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Abstract
The current paper aims to explore the psychometric properties of two public domain cognitive
ability scales, Cogl5 and ICAR16, and investigate how well they each capture the g-factor in a
Swedish sample (N = 428). The motivation for choosing these aims is that public domain, free,
and easily accessible intelligence tests are needed for measuring the g-factor. Principal
components analysis (PCA), confirmatory factor analysis (CFA) with maximum likelihood
estimation, and reliability analyses returned results that indicated that ICAR16 is the better tool
when measuring the g-factor, since it explained more of the variance (28.3%) and returned better
reliability measures (Cronbach’s a = .77, McDonald’s ® = .77). We recommend omitting some
of the items from the Cogl5 and the ICAR16 scales. Future researchers should replicate the
preliminary findings of this study on larger and more diverse samples to further understand the
tests at hand, since Cogl5 has yet to be researched as of now and ICAR16 is still under-
researched.
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History of Intelligence Tests

Despite the popularity and rigorous testing of intelligence tests (SB5, WISC-1V, WAIS-
IV, etc.), they can be costly to take, ranging from $200 to $700, which limits their accessibility to
most individuals (Bainbridge, 2020). This contributes to why the aim of this research is to assess
the structural validity of the Cogl5 and ICARI16 scales, two publicly available cognitive abilities
tests. While the ICAR16 has been tested for its psychometric properties a few times, the Cogl5
has not yet been validated as an effective measure of cognitive abilities (Kajonius, 2014).

Intelligence has been a topic of interest in research for several decades now (Colom et al.,
2010). Differences in human mental ability or intelligence are distinct, significant, and arguable
(Deary, 2001). The difficulty to define intelligence mainly stems from the challenge of defining
the underlying constructs of intelligence (Colom et al., 2010). The most robust definition offered
to date is that intelligence is hierarchical in nature and that there is a general factor of
intelligence that is at the top of the hierarchy and encompasses more specific facets of
intelligence, which is measured with 1Q tests (Brody, 1999; Colom et al., 2010). The traditional
measure of intelligence produces a single number that compares the results of a group of people
who are the same age on a battery of subtests meant to measure various intellectual abilities
(Brody, 1999). Over the past century, psychologists have developed and validated a variety of
standardized tests aiming to measure intelligence (Colom et al., 2010). Some of the first and
most widely used intelligence tests were the Stanford-Binet Intelligence Scale and the Wechsler
Intelligence Scales (Lassiter et al., 2001; Silverman et al., 2010).

According to a review conducted by Bain and Allin (2005), the Stanford-Binet
Intelligence Scale (SB5) is a test to measure cognitive abilities and intelligence for people across
different age groups. It contains five factors across the verbal and non-verbal domains of the test,
which are fluid reasoning, knowledge, quantitative reasoning, visual-spatial processing, and
working memory (Bain & Allin, 2005). Evidence has particularly shown that the SB5 is a strong
measure of general intelligence, namely in children and adolescents using a single factor,
therefore, it is recommended that the scores are interpreted as overall IQ scores (Canivez, 2008).
The SB5 can also be used as a diagnostic tool for potential cognitive or developmental delays in
young children (Bain & Allin, 2005). The SBS5 takes generally less time (15 — 75 minutes) to
administer compared to previous versions of the Stanford-Binet intelligence test, and it is

considerably easier to administer to different age groups (Bain & Allin, 2005).



Additionally, the Wechsler Intelligence Scale for Children (WISC) was published as an
extension of the original Wechsler-Bellevue Intelligence Scale (Seashore et al., 1949). However,
it is a distinct and independently standardized intelligence measure (Seashore et al., 1949). The
original WISC contains 12 tests which are divided into two groups; Verbal and Performance
(Seashore et al., 1949). The latest revision of the scale, WISC-IV contains 10 core subtests that
are organized into the following four indexes; verbal comprehension, perceptual reasoning,
working memory, and processing speed (Kaufman et al., 2006). The WISC-IV places less
emphasis on timed tasks, compared to other intelligence tests, the only sections of the WISC-IV
which have time limits are those that aim to measure speed (Kaufman et al., 2006). The WISC-
I'V has robust psychometric properties, with outstanding construct validity; it provides good
measurements of both theory-based and research-based constructs of fluid intelligence (Gf) as
well as working memory (Kaufman et al., 2000).

Finally, in an article done by Lassiter et al. (2001), the Wechsler Adult Intelligence Scale
(WAIS) was named one of the most commonly used intelligence tests administered to adults.
The WAIS-IV includes 15 subtests in total; 10 core subtests and 5 supplemental subtests (Gignac
& Watkins, 2013). These subtests were designed to measure four inter-correlated factors,
including Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing
Speed, and considering they are inter-correlated, they form a total scale score (FSIQ) (Gignac &
Watkins, 2013). The WAIS also presents strong psychometric properties, including high internal

consistency reliability (Lassiter et al., 2001).

The General Factor (g-Factor)

The previously mentioned intelligence tests aim to measure general global intelligence
(Bain & Allin, 2005; Canivez, 2008; Gignac & Watkins, 2013; Kaufman et al., 2006; Lassiter et
al., 2001; Seashore et al., 1949). Intelligence is composed of over sixty cognitive abilities, but in
the early 20th century, the English psychologist, Charles Spearman was the first to introduce the
general factor (g-factor or g), which combines all cognitive ability factors into one factor
(Carroll, 1993; Spearman, 1904). Spearman conducted experiments to determine if certain
cognitive abilities are inter-correlated, using a sample of school children from a small village
(Carroll, 1993). Tests of verbal and spatial skills as well as other aptitudes were conducted

(Spearman, 1904). Factor analysis further confirmed that the general factor of intelligence, the g-



factor, could account for the empirically observed positive correlations between various
cognitive tests (Kovacs & Conway, 2016). Spearman (1904) recognized that there was a chance
the general factor might not be able to fully account for the variation in mental ability tests. His
method of removing variables from correlation matrices that produce nonvanishing tetrad
differences led to the discovery of tests that measure abilities beyond general factors (Spearman,
1904).

Spearman’s g-factor has faced some criticism, there among from the American
psychologist Louis Leon Thurstone, who put forth a rival model made up of a number of
unrelated group factors that represented a set of "Primary Mental Abilities" (Thurstone, 1938;
Kovacs & Conway, 2016). Thurstone’s model contains seven different factors; word fluency,
verbal comprehension, spatial visualization, number facility, associative memory, reasoning, and
perceptual speed (Thurstone, 1938). Though Thurstone challenged Spearman, his original model
was also put to the test, the notion of orthogonal factors proved to be unsupportable, and their
correlations needed to be explained by a higher order general factor (Carroll, 1993).

Spearman's work was the first of its kind, and even though it was not flawless, including
weak data and some calculation errors of the correlations, its importance to the research field of
human intelligence and cognitive abilities cannot be disputed (Carroll, 1993). The g-factor is
more highly correlated with various measures of learning, performance, and achievement than
any other factor or combination of factors derived from the factor analysis of a given set of tests
(Jensen, 1992). The g-factor normally accounts for about 40% or more of the variance in
cognitive ability tests that are measured in large samples (Deary et al., 2010). The stability of the
g-factor is evident across various factor analytic algorithms, test batteries, and populations (Bock
et al., 2000). All cognitive tests, despite the varying levels of informational content, display some
degree of the g-factor (Bock et al., 2000). This indicates that the g-factor cannot be attributed to
test content or psychological factors, but rather is an inherent property of the brain (Bock et al.,
2000). The g-factor has also been found to correlate with non-psychometric variables to a certain
extent (Bock et al., 2000). The g-factor was found to be correlated with genetic heritability of
intelligence test performance, brain size, and reaction time (Bock et al., 2000). The g-factor also
appeared to be linked to most cognitive functions that establish individual differences and affect
speed of information processing (Bock et al., 2000). De La Fuente et al. (2021) have further

confirmed that a genetic g-factor exists. Twin studies that have used multivariate methods to



examine genetic associations within cognitive test score variance suggest that there is strong
heritability for the g-factor (De La Fuente et al., 2021). The results indicate that some cognitive
traits are positively correlated due to having overlapped genetic makeups (De La Fuente et al.,

2021).

New Public Domain Intelligence Tests: Cogl5 and ICAR16

As previously mentioned, public domain tests are rare, as most intelligence tests are
usually costly to administer (Bainbridge, 2020). A newly developed cognitive ability test is the
Cogl5, a freely accessible, public domain intelligence test created using classical 1Q problems
(Kajonius, 2014). It is a 15-item, performance-based, cognitive ability test, and the questions
used have been adjusted from public material to measure four factors; numerical series, pattern
reasoning, spatial ability and verbal skills (Kajonius, 2014). The minimum score is zero while
the maximum score is 15 (Kajonius, 2014).

Another one of the few publicly available intelligence tests is the International Cognitive
Ability Resource (ICAR16), a scale developed to measure general cognitive abilities, and is
administered with no time limit (Condon & Revelle, 2014). The ICAR16, also named the ICAR
Sample Test, is a shortened subset of the original ICAR60 (Condon & Revelle, 2014). It includes
four item types, letter and number series, matrix reasoning, verbal reasoning, and 3D rotation
(Condon & Revelle, 2014). According to Condon and Revelle (2014), the letter and number
series items entail a sequence of numbers or letters and require the participants to identify the
next item in the sequence based on six proposed options. The matrix reasoning items include a
grid of nine geometric shapes with one of the shapes missing; the participants would need to
identify the correct shape that completes the grid from a choice of six different shapes (Condon
& Revelle, 2014). The verbal reasoning items entail general knowledge questions that aim to
assess logic and vocabulary skills (Condon & Revelle, 2014). The 3D rotation items display
different cube images and ask participants to choose which option is a potential rotation of the
stimulus at hand (Condon & Revelle, 2014).

A study conducted by Young and Keith (2020) examined the construct validity of the
ICARI16 and its relation to overall intelligence and cognitive abilities, by administering the test
to a sample of 97 university students. Confirmatory factor analyses were conducted on the data

obtained from the sample and results indicated that the [ICAR16 was the most highly correlated



with fluid reasoning and visual-spatial processing and was the least correlated with working
memory and processing speed (Young & Keith, 2020). From the subscales included in the
ICARI16, the letter-number series subscale best measured fluid reasoning, whereas the other three
subscales were better measures of visual-spatial processing (Young & Keith, 2020). However,
given the modest sample size, Keith and Young (2020) highlighted that the conclusions reached
within this study were preliminary and could be biased, and recommended replication of the
analyses on larger and more diverse samples. Another previous study of the [ICAR16 was
conducted on a Danish sample (Kirkegaard & Nordbjerg, 2015). A Danish translation of the
original scale was used to administer the questionnaire online (N = 72). This study revealed that
one general factor is present in the translated version of the ICAR16 (Kirkegaard & Nordbjerg,
2015). Additionally, the Cogl5 scale has a moderate correlation (r = .61) with the ICAR16 scale
(Kajonius, 2014).

Aim and Significance
There is a need for public domain, free to use and easily accessible intelligence tests to

measure the g-factor. Our study aims to assess the effectiveness of Cogl5 and ICAR16 as
measures of cognitive abilities. The Cog15 scale is yet to be validated for its psychometric
properties. On the other hand, the ICAR16 has been previously tested, but most of the structural
validity analyses were conducted on smaller sample sizes (Kirkegaard & Nordbjerg, 2015;
Young & Keith, 2020), and this study marks the first investigation of the ICAR16 scale in a
Swedish population. Hence, this paper aims to fill a gap in the literature by examining the
psychometric properties of two open-access intelligence tests and comparing them to determine

which test is more adept at measuring the g-factor.

Methods

Participants

The participants were individuals from Sweden interested in completing their cognitive
ability profile. Since the research was done in Sweden, Swedes were the most accessible sample
for data collection. The study used a cross-sectional research design, mainly because it is cost-

effective, with a lower dropout rate since people are only asked to participate one time (Taris et



al., 2021). All data was collected ahead of time and is pre-existing at the time of this research
being conducted. Participants were recruited through an open website link that was running for a
couple of years. Participants who did not complete 90% (i.e., 31 out of 34 items) or more of the
remaining sections of the survey were excluded from the study.

The final sample size was N = 428. Majority of the participants identified as female
(66%), while the rest identified as male (33%). There were three participants who did not
disclose their gender identity. The age of the participants ranged from 19 - 61 years old (M =
27.9, SD = 8.6), with 14 participants who did not disclose their ages.

Materials

The scale used in the data collection process was a combination of the Cogl5 and the
ICAR16 (see Appendix A). The survey included demographic questions, such as gender and age,
15 questions from the Cogl5, and the 16 ICAR Sample Test items. The Cogl5 has acceptable
reliability, with Cronbach’s o =.71 (Cronbach, 1951; Kajonius, 2014). The Cogl5 does not have
any previously reported omega coefficient. The ICAR16 has good reliability, with Cronbach’s o
= .81 and McDonald’s ® = .83 (Condon & Revellse, 2014; Cronbach, 1951; McDonald, 1999).
The items included in the scoring process were three rationality questions (3 points), the Cogl5
items (15 points), and the ICAR16 items (16 points), meaning the full score that could be
achieved on this test was 34 points, and the minimum was 0. More specifically, the Cogl5 scores

can range from 0 to 15 points, whereas the ICAR16 scores can range from 0 to 16 points.

Analysis

The dataset obtained from the test which was distributed was analyzed in the statistical
software Jamovi 2.3.21 (The jamovi project, 2022), IBM SPSS 29.0 (IBM Corp., 2022), and
AMOS 29.0 (Arbuckle, 2022).
Categorical Variables

All answers obtained from the Cogl5 and ICAR16 were recoded into 0 = incorrect
answer, and 1 = correct answer, making the data collected binary. A descriptive analysis was
performed on all the items of Cogl5 and ICAR16, examining their mean value (see Table 1).
Furthermore, histograms of the total score for each scale were computed (see Figures B1 and B2)

to better visualize the distribution of the scores across the sample. Finally, correlation tables for



the scales were also produced to see how the different variables inter-correlate (see Tables B1

and B2).

Principal Components Analysis (PCA)

For both Cogl5 and ICAR16, a principal components analysis (PCA) was conducted on
the first half of the sample (nPCA = 213), to assess which scale is better at capturing the g-factor.
The dataset was split in half as a way of avoiding redundant analyses. PCA is one of the most
commonly used multivariate statistical tools, across several different scientific disciplines (Abdi
& Williams, 2010). PCA aims to extract important information from a dataset, reduce the size of
the dataset, provide simple descriptions of the data, as well as analyze the structure of the
variables (Abdi & Williams, 2010). PCA typically analyzes data described by a group of
dependent variables, which are usually inter-correlated (Abdi & Williams, 2010). It attempts to
extract the most relevant information in the form of new orthogonal variables, also known as
principal components (Abdi & Williams, 2010).

However, to check that the datasets are suitable for factor analysis, some assumptions
need to be checked; included in the PCA will be two measures that ensure a factor analysis is
feasible. The adequacy of the sample is measured by Kaiser-Meyer-Olkin’s (KMO) measure,
which indicates whether factor analysis is suitable for the sample at hand (Kaiser, 1974). If the
value of KMO is larger than 0.5, then the sample is considered adequate to go through factor
analysis (Field, 2000). Additionally, Bartlett’s test of sphericity measures the strength of the
relationship between the variables of a scale (Bartlett, 1954). For the Bartlett test to be
significant, its p-value needs to be less than .05 and that suggests that the data is approximately

normally distributed, and therefore, suitable for factor analysis (Field, 2000).

Confirmatory Factor Analysis (CFA)

Following the PCAs, confirmatory factor analyses (CFA) were performed on the other
half of the sample (nCFA = 215) for both Cog15 and ICAR16. The CFA was performed to
confirm that the factor drawn from the PCA is valid. CFA is one of the most frequently used
statistical procedures in applied research (Brown, 2015). CFA is a structural equation modeling
(SEM) that is used to analyze relationships between observed measures or indicators and latent
variables or factors, based on a theoretical background (Brown, 2015; DiStefano & Hess, 2005).
For all PCAs and CFAs performed, the cut-off for the standardized factor loadings was set to .32,
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as recommended by Tabachnick & Fidell (2007), within samples larger than 300. Factor loadings
are defined as the extent to which a variable or item is contributing to a factor; the larger the
loadings are, the more the variables contribute to said factor (Yong & Pearce, 2013).
Additionally, the maximum likelihood method (ML) was used for the CFA. Based on a
multivariate normal distribution, maximum likelihood estimates factor loadings (Tucker &
Lewis, 1973). It is a method that maximizes the likelihood function to find the best solution
(Tucker & Lewis, 1973). Maximum likelihood estimation is the best method for factor extraction
when the data is relatively normally distributed (Fabrigar et al., 1999). It allows the calculation
of a wide range of indexes of the model's goodness of fit and allows the computation of
confidence intervals based on statistical significance tests of factor loadings and correlations
among factors (Fabrigar et al., 1999). Moreover, oblique rotations were used as they are able to
accurately model both correlated and uncorrelated factors, unlike orthogonal rotations, which are
less effective in dealing with correlated factors (Osborne, 2015). Furthermore, it is more suitable
to use oblique rotations, considering the results would be unaffected if the factors had a
correlation of 0, it would simply produce a similar outcome to that when using orthogonal

rotations (Osborne, 2015).

Concerns with Categorical Variables

One concern which could arise when using factor analysis for binary data is the fact that
the assumptions needed to conduct a factor analysis could be violated by the nature of the data
(Silvia et al., 2012). When factor analysis is conducted on binary datasets, it could be likened to
Item Response Theory (IRT; Silvia et al., 2012). One recommendation to ensure that the binary
nature of the data does not compromise the results obtained from the factor analysis was to use
maximum likelihood estimation and taking standard errors into account, and using oblique
rotations when conducting the analyses (Silvia et al., 2012). Another suggestion made by Silvia
et al. (2012) was to convert the categorical variables into numerical values, which was done in

the current study, by recoding all answers obtained on the scales into numerical data points.

Reliability Measures
Moving forward, testing the psychometric properties of the scales we used two measures,
Cronbach’s alpha (o) and McDonald’s omega () (see Tables 2 and 3) (Cronbach, 1951;

McDonald, 1999). Cronbach’s alpha is an internal consistency measure for tests and scales and
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ranges between 0 and 1 (Cronbach, 1951). Additionally, according to Tavakol and Dennick
(2011), it measures the extent to which items in a test measure the same concept. Acceptable
values of alpha range between .70 and .95 (Tavakol & Dennick, 2011). As previously stated,
coefficient omega (w; McDonald, 1999) was calculated to test the psychometric properties of the
scales. In terms of reliability, coefficient omega is a factor-analytic model that measures the
overall variance in the data (McDonald, 1999; Rodriguez et al., 2016). Values exceeding .75

classify as acceptable omega coefficients (Reise et al., 2013).

Ethics

The study was conducted in accordance with the national regulations concerning research
ethics. Considering there was no foreseeable risk with participation, an ethical review was not
required. All participants were informed of the purpose of the study. Participants were also
informed that participation in the study was completely voluntary, it was made clear that they

could drop out of the study at any time without providing any explanation.

Results

The results of the descriptive analysis performed on Cogl5 and ICAR16 are shown in
Table 1. For Cogl5, questions 27 Cogl5 and 29 Cogl5 appeared to be more challenging (M <
0.50) than the remaining items. The histogram displaying the score distribution for Cogl5 in
Figure B1 showed a mean of M = 10.19 and SD = 2.63. Additionally, reliability analyses (see
Table 2) indicated that the measures were subthreshold for the items of the Cogl5, with
Cronbach's o = .67, which would be considered questionable (Cronbach, 1951), and McDonald’s
® = .70, which also classifies as subpar (McDonald, 1999).

For ICAR16, the last four items of the test appeared more difficult to answer (M < 0.50).
The histogram displaying the score distribution for ICAR16 in Figure B2 showed a mean of M =
9.22 and SD = 3.36. Furthermore, following reliability analyses (see Table 3), the remaining
items of ICAR16 returned Cronbach's o = .75 and McDonald’s @ = .75, both deemed acceptable
values for the scale (Cronbach, 1951; McDonald, 1999).



Table 1
Descriptive statistics for Cogl5 and ICARI6 scales

Cogl5s
Item Mean
2 Cogl5s 0.73
4 Cogl5 0.89
7 Cogl5 0.89
9 Cogl5s 0.50
11_Cogl5 0.83
13 _Cogl5s 0.94
14 Cogl5s 0.70
19 Cogl5s 0.86
21 Cogl5 0.74
22 Cogl5 0.62
23 Cogl5s 0.66
25 Cogls 0.51
26 _Cogl5s 0.71
27 Cogl5 0.30
29 Cogl5s 0.27
ICAR16
Item Mean
1 ICAR16 0.78
2 ICARI16 0.66
3 ICARI16 0.64
4 ICARI16 0.88
5 ICARI16 0.75
6 ICARI16 0.72
7 ICAR16 0.64

8 ICAR16 0.45



9 ICARI16 0.61
10 ICAR16 0.67
11 _ICARI16 0.70
12 ICAR16 0.53
13 ICAR16 0.21
14 ICAR16 0.29
15 ICAR16 0.40
16 ICAR16 0.27

N=428

Table 2

Alpha and omega values for Cogl5

Cronbach’s a McDonald’s ® Items
Cogl5s! 71 — 15
Cogl5? 67 .70 15
Cogl5® 67 .69 10
!'Original Cogl5 from Kajonius (2014).
2QOriginal Cogl5 with sample (N = 428) from current study.
3Final version of Cogl5 obtained in CFA from current study.
Table 3
Alpha and omega values for ICARI6
Cronbach’s a McDonald’s ® Items
ICARI6! .81 .83 16
ICAR16% 75 75 16
ICARI6? 78 78 12

!'Original ICAR16 from Condon & Revelle (2014).
2QOriginal ICAR16 with sample (N = 428) from current study.

3Final version of ICAR16 obtained in CFA from current study.
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Cogl5: PCA and CFA

To see how well the Cogl5 scale captures the g-factor, a series of PCAs were run on the
first half of the dataset. The initial PCA showed that Bartlett’s test of sphericity was significant
(* (45,213) =199.98, p < 0.001), confirming that the model was a good fit for a factor analysis
(Field, 2000). Additionally, based on Kaiser-Meyer-Olkin's measure of sampling adequacy
(KMO = .706), it was deemed acceptable to proceed with the analysis (Field, 2000). Following
the PCAs performed, items 2, 11, 19, 22, and 29 were removed from the Cogl5, due to having
loadings lower than .32 (Tabachnick & Fidell, 2007). According to the criterion of eigenvalue >
1, and the scree plot obtained (see Figure 1), the remaining Cogl5 items were grouped into one

factor explaining 24.62% of the total variance.

Figure 1
Scree plot from the PCA on Cogl5
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single factor solution is an appropriate way to go. The single factor represents the g-factor.
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In the final model, all remaining items had significant loadings above .32 (see Table C1),
ranging from .35 to .71 (M = 0.48, SD = 0.12). Item 23 had the highest factor loading (.71) and
item 7 had the lowest factor loading (.35).

Second, a CFA was conducted on the other half of the dataset for Cogl5 to confirm the
results returned from the previous PCA. All remaining items from the final PCA were grouped
into one factor. Overall, based on the different model indices, the CFA indicated that the model
showed a good fit to the data; RMSEA = .03, 90% CI [.00, .06]; SRMR = .05, CFI = .96. In
contrast, the model showed poor fit on the chi-square test; ¥2 (35,215) =43.20, p > 0.01. All
factor loadings were above .20 (see Table C1), ranging between .23 and .56 (M = 0.42, SD =
0.10), and were significant with p <.001. Item 23 had the highest factor loading (.56) and item
27 had the lowest factor loading (.23). Table 2 displays the new alpha and omega values obtained
from the remaining items of the Cogl5 scale. The path diagram produced from the CFA further
details the g-factor, Cogl5 items, and their standardized loadings (see Figure 2).

Figure 2
Path diagram for the CFA conducted on Cogl5
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Note. Small circles = unobserved variables, rectangles = survey items (observed variables
directly contributing to the factor), big circle = the single factor (g-factor), arrows = correlations

between survey items and the single factor (g-factor), number on arrow = factor loading

ICAR16: PCA and CFA

First, a series of PCAs were run on the first half of the dataset for the ICAR16 to see how
well the scale captures the g-factor. Bartlett’s test of sphericity being significant (y* (66, 213) =
408.11, p <0.001), in addition to the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO
= .788), both confirmed that the model was a good fit for factor analysis (Field, 2000). Following
the PCAs performed, items 3, 4, 5, and 11 were removed from the ICAR16, due to having
loadings lower than .32 (Tabachnick & Fidell, 2007). According to the criterion of eigenvalue >
1, and the scree plot obtained (see Figure 3), the remaining ICAR16 items were also grouped into

one factor explaining 28.30% of the total variance.

Figure 3
Scree plot from the PCA on ICARI6
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In the final model, all remaining items had significant loadings above .32 (see Table C2),
ranging from .41 to .59 (M = 0.53, SD = 0.06). Item 14 had the highest factor loading (.59) and
item 12 had the lowest factor loading (.41).

Second, a CFA was conducted on the other half of the dataset to confirm the results
obtained by the PCA. All items that were conserved in the final PCA were added into one factor.
Overall, based on the different model indices, the model showed a poor fit to the data; RMSEA =
11, 90% CI[.10, .13]; SRMR = .09, CFI = .68. In contrast, the model showed a good fit on the
chi-square test; y2 (54,215) = 204, p < 0.01. All factor loadings were above .20 (see Table C2),
ranging between .29 and .70 (M = 0.45, SD = 0.13). Item 14 had the highest factor loading (.70)
and item 10 had the lowest factor loading (.29). Table 3 displays the new alpha and omega
values obtained from the remaining items of the Cogl5 scale. The path diagram produced from
the CFA further details the g-factor, [CAR16 items, and their standardized loadings (see Figure
4).

Figure 4
Path diagram for the CFA conducted on ICARI6
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Note. Small circles = unobserved variables, rectangles = survey items (observed variables
directly contributing to the factor), big circle = the single factor (g-factor), arrows = correlations

between survey items and the single factor (g-factor), number on arrow = factor loading.

Discussion

The aims of the present study were to examine the psychometric properties of two public
domain intelligence tests, the previously untested Cogl5, and the ICAR16, and to compare
which of the two best captures the g-factor. The motivation behind these research aims was the
need for more free resources to test intelligence, as the currently available options can be costly
(Bainbridge, 2020). The analysis showed that [ICAR16 was a superior tool for capturing the g-
factor since it explained more of the variance in the data and had higher reliability scores. In the
following, the reported results of the PCA, CFA, and reliability analyses performed on the two

scales mentioned will be discussed.

How did Cogl5 perform?

As indicated by the PCA, some items had to be dropped, more specifically 2, 11, 19, 22,
and 29. A CFA was conducted on the remaining items, and the model fit was satisfactory.
Question 27 had a factor loading lower than .32 and should be dropped. The scale’s
psychometric properties, Cronbach’s alpha, and McDonald’s omega were questionable, which
can reflect poor quality in the dataset. Since the Cogl5 scale is new and previously untested,
further research on a larger sample is needed to see if these items should be dropped from the

scale.

How did ICAR16 perform?

Following the PCAs conducted on ICAR16, four items from the original 16 were omitted
(see Appendix A): 3, 4, 5 (Verbal Reasoning) and 11 (Matrix Reasoning). A point to consider is
that all but one item from the original Verbal Reasoning factor in ICAR16 were dropped
following the PCA conducted (Condon & Revelle, 2014), which begs the question of why the
one remaining item loaded significantly onto the general factor. This could be due to the given
sample at hand, however it is unclear why these items did not 