same S- and Q-model
parameters, as this implies identical characteristics of the spot asset price and variance
processes under both models.

We now proceed past the case brought up in figure 4.5, where results for a specific seed
were investigated. In table 4.3, prediction accuracies of EE6M , PFE0.95

6M , and PFE0.975
6M with

the same netting set, but for a larger variety of market observables sets, are displayed.
The

Input data
Avg. rel.
abs. dev.

from EE6M

Avg. rel.
abs. dev.

from PFE0.95
6M

Avg. rel.
abs. dev.

from PFE0.975
6M

Post
differential
PCA dim.

{Si(T1), νi(T1),
i = 1,2} 0.967% 0.827% 0.913% 4

{Si(T1),
i = 1,2} 1.045% 0.903% 0.849% 2

{Si(T1), ci
1,1(T1),

i = 1,2} 0.954% 0.842% 0.858% 4

{Si(T1), ci
1,3(T1),

i = 1,2} 1.066% 0.875% 0.872% 4

{Si(T1), ci
1,12(T1),

i = 1,2} 1.021% 0.855% 0.894% 4

{Si(T1) ci
1,1(T1),

ci
1,3(T1), ci

1,12(T1),
i = 1,2}

1.021% 0.852% 0.940% 4

{Si(T1) ci
0.95,3(T1),

ci
1,3(T1), ci

1.05,3(T1),
i = 1,2}

0.995% 0.806% 0.869% 4

Table 4.3: Deviation of predicted future exposure distribution from target
future exposure distribution of netting set of 2 options, 1 European put option
and 1 European call option, when giving various levels of information of market
observables in M = 4,096 simulated scenarios. Results are shown from a randomly
sampled selection of 100 different seeds.
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The values are shown as an average of 100 randomly selected seeds in order to de-
termine general characteristics. We begin by noting that the naïve market observ-
ables set {Si(T1) | i = 1,2} produces the least accurate predictions of EE6M and
PFE0.95

6M , whilst being the most accurate for PFE0.975
6M , although not by much. Fur-

thermore, notably, {Si(T1), ci
1,1(T1) | i = 1,2} predicts EE6M the most accurately, and

{Si(T1), ci
0.95,3(T1), ci

1,3(T1), ci
1.05,3(T1) | i = 1,2} produces the most accurate prediction of

PFE0.95
6M , both of which are more precise than corresponding predictions when supplying

the DML framework with model state information. With regard to PFE0.975
6M , all market

observable combinations, except {S1(T1), S2(T1), ci
1,1(T1), ci

1,3(T1), ci
1,12(T1) | i = 1,2}, pro-

duce more accurate estimations of the PFE0.975
6M than model state information. We also

note that for sets of market observables with a cardinality greater than 4, differential
PCA has truncated the data to 4 dimensions, which shows that differential PCA works as
intended, as a 4-dimensional problem is being solved. In general, when observing table
4.3, we find that the accuracies in metric predictions are somewhat consistent for all types
of input data. With that, we may state that market observables are informative enough
to produce estimations on a level similar to that of model state information for a netting
set of 2 options, whilst performing better than the naïve approach, despite a discrepancy
in PFE0.975

6M predictions.

4.2.2 Netting set dependent on 16 underlying assets

The complexity of the netting set is now increased further to be dependent on 16 underlying
assets, namely 8 European put options and 8 European call options with strike price
Ki ∼ N (1, 0.052), i = 1, . . . , 16. In figure 4.6, we see the future exposure distribution
prediction

(a) Market observables {Si(T1), ci
1,1(T1) |

i = 1, . . . ,16}, relative deviation of EE6M

is 0.369%, PFE0.95
6M is 0.115%, PFE0.975

6M is
0.138%.

(b) Market observables {Si(T1), ci
1,1(T1),

ci
1,3(T1), ci

1,12(T1) | i = 1, . . . ,16}, relative
deviation of EE6M is 0.320%, PFE0.95

6M is
−0.205%, PFE0.975

6M is −0.295%.

Figure 4.6: Target and predicted distributions for netting set consisting of
16 options, 8 European put options and 8 European call options, with strike
prices Ki ∼ N (1,0.052), i = 1, . . . ,16, and different underlying assets. Exposure
estimation performed at time T1 derived from 4,096 simulated scenarios.
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prediction when supplying the DML method with 2 different combinations of market
observables for a fixed seed. Once again, we find that the target exposure distribution has
been shifted further rightwards, compared to that seen in figure 4.5, due to an increased
number of options in the netting set. In observing figures 4.6a and 4.6b, we see that the
predicted distribution has a higher density around the mode than the target distribution
in both cases. However, figure 4.6b shows a predicted distribution with a greater positive
skew. We see that this results in underestimated values of PFE0.95

6M and PFE0.975
6M , whereas

the corresponding predicted values are more precise, but overestimated, in figure 4.6a.

In table 4.4, we find the average relative absolute deviation of EE6M , PFE0.95
6M , and PFE0.975

6M

between the predicted and target distributions in 15 randomly selected seeds for different
sets of market observables. We begin by noting that the most accurate prediction of
EE6M is produced by the set {Si(T1), ci

1,3(T1)|i = 1, . . . , 16}. On the contrary to previously
presented results, the most accurate predictions of potential future exposure is here
produced by the set {Si(T1)|i = 1, . . . , 16}. At this point, we note that that the dimension
of input data to the network is 32 in all cases, apart from the naïve approach, the reason
being that we are dealing with a 32-dimensional problem. The higher the dimension of the
problem, the more training samples are required, which is an established problem known
as the curse of dimensionality, stating that the number of samples required to estimate
an arbitrary function while maintaining the same level of accuracy grows exponentially
withrespect

Input data
Avg. rel.
abs. dev.

from EE6M

Avg. rel.
abs. dev.

from PFE0.95
6M

Avg. rel.
abs. dev.

from PFE0.975
6M

Post
differential
PCA dim.

{Si(T1), νi(T1),
i = 1, . . . , 16} 0.358% 1.073% 1.512% 32

{Si(T1),
i = 1, . . . , 16} 0.396% 0.539% 0.648% 16

{Si(T1), ci
1,1(T1),

i = 1, . . . , 16} 0.356% 0.872% 0.883% 32

{Si(T1), ci
1,3(T1),

i = 1, . . . , 16} 0.258% 0.855% 1.073% 32

{Si(T1), ci
1,12(T1),

i = 1, . . . , 16} 0.400% 0.903% 1.111% 32

{Si(T1), ci
1,1(T1),

ci
1,3(T1), ci

1,12(T1),
i = 1, . . . , 16}

0.501% 0.844% 1.044% 32

{Si(T1), ci
0.95,3(T1),

ci
1,3(T1), ci

1.05,3(T1),
i = 1, . . . , 16}

0.390% 0.937% 1.166% 32

Table 4.4: Deviation of predicted future exposure distribution from target
future exposure distribution of netting set of 16 options, 8 European put option
and 8 European call option, when giving various levels of information of market
observables in M = 4,096 simulated scenarios. Results are shown from a randomly
sampled selection of 15 different seeds.
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with respect to the number of features in input data [4]. However, the number of training
samples is kept constant at 4,096 samples, which is why, for higher dimensionality of
the data, we see the decreased accuracy in the tail predictions where training data is
scarcer. Meanwhile, the predictions of EE6M are somewhat consistent with only a couple
of outliers. This shows that the dimensionality of the problem versus the number of
training samples is not necessarily an issue affecting accuracy of the mean of the predicted
distribution. Notably, we find that the set {Si(T1), νi(T1) | i = 1, . . . , 16} produces the
least accurate predictions of potential future exposure, whilst being somewhat accurate
in EE6M predictions, suggesting that the DML method trains more easily on the market
observables data than market state information in this case.

4.2.3 Netting set dependent on 32 underlying assets

We now proceed to investigate a netting set dependent on 32 underlying assets, consisting
of 16 European put options and 16 European call options with strike price Ki ∼ N (1, 0.052)
for i = 1, . . . , 16. Firstly, the target and predicted future exposure distributions of 2 sets
of market observables for a fixed, randomly selected seed is shown in figure 4.7. Again,
we note that the target distribution has been shifted further rightwards compared to the
previously shown results due to an increased number of options in the netting set. At
first glance, we see that figure 4.7a seems to show a prediction that replicates the target
distribution more accurately overall than that of figure 4.7b, where we see an apparent
positive skew and greater density around the mode of the predicted distribution with clear
underestimation in the tails. However, the predicted distribution of figure 4.7b produces
the more precise estimations of both EE6M and PFE0.975

6M . This is partly explained by the
predicted distribution in figure 4.7a in turn underestimating the density in the right tail,
leading to an underestimation of the potential future exposure metrics.

Once again, we proceed to a more general case for different combinations of market
observables and a larger number of randomly selected seeds for the same netting set,
the results of which can be found in table 4.5. As the netting set is dependent on 32
underlying assets, we are dealing with a 64-dimensional problem. However, the differential
PCA scheme now truncates the raw data of the market state set to 59 dimensions in all
cases. For combinations including observed call option prices, the raw data is projected to
slightly lower dimensions, where we note that the number of dimensions post differential
PCA is not constant for any of the observed sets. As discussed in section 2.4.3, differential
PCA truncates dimensions based on information contribution. As seen in table 4.5, it
seems a greater number of dimensions are informative in the model state set, whereas
it is slightly lower in the sets containing observed call option prices. Meanwhile, no
dimensions are truncated when applying differential PCA to the naïve set. Moreover,
upon investigating the EE6M predictions for all sets of input data, we see a somewhat
consistent accuracy, where the most accurate predictions are made when input data is
{Si(T1), ci

1,1, ci
1,3, ci

1,12|i = 1, . . . , 32}, and the least accurate are made when using the
naïve set {Si(T1)|i = 1, . . . , 32}. However, we find that the naïve set is the most accurate
in predicting the potential future exposures, where all other sets of input data seemingly
struggle. As previously discussed, this is due to a lack of training samples combined with
a scarcity of training data in the tails of the distribution.
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(a) Market observables {Si(T1), ci
1,1 | i =

1, . . . , 32}, relative deviation of EE6M is
−0.452%, PFE0.95

6M is −2.035%, PFE0.975
6M is

−3.180%.

(b) Market observables {Si(T1), ci
0.95,3(T1),

ci
1,3(T1), ci

1.05,3(T1) | i = 1, . . . , 32}, relative
deviation of EE6M is −0.382%, PFE0.95

6M is
−2.158%, PFE0.975

6M is −1.942%.

Figure 4.7: Target and predicted distributions for netting set consisting of 32
options, 16 European put options and 16 European call options, with strike
prices Ki ∼ N (1,0.052), i = 1, . . . ,32, and different underlying assets. Exposure
estimation performed at time T1 derived from 4,096 simulated scenarios.

Input data
Avg. rel.
abs. dev.

from EE6M

Avg. rel.
abs. dev.

from PFE0.95
6M

Avg. rel.
abs. dev.

from PFE0.975
6M

Avg. post
differential
PCA dim.

{Si(T1), νi(T1),
i = 1, . . . , 32} 0.265% 2.287% 2.534% 59.00

{Si(T1),
i = 1, . . . , 32} 0.283% 0.802% 0.899% 32.00

{Si(T1), ci
1,1(T1),

i = 1, . . . , 32} 0.197% 1.895% 2.038% 57.73

{Si(T1), ci
1,3(T1),

i = 1, . . . , 32} 0.212% 2.366% 2.770% 57.13

{Si(T1), ci
1,12(T1),

i = 1, . . . , 32} 0.210% 2.242% 2.600% 57.67

{Si(T1), ci
1,1(T1),

ci
1,3(T1), ci

1,12(T1),
i = 1, . . . , 32}

0.168% 2.049% 2.473% 57.47

{Si(T1), ci
0.95,3(T1),

ci
1,3(T1), ci

1.05,3(T1),
i = 1, . . . , 32}

0.199% 1.969% 1.732% 57.53

Table 4.5: Deviation of predicted future exposure distribution from target future
exposure distribution of netting set of 32 options, 16 European put options and
16 European call options, when giving various levels of information of market
observables in M = 4,096 simulated scenarios. Results are shown from a randomly
sampled selection of 15 different seeds.
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4.2.4 Netting set dependent on 64 underlying assets

We have seen the DML method having difficulties in making predictions with the increasing
number of underlying assets and dimensions. One last time, we increase the netting
complexity further to be dependent on a total of 64 underlying assets, namely 32 European
put options and 32 European call options. By using the multi-asset Heston model, this
implies that we have a 128-dimensional problem at hand. In figure 4.8, we find predictions
of the future exposure distribution of 2 different market observables sets. In both cases, we
find that the predicted distribution densities are underestimated in the tails and are more
centred around the mean in comparison to the target distribution. Furthermore, figure
4.8b shows a predicted distribution with a clear overestimated density in the mode and a
positive skew, whilst figure 4.8a shows an overestimation of the density in the mode and a
slight negative skew. Although the predicted distributions look different, the PFE0.975

6M is
approximately the same in both cases. Furthermore, the PFE0.95

6M is slightly more accurate
in figure 4.8a, although not by much, and the EE6M prediction is more accurate in figure
4.8b.

(a) Market observables {Si(T1), ci
0.95,3(T1),

ci
1,1(T1), ci

1.10,3(T1) | i = 1, . . . ,64}, relative
deviation of EE6M is −0.527%, PFE0.95

6M is
−2.455%, PFE0.975

6M is −2.784%.

(b) Market observables {Si(T1), ci
1,1(T1),

ci
1,3(T1), ci

1,12(T1) | i = 1, . . . ,64}, relative
deviation of EE6M is −0.364%, PFE0.95

6M is
−2.750%, PFE0.975

6M is −2.740%.

Figure 4.8: Target and predicted distributions for netting set consisting of 64
options, 32 European call options and 32 European put options, all with different
underlying assets, where strike prices K ∼ N (1,0.052). Exposure estimation
performed at time T1 derived from 4,096 simulated scenarios.

Again, we proceed to a more general case for a wider selection of market observables
sets for a greater number of randomly selected seeds to investigate general tendencies in
prediction accuracies, the results of which can be found in table 4.6. Firstly, we find that
no dimensions are truncated in the naïve set. However, we find that differential PCA on
average truncates data sets containing observed option prices to dimensions in the interval
[85,89]. The number of informative dimensions tend to be the largest for the market
state set, where input data to the twin network has an average dimension of 97.53. As
previously discussed, the relatively high-dimensional data in turn results in low accuracies
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of potential future exposure predictions, which is evident in table 4.6. We also find that
the accuracy of PFE0.95

6M and PFE0.975
6M predictions is rather low when using sets containing

observed call option prices, although it is comparable to the results previously seen in
table 4.5. The naïve set is once again the most accurate in predicting the potential future
exposure. Furthermore, in predicting the EE6M , the naïve set is the most precise out of the
sets containing market observable data only, although {Si(T1), ci

1,12(T1) | i = 1, . . . , 64}
only differs by 0.015 percentage points.

Input data
Avg. rel.
abs. dev.

from EE6M

Avg. rel.
abs. dev.

from PFE0.95
6M

Avg. rel.
abs. dev.

from PFE0.975
6M

Avg. post
differential
PCA dim.

{Si(T1), νi(T1),
i = 1, . . . , 64} 0.197% 4.020% 4.327% 97.53

{Si(T1),
i = 1, . . . , 64} 0.229% 1.140% 1.050% 64.00

{Si(T1), ci
1,1(T1),

i = 1, . . . , 64} 0.260% 2.605% 2.779% 85.53

{Si(T1), ci
1,3(T1),

i = 1, . . . , 64} 0.284% 2.849% 2.945% 86.27

{Si(T1), ci
1,12(T1),

i = 1, . . . , 64} 0.244% 2.712% 2.947% 89.00

{Si(T1), ci
1,1(T1),

ci
1,3(T1), ci

1,12(T1),
i = 1, . . . , 64}

0.263% 2.785% 2.904% 86.53

{Si(T1), ci
0.95,3(T1),

ci
1,3(T1), ci

1.05,3(T1),
i = 1, . . . , 64}

0.284% 2.597% 2.696% 88.13

Table 4.6: Deviation of predicted future exposure distribution from target future
exposure distribution of netting set of 64 options, 32 European put options and
32 European call options, when giving various levels of information of market
observables in M = 4,096 simulated scenarios. Results are shown from a randomly
sampled selection of 15 different seeds.

In summary, we find that sets of market observables produced predictions comparable
to, and at times more accurate than, that of market state information for netting sets
consisting of up to 16 options. For netting sets of 1 or 2 options, the predictions of
the distribution metrics were in general as precise or more accurate than predictions
when supplying the DML framework with observed spot asset prices, i.e. the naïve
set. For a netting set of 16 options, the prediction of EE6M was comparable between
sets including observed call option prices and the naïve set. However, potential future
exposure predictions stemming from the naïve set are clearly superior as the DML method
struggles to produce valuable predictions due to increased dimensionality. The netting set
of 16 options presented a breaking point of the DML method in the case of M = 4096,
and the issue of insufficient training data was emphasised for netting sets of 32 and 64
options, as the curse of dimensionality becomes increasingly tangible, where predictions of
potential future exposure deviated further from the target distribution and the predictions
produced by the naïve set. At first glance, it may be hypothesised that the issue of
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large dimensions could be solved by a differential PCA scheme truncating dimensions
to achieve a predetermined number of dimension, rather than truncating data based on
thresholds ε1 and ε2. However, this would results in the DML framework overall losing a
large proportion of its flexibility and poses additional questions. Nevertheless, predictions
of EE6M remained somewhat precise even for the larger netting sets, where all other sets
of market observables outperformed the naïve set for the netting set of 32 options, and
predictions were comparable for the case of the 64 options netting set.

4.3 Different S- and Q-models

In this section, we apply the proposed exposure modelling approach to settings where S-
and Q-models are different. This is highly relevant for risk management purposes and is
one of the main proposed advantages of the DML approach. We examine the capability of
the approach to cope with different Q- and S-models, although both of Heston type, by
considering 1,000 different Q-models and a fixed S-model. The parameter values for the
1,000 different Q-models are generated as described in section 3.7. The parameter values
for the v are then set as an average of the Q-model parameter values. For the given draw
used in this section, this led to parameter values for the S-model as seen in table 4.7.

Parameter Value
Mean reversion κS 4.9
Long-run average variance θS 0.061
Correlation of Wiener
processes in price and
variance processes ρS

-0.45

Volatility of variance
process ξS

0.37

Table 4.7: Parameter values in the S-model used in section 4.3.

The exposure of a netting set consisting of a European call option with a single underlying
asset is modelled using all different parameter combinations of the Q-model. The reason
to have a relatively simple netting set is to speed up simulation times and to focus the
analysis on the difference between the S- and Q-models. The option in our netting set has
a strike price K = 1 and time of expiry is T = 1 year. The exposure date T1 is 6 months
into the future, meaning that the option in our netting set will have a time to expiry of 6
months at time T1. Initial values of the spot asset price process and the variance process
are set to S(0) = 1 and ν(0) = θ, respectively, where θ is model specific. Apart from the
spot asset price S(t), the input data consists of three ATM call options with times to
expiry τ = 1, 6, 12 months. As previously discussed, these are generated by the Heston
call option formula as described in section 2.2.1. The reason we present results of only this
choice of market observables is that our goal is not to find the best market observables
to use in this specific example setting, but to examine how the differences in the S- and
Q-model affect the prediction accuracies.
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4.3.1 Effect of Training Set Size on Accuracy

The size of the training set affects the accuracy of the DML method, which is extensively
studied in the work of Huge and Savine [16]. To show the effect of altering the training
set size on the accuracy of exposure modelling using DML, the exposure of the netting set
explained previously in this section is estimated for the 1,000 different Q-models, with
varying training set size M = 2,048, M = 4,096, and M = 8,192, respectively. The target
exposure distributions that the predictions are compared to, come from pricing in the
same S-scenarios by using the known S-model and Heston call price formula.

In figure 4.9, we see that the method performance improves, in terms of accuracy of metrics
of the predicted distribution, when the number of training samples increase, as one can
expect. As seen in the previous results presented in sections 4.1 and 4.2, the errors of the

(a) EE6M relative error (b) PFE0.95
6M relative error

(c) PFE0.975
6M relative error

Figure 4.9: Each curve in the three plots above show a Gaussian kernel density
estimation of the three different sets of results for varying M , where each set
corresponds to prediction accuracies using 1,000 different Q-models. The seaborn
package in Python is used for the kernel density estimation.
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expected exposure and the percentiles are not necessarily correlated. However, the errors
of PFE0.95

6M and PFE0.975
6M do seem to be highly correlated. With this in mind, we henceforth

only consider results of EE6M and PFE0.95
6M .

Due to constraints on time and computational power, we do not increase the amount
of training samples more than M = 8,192 for all 1,000 Q-models. However, it may be
speculated that not all 1,000 cases converge to zero due to the large discrepancies between
certain Q-models and the S-model. An example indicating this is the Q-model with
κ = 3.23, θ = 0.0184, ξ = 0.0267, and ρ = −0.573. Using a very large training set
of size M = 1,048,576, we get a relative error of the EE6M at 14%, PFE0.95

6M at −1.1%,
and PFE0.975

6M at −2.2%. These are large errors considering the very large training set,
suggesting a non-zero convergence of the error for increasing training set size.

4.3.2 Effect of Parameter Values on Accuracy

Continuing with a training set size of M = 4,096, we will try to identify what characterises
the cases where the method performance is satisfactory as well as unsatisfactory. In figure
4.10, we find accuracy of prediction metrics using the 1,000 different Q-model. In observing
figure 4.10c, we start by noting that the correlation between the Wiener processes in the
price and variance processes, ρ, appears to be uncorrelated with the size of the relative
error of the two metrics shown. For the three remaining parameters that are varied, the
mean reversion κ, the long-run average variance θ, and the volatility of the variance ξ, we
can more easily see where the predictions are less accurate, by studying the results in figure
4.10a, 4.10b, and 4.10d, respectively. Further details of accuracy of EE6M predictions for
all combinations of κ, θ, and ξ may be seen in figures A.1 and A.2 in appendix A. Firstly,
it is important to note that since the Feller condition, seen in (2.2), is imposed in the
sampling of parameter combinations, we see relatively few examples at small θ, small κ
and large ξ. One can see that the largest relative absolute errors have a low value of θ,
and thus a low value of ξ. For θ there is also a tendency for larger errors in both ends of
the sampled interval, when the value differs from θS = 0.06. The clearest trend is that of
ξ, where the relative absolute error generally decreases with increasing ξ. Note that large
ξ implies a large value of the product of θ and κ, due to the Feller condition. What is
interesting to note, however, is that only deviations from the S-model parameter values in
certain directions have a negative average effect on the performance. We can also see a
tendency of greater relative absolute error when increasing κ, although this may be due
to an increased abundance of parameter value combinations with larger κ, compared to
smaller values, due to the Feller condition. Lastly, we note that relatively high accuracy
can be found for Q-models with parameter values in the general vicinity of the S-model,
as seen in figures A.1 and A.2 in appendix A.

It is not surprising that the values of ξ and θ have such a large impact as these are important
parameters of the Heston call price formula. Furthermore, ξ denotes the volatility of the
variance process and the lowest values of ξ are 0.01, while the S-model has ξS = 0.37.
This means that for the lowest values of ξ, we have considerably smaller fluctuations in
the variance process compared to what is seen in the S-model, which could explain the
observed trends.

Lastly, we note that some parameter value combinations for the Q-model may be unrealistic
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(a) Varying κ where κS = 4.9 (b) Varying θ where θS = 0.061

(c) Varying ρ where ρS = −0.45 (d) Varying ξ where ξS = 0.37

Figure 4.10: Display of the relative error of EE6M and PFE0.95
6M against the

Q-model’s (a) κ, (b) θ, (c) ρ, and (d) ξ. The S-model parameter values are
denoted by κS, θS, ρS, and ξS, respectively.

and affect accuracy. The reason for the unrealistic combinations stems from how these are
generated. Firstly, only 4 parameters of the Heston model are varied. Secondly, uniform
sampling of the parameter values, as explained in section 3.7.1, may also lead to unrealistic
parameter value combinations. This is because certain parameter values seem to be highly
correlated in calibration, as seen in Winter [27], which has not been taken into account in
section 3.7.1.

4.3.3 Effect of Domain of Generated Data on Accuracy

Greater differences between the S- and Q-model may also be manifested in that the two
models simulate data that are in different regions of the input data space, (S(T1), c1,1M (T1),
c1,6M(T1), c1,12M(T1)). Therefore, to further investigate accuracy, we examine how the
training data differs from the test data in the 1,000 different parameter value combinations.
Since the Q-model produces the training data and the S-model produces the test data,
the exposure modelling approach may encounter problems when the two data sets become
increasingly different. Furthermore, the preprocessing step used, i.e. differential PCA as
explained in section 2.4.3, is only based on the training data and may lead to an even
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more prominent difference between the training and test sets when they are transformed
and truncated according to the differential PCA procedure.

For the set of 1,000 different parameter value combinations examined in this section, the
differential PCA procedure in general leads to a dimension reduction from the original 4
dimensions, (S(T1), c1,1M(T1), c1,6M(T1), c1,12M(T1)), to 2 dimensions. In a few cases, the
dimensionality is reduced to 1 dimension, and these cases are characterised by a low value
of the parameter of the volatility of the variance process, ξ. More specifically, all cases
where the differential PCA procedure reduces the dimension to 1 dimension, ξ has a value
less than 0.08. For reference, the span of examined ξ values is [0.01, 1.5]. The reason for
the strong dimension reduction in these cases may, as previously noted, stem from that
such small values of ξ lead to a stochastic variance process that is close to constant. In
such a case, the Heston model becomes more similar to a Black-Scholes model [5], where
the spot asset price is the only stochastic process.

In figure 4.11, we see the training and test sets, after transformation and truncation
according to the differential PCA procedure, in two out of the 1,000 considered cases. In
figure 4.11a, we see an example where the resulting DML prediction is relatively good,
whilst figure 4.11b shows the example with largest relative error of EE6M . We note that
the training and test set in the latter are widely separated, compared to the previous,
implying that the S- and Q-model provide simulated data in different regions, i.e. they
simulate very different spot asset prices or observed call option prices at exposure date T1.
This is not very surprising as parameter values affect the Heston call option formula and
hence the observed call option prices, and the S- and Q-model have significantly different
parameter values in the example shown in figure 4.11b.

(a) κ = 6.21, θ = 0.0718, ρ = −0.712, and
ξ = 0.505

(b) κ = 6.27, θ = 0.0125, ρ = −0.0101,
and ξ = 0.0481

Figure 4.11: Display of the training and test sets of two different experiments.
For (a) there was a relative error of EE6M at −2.71%, of PFE0.95

6M at −2.51%,
and of PFE0.975

6M at −2.34%. For (b) there was a relative error of EE6M at 54.6%,
of PFE0.95

6M at 25.8%, and of PFE0.975
6M at 23.3%. For comparison: κS = 4.9,

θS = 0.061, ρS = −0.45, and ξS = 0.37.

To show the effect of differing training and test sets for all parameter combinations, we
quantify the difference of the sets using the metric that is referred to as the training and

46



4. Results

test set overlap, defined in section 3.7.2. The results are presented in figure 4.12, where it
can quite clearly be seen that the largest relative errors tend to have little to no training
and test set overlap.

Figure 4.12: Relative error of EE6M and PFE0.95
6M plotted against training and

test set overlap for the 1,000 different parameter combinations.

To summarise, we firstly note the positive effect that increased training set size had on
the accuracy of exposure modelling using DML. Secondly, we saw that the methodology
tends to less accurate as the S- and Q-models became increasingly different. In particular,
we observed large errors for relatively low values of ξ and θ in the Q-model, while the
framework was able to cope with relatively large values of ξ, although there were fewer
examples of these cases. Lastly, in discussing the discrepancies between the S- and Q-
model, we found that the largest errors occurred when the two models produced samples
in different regions.
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5
Conclusion

In chapter 4, it was seen that DML can be applied to exposure modelling, incorporating
the use of market observables in a Heston setting for a netting set of European call and
put options. As seen in section 4.1, using an observed market state instead of a model
state in a single-asset setting does not produce equally accurate, but comparable, results.
In section 4.2, where dimensionality is increased, a similar trend is observed, and there
are even cases where market state data leads to improved prediction accuracy, primarily
in tail predictions for the data with the largest number of dimensions. That being said,
predictions using either model state or market state information perform rather poorly in
a high-dimensional setting, as prediction errors generally increase for a larger number of
underlying assets in the netting set. As previously discussed, this is due to the curse of
dimensionality, which is a greater issue when using the informative model state data in
conjunction with differential PCA. Nevertheless, within the employed DML framework,
we draw the conclusion that using market state data, instead of model state data, results
in similar prediction accuracy for identical S- and Q-models, given the used network
specifications.

When exposure modelling using DML is applied in settings of different S- and Q-models,
as seen in section 4.3, the accuracy tends to decrease with increased difference between
the two models, as expected. Specifically, it is when the Q-model has small values for the
parameters governing the long-run average variance, θ, and the volatility of the variance
process, ξ, in comparison to the S-model, that we see the largest errors. On the other
hand, for large values of ξ as well as when θ is not too different in the two models, we
get relatively good accuracy. We capture the difference between the two models by how
the data they simulate differ. Here we can draw the conclusion that accuracy generally
decrease when the two models do not simulate data in the same region.
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A
Appendix 1

In figures A.1 and A.2 one can see how values of parameters κ, θ, and ξ in the Q-model
affect the accuracy of the exposure modelling in section 4.3.

Figure A.1: Absolute relative error of EE6M for the Q-model’s κ, θ, and ξ. Green
colour corresponds to lower errors, while yellow, red, or blue colour corresponds to
higher errors. The S-model parameter values correspond to the magenta coloured
dot.
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Figure A.2: Absolute relative error of EE6M for the Q-model’s κ, θ, and ξ. Green
colour corresponds to lower errors, while yellow, red, or blue colour corresponds to
higher errors. The S-model parameter values correspond to the magenta coloured
dot.
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