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Abstract

This thesis focuses on the analysis of a mathematical model of a nanowire based hot car-
rier solar cell. The relevance of the topic comes from the energy crisis society is facing
today. Firstly, we discuss the basic principle of hot carrier solar cells and discuss several
energy loss factors. Then we set up the system and discuss the relevant approximations.
Moreover analytical expressions of the carrier and heat current are derived in order to
determine the maximum power, efficiency and Fill factor of the solar cell. Different pa-
rameters like the potential barrier height within the solar cell are investigated such that
their trends in the overall performance can be determined. The model represents a very
ideal case and does not take many loss mechanisms into consideration. Therefore the
thesis has many future research possibilities so it can be applied in the laboratory.
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1 Introduction

One of the main challenges society is facing today is for mankind to find sustainable en-
ergy sources. Solar cells are a perfect candidate for this since no green house gasses are
emitted in the energy production. Moreover, the energy solar radiation gives to the earth
in an hour can produce the entire world with sufficient energy for a year [1] However,
the efficiency of the majority of current solar cells produced in the industry are still under
20% [2]. For this reason scientists and engineers have been heavily conducting research
finding methods to optimize the efficiency of solar cells.

Typically, silicon based solar cells are produced on a large scale due to the accessibil-
ity in nature and high abundance of the material. Nonetheless, currently there are more
efficient photovoltaic devices available. An example of these are solar cells based on type
III-V semiconductor materials such as gallium arsenide and indium phosphide. The dis-
advantage of III-V based solar cells is that the materials are expensive which makes it
hard to apply to industry[3][4]. An innovating solution for this is the use of nano scaled
rod-like structures with a high length/diameter ratio, also known as nanowires[5]. Due
to their dimensional properties 90% less of the expensive III/V materials has to be used
with respect to the solar cells manufactured as thin film[3].For this reason nanowires are
promising for the future development of solar cells.

This thesis will focus on a mathematical model which simulates the phenomena hap-
pening in a nanowire based hot carrier solar cell. To do this we firstly consider the basic
concept of a solar cell and discuss different energy loss mechanisms which can occur.
Then we will make the model in the ideal case to extract the power production and effi-
ciency.
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2 Theory

2.1 Principle of solar cell and loss mechanisms
In order to manufacture a hot carrier solar cell one creates material with different semi-
conductors. When various semiconducting materials are combined, it results in different
potential barriers in both the valence and conduction band.[6] Creating this structure in
a nanowire will give the characteristics in the conduction and valence band as shown in
figure 1.

Figure 1: Energy diagram of a hot carrier solar cell. It can be seen that 4 different potential
barriers arise. The curly arrow represents light interacting with electrons in the valence
band creating an electron hole pair. If the absolute energy of the electron is higher than
Eg + U2 it can go over the potential barrier U2 and create an electrical current. In order
for charge to be conserved the chemical potential has been fixed at Eg/2 where the zero
energy axis is defined.

In figure 1 it can be seen that four different potential barriers are created. When a photon
comes in with energy larger than Eg + U2, it can excite an electron which can go over the
potential barrier U2 and create an electrical current. However, the efficiency of a solar cell
is influenced by many factors. Often the following four are considered [7]:

1. Carnot energy loss: The Carnot efficiency defines the fundamentally highest effi-
ciency which can be achieved for a power conversion process which behaves like a
heat engine [8]. It is fixed by the temperature of the heat source and the power con-
verter. In our case we model the heat source to be a piece of metal connected to the
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solar cell absorbing solar photons. If the metal slap would be in thermal equilibrium
with the sun, the temperature of the heat source would be at the temperature of the
sun TS = 5772 K. Moreover, the temperature of the solar cell itself is assumed to be
at room temperature Tr = 300 K. This implies that the maximum Carnot efficiency
will be (TS − Tr)/TS= 95%.

2. Band gap: Here we consider the fact that only photons with energy larger than the
band gap of the material will be excited to the conduction band. This means that
photons with an energy smaller than the band gap Eg will not contribute in the
generation of electrical current.

3. Recombination: Once a photon has more energy than the band gap Eg it creates a
hole in the valence band and an electron in the conduction band. However, it is pos-
sible for the electrons to recombine with their respective hole instead of contributing
to the power production. Along this process radiation will be emitted.

4. Carrier relaxation: Once a photon is excited with energy higher than the potential
barrier of the solar cell, it can either go over the barrier to produce electricity or it
can loose parts of its energy through various processes. The carrier can thermalize
with other carriers through inelastic collisions or interact with lattice vibrations and
convert its energy in the form of heat. An electron of this sort is defined as a hot
carrier [5].

To keep calculations simple we will only take the band gap loss and the Carnot efficiency
into consideration for the model discussed in the thesis. However more of the above
effects can in principle be added to give a more realistic result.

6



3 The model

This section will describe the model used to simulate the behaviour of the solar cell. A
visualisation of the model is found in figure 2. Firstly we assume the potential barriers
to be asymmetric in the conduction and valence band. Here the left side and right side
represent the contact for the holes and electrons respectively. At the left side of the con-
duction band the potential barrier Uh is set infinitely high and the potential barrier on
the right side is set to the fixed value Ue. Between the four barriers is were the absorber
region is located.

Figure 2: Illustration of the model. Compared to figure 1 U1 = U4 = Uh = ∞ and U2 =
U3 = Ue. The zero energy axis is set to be in the middle of the valence and conduction
band. Moreover, the chemical potential of the sun reservoir and electron collector is set
at µS = 0 and µec = eV/2 respectively. The left hand side of the model has a direct hole
contact and the right side represents the electron contact. Finally the grey area represents
a material composition such that the potential barriers Ue and Uh arise, the black region
for the absorber region and the red zone the barriers Ue and Uh in the opposite manner
with respect to the grey zone.

For the model we only distinguish electrons and holes from having the opposite sign in
charge and neglect other differences such as the difference in effective mass. Finally, the
zero energy is set at half the energy of the band gap Eg.

In order to describe the effects occurring in a photovoltaic device we model the absorber
to be coupled to two reservoirs:

1. Electron collector: This probe models the contact which extracts the electrons from
the absorber and generates a current. Its temperature is assumed to be equal to room
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temperature Tec = 300K. The chemical potential will be equal to the bias applied.
Due to the symmetry of the system this would simply be µec= + eV/2 and with
corresponding Fermi function fec(E). The chemical potential on the left side of the
system will have the same behaviour but with opposite sign.

2. The sun: This reservoir serves for the incoming light of the sun which is heating up
the system and exciting electrons. It is represented with a Fermi-Dirac distribution
fS(E) and corresponding temperature TS = Tec + ∆T. Here ∆T represents the extra
temperature the sun reservoir has with respect to the electron collector. Finally, the
chemical potential is set to µS = 0. In real life this reservoir is a photo-antenna place
on the nanowire to locally heat up the system.

Here the Fermi functions fi(E) are of the form

fi(E) =
1

1 + eβi(E−µi)
, (1)

where βi = 1/KBTi. The absorber function fA(E) is a superposition of the two Fermi
functions. Its time derivative can be represented as [9]

∂ fA(E, t)
∂t

= ΓS( fS(E, t)− fA(E, t)) + Θ(E − Ue)Γec( fec(E, t)− fA(E, t)), (2)

where Γi denotes the rate of the probe i and Θ(E−Ue) the heavy side step function which
is 0 if E < Ue and 1 for E ≥ Ue. The step function arises from the assumption that electrons
can only go over the potential barrier if their energy is greater or equal than Ue. Equation
(2) is a continuity equation of the system and is a mathematical formulation that all charge
carriers are conserved. For the further analysis we assume the system is in a steady state,
implying that the time derivative of the absorber is equal to zero. This will result the
solution of the differential equation to be equal to

fA(E) =
ΓS fS(E) + Θ(E − Ue)Γec fec(E)

ΓS + Θ(E − Ue)Γec
. (3)

3.1 Charge and energy currents

Using scatter theory, the carrier current IN
n and energy current IE

n flowing from reservoir
m to n will be defined as [9]

IN
n = Γn

∫ ∞

Eg/2
[ fn(E)− fm(E)] dE, (4)

IE
n = Γn

∫ ∞

Eg/2
(E − µn) [ fn(E)− fm(E)] dE. (5)

The integration limits are chosen such that we will only integrate over the electrons lo-
cated with energy states in the conduction band. In this model only two probes are cou-
pled with the absorber. Thus, only the current from the sun reservoir to the absorber IS
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and the current from the electron collector to the absorber Iec have to be calculated. For
the carrier current one obtains the expressions

IN
S = ΓS

∫ ∞

Eg/2
[ fS(E)− fA(E)] dE, (6)

IN
ec = Γec

∫ ∞

Ue
[ fec(E)− fA(E)] dE. (7)

When the integrals are solved it turns out that IN
s = −IN

ec . This is exactly what we would
expect since the total amount of carriers entering and leaving the absorber has to be con-
served. The solution for the electron collector’s current is given by

IN
ec =

ΓSΓec

βSβec(Γec + ΓS)
·
(

βS log
(

eβec(Ue−µec) + 1
)

(8)

− βec log
(

eβS(Ue−µS) + 1
)
+ βSβec(µec − µS)

)
.

The corresponding energy currents are denoted as:

IE
S = ΓS

∫ ∞

Eg/2
(E − µS) [ fS(E)− fA(E)] dE, (9)

IE
ec = Γec

∫ ∞

Ue
(E − µec) [ fec(E)− fA(E)] dE. (10)

Similarly as for the charge currents it turns out that IE
S = −IE

ec. Therefore we will only
write down the solution for the solar current:

IE
S =

ΓecΓS

β2
ecβ2

S(Γec + ΓS)

[
β2

ec

(
Li2(−e−βS(Ue−µs)) + βS(Ue − µS) log

(
e−βS(Ue−µS) + 1

))
(11)

− β2
S

(
Li2(−e−βec(Ue−µec)) + βec(Ue − µec) log

(
e−βec(Ue−µec)

))
−µecβecβ2

S ·
(

log
(

eβec(Ue−µec) + 1
)
− βec(Ue − µec)

)]
where Li2(x) is the Spence function defined as [10]

Li2(x) = −
∫ x

0

log(1 − t)
t

dt, ∀x ∈ C. (12)

3.2 Power production and performance of solar cell
In order to find the performance of the solar cell we have to define the power generated
by the device. In this model power is produced when the carrier current IN

ec moves against
the chemical potential µec [9]. For this reason, we denote the total net power to be

P = 2 · IN
ec · µec/2 = IN

ec eV. (13)
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The factor of two arises from the electron-hole symmetry. For each electron flowing to the
right side of the conduction band in figure 2, a respective hole will travel to the left side
of the valence band. Hence, the power produced by the electrons can be multiplied by 2
in order to obtain the total power. Figure 3 visualizes how the power is generated. Due
to a larger temperature TS the sun’s Fermi function is extended over the potential barrier
Ue. Therefore, electrons from the sun reservoir are able to move towards the electron
collector. Finally, we define the efficiency η to be the fraction of the power for a given TS
and V and the corresponding heat current of the sun IE

S

η =
P
IE
S

. (14)

Figure 3: The system with a high temperature TS. Here the Fermi function fS(E) is ex-
tended such that some of its electron’s energy is higher than the potential barrier. This
allows it to move to the electron collector and create a net charge current.

Another way to quantify the performance of the solar cell than efficiency, is through the
Fill factor. It is defined with the equation

FF =
Pmax

Isc · Voc
, (15)

where Isc is the short circuit current, Voc the open circuit voltage and Pmax the maximum
produced power [11]. The short circuit current represents the current at zero voltage.
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Furthermore the open circuit voltage is defined to be the voltage where no current is
flowing [12]. Figure shows an I − V curve with these quantities marked down. A Fill
factor of 1 represents the highest theoretical power that can be extracted from the I-V
curve and means that the I-V curve would look like the black dotted line shown in figure
4. However in reality this has never been achieved experimentally. The higher the Fill
factor, the higher the maximum power of the I-V curve becomes [13].

0
Applied bias

0Cu
rre

nt

Voc

Pmax

Isc

PT

Figure 4: I-V curve showing the quantities of the Fill factor. Here Isc represents the short
circuit current and Voc the open circuit voltage. Pmax and PT represent the location where
the maximum power of the I-V curve and the theoretical maximum power is located
respectively.

3.3 Dimensionless expressions

For the purpose of extracting results from the equations introduced in section 3.1, we will
rewrite them in a dimensionless form. Firstly, we introduce the following dimensionless
parameters

ϵ ≡ βecUe, (16)

γS ≡ 1
1 + ∆T

Tec

, (17)

χ ≡ βecµec, (18)

Now by dividing the carrier currents by I0 = ΓSΓec
(ΓS+Γec)βec

and substituting the parameters
by the dimensionless quantities defined in equations (16), (17) and (18) we obtain the

11



following for the carrier current of the electron collector.

τN
ec =

IN
ec
I0

= log
(
eϵ−χ + 1

)
− 1

γS
log(eγS·ϵ + 1) + χ. (19)

(20)

Similarly for the energy current of the sun reservoir we obtain

τE
S =

IE
S
I′0

=

1
γ2

S
·
(

Li2(−e−γSϵ) + γSϵ log
(
e−γSϵ + 1

))
−

(
Li2(−eχ−ϵ) + (ϵ − χ) log

(
e−ϵγS + 1

))
(21)

− χ
(
log

(
eϵ−χ + 1

)
− (ϵ − χ)

)
where I′0 = ΓecΓS

β2
ec(Γec+ΓS)

. To continue, we define the equivalent to dimensionless power to
be:

ρ ≡ τec · χ. (22)

The derivation for the substitutions can be found in the appendix.
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4 Results and discussion

4.1 Charge currents
In figure 5a and 5b the electron collector’s carrier current is plotted with varying the
parameters ∆T

Tec
and ϵ respectively.
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(a) The carrier current of the electron collector
plotted against the bias applied to the system.
Here the current is plotted for different values
of ∆T

Tec
and ϵ has been fixed to 1
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(b) Here the carrier current of the electron col-
lector is plotted vs the applied bias. Multiple
values for the potential barrier heights ϵ are
shown in the figure and ∆T

Tec
has been set to 10

Figure 5: The carrier currents of the electron collector plotted against the applied voltage.
Parameters ∆T

Tec
and ϵ are altered for figure 5a and 5b respectively.

Remark that a negative current in figures 5a and 5b implies that current is flowing from
the absorber to the electron collector due to its definition in equation 7. In figure 5a
we can observe that τN

ec = 0 for χ = 0 when ∆T
Tec

= 0. This is due to the fact that in
this case there is no temperature difference between the sun reservoir and the electron
collector. Moreover since χ = 0 in this instant, their Fermi functions will be identical.
Consequently, no current can flow either to the absorber or the electron collector. As il-
lustrated in figure 3 the Fermi function of the sun gets more extended for higher values
of ∆T

Tec
. Because of this, more electrons in the electron distribution of the sun get an energy

higher than the potential barrier Ue which will cause a net charge current towards the
electron collector for 0 applied bias. This is why when the parameter ∆T

Tec
increases in fig-

ure 5a, the offset of the current goes to more negative values. Because µec is proportional
to the voltage, the Fermi function of the electron collector will reach higher energy levels
as the voltage applied to the system increases. Therefore, the τN

ec grows as the applied
bias becomes larger.

From figure 5b it can be seen that an increasing value of ϵ moves up the current to a
higher offset. Hence, less charge carriers are moving towards the electron collector with
a higher potential barrier. This comes from the fact that the charge carriers are required
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to have a higher energy to surpass a larger potential barrier Ue. Another observation is
that for a bigger value of ϵ the current starts to increase at a larger value of χ with respect
to a smaller ϵ. The reason for this is that the electron distribution in the electron collector
needs to have a higher energy to overcome a larger potential barrier Ue. Thus, the chemi-
cal potential of the electron collector µec has to become larger for an increase of current to
occur.

4.2 Net power and heat current of the solar cell
The resulting net power produced by the device can be calculated through equation 22.
This has been done in figures 6a and 6b for varying values of ∆T

Tec
and ϵ respectively. It can

be seen in 6a that the power increases as the temperature of the sun reservoir grows. This
is simply because a higher ∆T

Tec
give more current towards the electron collector and needs

more applied bias to give a positive τN
ec .

Figure 6b shows that higher values of ϵ for a fixed ∆T
Tec

result in a higher maximum power
than smaller values of ϵ. This seems counter intuitive since the results in figure 5b showed
that less charge carriers move to the electron collector for higher values of ϵ. Nonetheless,
more bias has to be applied in order for τN

ec to increase. The power is proportional to both
current and voltage and since the bias difference is substantially higher than the current
difference for ϵ < 8, more maximum power is achieved for higher values of ϵ. Both fig-
ure 6a and 6b show that for a fixed ϵ and ∆T

Tec
the power reaches a maximum ρmax at a bias

χmax. Figure 7 shows this maximum power plotted against ∆T
Tec

for multiple values of ϵ.
The same is done for the heat current of the sun reservoir τE

S in figure 8.
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(b) The net power of the solar cell plotted
against the applied bias. The parameter ϵ has
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Figure 6: The net power produced by the device plotted against the bias applied to the
system. Figures 6a and 6b vary the parameters ∆T

Tec
and ϵ respectively. Remark that nega-

tive power implies that a net energy flow is traveling towards the electron contact. There-
fore, for convenience the negative power has been labeled on the y-axis.
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Figure 7: Maximum power plotted against ∆T
Tec

for different ϵ. The respective χmax has
been chosen for each ∆T

Tec
. Four different values of ϵ have been chosen for the curve to

show the trend.
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Figure 8: The heat current of the sun reservoir plotted against different values of ∆T
Tec

. The
same values for χmax have been chosen as the ones in figure 7. Note that a positive value
of τE

S implies that the current is going from the sun reservoir towards the absorber region.

Figure 7 shows that the maximum power is strictly increasing as ∆T
Tec

grows. The reason
why the maximum power is not converging to a constant is due to the Fermi function of
the sun. In equation 1 we can note that when ∆T

Tec
−→ ∞ =⇒ βS −→ 0. This causes the

Fermi function of the sun to reach a constant of 1
2 for all energy values. Thus, the integral

defined in equation (9) will diverge when ∆T
Tec

−→ ∞. Nonetheless, these temperatures
can never be achieved in reality since the nanowire itself would melt.

Furthermore, a similar trend as found in 6b can be seen in figure 7. For larger values
of ∆T

Tec
a higher ϵ results in more power with respect to a smaller ϵ. However, from figure

7 it can be seen that when ϵ ≥ 10 the power becomes lower for smaller ∆T
Tec

compared to
lower magnitudes of ϵ. For example −ρmax at ϵ = 5 is larger than ρmax at ϵ = 10 up until
∆T
Tec

= 8.8. In reality this means that the metal probe connected to the nanowire represent-
ing the sun reservoir has a temperature around 3000 K. In order to produce a nanowire
with this barrier height the materials used to fabricate it would have to withstand this
amount of heat and cannot melt.

The heat current of the sun decreases for larger values of ϵ. For a higher potential bar-
rier Ue only high energy electrons can travel to the electron collector. Therefore the heat
current decreases as ϵ increases. On the contrary, the heat current still stays substantially
larger than the net power.
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4.3 Efficiency and performance of the solar cell
In order to investigate the performance of the solar cell we will both look at its efficiency
and Fill factor at maximum power. The efficiency shown in figure 9a was computed with
equation (14) and the Fill factor plotted in figure 9b was determined with equation (3.2).
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(a) The efficiency of the solar cell at maximum
power plotted against ∆T

Tec
for different values of

ϵ. The efficiency has been computed by divid-
ing each −ρmax in figure 7 with the respective
τE

S shown in figure 8. Finally, the blue curve rep-
resents Carnot efficiency which can fundamen-
tally not be exceeded.
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(b) Fill factor plotted against ∆Tec
TS

when maxi-
mum power is produced. The parameters used
to produce this plot all come from figure 7 and
8.

Figure 9: The efficiency and Fill factor plotted when the device is producing its maximum
power.

Firstly, figure 9a gives that the efficiency reaches a clear maximum at a given temperature
but under ηcarnot. All these maximums are getting higher and slightly shifted to higher
temperatures of the sun reservoir as ϵ increases. The same trend is observed for the Fill
factor in figure 9b.
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5 Outlook

For the model used in this thesis it can be seen that a non-negligible amount of power is
produced by the solar cell as the temperature of the sun reservoir grows. Furthermore,
both the efficiency and Fill factor of the maximum power increases for a higher potential
barrier height. In order to produce the solar cell in reality an optimum has to be found
between the barrier height Ue and the temperature of the sun reservoir TS. For higher TS
the net power increases but efficiency decreases. Moreover the device can produce more
net power at higher values of Ts for a large potential barrier but a higher temperature will
give less efficiency and Fill factor. In addition, one has to make sure that the nanowire
itself can withstand the temperature required for a large power production without melt-
ing. Therefore a possible continuation of the thesis is to find an optimum of the named
parameters and find materials optimal for the conditions.

In the model we only take two loss mechanism discussed in section 2.1 into consider-
ation. One can however incorporate more of these loss factors to obtain a more realistic
result. A suggestion on how to do this is to give every depletion process their own reser-
voir coupled to the absorber. Similar methods as used in this thesis can then be used
to extract the carrier and heat current. The only difference would be that the absorber
function defined in equation (2) becomes longer which makes the carrier and heat cur-
rent integrals harder to handle. When more probes are coupled to the absorber, one can
use experimental data for time scales of when events such as recombination and phonon
interaction happen to give a value to the rate constant Γi. In this thesis the rate constant
Γi has not been considered in the results since only two reservoirs were connected to the
absorber. However when the system contains over 4 reservoirs, Γi becomes more relevant
for realistic results.

In conclusion, the findings of the trends in the thesis are promising. Nonetheless before
the model can be created in the laboratory, a significant amount of additional research
needs to be conducted.

18



References

[1] Xiaodong Wang and service) SpringerLink (Online. High-Efficiency Solar Cells. [Elek-
tronisk resurs] Physics, Materials, and Devices. Springer Series in Materials Science:
190. Springer International Publishing, 2014. ISBN: 9783319019871. URL: https://
ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?
direct=true&AuthType=ip, uid&db=cat07147a&AN=lub.6176576&site=eds-
live&scope=site.

[2] Martin Green et al. “Solar cell efficiency tables (version 57)”. In: Progress in Photo-
voltaics: Research and Applications 29.1 (2021), pp. 3–15. DOI: https://doi.org/10.
1002/pip.3371.

[3] Lukas Hrachowina. Growth and Characterization of Tandem-Junction Photovoltaic Nanowires.
Division of Solid State Physics, Department of Physics, Faculty of Engineering,
Lund University, 2022. ISBN: 9789180392099. URL: https://ludwig.lub.lu.se/
login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=
ip,uid&db=cat07147a&AN=lub.7120329&site=eds-live&scope=site.

[4] Pradip Kumar Chakraborty, Bholanath Mondal, and Biswadeep Chaudhuri. “Laser-
induced modulation of optical band-gap parameters in the III–V-type semiconduc-
tors from the density-of-state (DOS) calculations.” In: Pramana - Journal of Physics
92.6 (2019). ISSN: 09737111. URL: https://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=ip, uid&db=
edselc&AN=edselc.2-52.0-85063634906&site=eds-live&scope=site.

[5] Jonatan Fast. Hot-carrier extraction in nanowires. [Division of Solid State Physics], De-
partment of Physics, Faculty of Engineering, Lund University, 2022. ISBN: 9789180395014.
URL: https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/
login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7286376&
site=eds-live&scope=site.

[6] Philip Hofmann. Solid state physics : an introduction. [Elektronisk resurs] an introduc-
tion. Wiley-VCH, 2015. ISBN: 9783527412822. URL: https://ludwig.lub.lu.se/
login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=
ip,uid&db=cat07147a&AN=lub.5581319&site=eds-live&scope=site.

[7] Louise C. Hirst and Nicholas J. Ekins-Daukes. “Fundamental losses in solar cells”.
In: Progress in Photovoltaics: Research and Applications 19.3 (2011), pp. 286–293. DOI:
https://doi.org/10.1002/pip.1024. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/pip.1024. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/pip.1024.

[8] Hugh D. Young and Roger A. Freedman. University Physics with Modern Physics.
Vol. 1. Pearson, 2016. ISBN: 9781292100319.

[9] Ludovico Tesser, Robert S. Whitney, and Janine Splettstoesser. “Thermodynamic
Performance of Hot-Carrier Solar Cells: A Quantum Transport Model”. In: Physical
Review Applied 19.4 (Apr. 2023). DOI: 10.1103/physrevapplied.19.044038. URL:
https://doi.org/10.1103%5C%2Fphysrevapplied.19.044038.

19

https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.6176576&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.6176576&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.6176576&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.6176576&site=eds-live&scope=site
https://doi.org/https://doi.org/10.1002/pip.3371
https://doi.org/https://doi.org/10.1002/pip.3371
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7120329&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7120329&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7120329&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&AN=edselc.2-52.0-85063634906&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&AN=edselc.2-52.0-85063634906&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&AN=edselc.2-52.0-85063634906&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7286376&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7286376&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.7286376&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.5581319&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.5581319&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.5581319&site=eds-live&scope=site
https://doi.org/https://doi.org/10.1002/pip.1024
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pip.1024
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pip.1024
https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.1024
https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.1024
https://doi.org/10.1103/physrevapplied.19.044038
https://doi.org/10.1103%5C%2Fphysrevapplied.19.044038


[10] Jean-Christophe Pain. “Relations for the difference of two dilogarithms.” In: (2023).
URL: https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/
login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2304.03349&
site=eds-live&scope=site.

[11] Abdelhamid Bouzaher, Amel Terki, and Mohamed Tahar Bouzaher. “Photovoltaic
Panel Faults Diagnosis: Based on the Fill Factor Analysis and Use of Artificial Intel-
ligence Techniques.” In: Arabian Journal for Science and Engineering (2022), pp. 1–17.
ISSN: 2193-567X. URL: https://ludwig.lub.lu.se/login?url=https://search.
ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=
edssjs.39058B1A&site=eds-live&scope=site.

[12] Paul Horowitz and Winfield Hill. The art of electronics. Cambridge U.P., 1980. ISBN:
0521231515. URL: https://ludwig.lub.lu.se/login?url=https://search.
ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=
lub.1534483&site=eds-live&scope=site.

[13] Qi Boyuan and Wang Jizheng. “Fill factor in organic solar cells.” In: Physical Chem-
istry Chemical Physics 15.23 (2013), pp. 8972–8982. URL: https://ludwig.lub.lu.
se/login?url=https://search.ebscohost.com/login.aspx?direct=true&
AuthType=ip,uid&db=inh&AN=14120921&site=eds-live&scope=site.

20

https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2304.03349&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2304.03349&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2304.03349&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.39058B1A&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.39058B1A&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.39058B1A&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.1534483&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.1534483&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat07147a&AN=lub.1534483&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=14120921&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=14120921&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=inh&AN=14120921&site=eds-live&scope=site


Appendix

Dimensionless substitutions derivation
Firstly, due to the fact that µS = 0, all factors with µS will be set to 0. Now we will rewrite
some of the constants/expressions to use the substitutions defined in equations (16), (17)
and (18). Firstly note βS can be rewritten as:

βS =
1

kB(Tec + ∆T)
=

1
kBTec

· 1
1 + ∆T

Tec

= βec ·
1

1 + ∆T
Tec

= βecγs (23)

As a next step βS(Ue − µs) can be rewritten as:

βS(Ue − µS) = βecUe︸ ︷︷ ︸
ϵ

γS − βecγSµs︸ ︷︷ ︸
0

= ϵγS (24)

And finally βec · (Ue − µec) can be expressed as:

βec · (Ue − µec) = βecUe︸ ︷︷ ︸
ϵ

− βecµec︸ ︷︷ ︸
χ

= ϵ − χ (25)

Inserting these expressions into equations (9) and (11) we obtain

τN
ec = log

(
eϵ−χ + 1

)
− 1

γS
log(eγS·ϵ + 1) + χ, (26)

τE
ec =

1
γ2 ·

(
Li2(−e−γSϵ) + γSϵ log

(
e−γSϵ + 1

))
−

(
Li2(−eχ−ϵ) + (ϵ − χ) log

(
e−ϵγS + 1

))
(27)

− χ
(
log

(
eϵ−χ + 1

)
− (ϵ − χ)

)
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