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1 Abstract

In this report, the elliptic flow in high centrality Pb-Pb collisions is calculated using two
particle correlations v2{2} but without any imposed separation in η with data taken from
the ALICE experiment at CERN in 2015. Instead, measurements of the same correlations
in proton-proton collisions is used as a background to account for non-flow effects and data
is correlated between the time projection chamber and the forward multiplicity detectors in
order to avoid intra-jet correlations. Results were possible to attain up to 80% centrality but
beyond this point the fitting failed in what was likely due to a lack of statistics. The results
seemed to agree well with previous computations on ALICE data.
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3 List of Abbreviations

� QCD - Quantum Chromodynamics

� QGP - Quark-Gluon Plasma

� ALICE - A Large Ion Collider Experiment

� TPC - Time Projection Chamber

� FMD - Forward Multiplicity Detector

� ITS - Inner Tracking System

� PDF - Probability Density Function

� RHS - Right Hand Side

� LHS - Left Hand Side

� pp-collisions - proton on proton collisions

� Pb-Pb collisions - lead on lead collisions

� TeV - Teraelectronvolt

� GeV - Gigaelectronvolt

� GB - Gigabyte

� MB - Megabyte

1



Contents

1 Abstract 1

2 Acknowledgements 1

3 List of Abbreviations 1

4 Introduction 3
4.1 The Underlying Theory of the Strong Force . . . . . . . . . . . . . . . . . . 3
4.2 The Quark-Gluon Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 The Detector Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 The Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.5 The Definition of Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Description through Flow Harmonics . . . . . . . . . . . . . . . . . . . . . . 11
4.7 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.8 The Purpose of the Forward Multiplicity Detectors . . . . . . . . . . . . . . 15
4.9 Event Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.10 Statistical Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Method 18

6 Results 19

7 Discussion 23

8 Outlook 25

9 References 27

2



4 Introduction

4.1 The Underlying Theory of the Strong Force

To this day, there are four known fundamental forces of nature which are believed to govern
everything that may be observed on Earth1. Out of the two most commonly directly observ-
able in every-day settings, gravity and electromagnetism, only electromagnetism is included
in what is known as the Standard Model of particle physics. This model is often simply
referred to as the ’Standard Model’. The other two forces included in the Standard Model
are the so called weak and strong force. These forces are not directly noticeable in an every
day experience, but they certainly are noticeable indirectly as their effects are paramount
for the microscopic description of matter. See Figure 1 for an overview of the particles the
Standard Model contains.
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Figure 1: Shows the different particles of the Standard Model. The image was taken
from Wikimedia Commons. Creator(s): MissMJ, Cush.

Out of the particles which form atoms, with electrons around a positively charged nucleus
consisting of protons and neutrons, only the electrons are believed to be fundamental point
particles. What is meant by ’point particles’ is to say that they do not have any internal
structure. The protons and neutrons are, on the other hand, believed to be built up of quarks.

1Some hypothesised concepts such as dark matter and dark energy are not fully explained by the Standard
Model, c.f. chapter 22 of [1].
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The quarks are unique in the way that they, and they alone, are the only massive particles
which may interact via the strong force. The reason for stating that they are the only mas-
sive particles which interact with the strong force is technical, although very important to
the discussion which will follow. Particles with electric charge are stated to ’couple to’ the
electromagnetic fields, which in turn are mediated by its own type of particle called a photon.
Photons are well known to not interact with each other, which is not surprising considering
that the classical limit of any quantum theory must give rise to superposition in classical
electromagnetism. In the Standard Model, having them interact with each other would be
tantamount to stating that they themselves carry electric charge. For the strong force, things
are different. Much like the electromagnetic force, the strong force may be interpreted as
being mediated through particles known as gluons. The difference here is that the gluons do
carry the so called ’colour charge’, which is defined in analogy to electric charge in electro-
magnetism. This colour charge is also carried by the quarks. Note that since quarks always
carry colour charge, and since gluons may be emitted from quarks while also themselves
carrying colour charge, it follows logically that gluons must carry both a colour charge and
an anti-colour charge for global colour conservation to hold. Hence, the colour charge of an
individual quark is not conserved as it changes when gluons are emitted. Interestingly, there
are three possible ’colours’ of quarks, red, green, and blue and eight different types of gluons
to mediate these colours. The sum of particles with one of the red charge, one of the blue
charge, and one of the green charge is said to be ’white’ and being colour neutral. The word
’colour’ is used only in analogy, but serves a useful purpose as i.e. red and blue are considered
to form the colour ’anti-green’ as it and the green colour cancel each other out. Furthermore,
anti-particles do not carry colour but are instead viewed as having anti-colour which means
that colour is conserved in pair production of quarks.

What makes the strong force strong has to do with that the gluons themselves carry colour
charge. This means that the force carriers interact with each other. In classical electromag-
netism, the strength of the Coulomb potential is inversely proportional to the separation
between charges. This is often represented graphically as field lines of electrically charged
particles being drawn further and further apart the greater the separation between particle
becomes. With the strong force, the field lines are instead collimated into so called ’flux
tubes’ between particles in which the density of field lines does not decrease with distance.
This leads to an effect commonly known as asymptotic freedom. See Figure 2 for an illus-
tration and please note that this figure took inspiration from Figure 17.2 in [1]. In fact, the
strong force is much like that of a spring in that it increases the greater the separation is.
However, in this quantum-case things are somewhat different. Once the ’spring’ is stretched
enough, the energy stored in the field eventually becomes so great that it may be energet-
ically favourable to pair produce new quarks in-between the original ones, thus decreasing
the colour separation. This effect leads to that quarks are not possible to observe on their
own, and only in colour neutral combinations. In the white combinations, the charges screen
each other. This is known as ’colour confinement’. The asymptotic freedom means that the
particles are more ’free’ and less impacted by the strong force the closer they are together,
unlike for example the case of Newton’s law of gravitation where the force becomes smaller
for greater separations.

One special consequence of colour confinement are so called jets. If quarks are separated
and still have a lot of kinetic energy, many more quarks will end up being pair produced when

4



Schematic Overview 
of a Flux Tube

Figure 2: Shows a simplified illustration of imagined field lines for the strong force
becoming collimated due to the gluon-gluon interaction. Please note that this illus-
tration took inspiration from Figure 17.2 in [1].

more and more flux tubes end up broken. Since the initial momentum will be conserved, such
beams of quarks will be very collimated and result in many particles ’flying off’ in the same
direction. Usually these jets appear in pairs of two going in opposite directions to conserve
momentum, but three jet events are also possible if i.e. gluons are radiated leading to another
jet. See chapter 7.2 of [2]. In the case of two jets, these are often said to be ’back to back’
(at least in their centre of momentum frame) since, due to momentum conservation, there is
an azimuthal angle of approximately π between them.

Composite particles of quarks are called hadrons, and with the exception of very exotic
matter, hadrons come in two types. The first type is the baryon, which consist of colour-
neutral bound states of three quarks. The other type is made up of mesons, which consist
of bound states of a quark and an anti-quark. Anti-quarks carry anti-colour charge so the
meson as a whole is white. It is important to keep in mind that due to the quantum nature
of such systems, and due to the ’sea’ of virtual particles like gluons coming in and out of
existence, a hadron is not strictly e.g. red and anti-red, but a superposition of all possible
states. Also keep in mind that gluons exchanging colour charge also have colour charge which
makes the situation more complicated. Finally, it should be mentioned that the full descrip-
tion of the strong force is given by the so called theory of quantum chromodynamics, which is
often abbreviated as ’QCD’. In QCD, the differently coloured quarks form a triplet under an
SU(3) rotation. The gluon fields are derived from demanding a local gauge invariance under
rotations in this ’colour space’ since it should not matter which label, i.e. ’red’, ’green’ and
’blue’, is attached to which physical state. See chapters 1 and 17 in [1].

For a more detailed overlook of the Standard Model and its Lagrangian, see chapters 1
to 7 and chapter 17, with particular focus on chapter 7.5 and chapter 7.6 in [1].

4.2 The Quark-Gluon Plasma

While the concept of colour confinement certainly applies under present day conditions on
Earth, it is possible that this has not always been the case everywhere in the Universe. If
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matter becomes dense and hot enough, a phase transition occurs into a state known as a
quark-gluon plasma, often denoted by ’QGP’. In the quark-gluon plasma, the density of colour
charges (quarks and gluons) is so large everywhere that the net colour charge anywhere is
practically white. Hence, there is no longer any reason for there to be any colour confinement
and quarks may move more freely. In other words, the region where the asymptotic freedom
’gives freedom’ is greatly increased. It turns out that this state of matter behaves very similar
to a perfect fluid, see chapters 1 and 2 of [3].

This new state of matter is of interest to study as it has been hypothesised that the early
Universe consisted of a QGP the first few moments after the Big Bang. It is also believed
that a quark-gluon plasma may exist at the centre of neutron stars, see chapter 7.1.3 of [2].
Hence, if the Big Bang is to be fully understood, it is likely that the QGP too will have to be
understood. Furthermore, studying the QGP also provides various ways to test theoretical
models of QCD, which are almost never solvable analytically.

Additionally, it should be noted that as this might provide insight into the very early
Universe, and hence the origins of everything, such insight could have important societal
impacts. The role of such knowledge in society and the philosophy of science might also be
impacted in future if the origins of the Universe would be understood.

One problem with producing a QGP on Earth is that the temperatures involved would
lead to a very rapid cooling and expansion of the medium, so it would only exist for very brief
amounts of time. The only way to produce and study a quark-gluon plasma today is through
particle accelerators and particle detectors, respectively. The way to currently produce a
QGP is with two beams of heavy ions2 that are accelerated to relativistic speeds, where the
kinetic energies per nucleon may be much higher than their rest energies, and then collided
inside of a particle detector. Since the QGP only exists for a very brief amount of time, the
only way to study it is to do so indirectly. One observation of its existence is the so called
jet quenching, in which a single jet is detected instead of at least two. This is due to the
quarks in the other jet having been absorbed by the very dense QGP. Other indications of
the existence of the QGP relate to energy densities and other more technical calculations.
See chapter 1 and 2 of [3] and Chapter 7.1.3 of [2].

4.3 The Detector Setup
A particle detector typically consists of multiple layers in a cylindrical shape around the beam
line in which collisions happen. First and foremost, it is important to mention that detectors
are typically surrounded by a magnet. Since powerful magnetic fields will bend the paths
of moving charged particles, this allows for the charge to momentum ratio of particles to be
figured out from curvatures of measured trajectories. The innermost parts of detectors are
typically tracking detectors since these disturb the particles the least. In the ALICE (ALICE
stands for ’A Large Ion Collider Experiment’) detector, see [5], the main tracking detector for
this analysis will be the so called time projection chamber, henceforth abbreviated as ’TPC’,
which is used to track the particles which come out of a collision.

In order to measure the flow from a heavy ion collision, data from the TPC turns out to be
important. The TPC covers almost the entire solid angle surrounding the collisions, and will

2There is actually an ongoing discussion about detecting elliptic flow in proton on proton collisions, c.f.
[4].
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thus give important information on the paths followed by the particles. The working principle
of a time projection chamber is mostly that of drift tubes, although there are some important
differences. The TPC, as seen in Figure 3, is split down the middle into two halves by a
cathode-plane (which is at a voltage of -100 kV) such that there are two cylindrical regions.
At the two ends of the cylindrical TPC, the disks are segmented into trapezoidal regions,
as is hinted by the support beams which are visible in Figure 3. Inside these trapezoidal
regions there are so called readout chambers in which the anodes are located. Unlike the
case of the Geiger-Müeller tube where there is only one wire, there are multiple wires inside
these readout chambers in order to give spatial information of where the particles end up.
In between these regions, a gas is present. When charged particles pass through this gas,
they ionise particles. While a recombination would typically happen in the absence of the
electric potential, its presence will cause the charged particles to begin to drift towards their
respective electrodes. While these ionised particles in turn ionise even more particles in a so
called ‘Townsend Avalanche’, the voltage of the TPC is such that it is in proportional region
and not in the Geiger-Müeller region. That is to say that the charge collected at the electrodes
is proportional to the initial amount of energy deposited by the ionising particles. Depending
on where and when the different electrodes detect charge, the path of the particles in the
xy-plane may be determined. Complementing this information with that the drift velocity of
the particles inside the TPC is known, the full three-dimensional path may be deduced. See
chapter 4.4 of [2], [6] and chapter 3.2 of [5]. Note that the TPC is much more complicated
than this basic explanation, see [6] and chapter 3.2 of [5] for a more in-depth explanation.
The TPC, along with other detectors, may be seen in Figure 3. Another important part

Figure 3: Shows an overview of the ALICE detector and its various parts. This
image was taken from CERN’s website. Credit: CERN, Arturo Tauro.
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of the ALICE detector for this analysis are the so called forward multiplicity detectors, often
abbreviated as ’FMDs’s. These serve the purpose to measure how particles go close to the
beam lines, as this is a ’blind spot’ to the TPC. These simply count how many particles
go within a certain direction along both the forward and backwards path close to the beam
line. [7]. See chapters 1 and 2 of [3]. The FMD:s are so called silicon strip detectors. The
operating principle of theses is using the band gaps in silicon, along with doping, to create a
depletion region. When charged particles pass through this region they may excite electrons
across the band gap, resulting in free charge carriers in the form of electrons and holes.
These will then start to move due to the electric field in the depletion region, resulting in
a measurable current. If many such small depletion regions are placed close to each other,
the location of a particle and its path may be deduced. See chapter 4.6.2 of [8]. The actual
FMD:s then consist of rings of segmented silicon rings, see chapter 5.3 of [5] and Figure 4.

Finally, another detector that is of relevance should be mentioned. The so called inner

Figure 4: Shows a sketch of the various segmented silicon rings used in the FMD:s
around the beam line. This image was created by Christian Holm Christensen, NBI

tracking system, abbreviated as ’ITS’, also uses silicon technologies to detect particles. It
uses both silicon strip detectors, as well as other silicon type detectors and is placed inside of
the TPC as may be seen in Figure 3. The ITS has multiple purposes, and among them are
determining primary and secondary particle interaction vertices as as well as to help improve
the tracking in the TPC by providing additional information. See Chapter 3.1 of [5].

4.4 The Coordinate System

In order to quantify the geometry of a collision, a vector quantity b called the impact vector is
typically introduced. It is defined as the distance between the centres of the colliding nuclei.
See Figure 5 for an illustration of this. Note that nuclei are quantum-mechanical objects
with substructures (which is to say that they are composite objects containing quarks) and
are not actually spheres, and many heavy nuclei are often deformed (see chapter 2.5.2 of [9])
to the point where an ellipsoid might even provide a better approximation. However, the
existence of magic numbers for nuclei should of course still be kept in mind as the existence
of magic numbers means that heavy nuclei do not per se have to be deformed. The nuclei
in Figure 5 are only portrayed as circles for illustrative purposes. The points O1 and O2
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are the the centres of the colliding nuclei and p1 and p2 in the figure are their respective
momenta. Another quantity called the impact parameter b is also usually introduced and is
simply defined as the magnitude of the impact vector. See chapters 1 and 2 of [3].

Sketch of the Coordinate System 
used in the Centre of Momentum Frame

Figure 5: Shows an illustration of the definition of the impact parameter b. The
quantities p⃗1 and p⃗2 (denoted are the respective momenta of the nuclei and O1 and
O2 the positions of the centres. Please note that nuclei are not actually spheres and
are only portrayed as circles for illustrative purposes.

Commonly, either a standard Cartesian coordinate system, a spherical one or a cylindrical
one is used to make measurements. However, this is not the case with the data from the
ALICE detector used for calculations in this project. The coordinate system used to collect
data will be explained based on Figure 3 and Figure 6. As in a typical cylindrical coordinate
system, the z-axis will be used as a coordinate along the beam line. While the x-axis is
typically taken to be along the impact vector within an event, it will, in the laboratory
frame, be taken as being perpendicular to the z-axis but still in the same horisontal plane as
the z-axis. Furthermore, the x-axis will be taken to be in the horisontal direction such that
the y axis may be taken as vertical while also making the coordinate system right handed.
From this, the angle φ will be defined as the counter-clockwise angle in the xy-plane starting
from the x-axis such that it serves as the azimuthal angle. This angle φ will then be taken
as the second coordinate in addition to the z-coordinate which is taken in the same way as
in cylindrical coordinates. The final coordinate used will be the pseudorapidity η, defined as

η = − ln

[
tan

(
θ

2

)]
(1)
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where θ is defined as the counter-clockwise angle in the yz-plane starting from the z-axis in
positive direction. Please note that θ is taken as a strictly positive quantity as the orientation
will still be uniquely determined by the value of φ. See Figure 6 for an illustration.

The reason for using the coordinate η is that it is equal to another quantity called the
rapidity for highly relativistic particles, which helps connecting theory and experiment. It
should be noted that in the limit of θ → 0, η ∼ − ln(0) − (−∞) = ∞), and that in the limit
θ → π one finds that η → − ln(tan(π/2)) = − ln(∞) = −∞. In-between these two extremes,
for example at θ = π/2, η = − ln(tan(π/4)) = − ln(1) = 0. Hence, η ∈ (−∞,∞) and, clearly,
values of η corresponding to the positive z-direction are positive and values corresponding to
negative z-direction are negative. See chapters 1 and 2 of [3].

Illustration of the Coordinate System

Figure 6: Illustrates how the coordinates φ and η are defined in relation to Cartesian
and cylindrical coordinates.

4.5 The Definition of Centrality

While the impact parameter could be viewed as an ideal way to characterise a given collision,
it is not always known. The issue with not knowing the impact vector is that the collision
between the nuclei will take place at some angle φ, often denoted ΨRP, in the plane transverse
to the beam line which will be important for the mathematical description of the collision in
the next section. The value of ΨRP gives the so called reaction plane, which is spanned by
the impact vector and the beam line vector ẑ.

To experimentally measure the centrality, the so called V0-detector, which may be seen
in Figure 3, is used. The category of detectors known as scintillation detectors, which the
V0 detector belongs to, operates on the principle of charged particles exciting electrons
in the medium it passes by. When these electrons are de-excited, so called scintillation
light is emitted which may then be observed by photomultiplier tubes, see chapter 4.4.4 of
[2]. Although the relationship between the number of particles produced in an heavy ion
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collision and the centrality is complicated for several reasons such as secondary particles
being produced after the collision, it may be determined (see section 5.4.1 of [5]) that the
relationship between the number of primary particles in a collision and the measured signal
is monotone. From this, the centrality may be deduced in a treatment which is beyond the
scope of this report. For this project, the data was already available with the centrality
calculated. Should the reader be interested in a more detailed overview, see [10].

4.6 Description through Flow Harmonics

To describe the ’flow’ of particles ’flowing out’ from the expanding QGP, a Fourier series is
often used. This series has the form

f(φ) = 1 +
∞∑
k=1

2vk cos(k(φ−ΨRP)) (2)

where ΨRP gives the reaction plane, φ is the angle and vk are the so called flow harmon-
ics. The Fourier series may be interpreted as being proportional to the number of particles
’flowing out’ in a given φ direction. The reason for the Fourier series not containing any sine-
functions is due to symmetry. The cosine functions are even with respect to ΨRP while sine
functions are odd with respect to ditto. From Figure 5, it is clear that the initial geometry
(even if the nuclei were approximated as ellipsoids instead of spheres) that the QGP, and
hence its flow, is symmetric with respect to ΨRP. Hence, any term which does not display
such a symmetry around may be omitted ΨRP. Clearly, this is only a one way implication
as higher order terms which display this symmetry do not necessarily have to be non-zero.
Furthermore, the term with v1 is commonly omitted since in the case of k = 1, called directed
flow, there is a net flow in a given direction. If the collisions are ’head on’ in the laboratory
frame, that is to say that the laboratory frame is the centre of momentum frame, conservation
of transverse momentum would demand this term to be 0. Clearly, the higher order terms
do not suffer from this problem.

While all flow harmonics are technically needed to characterise the flow, it is typical that
the flow is characterised by v2 which gives the so called elliptic flow which is commonly the
dominating coefficient. Note that the flow could of course vary with η depending on where in
the detector it is measured. Furthermore, the flow could of course be different for particles
with different transverse momenta pT and will obviously vary depending on the centrality of
the collision. Finally, the asymmetry in momentum distribution is of course caused by the
pressure gradients caused by the initial spatial asymmetry when nuclei collide, see i.e. Figure
2 in [11].

Measuring the different flow harmonics turns out to be important in order to describe
the properties of the QGP medium. Since it is a medium, it is expected to have collective
properties, and one such property would be the collective flow which is a process which the
entire medium undergoes. Using a quantitative description of the quark-gluon plasma allows
for a comparison to be made to the properties of the idealised perfect fluid, see chapter 2 of
[3].

One property of the QGP which relates to it being a perfect fluid is the ratio of the so
called shear viscosity to the entropy density, which has previously been found to be very
close to the theoretical quantum mechanical lower limit [12]. Furthermore, the expansion of
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the QGP as it begins to cool down almost entirely happens as relativistic hydrodynamics
would predict. Additionally, it is also known that initial fluctuations are visible throughout
the entire expansion (which turns out to be the origin of v3 being non-zero). While statistical
processes involving i.e. diffusion would indicate that such initial fluctuations are not impor-
tant, this is not what has been observed previously. This may be taken as strong indication
that there are very strong internal correlations which govern the QGP. [11] [12].

Furthermore, the very small shear viscosity can be showed to be associated with a very
short mean free path. This relates back to the very strong correlations between particles in
the QGP. [12]. Finally, it is even possible to show that signals may propagate at the speed
of light through the QGP [11].

4.7 Theoretical Approach

The aim of this project is determine how particles flow out from the QGP in the φ-direction
while studying proton on proton collisions to account for non-flow effects arising from QCD
such as jets. If the reaction plane ΨRP was known, one could simply fit measured data to a
Fourier series

f(φ) = 1 +
∞∑
k=1

2vk cos(k(φ−ΨRP)), (3)

which gives how many particles flow out in each direction, and then determine the elliptic
flow v2 from it. One way to do this would be to fit the data to this function. Another
approach is to derive the formula〈

cos(k(ϕtracks −ΨRP))
〉
= vk, (4)

where the brackets denotes taking the expectation value. The notation has been changed from
φ to ϕ to denote that this expectation value is over the measured values of the angle φ and not
over an isotropic distribution of values. To understand why this equality holds, one should
first note that equation (3) must be linearly proportional to a probability density function
(PDF) of the distribution of particles ’flowing out’ from the QGP. Since the expectation value
is defined as

⟨x⟩ =
∑
i

pixi (5)

where xi are the measured values and pi the probability of measuring that value, it follows
that in the limit of an unlimited supply of particles flowing out,

〈
cos(k(ϕmeasured−ΨRP))

〉
∝
∑
i

(
dϕ f(ϕ)

)
cos(k(ϕ−Ψ))) =

∫ 2π

0

dϕf(ϕ) cos(k(ϕ−Ψ)) (6)

where subscripts on ϕ and Ψ have been dropped to clean up the notation. To restore a full
equality, the RHS simply needs to be divided by the proper normalisation factor for f(φ).
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Doing this, and using the orthogonality of the cosines, it is found that

〈
cos(k(ϕmeasured −ΨRP))

〉
=

∫ 2π

0
dϕf(ϕ) cos(k(ϕ−Ψ))∫ 2π

0
dϕf(ϕ)

(7)

=

∫ 2π

0
dϕ

(
1 +

∑∞
k=1 2vk cos(k(ϕ−Ψ))

)
cos(k(ϕ−Ψ))

∫ 2π

0
dϕ

(
1 +

∑∞
k=1 2vk cos(k(ϕ−Ψ))

) (8)

=
2vk
∫ 2π

0
dϕ cos2(k(ϕ−Ψ))

2π
. (9)

All terms with cosines have vanished in the denominator since since they all integrate to 0
over a full period (note that k is an integer). In the numerator, the orthogonality of cosines
has been used to set all terms but one to 0. To continue, the double angle formula for cosines
cos(2θ) = 2 cos2(θ)− 1 will be used in reverse to find

〈
cos(k(ϕmeasured −ΨRP))

〉
=

2vk
∫ 2π

0
dϕ cos2(k(ϕ−Ψ))

2π
(10)

=
vk
π

∫ 2π

0

dϕ

(
1

2
+

1

2
cos(2k(ϕ−Ψ))

)
(11)

=
vk
2π

∫ 2π

0

dϕ (1 + cos(2k(ϕ−Ψ))) (12)

=
vk
2π

∫ 2π

0

dϕ = vk. (13)

In the last step, it was once again used that cosine integrates to 0 over a whole period.
Unfortunately, the event plane is usually not known and hence there is no access to ΨRP.

To remedy this, so called two particle correlations may be used. Denoting the angles of the
tracks of the particles as ϕ2 and ϕ1, it follows that〈
cos(k(ϕ2 − ϕ1))

〉
=
〈
cos
(
k([(ϕ2 −ΨRP)− (ϕ1 −ΨRP]

)〉
(14)

=
〈
cos[k(ϕ2 −ΨRP)] cos[k(ϕ1 −ΨRP)] + sin[k(ϕ2 −ΨRP)] sin[k(ϕ1 −ΨRP)]

〉
.

(15)

Here, the subtraction formula for cosines has been used. Due to that the sine functions are
odd around ΨRP their expectation value will evaluate to 0 in an infinite limit of the number
of particles flowing out. In a case of lack of statistics, all the momentum could of course be
carried by a single particle in one direction and many in another. If it is further assumed
that ϕ2 and ϕ1 are independent from each other, it must be the case that〈

cos(k(ϕ2 − ϕ1)
〉
=
〈
cos[k(ϕ2 −ΨRP)] · cos[k(ϕ1 −ΨRP)]

〉
(16)

=
〈
cos[k(ϕ2 −ΨRP)]

〉〈
cos[k(ϕ1 −ΨRP)]

〉
(17)

= vk · vk = v2k. (18)

13



Conversely,

vk =
√〈

cos(k(ϕ2 − ϕ1)
〉

(19)

holds and in the special case of k = 2,

v2 =
√〈

cos(2(ϕ2 − ϕ1)
〉

(20)

where vk has been taken as a positive quantity. This result gives that it is not necessary to
compute ΨRP directly to know vk.

There is however one issue with simply computing v2 in this way and it relates to that the
assumption of independent ϕ2 and ϕ1 is spoiled by effects such as jet production. Previous
efforts to account for this has introduced arbitrary separations in values of η for which tracks
are used to calculate the difference in φ when computing the expectation value in the above
formula. See [13]. This to avoid including correlations between particles in the same jet,
although not necessarily correlations for back to back jets. [7].

While such previous efforts have been able to calculate v2 in many circumstances, the
significant reduction in available data to perform statistical computations on has led to that
v2 has not been investigated in more peripheral collisions with larger centralities. The ap-
proach of this project is to try to account for this by studying the flow in proton on proton
collisions (often abbreviated ’pp-collisions’), where there is no QGP, and accounting for that
’background’ of non-flow QCD effects.

To do this, it may be assumed that the particle distribution, or rather two particle dis-
tribution as a function of ∆φ = φ2 − φ1, is on the form

dNPb

d∆φ
= a · dN

p

d∆φ
+ b ·

(
1 +

∞∑
k=1

2vk cos(k(∆φ))

)
. (21)

Here, dNPb is the (presumably small) number of particles that are associated with the angular
difference ∆φ in the lead on lead collision (often abbreviated Pb-Pb collision). A similar
interpretation holds for the first term on the right hand side (RHS) where ’p’ stands for
’proton’. The motivation for writing the distribution on this form is that any periodic function
may be described by a Fourier series. This time, the motivation for excluding sine-functions
is that the difference −∆φ should be equally likely as ∆φ as it is tantamount to changing
the labels on φ1 and φ2. The transformation ∆φ → −∆φ clearly has no effect on the cosine
functions since they are even, while the sine functions lead to a change of sign as they are odd.
Obviously, a physical observable cannot depend on how things are labelled. Note that the
vk here are not necessarily the same as the flow harmonics in equation (3). In this approach,
the QCD ’background effects’ are assumed to simply be scaled up linearly in larger collisions.
A fit may be performed with the help of a computer program to find the various parameters
in equation (21).

It is now necessary to relate the vk to the vk. This time, let

F (φ2, φ1) = 1 +
∞∑
k=1

2vk cos(k(∆φ)). (22)
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By analogous steps to the derivation of equation (20), it follows that

〈
cos(k∆ϕ)

〉
=

∫ 2π

0

∫ 2π

0
dϕ1dϕ2 F (ϕ1, ϕ2) cos(k∆ϕ)∫ 2π

0

∫ 2π

0
dϕ1dϕ2 F (ϕ1, ϕ2)

= ... = (23)

= 2vk

∫ 2π

0

∫ 2π

0
dϕ1dϕ2

(
1

2
+

1

2
cos(2k∆ϕ)

))
4π2

(24)

= 2vk
2π2

4π2
= vk. (25)

Now, by equation (16), it holds that

vk =
〈
cos[k(ϕ2 − ϕ1)]

〉
(26)

=
〈
cos[k(φ2 −ΨRP)]

〉〈
cos[k(φ1 −ΨRP)]

〉
(27)

= vk · vk. (28)

Hence,
v2 = v2 · v2. (29)

It should be kept in mind that this was derived under an assumption of only flow with no
things such as jets to correlate φ2 and φ1 other than the flow. However, as v2 is not actually
calculated from an expectation value so this is not a problem. It is instead calculated from
a fit to equation (21), which compensates for the non-flow effects.

4.8 The Purpose of the Forward Multiplicity Detectors

In order to increase the amount of available statistics, data may be taken from both the TPC
and the FMD:s. Furthermore, correlating particles in the TPC and FMD:s may help reduce
the probability of including intra-jet particle correlations in the data due to the different
regions of η covered by the respective detectors. This is easily realised using equation (29)
and its derivation. If two particle correlations are made with all different combinations of
the TPC and FMD:s, it may be found that

vTPC-FMDA
2 =

〈
cos[k(ϕTPC −ΨRP)]

〉〈
cos[k(ϕFMDA −ΨRP)]

〉
= vTPC

2 · vFMDA
2 , (30)

vTPC-FMDC
2 = vTPC

2 · vFMDC
2 , (31)

and
vFMDA-FMDC
2 = vFMDA

2 · vFMDC
2 . (32)

This is realised numerically by only taking difference between angles in the respective detec-
tors when computing the distribution terms in equation (21). In order to compare with other
measurements which may only involve the TPC, the value of vTPC

2 may be calculated to be

vTPC
2 =

√
vTPC-FMDA
2 · vTPC-FMDC

2

vFMDA-FMDC
2

. (33)
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Please note that the idea of measuring v2 in this way is not my own but was given to me by
my supervisor Vytautas Vislavicius.

A possible motivation for separately denoting a flow harmonic to belong to a specific
detector is that the measured flow could differ for the different values of η which the detectors
cover.

4.9 Event Mixing

One important aspect to consider with the FMD:s is their finite spatial resolution. This leads

to that data is naturally ’histogrammed’. When calculating
dNPb

d∆φ
numerically, this will lead

to that some differences are more likely to be obtained than others on a combinatorial basis.
To make this clearer, imagine calculating ∆φ when both angles are taken from the same
histogram. Let the histogram be over [0, 2π) with a bin width of w. Clearly, there are many
way to achieve the smallest possible value of ∆φ, which in this case is w, by picking any
neighbouring bins. On the contrary, there is only one way to achieve the maximum separation
of ∆φ ≈ 2π − 0 = 2π by combining the maximum and minimum bins’ values. This effect
leads to a bias with a preference to give higher ’counts’ for some bin differences over others,
and, even if the actual physical origin of the signal was completely isotropic, a stronger signal
would still be observed for some ∆φ than others. Although in the case studied here, only the
FMD:s have this issue of ’histogrammed data’, it is still clear that this effect will be present
anyhow. This combinatorial effect will also result in an uneven contribution from parts of
the detectors with different ∆η-values, which would lead to an unequal weighting of data.

This problem is commonly, as well as here, handled by event mixing. The procedure

begins by first calculating the distribution
dNPb

d∆φ d∆η
(which is essentially a two-dimensional

histogram) as one would expect for all different events. Then, the same quantity may be
calculated when i.e. φ2 and η2 are taken from one event and φ1 and η1 are taken from
another such that the quantities are taken from different events. Note that it is necessary to
perform this event-mixing on a per centrality interval basis to ensure that the events which
are being mixed are comparable. If the total signal is computed from contributions from
many unrelated events, the distribution of ∆φ and ∆η would be expected to be isotropic
on average since there should be no physical signal present. This distribution may then, up
to some normalisation factor, be interpreted as a probability density function for yielding
an extra entry or ’count’ in one bin even if the values of ∆φ and ∆η are random or taken
from isotropic data. By dividing the intra-event correlations by a normalised event-mixing
’background’, the combinatorial effects may be accounted for and ’unbiased’ data may be
acquired.

An added benefit of event mixing is that it takes into account other non-combinatorial
effects such as detector (in)efficiencies because it gives what an isotropic distribution would
result in. When dividing by this result, things like effector efficiencies are of course also
taken into account by the ’probability density function’. Furthermore, since the elliptic flow
is often given as a function of both transverse momentum pT and the centrality, event mixing
may be performed on a per momentum interval and per centrality interval basis. This may
be necessary as detector efficiencies may also vary depending on particle momenta.

16



4.10 Statistical Uncertainties

Once the event mixing has been performed, the next step is to return to the form of
dNPb

d∆φ
as it is necessary when performing the fit to the model in equation (21). While this may
of course be done by simply projecting the two-dimensional histogram to a one-dimensional
one, this does not properly account for the uncertainties. If the errors in measurements are
statistical in nature, a measurement of N counts is accompanied by an absolute uncertainty of
δN =

√
N and a fractional uncertainty of δN/N = 1/

√
N . If values corresponding to a given

∆η have a much smaller number of counts than others, the fractional statistical uncertainty
is greater and that bin should presumably be weighted to a lesser extent than bins with
smaller fractional uncertainties. To account for this, the formula for weighted averages

xweighted average =

∑
i wixi∑
i wi

(34)

where wi = 1/σ2
i . Here, xi are the measured values and σi their fractional statistical uncer-

tainties. The fractional uncertainty of the weighted average is given by

σweighted average =
1√∑
i wi

. (35)

See Chapter 7 of [14] for a derivation.
Unfortunately, it is not as simple as simply plugging in 1/

√
Ni as the uncertainties. This

is due to the fact that the statistical uncertainty in the event mixing also has to be accounted
for, even if it could reasonably be assumed to be somewhat negligible due to there being more
ways to mix angles in different events than to do intra-event correlations. If there are Ni

counts in the ’raw’ signal and Mi counts in the event mixing, the value Ri ≡ Ni/Mi has its
uncertainty given by the proper error propagation on the form

δRi

Ri

=

√(
δNi

Ni

)2

+

(
δMi

Mi

)2

(36)

=

√
1

Ni

+
1

Mi

. (37)

See chapter 3 of [14]. This is then what serves as the values of σi. Note that this averaging has

to take place for each row in the two-dimensional ’histogram’
dNPb

d∆φ d∆η
when the projection

to the one-dimensional ’histogram’
dNPb

d∆φ
is performed.

Earlier, it was mentioned that the event mixing should be normalised. However, for the
purposes of this report, it does not actually matter if the event mixing is normalised or scaled
with any specific factor. The motivation for this being the case, as long as the uncertainties
are properly propagated, is that when the fitting is done with respect to equation (21),
there will be a degree of freedom in the scaling anyhow. Furthermore, this even introduces
the freedom to scale the data by any factor at all, granted again that error propagation is
properly performed to account for the scaling. Anyhow, the approach used here will be to
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simply divide the entire event mixing by its maximum value such that the new maximum
value is 1. This ensures that the order of magnitude stays roughly the same for the ’raw’
histogram before and after the division.

This scaling may be desirable specifically for keeping the order of magnitude of the original
data. If the scale is kept, then the data from both the proton-proton data and the lead on
lead data may be divided by the number of tracks in the respective detectors to achieve a
sort of normalisation w.r.t the number of tracks used to calculate the signal. Since this takes
care of event mixing and accounts for the number of particles, and hence tracks, produced
in the collision, the data sets should be roughly the same order of magnitude. This could
help alleviate numerical instabilities when equation (21) is used in a fitting algorithm. It
is important to keep in mind that error propagation must be performed if the event-mixing
values in equation (36) have been changed by i.e. scaling them up or down by a constant
factor.

Once the fit according to equation (21) has been done, it is of course of interest to know
the uncertainty of the final values of v2 (and hence also vTPC

2 through error propagation).

Since the uncertainty δRi is known for every ’bin’ in the ’histogram’
dNPb

d∆φ
, one could perform

multiple fits do the data where each entry in the histogram has its value randomly changed
according to a Gaussian distribution centred on Ri with a standard deviation of δRi. The
motivation for this is that the measured value has some deviation from the ’true’ value it
would have had in the case of infinite statistics. The deviation would then be given by
a normal distribution. This random variation would of course be performed in both the
proton on proton data and lead on lead data. From these various different fits, the mean and
uncertainty could then be calculated according to

x̄ =
1

#Measurements

∑
i

xi (38)

and

δx̄ =

√
1

#Measurements

∑
i

(xi − x̄)2. (39)

Here, xi are the measured values, x̄ the mean value and ’#’ should be read as ’number of’.

5 Method
To be able to calculate the flow in lead-lead collisions, data taken in 2015 from the ALICE
detector at CERN with a centre of momentum energy of

√
sNN = 5.02 TeV was used for both

lead on lead collisions and proton on proton collisions. In order to calculate the flow signals,
the program ROOT on version 6.26, see [15], was used in conjunction with the programming
language C++ to create many different two-dimensional histograms to hold data for various
values of transverse momentum and various events of differing centralities. The used intervals
for centralities were: 50% up to but not including 60%, 60% - 65%, 65% -70%, 70% - 75%,
75% -80%, 80% - 85% and 85% to 90% and the used intervals for the transverse momentum
were, given in GeV, 0.2 up to but not including 0.5 GeV, 0.5 - 1.0, 1.0 - 1.5, 1.5 - 2.0, 2.0 -
2.5, 2.5 - 3.0, 3.0 - 3.5, 3.5 - 4.0, 4.0 - 5.0 and 5.0 - 6.0 GeV. The data used was stored in
files created by ROOT using the ’TFile’ class and stored with the help of the ’TTree’ class
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which had the structure as shown in Figure 7. Differences in values of the coordinates φ and
η as defined in section 4.4 were then calculated for all measured tracks in different detectors
assuming that they belonged to the intervals of η ∈ [−0.75, 0.75] for the TPC or any of the
intervals [−3.1,−2], [2.5, 3.1] or [3.8, 4.7] in η for the FMD:s. The combinations of detectors
used was the combinations of the TPC and the FMD with positive values of η, FMD1, the
TPC and the FMD with negative values of η, FMD2, and the two FMD:s with differing signs
of η. The values were always taken such that the first mentioned detector in the previous
sentence had its value taken as the minuend and the latter had its value taken as the sub-
trahend. Depending on the centrality of the event, the differences were stored in different
aforementioned histograms. Since values of transverse momentum were only available for
tracks measured in the TPC, only combinations which included TPC-tracks were stored in
separate histograms on a transverse momentum basis.

Following this, differences were calculated in the same way as previously described but
with the tracks serving as minuend being taken from one event and the tracks serving as
subtrahend being taken from another event. Such differences between previous events were
calculated with five previous events for a given event and the results were stored in separate
histograms such that the results could be used as event-mixing. All bins in the event-mixing
histograms were then divided by the value of the ’bin’ with the maximum number of ’counts’
in their corresponding histograms. After these calculations had been performed, the his-
tograms with the intra-event differences were divided on a per bin basis with their rescaled
event-mixing counterparts. Values with 0 entries were ignored throughout this process to
avoid dividing by 0. Throughout all of these scalings and divisions, uncertainties were prop-
agated as described in the section 4.10.

In order to regain data usable when performing a fit according to equation (21), the his-
tograms were projected into one-dimensional histograms with the help of equation (34). The
corresponding uncertainty of each bin was also calculated.

Once all of the above had been done for the lead on lead collisions, this entire procedure
was then repeated for the data containing the proton-proton collisions such that a fit accord-
ing to equation (21) could be performed. The fit was then performed using the ’Fit()’ member
function of the ROOT class ’TH1D’ using the Minuit2 fitter. Only the terms corresponding
to the second and third flow harmonic in the summation sign in equation (21) were used
in the fit. The fits were then performed multiple times when the values of the histograms’
bins had been varied randomly, using the class ’TRandom2’ with the seed ’1’, according to a
normal distribution centred on each bins value with a standard deviation equal to each bin’s
previously calculated uncertainty. These different fit results were then used to calculate a
mean value and an uncertainty for v2. Equation (33) was then used to calculate the value of
vTPC
2 and uncertainties were propagated. Finally, data which showed clear signs of not being
correct was rejected from being used in the results. After the values had been calculated the
computer code used was made available in Annex 1.

6 Results
It was possible to determine the values of vTPC

2 for centralities between 50% and 80% for the
various values of pT between 0.2 GeV up to 6 GeV. Beyond the centrality of 80%, the fits did
not converge and the data began to visually deviate strongly from the form of other values.
For the values that did converge, the values were roughly in-between the region of 0.05 to
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Figure 7: Shows an overview of the ’tree’ in the program ROOT containing the
measured values. For each ’branch’ of the type ’Event’, an array of various tracks of
the type ’TPCTracks’ and ’FMDTracks’ was available containing the data. ’fPt’ is
the the transverse momentum and ’fCent’ is the centrality of an event. ’fPhi’, ’fEta’
and ’fMult’ stand for φ-values, η-values and multiplicity respectively.

0.35, see Figure 8a through Figure 8e. See Figure 14 for an example of when the data begins
to visually deviate a lot. See Appendix 1 for a table with the calculated values of v2.

The various plots for different values of transverse momentum pT and centralities in lead
on lead collisions showed, in general, a signal which closely resembled that of the term corre-
sponding to v2. For higher values of pT , the measured corresponding proton on proton colli-
sion background began to show through more and more as expected. What is shown in Figure
9 and Figure 22 show qualitatively what both TPC-FMD1, TPC-FMD2 and FMD1-FMD2
correlations showed for low pT -values. Figure 11 and Figure 15 show what, qualitatively, is
measured in the signal from TPC-FMD1 and TPC-FMD2 correlations, with the peak at π
growing more and more dominant for larger and larger values of pT . Figure 10 and Figure
16 show the former cases of Figure 9 and Figure 15 but zoomed out such that the vertical
axis starts at 0. Examples of proton-proton collision backgrounds are shown in Figure 13
and Figure 18.

The results for the FMD1-FMD2 correlations showed the same flow signal in lead-lead
collisions as the other two cases for low values of pT . However, the proton-proton background,
which became larger and larger for higher centralities, was centred around 0 instead of π.
See Figure 22 and Figure 19 for examples of the lead-lead signal beginning to resemble the
proton-proton background as the centrality increases. See Figure 20 for the proton-proton
background in the FMD1-FMD2 correlations.

Figure 12, Figure 17 and Figure 21 show examples of the lead-lead signal from other
aforementioned figures having had the proton-proton background, scaled according to the
constant found in the fit to equation (21), subtracted off. Finally, the amount of data which
was processed in the end was roughly 147 GB of the lead-lead data and roughly 200 GB of
proton-proton data. While the number of tracks varied from event to event, a rough estimate
was that 73 MB corresponded to roughly 8842 events.
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Figure 8: Shows measured values of v2 for various regions of transverse momentum pT . Each
figure shows its own centrality interval and the given intervals are up to but not including
the listed numbers.
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Figure 9: Shows an example of
a fit for TPC-FMD1 data with
a pT -value in the interval 1.0 to
1.5 GeV and a centrality of 50%
- 60% to equation (21) zoomed
in to the top of the graph.
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Figure 10: Shows the same
data as in Figure 9 but zoomed
out to make the proton-proton
’background’ visible.
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Figure 11:Shows an example of
a fit for TPC-FMD1 data with
pT -value in the interval 0.2 to
0.5 GeV and a centrality of 75%
- 80% to equation (21) zoomed
in to the top of the graph.
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Figure 12: Shows the same
data as in Figure 11 but with
the proton-proton background
scaled by the fit result of equa-
tion (21) subtracted off both
the data and the red and or-
ange fit lines.
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Figure 13: Shows an exam-
ple of a proton-proton back-
ground for the pT interval 2.0
to 2.5 GeV
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Figure 14: Shows an exam-
ple of when the measured
data begins to deviate a lot
from other measurements for
large centralities. This is
for the pT -interval 2.0 to 2.5
GeV and the centrality inter-
val 85% to 90%.

0 1 2 3 4 5 6
ϕ ∆

8.3

8.35

8.4

8.45

8.5

8.55

8.6

S
ca

le
d 

C
ou

nt
s

Shows the Measured Signal and the Fit (TPC-FMD2)

Measured Data
Full Fit

Only Elliptic Flow
pp Background +

pp Background

Shows the Measured Signal and the Fit (TPC-FMD2)

Figure 15: Shows an example
of a fit for TPC-FMD2 data
with pT -value in the interval
3.0 to 3.5 GeV and a central-
ity of 65% - 70% to equation
(21) zoomed in to the top of
the graph.
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Figure 16: Shows the
same data as in Figure 15
but zoomed out to make
the proton-proton ’back-
ground’ visible.
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Figure 17: Shows the
same data as in Figure
15 but with the proton-
proton background scaled
by the fit result of equa-
tion (21) subtracted off
both the data and the red
and orange fit lines.
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Figure 18: Shows an example
of a proton-proton background
for the pT interval 5.0 to 6.0
GeV.
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Figure 19: Shows an example
of FMD1-FMD2 correlations in
the centrality interval 65% to
70%.

0 1 2 3 4 5 6
ϕ ∆

2.9

2.92

2.94

2.96

2.98

3

3.02

S
ca

le
d 

C
ou

nt
s

Shows FMD1-FMD2 CorrelationsShows FMD1-FMD2 Correlations

Figure 20: Shows the proton-
proton background for the
FMD1-FMD2 correlations.
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Figure 21: Shows the same data as in Fig-
ure 19 but with the proton-proton background
scaled by the fit result of equation (21) sub-
tracted off.
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Figure 22: Shows an example of FMD1-FMD2
correlations in the centrality interval 50% to
60%.

7 Discussion
It may be concluded that it was possible to measure v2 in high centrality regions of data. The
data in Figure 8 seems to show a somewhat distorted parabola in terms of the measured val-
ues with a peak in elliptic flow between 2 GeV and 3 GeV. If Figures 9, 11 and 13 are viewed
(or Figure 15 and Figure 18 for that matter), it is clear that the non-flow effects present
in proton on proton collisions begin to assert themselves for higher centralities and higher
values of pT . From Figure 12, Figure 17 and Figure 21 it is also clear that these non-flow
effects correspond very well to the scaled up proton on proton background as the subtraction
performed in those figures returns the original shape. Furthermore, since all of these figures
show both the data and the fit lines having had the proton on proton background subtracted
off, and since these fits are clearly continuous, this clearly indicates that the ’kinks’ in the fits
of the original figures are solely caused by the discrete steps of the proton on proton back-
ground included in the fits of the original figures. The growing peak around π is of course
expected as the particles in jets tend to be very energetic and hence have a high transverse
momentum, while a higher centrality of course means that fewer nucleons actually interact to
generate flow. This also seems to indicate that the assumption that the non-flow effects from
QCD scaling up linearly in equation (21) was valid. Furthermore, if the data from Figure
8 is compared to previous results, such as Figure 5 in [13], it is clear that the somewhat
stretched out parabolic shape agrees with previous measurements. Furthermore, the order
of magnitude also seems to be similar. However, due the larger intervals of pT used in the
calculations of Figure 8 in this report, some results may not be directly comparable.

As for the fitting itself, this seems to work fairly well as seen in Figure 9, Figure 11, Figure
15, Figure 19 and Figure 22. One aspect of these fits is that only the terms corresponding to
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v2 and v3 were used in the fit according to equation (21). While this might in theory provide
a lesser quality fit as the contribution for higher order terms are neglected, it is clear from
Figure 9, Figure 11, Figure 15, Figure 19 and Figure 22 when looking at the orange line and
the red line that almost all of the contribution comes from the term corresponding to v2.
This clearly means that any such effects would be small. While this could of course easily be
solved by including more terms, this would come with its own set of issues. Primarily, the
issue with using a complete Fourier series is that any measured signal, even one with no v2
signal at all, would give a very good fit since any reasonable periodic physical signal may be
represented in this way. If only the first few terms are used and there is not much of v2 in the
signal, this will quickly become apparent in the vertical error bars of Figure 8 as the random
small changes in v2 could cause, at least in terms of percentages, a very large difference in
v2. It would hence become apparent immediately if the fit was bad this way. Furthermore,
using too many free parameters might cause numerical instabilities when performing the fit.

Clearly, some of the fitting results failed for higher centralities. This was likely caused
by a lack of data. The results of i.e. Figure 14 were common during testing of the code
when only small data samples were used to get quick results. It was quickly apparent during
this testing that a very large data sample was necessary to actually see the signal. While
the small error bars in Figure 14 may seem to dispute this, that does not have to be the
case. It was clear throughout testing that the actual signal as seen in i.e. Figure 9, Figure
11, Figure 15, Figure 19 and Figure 22 were tiny fluctuations added onto the background
which consisted combinatorial effects which event mixing took care of later on. Clearly, if
the number of tracks in a given event are few, the available statistics for the event mixing
to ’do mixing on’ by combining tracks becomes small. On the other hand, the raw signal
would not necessarily suffer from a lack of statistics due to the many events. If this is indeed
the cause, a solution for this would had been to have done event mixing with more previous
events for events with higher centralities and larger values of pT .

Another apparent strange thing is the result of the proton on proton background in Fig-
ure 20. Obviously, one would expect a peak at π and not around 0. While this could be
considered an error in the data processing, this does not necessarily have to be so. Since the
data for low centralities in the FMD1-FMD2 correlations looked qualitatively as Figure 9,
which may be seen from Figure 22, and then begins to have the shape of Figure 20 imposed
on the data for higher centralities (as seen in Figure 19), this clearly shows that it is not
the case that this signal is present only in the proton on proton background. Furthermore,
since it runs on the exact same code and manages to produce the expected output for the
lower centrality events, this also suggest that the error might not be with the code. One
possible physical explanation for the origin of this signal could be related to the geometry. If
the surface area of the cone of a jet is much larger than the surface area of an FMD, only a
small fraction of the particles in a jet might be detected. Hence, only the particles with the
very highest values of η would contribute and the back to back jets would definitely have a
correlation. Another possible explanation is the much fewer available tracks in the FMD:s,
which as discussed earlier, could result in a problem with accounting for combinatorial effects
in the event mixing. A valid solution would then be to increase the number of previous events
that event mixing is performed for when doing event mixing for FMD1-FMD2 correlations.
This would also explain why the peak is around 0 as discussed in the section 4.9.

One observation that may be made from Figure 19 and Figure 22 is that the fit lines are
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slightly shifted to the right compared to the experimental data. Since the elliptic flow is even
around π, the fits according to terms of equation (21) are of course centred around π and
the experimental data is hence centred on a value which by eye seems to be closer to 3. A
likely reason for this is due to the binning. As may be seen in the mentioned figures, there
are clearly 20 bins present over the interval of [0, 2π). These bins were chosen due to the
FMD:s having 20 discrete φ-values available. This places the edge between the two central
bins right at π. Since the values of the TPC are continuous, this would of course not cause
any problems for the TPC-FMD1 and TPC-FMD2 correlations since the fluctuations around
π would average out due to the continuous nature. For the FMD1-FMD2 correlations, this
might not happen as easily as both of the chosen angles would belong to a discrete set of
values. This would then explain why the data is shifted slightly. A possible way to resolve
this issue is to simply shift the interval the data is plotted over with some value δ such that
the interval becomes [0 + δ, 2π + δ). Doing this would cause values of π to fall distinctively
into one bin and not occur between the edges of two bins.

Additionally, it should be mentioned that some data was rejected during the data process-
ing. While inspecting the results, it was clear that one data set for the proton on proton data
showed an asymmetric result which could be discarded on the grounds of momentum conser-
vation. Data sets with different cutting options for the same events were then investigated
and the data set which corresponded to the previously asymmetric one showed exactly the
same asymmetry, while the others did not. On these grounds it was assumed that something
about that actual data set was not correct and the judgement was made to reject this data.

In conclusion, it may be stated that it was possible to investigate very peripheral high
centrality events and determine the elliptic flow using the approach of this project and the
proton on proton background definitely seemed to be superimposed on the flow signal.

8 Outlook
While the results were definitely enough to comply with the set out goal, there are still many
improvements which can be made. One such improvement would be the previously discussed
increase in number of previous events that event mixing was with in cases where there was
less available statistics. Another possible improvement would be to account for slight shifts
along the beam line of which collisions took place. Throughout this document, it has been
assumed that the collisions take place at exactly the centre of the detector. This does not
necessarily have to be the case. As the data for these shifts are available, see the ’leaf’
called ’fVz’ on the ’Event’ branch in Figure 7, a three-dimensional histogram could had been
used instead of a two-dimensional one to perform the event mixing to take this into account.
However, since some failures of results were previously discussed to likely be due to a lack of
statistics, this would of course come with the problem of reducing the amount of available
statistics. If more time had been available or if access to a super computer had been present,
the data could of course had been analysed in smaller pT intervals to make the data more
comparable to the results of Figure 5 in [13].

One possible improvement to solve the issue of lack of statistics for event mixing would be
to take an analytical approach to the combinatorial effects in the ’histogramming’. Clearly,
the combinatorial effects are a property that arise solely from the histograms’ binning and
not from the actual physical signal. If nested for-loops are used to loop through each entry
of histograms with one entry in every bin once, to then calculate the bin difference for every
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possible combination of bins, and one then adds the counts to an ’event-mixing’ histogram,
this combinatorial effect could be entirely accounted for. Even if the data from the TPC
is not histogrammed, data is always associated with uncertainty which could be used to
’histogram it’ (that is to say that a = 1.00 technically means that a ∈ [0.995, 1.005) ). This
would clearly only have to be performed once in total and not once per histogram. Since
event mixing takes a lot longer than the normal computation of the raw signal, this could
speed up the computation process considerably.

The reason for this not being done here is that it does not account for varying detector
efficiencies which may both vary in space, but also be different for particles with different
momenta. The detector efficiencies could also possibly degrade over time depending on the
materials used in the detector. However, if more intricate knowledge of the detector had
been reasonable to gain during an allotted time span, these effects could also had been
accounted for. Even if the ’efficiency bias’ had to be updated for subsequent series of runs of
the detector to account for material degradation, it would still not need to be done for every
possible combination of track and would hence save a lot of computation time. Unfortunately,
calculating what φ- and η-values would be expected from an isotropic signal would require
taking into account more specific knowledge of the geometry of the detector. Since the event-
mixing is what takes the most time, and would also go up to O(n3) if ’fVz’ was accounted
for, this could certainly allow for the processing of more statistics much faster.
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Appendix A - Table of v2-values

Table 1: Shows the measured values of v2 for various intervals of centralities and
transverse momenta pT as well as the calculated uncertainties.

pT Interval 50%− 60% Centrality 60%− 65% Centrality 65%− 70% Centrality 70%− 75% Centrality 75%− 80% Centrality
0.2− 0.5 GeV 0.0585892± 8.58332 · 10−5 0.0602192± 0.000178192 0.0615192± 0.000334362 0.0638396± 0.000723565 0.0752155± 0.00311788
0.5− 1.0 GeV 0.119427± 9.12242 · 10−5 0.123888± 0.000242741 0.128965± 0.000364806 0.136237± 0.000876439 0.163877± 0.00424407
1.0− 1.5 GeV 0.180332± 8.12503 · 10−5 0.186034± 0.000266943 0.192378± 0.000403626 0.206436± 0.00076728 0.244768± 0.00445663
1.5− 2.0 GeV 0.219028± 0.000145249 0.221148± 0.000455179 0.224766± 0.000494497 0.23569± 0.00135693 0.287422± 0.00681581
2.0− 2.5 GeV 0.239767± 0.000135129 0.237619± 0.000454429 0.23873± 0.000988537 0.245897± 0.00199781 0.316659± 0.00867926
2.5− 3.0 GeV 0.244124± 0.000256812 0.238956± 0.0011189 0.229517± 0.00251999 0.254247± 0.00244792 0.290783± 0.0108699
3.0− 3.5 GeV 0.237355± 0.000311634 0.224298± 0.00132156 0.218454± 0.00131625 0.234942± 0.00217096 0.326668± 0.0108408
3.5− 4.0 GeV 0.219884± 0.000603763 0.205042± 0.00206822 0.194516± 0.00299939 0.205129± 0.00655752 0.265119± 0.0145923
4.0− 5.0 GeV 0.193574± 0.000663706 0.173905± 0.00240071 0.17642± 0.0027742 0.154459± 0.00486404 0.225625± 0.016656
5.0− 6.0 GeV 0.161361± 0.00124006 0.156688± 0.0031197 0.154756± 0.00555929 0.129918± 0.0102898 0.0462025± 0.0287235
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