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Abstract

To accurately determine the efficiency and range of an electric vehicle, one must be
able to estimate the rolling resistance of the car. This is currently done using stan-
dardized methods developed under laboratory settings, where transient aspects and
effects of varying temperatures are excluded. Given the strong correlation between
tyre temperatures and the rolling resistance, determining this temperature is of great
interest. This Master’s thesis investigates the development of a virtual sensor for
predicting the tyre temperature during dynamic driving using recurrent neural net-
works (RNN). The primary goal is to examine if a virtual sensor can predict the tyre
temperature within ±2 °C of the actual temperature using on-board vehicle signals.
The study also evaluates the significance of these signals in the model. Two dif-
ferent RNN architectures, Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU), were trained and evaluated. The LSTM performed slightly better and
results indicated that the model can predict the tyre temperature within the ±2 °C
interval around 90% of the time. The most crucial features contributing to model
performance were identified as vehicle speed, ambient temperature, brake pedal po-
sition, accelerator pedal position, and road inclination. To improve on this results, a
few interesting future research areas were suggested.

Keywords: Tyre temperature, Virtual sensor, Soft sensor, Time series, Recurrent
neural networks, LSTM, GRU.
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1
Introduction

1.1 Background

Improving energy usage is key when developing electric vehicles. One very im-
portant factor is tyre rolling resistance (RR), whether it is for estimating remaining
range, calculate environmental impact, or for calibration. Most standard methods of
estimating RR, e.g. ISO 28580 [1], are performed under laboratory settings at steady
state conditions. However, most people are not driving their cars at constant speed
and at a constant ambient temperature. Estimating the RR in dynamic conditions
has proven to be a fundamentally hard problem to solve, and while these standards
do provide a systematic methodology to assess RR, they do not capture the actual
RR under real-world driving conditions. In the pursuit of improving this, the rela-
tionship between RR and tyre temperature can serve as a significant piece of the
puzzle. The work done by Schuring et al. [2] found that, all else fixed, an increment
of one degree Celsius in tyre temperature leads to a 2% reduction in rolling resis-
tance. As such, if tyre temperature under driving is known, then that might improve
ones ability to assessing the dynamic RR.

Unfortunately, due to several factors, installing sensors with the ability to mea-
sure tyre temperature accurately on consumer cars can be troublesome and costly.
Another approach is to, given all on-board signals such as vehicle speed, ambient
temperature, and acceleration, explore if it is possible to model the tyre temperature
based on those signals, creating what is called a virtual or soft sensor. Existing lit-
erature gives some insights in how different factors affect the tyre temperature. For
example, it is known that higher a vehicle speed is strongly related to higher tyre
temperature as shown in the analysis made by Wangs [3]. The same relationship but
for trucks has also been shown [4]. Ejsmont et al. [5] stated that road temperature,
which is partly controlled by the air temperature, and the existence of water or snow
on the pavement, also influence the tyre temperature.

There are multiple different approaches to solving this problem, e.g. by defin-
ing and solving differential equations or creating an autoregressive–moving-average
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Chapter 1. Introduction

model with exogenous inputs model (ARMAX model) [6]. However, both men-
tioned methods assumes that the system can be sufficiently expressed in closed
form, which might be a hard problem. Another possible approach is Black-box mod-
elling, with the benefit that the model will hopefully learn the physics. But the ben-
efit is also its biggest drawback, since it is hard to interpret the internal processes.

With that said, numerous articles and studies demonstrate how recurrent neu-
ral networks (RNNs) can be used to create black-box virtual sensors based on time
series data. Alexandersson and Lönegren [7] created a virtual engine sensor by de-
veloping a LSTM model with good performance. RNN models proved again to be
well suited for constructing a soft sensor as seen in the paper by Ke et al. [8], this
time for modelling different quality measures in chemical industries. Another recent
paper by Guesbaya et al. [9] also built a soft sensor using RNNs with the intent to
help farmers regulate the conditions inside greenhouses.

1.2 Research goals

The goal of this thesis is to explore the possibility of developing a virtual sensor
using RNNs for predicting tyre temperature during dynamic driving. As mentioned
in the background, a one degree increase in tyre temperature leads to a 2% decrease
in rolling resistance. If one wishes to use the tyre temperature to asses RR and
reduce the margin of error compared to the standardized methods, it was decided to
see if the virtual sensor can be within ±2 °C of the true temperature. To accomplish
this, the model relied on signals that are typically implemented as on-board signals
in a consumer vehicle. Additionally, an investigation was conducted to determine
the significance of various input signals. In essence, the thesis attempted to answer
two questions:

• Is it possible to build a virtual tyre temperature sensor with max ±2 °C of
error?

• What is the relative importance of different features in the RNN model?

1.3 Limitations

There exists some very important limitations in this work. First, all the data have
been gathered during the time period 2022-11-28 and 2022-12-08. This will most
likely impact the generality of the models. If one wishes to create a more general
model with the intent to perform well in all road and weather conditions, then one
would need data captured in all possible scenarios. Another major limitation is that
all data was gathered using the same car, with the same load and tyres. Naturally
the model will most likely be biased towards that specific car. Also, the final model

10



1.4 Structure

cannot be considered optimal due to our heuristic approach of hyperparameter tun-
ing. This suggests that there is a significant potential for discovering improvements
in future research.

1.4 Structure

This thesis is structured as follows: In Chapter 2, neural networks are introduced,
including theory on LSTM and GRU. Chapter 3 provides details on the data collec-
tion and processing techniques. How the network was design and why is presented
in Chapter 4. In Chapter 5, the outcomes of our model are presented, followed by
Chapter 6, where these results and potential improvements are discussed. Finally,
Chapter 7 concludes the work with a summarization of our findings.
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2
Background on Neural
Networks

2.1 Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) stems from the principles of the human brain.
In the brain, each neuron has an axon which will send an electrical impulse that is
received by connected neurons. A neuron is stimulated if the cumulative strength of
all the received electrical impulses is stronger than a threshold and will then in turn
send an impulse to the connected neurons. Drawing from this biological model, the
concept of ANNs was developed. However, before exploring ANNs, it is crucial to
first understand the concept of an artificial neuron.

Figure 2.1: Artificial neuron.

In fig. 2.1, inputs x1, x2, . . ., xk and corresponding weights w1, w2, . . ., wk are
multiplied and summed up plus an additional bias b to form the activation potential
u, such that

u =
k

∑
i=1

wixi +b (2.1)
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2.2 Multilayer perceptron (MLP)

An activation function g is then applied, often with the goal of limiting the output
from the neuron within some desired range and capture nonlinearities. The output y
is then

y = g(u) (2.2)

There exists a multitude of different activation functions [10]. One common activa-
tion function is the hyperbolic tangent function (tanh), which maps u to the range
-1 to 1, such that

g(u) =
e2u −1
e2u +1

(2.3)

Another one is the sigmoid activation function which maps u to the range 0 to 1,
with

g(u) =
1

1+ e−u (2.4)

The simplest is just a linear activation function where the output is the potential
activation u itself, i.e.,

g(u) = u (2.5)

These neurons can then be connected to each-other in different ways to create vari-
ous types of networks.

2.2 Multilayer perceptron (MLP)

Perhaps the most characteristic neural network is the Multilayer perceptron (MLP).
It is a feedforward neural network, where the connections only flows forward and
do not create cycles. It consists of one input layer, at least one intermediate (hidden)
layer, and one output layer. In fig. 2.2, one can see a MLP with one input layer, two
hidden layers, and one output layer. The input layer consists of two neurons, the
first hidden layer consist of three neurons, second hidden layer two neurons, and
the output layer only one neuron. All neurons in one layer connects to all neurons
in the next layer, thus all layers are fully connected (FC).

For the specific network in fig. 2.2, let x = [x1, x2]
T be inputs to the network,

Wl be the l-th layer’s weight matrix, with elements w(l)
j,k representing the connection

between neuron j in layer l to neuron k in layer l +1. The bias vector for layer l is
bl , the output of neuron i in layer l is al

i and y is final output of the network. All of
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Chapter 2. Background on Neural Networks

Figure 2.2: Example of a MLP network with one input layer, two hidden layers and
one output layer.

the parameters can be expressed in matrix form:

W1 =

[
w(1)

1,1 w(1)
1,2 w(1)

1,3

w(1)
2,1 w(1)

2,2 w(1)
2,3

]
, W2 =

w(2)
1,1 w(2)

1,2

w(2)
2,1 w(2)

2,2

w(3)
3,1 w(3)

3,2

 , W3 =

[
w(3)

1,1

w(3)
2,1

]

b1 =

b(1)1

b(1)2

b(1)3

 , b2 =

[
b(2)1

b(2)2

]
, b3 =

[
b(3)1

] (2.6)

Then, the output of all neurons and the final output of the entire network is

a1 =

a1
1

a1
2

a1
3

= g1

(
(W1)Tx+b1

)
, a2 =

[
a2

1
a2

2

]
= g2

(
(W2)Ta1 +b2

)
y = g3

(
(W3)Ta2 +b3

) (2.7)

where gl is activation function for layer l, which is applied elementwise to the input
vector. The calculations, from input to output, is called a forward pass.

2.2.1 Backpropagation

The unknown parameters for the example model in Section 2.2 are the weights w(l)
j,k

and the bias b(l)i terms, and the goal is to find the optimal parameters that minimizes
a predefined loss function. The loss L can be defined differently depending on the
problem at hand. A popular choice in regression problems is the mean squared error
(MSE):

L(x;θ) =
1
N

N

∑
i=1

(yi − ŷi(xi;θ))2 (2.8)
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2.2 Multilayer perceptron (MLP)

where N is the total number of samples, yi is the ground truth value, and ŷi(xi;θ)
is the model’s prediction given input xi and all parameters θ (weights and biases).
Note that L is a function of θ , so it can be thought of as a surface in the multi-
dimensional space spanned by the parameters. Finding a closed form solution here
can be troublesome, if not impossible [11]. To solve this, the parameters are instead
typically updated iteratively using a gradient decent algorithm during the training
process by taking a step in the negative gradient direction w.r.t. θ of the loss func-
tion, i.e.,

θ i+1 = θ i − ε∇θ L(x;θ),

∇θ L(x;θ) =

[
∂L(x;θ)

∂θ1
,

∂L(x;θ)

∂θ2
, . . . ,

∂L(x;θ)

∂θp

]T (2.9)

where ε is called the learning rate and p is the total number of weights and biases.
The actual calculation of the gradient is called backpropagation [12]. It is worth
noting in eq. (2.9) that all of the training data x is used to calculate one gradient
descent step, which is called batch gradient descent. This requires a lot of memory
if the training data is large, therefore optimization algorithms usually only use a few
samples for every update. This subset of samples is called a batch and the number
of samples in a batch is called batch size. Calculating the gradient for every batch is
called minibatch gradient descent, commonly only referred to as stochastic gradient
descent (SGD) [13]. Apart from SGD, there exists multiple different optimization
algorithms that have shown promising empirical results, such as Adam [14]. Af-
ter the gradients have been calculated and parameters updated for every batch, the
training process is said to have finished one epoch.

2.2.2 Learning rate
The step size ε in gradient descent eq. (2.9) is called learning rate, which regulates
how much the parameters should change every update and is a value between zero
and one. As described by Goodfellow et al., choosing the optimal learning rate is
”more of an art than science” [13]. Too big and the minimum gets overshot, too
small might lead the algorithm to a sub-optimal minimum or unnecessarily long
training time. A common practise is to find an initial learning rate by trial and er-
ror, then implement a scheme which decreases the learning rate under the training
process. By doing this, one quickly moves towards a minimum in the start then let
it converge as the learning rate decreases. The Adam optimizer, previously men-
tioned in Section 2.2.1, creates one learning rate for every input, and implements
this adaptive scheme for all of these [14].

2.2.3 Batch and batch size
As described in Section 2.2.1, a batch is defined as a subset of the total data used to
update the model parameters according to eq. (2.9). The batch size is the number of
samples in a batch, typically a power of 2 to enable faster processing on GPUs [13].
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Chapter 2. Background on Neural Networks

The choice of batch size can have a significant impact on the performance and
is also related to the learning rate. Large batch sizes increase the accuracy of the
gradient at the cost of higher memory requirement. Small batch sizes may not give
totally accurate gradients, but introduces some regularization effects (more on that
in Section 2.7.2). Since the gradient is more accurate for larger batches, it typically
allows for higher learning rates to be used. Conversely, it might be necessary to use
a relatively smaller learning rate for smaller batches to maintain stability due to high
variance in the gradient estimates [13].

As with the learning rate, there is no predefined right or wrong answer. Some
models get good performance with relatively small batch sizes (from 2 to 32) [15],
others with very large batch sizes (up to 8192) [16]. As such, it needs to be opti-
mized for the problem at hand, often by trial and error.

2.3 Recurrent Neural Networks (RNN)

The RNN is an extension of the traditional feed-forward neural network and is simi-
lar to the MLP described in Section 2.2. The difference is that RNNs are designed to
handle sequential data and can capture dependencies from previous time steps, not
only the current. This is achieved by adding a feedback loop that updates a hidden
state which serves as a memory from previous states. To visualize RNNs, they are
typically unfolded over time, as seen in fig. 2.3.

Figure 2.3: Unrolled RNN.

Calculating the forward pass is done in the same way as for a regular feed-
forward network but with an additional term for the dependency of the previous

16



2.4 Long-short term memory (LSTM)

state. This can be written as:

at = ga(Wxxt +Waat) (2.10)
ŷt = gy(Wyat) (2.11)

Note that all weights and biases are shared across all inputs, which also leads to the
vanishing/exploding gradient problem, the main reason why these standard RNNs
are not used that frequently [17]. The problem arises during weight updates as gra-
dients from several layers back in time are included. If the weight is greater than 1,
the term explodes. Conversely, if the weight is less than one, the gradients will be
close to zero and lead to slow optimization. Additionally, as the gradients for steps
further back become smaller, they will not contribute much to the training, making
it difficult to capture long-term dependencies. There are ways around this problem,
one of them is Long-Short Term Memory (LSTM).

2.4 Long-short term memory (LSTM)

Long-short term memory (LSTM) is a type of recurrent neural network that is ca-
pable of learning long term dependencies in sequential data and was first proposed
in 1997 by Hochreiter and Schmidhuber [18]. The main idea is to use memory cells
that stores information over time and to use different paths for long and short term
memories. These cells are connected through gates that control the flow of informa-
tion, and there exists three different gates: forget gate, input gate and output gate.
The structure inside a LSTM cell is seen in fig. 2.4.

Figure 2.4: LSTM cell.

The forget gate ft determines how much of the previous cell state Ct−1 one
should remember and is a value between 0 and 1, where 0 would completely ignore

17



Chapter 2. Background on Neural Networks

the cell state and 1 would completely accept. It is calculated as

ft = σ(Wf xt +U f ht−1 +b f ) (2.12)

where σ is the sigmoid activation function defined in eq. (2.4). The input gate de-
termines how one should update the cell state, and is divided into parts. First one
calculates a candidate activation gt , then input gate it , and finally ft , gt and it is used
to update the cell state Ct .

gt = tanh(Wgxt +Ught−1 +bg) (2.13)
it = σ(Wixt +Uiht−1 +bi) (2.14)

Ct = ftCt−1 + itgt (2.15)

The final stage of the LSTM is the output gate, basically determining what the
output ht of the LSTM cell should be, with

ot = σ(Woxt +Uoht−1 +bo) (2.16)
ht = ot · tanh(Ct) (2.17)

In eqs. (2.12) to (2.17), the parameters (Wf , Wg, Wi, Wo) and (U f , Ug, Ui, Uo) are
trainable weights and (b f , bg, bi, bo) are trainable biases.

2.5 Gated Recurrent Units (GRU)

GRU is another approach to solve exploding/vanishing gradient and can be viewed
as a simpler version of LSTM [17]. Here only two gates are used, one called update
gate zt and another called reset gate rt . The update gate determines how much of the
previous state should be passed to the current time step. The reset gate decides how
much of the previous hidden state to forget. The structure inside a GRU cell can be
seen in fig. 2.5.

Similar to RNNs, at every time step both the input xt and the previous state ht−1
is available. Out of these two, both the update and reset gate can be calculated

zt = σ(Wzxt +Uzht−1 +bz)

rt = σ(Wrxt +Urht−1 +br)
(2.18)

Here, σ represent the sigmoid activation function defined in eq. (2.4). The activa-
tion ht of the GRU is then a linear interpolation between the previous ht−1 and a
candidate activation h̃t , such that

ht = (1− zt)ht−1 + zt h̃t (2.19)

where the candidate activation is defined as

h̃t = tanh(Wh̃xt +Uh̃(rt ·ht−1)+bh̃) (2.20)
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2.6 Feature scaling

Figure 2.5: GRU cell.

2.6 Feature scaling

Machine learning algorithms struggle to perform well with different numerical
scales [11]. To improve stability, feature scaling is applied and is a crucial trans-
formation needed to be applied on the data before training a neural network. One of
the most common method is min-max scaling.

Min-max scaling adjusts all values into a predetermined range, most often [0,1].
Assume a set of real values X, then one can min-max scale the set by applying the
function f in eq. (2.21) to each value:

xscaled = f (x) =
x− xmin

xmax − xmin
, ∀x ∈ X (2.21)

where xmax and xmin is the maximum and minimum value in X.

2.7 Overfitting

Apart from scaling, another very important phenomenon to consider is Overfitting.
This is when a model learns the training data too well, capturing noise and inaccu-
racies rather than the underlying patterns. As a result, it performs poorly on new,
unseen data. Overfitting occurs when the model is too complex or trained for too
long, leading to reduced generalization capabilities [13]. To prevent this behaviour
one can split the data into different parts and use different Regularization strategies.
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Chapter 2. Background on Neural Networks

2.7.1 Data split
The purpose of dividing the dataset into training, validation, and test sets is to assess
the model’s performance and generalization capabilities effectively. By splitting the
data, the model can be trained on one subset, fine-tune its hyperparameters using
another subset, and obtain an unbiased estimate of its performance on unseen data
using the third subset [11]. The dataset used for training is called Training data.
To evaluate the models performance during training one uses the Validation data.
After model training and hyperparameter tuning, the true performance of the model
is measured on the Test data.

2.7.2 Regularization
There exists various regularization techniques, one of them is Dropout. During the
training process, dropout randomly ”drops” or deactivates a proportion of neurons
(along with their incoming and outgoing connections) in each layer of the network
at every iteration, as shown in fig. 2.6. This prevents the neurons from co-adapting
or relying too heavily on each other, effectively forcing them to learn more robust
and independent features from the input data [19].

(a) Without dropout (b) With dropout

Figure 2.6: Two neural networks, both with two hidden layers. One without dropout
(a) and one with dropout applied (b).

Another regularization technique is called early stopping. During the training
process, both the training error and validation error typically decrease with each
epoch. However, there might be a point where the model starts to overfit on the
training data, characterized by a continued decrease in training error but an increase
in validation error. Early stopping involves monitoring the validation error and halt-
ing the training when the error fails to improve for a specified number of consecutive
epochs, called patience. The model parameters are then reverted back to the ones
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2.8 Hyperparameter tuning

that achieved the lowest validation error. By stopping the training process when the
validation error has not improved for some epochs (specified by the patience), the
model generalizes better to unseen data [11]. The generic implementation of the
scheme is visualized in fig. 2.7.

Figure 2.7: Example of how the train and validation error changes every epoch. To
implement early stopping, the training is stopped when the validation error has not
improved for a specific amount of epochs. How long you continue to train after
minimum validation error is called patience.

2.8 Hyperparameter tuning

Fine-tuning the hyperparameters is an essential aspect of neural network develop-
ment as it significantly influences the final model’s performance. Hyperparameters,
unlike weights and biases, are fixed before training and do not learn during the
training-process. These parameters control various aspects of the model, such as its
architecture (number of layers, units and dropout rate), learning rate, and batch size.
A common technique used to find hyperparameters is called grid search [12]. In this
method a set of values is selected for each parameter and every possible combina-
tion of these parameters is tested iteratively and evaluated on the validation data. In
fig. 2.8, the different combinations are illustrated for a 2D problem. One drawback
of grid search is that it becomes very time-consuming, as the number of iterations
grows exponentially with the number of hyperparameters included. This can pose a
challenge when tuning a multitude of hyperparameters or when dealing with a large
set of values, making the process inefficient. Furthermore, a grid search does not
explore the space between values within the chosen set, unless an additional search
is carried out for the space between the best performing parameters.
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Chapter 2. Background on Neural Networks

Grid search of two parameters

Figure 2.8: Different combinations of parameters 1 and 2 that are evaluated using
grid search.

2.9 Feature importance

A drawback with using neural networks is the limited understanding offered on the
logic behind the models decision making. Especially when compared to simpler and
more interpretable models such as linear regressions or physic-based models. How-
ever, complex and nonlinear relationships over time in turn calls for more complex
models to explain them, trading off interpretability for accuracy. Investigating the
importance of each input signal for the decision making of a neural network can
therefore be important and yield great insight into what otherwise is considered a
”black box”.

2.9.1 Shapley additive explanations (SHAP)
SHapley Additive exPlanations (SHAP), originally proposed by Lundberg and Lee
[20], is a unified approach to interpreting the output of any machine learning model.
It assigns each feature an importance score (SHAP value) for a particular prediction
based on Shapley values from cooperative game theory. Given a prediction model,
for a particular instance, a SHAP value quantifies the contribution of a feature to-
wards changing the model’s output from its base (expected) output. It guarantees
that the sum of the SHAP values for all features will exactly equal to the difference
between the model prediction and the base output. The formula for calculating the
SHAP value φ for a feature i is as follows:

22



2.9 Feature importance

φi = ∑
S⊆N\{i}

|S|!(N −|S|−1)!
N!

( fS(xS∪{i})− fS(xS)) (2.22)

where:

• N is the set of all input features.

• S is a subset of N not containing feature i.

• fS is the model function conditioned on the subset S.

However, this formula has a computational complexity that grows exponention-
ally with the number of input features, which is not feasible for high-dimensional
data. Hence, approximation methods are used to calculate the SHAP values. One
such method is the Gradient Explainer method, which is an extenstion of the Inte-
grated Gradient algorithm proposed by Sundararajan et al. [21]. For a given input x
to the model, the Gradient Explainer estimates SHAP values by using the gradients
of the model predictions at x, essentially providing a linear approximation of the
model in the neighborhood of x.

The overall importance of a feature can then be seen as the mean of the absolute
SHAP values for each feature. This can be calculated as in eq. (2.23) below:

FIi =
m

∑
j=1

|φi, j|
m

(2.23)

where:

• FIi is the Feature Importance for feature i.

• m is the number of instances.
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3
Data

The performance of a model ultimately hinges on the quality of the data it is trained
on. It is essential to collect, clean, and process the data in a proper manner to achieve
any meaningful results.

3.1 Data collection

3.1.1 Collection setup
The data was collected by Volvo Cars using a single car with the same load and tyres
for each drive. A total of 55 drives of various routes and lengths in the Gothenburg
area were carried out by 13 different drivers in different weather conditions. The
time window of the data collection spanned between late November and early De-
cember in 2022.

3.1.2 Input signals and tyre temperatures
The on-board signals were obtained from control units of the car. Some signals were
directly measured, while others were derived from these measurements.

Wheel-mounted sensors, specifically the Izze-Racing Tire Temperature & Pres-
sure Monitoring System (TTPMS) [22], were used for measuring the tyre temper-
atures. Each sensor measured 16 different temperatures through different channels.
The signals were not continuous, rather the sensor made a reading every 5 seconds
and between the readings the signals were constant. As seen in fig. 3.1, it is clearly
visible that there exists a large spread between them. The same sensors were used
by Ydrefors [23] and that study concluded that the spread was expected, and it was
not analyzed further.

3.1.3 Metadata
Some metadata was also collected in addition to the collection of data from control
units and sensors. After each drive, the driver answered two questions:
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3.1 Data collection

Figure 3.1: How the temperature measurement is spread among all channels (top),
where different colors represents different channels. The bottom figure shows how
the sensor is mounted in the tyre and each channels respective measurement area.

1. Which option is best suited to describe the road conditions during the drive?

• Options: Dry / Mixed / Wet

2. Which option is best suited to describe the weather during the drive?

• Options: Sunny / Cloudy / Rainy

The summary of the answers to the questions above can be seen in Table 3.1

As seen, the largest amount of data was collected when it was cloudy and when
the state of the road was mixed, i.e., sometimes dry, other times wet.

3.1.4 Anti-aliasing and downsampling
Four different sampling rates were used to gather the different signals in the raw
data. The tyre temperature measurements were sampled with 60ms interval, most

25



Chapter 3. Data

Sunny Cloudy Rainy Total
Dry 0 14 0 14

Mixed 4 31 2 37
Wet 0 3 1 4
Total 4 48 3 55

Table 3.1: Summary of the answers.

of the internal signals with 1ms interval, then only a few with either 10ms or 100ms.
Depending on whether or not a signal was deemed to be noisy (determined by visual
inspection), it was either downsampled after applying an anti-aliasing filter or only
downsampled by interpolating the signal to a common sampling frequency. After
trying a few different, it was decided to downsample the data to 1Hz. In fig. 3.2, one
can see two examples of downsampled signals compared to the raw data.

Figure 3.2: Comparison between the raw and resampled signals for longitudinal ac-
celeration (top) and brake pedal position (bottom). Different time scales have been
used to visualize the prevalence of high frequency noise in longitudinal acceleration
but not in brake pedal position.
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3.2 Feature selection

3.2 Feature selection

3.2.1 Manually dropping signals
In the raw data that was provided, 126 signals were sampled in 55 different drives.
To make the data useful in other potential subject areas, all possible signals were
sampled. That also meant that a lot of signals had to be dropped due to clear irrel-
evance for this particular work. An initial screening of signals was done where the
reason was one of either:

1. Redundant signals (e.g. multiple signals measuring speed).

2. Constant signals.

If signals did fall into one of above categories, they were dropped and not anal-
ysed further. Also, Vertical acceleration and Battery temperature was dropped. The
former due to having too high frequency components and cannot be accurately rep-
resented when downsampled. The latter was deemed irrelevant for predicting tyre
temperature, so it was removed to reduce both training time and memory require-
ment.

3.2.2 Correlation analysis
To investigate the relation between the remaining input the correlation between all
pairs of signals was calculated. In fig. 3.3 the correlation matrix before removing
highly correlated signal is presented, and in fig. 3.4 the matrix after removing highly
correlated signals can be seen.

It was observed that a few signals are highly correlated. As no information is
added by including truly redundant signals [24], some where dropped. Actual and
requested front axle propulsion had an almost 100% correlation with longitudinal
acceleration. It was decided to keep the acceleration signal and drop the two others.
Requested brake friction and total vehicle drag inc. friction brakes also correlated
totally, thus it was decided to keep the latter. After manual screening and this corre-
lation analysis, the resulting features that are available to use as inputs are listed in
Table 3.2.

3.3 Tyre and ambient temperature

To handle the spread among the different channels seen in fig. 3.1, one signal was
created by taking the average over all 16 channels. This was also done to mitigate
potential noise. To make the signal continuous, a low-pass filter [25] was applied
to the average signal where the cutoff frequency was set to 5 mHz. The ambient
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Chapter 3. Data

Figure 3.3: Correlation matrix before dropping highly correlated signals.

temperature signal shared the similar discontinuous characteristic as the tyre tem-
perature, thus exactly the same filter and cutoff frequency was applied. The filtered
and unfiltered signals can be seen in fig. 3.5.

3.4 Feature scaling

It was mentioned in Section 2.6 that machine learning algorithm might perform
poorly if the input features are of different magnitudes. It can be seen in Table 3.3
that the input signals are indeed of different scales, and thus scaling is required.

All inputs, except Brake pedal position since it is binary, was Min-max scaled
according to eq. (2.21). The scaling was first done on the training data set and the
scalars xmin and xmax for each input feature were saved. These where later used to
scale the validation and test data.
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3.5 Reshape data

Figure 3.4: Correlation matrix after dropping highly correlated signals.

3.5 Reshape data

In order to input not only the current samples, but previous history, the data was
reshaped in the form of a 3-dimensional matrix with the following dimensions:
(samples, time steps, features):

• Samples: The total number of sequences in the dataset.

• Time steps: The sequence length, which is the number of time steps (obser-
vations) in each sequence.

• Features: The number of input features in each time step.

In mathematical terms, let n be the number of samples in one dataset, k be the
number of past time steps one wants the model to take into consideration when
making predictions and i be one specific feature, here labeled from 1 to p. Let xi

t:t+k
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Signal Name Description
Accelerator pedal position (%) Accelerator pedal pressed as

a percentage of max position.
Ambient temperature (°C) Outside temperature of the

car.
Brake pedal position Binary signal, 1 if brake

pedal is pushed in, 0 other-
wise.

Lateral acceleration (m/s2) Lateral acceleration of the
car.

Longitudinal acceleration (m/s2) Longitudinal acceleration of
the car.

Road inclination (rad) Road inclination, negative for
uphill and positive for down-
hill.

Steering wheel angle (rad) Steering wheel angle relative
to center. Positive for left
turns, negative for right turns.

Total vehicle drag including friction brakes (N) Total vehicle drag force in-
cluding friction brakes.

Vehicle speed (km/h) Vehicle speed over ground in
the direction of travel.

Yaw rate (rad/s) Rate of change of the vehicle
heading angle.

Table 3.2: Selected signals that are used as features in the model, and their
description.

be the sequence of values from time t to t + k for one feature i. Then, the reshaped
data X is constructed as

X =


x1

1:k x2
1:k . . . xp

1:k

x1
2:k+1 x2

2:k+1 . . . xp
2:k+1

...
...

. . .
...

x1
n−k+1:n x2

n−k+1:n . . . xp
n−k+1:n

 (3.1)

Let yt be the temperature for one tyre at time t. Then, the corresponding target values
y are

y =


yk

yk+1
...

yn

 (3.2)
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3.6 Selection of train, test, and validation data

Figure 3.5: In the top plot, the blue signal is the average temperature over all 16
channels for the left rear tyre. The orange signal the filtered average signal. In the
bottom plot, the blue signal is the raw ambient temperature, whereas the orange is
the filtered signal.

Finally, let the m:th row in X be defined as Xm, then the problem is to find the
function f that satisfactory can predict ym, i.e.,

f (Xm)≈ ym (3.3)

As shown in eq. (3.1), the rows of X may have significant overlap. To accelerate the
training process, every other row in X was dropped.

3.6 Selection of train, test, and validation data

Out of all the data, 80% was used to train the model, 10% as validation data, and the
remaining 10% as test data. Drives from different conditions was included in all the
datasets in the pursuit of making the different sets as general as possible. As such,
the drives to be included in the validation and test sets were picked randomly but
with two constraints:
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Signal Name Mean Std.Dev Min Max
Vehicle speed (km/h) 49.5 24.0 -0.090 92.0
Lateral acceleration (m/s2) 0.127 0.693 -5.58 5.80
Road inclination (rad) 0.004 0.026 -0.104 0.114
Yaw rate (rad/s) 0.008 0.073 -0.707 0.680
Longitudinal acceleration (m/s2) -0.046 0.635 -8.11 4.17
Total vehicle drag inc. friction brakes (N) 59.1 2060 -19200 10600
Steering wheel angle (rad) 0.028 0.907 -8.45 8.55
Acc. pedal position (%) 15.1 15.6 0 100
Ambient temperature (°C) 3.78 0.552 2.57 5.38
Brake pedal position (0 or 1) 0.145 0.352 0 1

Table 3.3: The mean, standard deviation, min and max values for each input feature
before scaling.

• All conditions needs to be represented. Specifically, one drive when it was
sunny, one when the pavement was dry, and one when the pavement was wet.

• The size of the validation and test sets should each be approximately 10% of
the total amount of data available.

This resulted in 45 drives in the test data and 5 drives in both validation and test
data. Note that the relative number of drives is not 10% but the size is.
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4
Network design

4.1 Performance metrics

In order to work out a good network design, it is necessary to use performance met-
rics to compare one design to one another. There are different ways of evaluating
the performance of a machine learning model as described in Section 2.2.1. In ad-
dition to the mean squared error (MSE) defined in eq. (2.8), a related metric is the
root mean squared error (RMSE). Mathematically, it is the standard deviation of the
residuals.

RMSE =

√
∑

n
i=1(yi − ŷi)2

n
(4.1)

Another popular metric when it comes to regression problems is the coefficient
of determination, often denoted as R-squared or R2. It is defined as the proportion
of the variance in the dependent variable that is explained by the predicted values
from the regression model [26]. It is a value between 0 and 1, with higher values
indicating a better fit, defined as:

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (4.2)

As the goal of the model (stated in Section 1.2) is to be within ±2 °C, a custom
accuracy score was created. It is defined as the proportion of predicted values that
fall within a certain temperature threshold T of the true temperature:

1{|yi−ŷi|≤T} =

{
1, if |yi − ŷi| ≤ T
0, otherwise

Accuracy(T ) =
1
n

n

∑
i=1

1{|yi−ŷi|≤T}

(4.3)
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4.2 Target signal

As mentioned in Section 3.1.2, temperature data for all four tyres was available.
Furthermore, out of all available input features specified in Section 3.2.2, none is
axle or tyre specific. Hypothetically, if the temperatures for each tyre during driving
were somewhat close to each other, only one model would be necessary. However
as seen in fig. 4.1, the front wheels are consistently higher than the rear wheels (due
to the test car being a front wheel driven car), but they do follow the same patterns.
To limit the extent of this thesis, the network design will be built by having the
right front tyre temperatures as target signal. To check if this design can be used
for another tyre, the final model design will be retrained on left rear temperatures,
hopefully achieving equal performance.

Figure 4.1: Temperature for each tyre under one drive.

4.3 Baseline design and parameters

The number of possible hyperparameter combinations were too many for all to be
explored. To limit the scope of this project a heuristic approach was taken where not
all hyperparameters were tuned, and only a few values for those chosen. The deci-
sions were taken by evaluating the resulting mean squared error of the predictions
on the validation data (validation loss).

Our process of finding a good combination can be though of as traversing down
a directed rooted tree, where the root node is the baseline model configuration and
the height is the number of hyperparameter decisions. A decision can be based on
trial and error or grid search. Every leaf is a unique combination of parameters and
one or more parameter is changed at every level. This saves time, but leaves lots of
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combinations unexplored. For example, in fig. 4.2 the process for a model with five
parameter, each with six different options, is visualized.

Figure 4.2: Process of finding good hyperparameters for a model with five parame-
ters and six options for every parameter. The root node is the starting combination
of hyperparameters and at every level one or more parameters are optimized and
then fixed to these values.

The baseline combination of hyperparameters was found by trial and error and
used as a starting point for further optimization, the specific values for each param-
eter can be seen in Table 4.1. Note that both the number of epochs and patience
is defined, this is because the training process stopped after 40 epochs or if the
validation loss fails to decrease over 5 consecutive epochs.
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Hyperparameter GRU/LSTM
Batch size 256
Learning rate 10−4

Layer 1
Units/Layer 128
Dropout 0.2
Optimizer Adam
Loss function MSE
Epochs 40
Patience 5

Table 4.1: Initial model configuration used as a starting point for further optimiza-
tion.

The hyperparameters that will be tuned in this work are

• Sequence length

• Dropout

• Units

4.4 Finding the sequence length

The sequence length is the number of historical datapoints that will be used as in-
puts to the model. During training, the LSTM/GRU network learns to incorporate
historical information, so current tyre temperatures relies not only on the immedi-
ate inputs but also on multiple prior data points. As a result, selecting an optimal
sequence length is crucial.

However, increasing the sequence length to achieve better performance is in
conflict with the goal of maintaining model simplicity, and with the fact that the
model needs to wait longer before any predictions can be made. For example, if
a sequence length of 600 seconds is used, then 600 seconds of driving history is
required to make a tyre temperature prediction. The model will therefore not be
able to predict the tyre temperature for the first 10 minutes of every drive. Thus, not
only the performance of each sequence length was considered, but also the waiting
time required to generate predictions.

To find a suitable sequence length, the baseline GRU and LSTM models where
trained using different sequence lengths. During training the models were evaluated
after each epoch by calculating the validation loss. The minimum validation loss
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4.5 Grid search

for every sequence length, for both models, was also determined. In fig. 4.3, the
validation loss for each epoch and sequence length is illustrated for both LSTM
and GRU models. The lowest validation loss attained by each model at different
sequence lengths can be observed in fig. 4.4.

Figure 4.3: Validation losses (MSE) for sequence lengths varying between 100-800
time steps.

Looking at fig. 4.4, the GRU model seems to perform best with a sequence
length of 600, with 500 being ever so slightly worse. The small performance in-
crease by using more history was deemed less important than model simplicity and
longer waiting time, thus it was decided to use 500 seconds of history. For the LSTM
hovever, it is clear from the same figure that a sequence length of 500 time steps is
optimal. As such, a sequence length of 500 time steps was used for both models.

4.5 Grid search

Four different values for the number of units and five different dropout rates was
tested for both LSTM and GRU, resulting in 40 different models. The performances
of each model represented by the MSE on the validation data, are summarized in
Table 4.2.

The best performing model-combination of units, dropout and model type seems
to be a LSTM model with 256 units and 0.3 in dropout. With this combination, the
model reached a MSE of 2.082 on the validation data.

4.6 Final model structure

The final model is then a LSTM with 256 units and a dropout rate of 0.3 followed
by a fully connected layer to create the final output. A more detailed view of the pa-
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Figure 4.4: Minimum validation loss (MSE) for both models for each sequence
length.

rameters is presented in Table 4.3, and a view over the network structure in fig. 4.5.

Figure 4.5: Structure of the final LSTM model.

4.7 Feature importance

After training the final model the importance of each feature was calculated. This
was done using the gradient explainer method to estimate the SHAP values for 1000
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Units Dropout MSE-LSTM MSE-GRU
64 0 2.382 2.377
64 0.1 2.522 2.281
64 0.2 2.502 2.337
64 0.3 2.279 2.467
64 0.4 4.962 2.866
128 0 2.513 2.656
128 0.1 2.303 2.287
128 0.2 2.205 2.283
128 0.3 2.117 2.335
128 0.4 2.785 2.509
256 0 2.206 2.527
256 0.1 2.276 2.308
256 0.2 2.327 2.310
256 0.3 2.082 2.328
256 0.4 2.393 2.381
512 0 2.530 2.443
512 0.1 2.295 2.307
512 0.2 2.455 2.374
512 0.3 2.274 2.298
512 0.4 2.448 2.371

Table 4.2: The MSE on the validation dataset for different combinations of units,
dropout, and model type. The lowest MSE is hightlighted in bold symbols.

Hyperparameter Choice
Model type LSTM
Batch size 256
Learning rate 10−4

Layer 1
Units/Layer 256
Dropout 0.3
Optimizer Adam
Loss function MSE
Patience 10

Table 4.3: Final model design.

randomly drawn instances of the validation data. The mean of the absolute SHAP
values represent the importance of the corresponding feature. This result can be
seen plotted in fig. 4.6. It is clear that some signals have a very large impact on the
output, whilst others are almost insignificant.
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Figure 4.6: Mean of the absolute SHAP values for each input feature, using 1000
randomly drawn instances. The features are plotted in terms of importance in as-
cending order.

To test if the features with the lowest importance score were contributing to the
output, a new model was trained and compared to the previous optimal model. This
model was trained using the same optimal parameters, but without the following
features with the lowest importance:

• Lateral acceleration

• Steering wheel angle

• Longitudinal acceleration

• Total vehicle drag inc. friction brakes

• Yaw rate
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5
Prediction result

Three different models were created and evaluated, all with the same model design
specified in Table 4.3.

• Model 1 used all 10 inputs specified in Table 3.2 and had the right front tyre
temperatures as target signal.

• Model 2 used the same inputs as model 1, but had the left rear tyre tempera-
tures as target signal.

• Model 3 used only the 5 most important features seen in fig. 4.6, i.e., road
inclination, accelerator pedal position, brake pedal position, ambient temper-
ature, and vehicle speed. The target signal for model 3 was the right front tyre
temperatures.

These models were then evaluated on the test dataset based on their respective
RMSE, accuracy, and R-squared values, defined in eqs. (4.1) to (4.3). The results
are presented in Table 5.1.

RMSE Accuracy(T = 2) R-squared
Model 1 1.322±0.028 0.894±0.007 0.831±0.009
Model 2 1.318±0.030 0.902±0.007 0.824±0.011
Model 3 1.262±0.027 0.910±0.006 0.846±0.008

Table 5.1: Performance metrics calculated on all drives included in the test set for
the three models, including the 99% confidence interval.

In figs. 5.1 to 5.3 the predicted temperatures are compared with the ground truth
temperatures for model 1, model 2, and model 3 respectively.
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Figure 5.1: Predicted right front tyre temperatures (orange) for each drive included
in the test data using model 1, and actual tyre temperature (blue).
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Figure 5.2: Predicted left rear tyre temperatures (orange) for each drive included in
the test data using model 2, and actual tyre temperature (blue).
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Figure 5.3: Predicted right front tyre temperatures (orange) for each drive included
in the test data using model 3, and actual tyre temperature (blue).
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6
Discussion

6.1 Evaluating performance

As previously stated, RMSE is the standard deviation of the residuals. Since this
performance metric is dependent on the magnitude of the target signal, it is only
possible to compare the RMSE between model 1 and model 3 (see fig. 4.1). So,
when comparing these two it is evident that the RMSE for model 3 is lower, and the
99% confidence interval is nonoverlapping.

Contrary to RMSE, it is easier to compare different models based on their R-
squared values since it is scale-invariant. The measure is commonly interpreted as
the degree to which the regression model accurately represents the observed data.
As seen in Table 5.1, the R-squared was around 0.82-0.85 for all models, where
model 3 had the highest value. Therefore, one can say that the models are able
to explain around 82% − 85% of the tyre temperature variability. However, it is
unclear whether this could have been improved or if limitations exist due to the
data, model design, or a potential inherent uncertainty involved in the physics of
tyre temperature modeling.

Also, it can be seen from the results in Table 5.1 that the overall accuracy for
all different models were around 90%. Thus, it is evident that our model falls a bit
short of our desired target accuracy (100%).

However, the comparisons in figs. 5.1 to 5.3 indicates that the performance
varies a bit depending on the specific drive. On the data from test drive 4 and 5
the predictions are very close to the true values. However, on test drive 1 and 2 the
performance is relatively poor. On drive 1, it seems like the predictions consistently
underestimates the true tyre temperature, whereas on drive 2 the predictions have
a considerably higher variability compared to the true temperatures. It was tried to
see if these behaviours could be explained by the drives metadata (see Table 3.1),
however no clear relationship could be drawn.
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6.2 Different tyres

The focuse lied on tuning the LSTM model’s hyperparameters and network struc-
ture specifically for predicting right front tyre temperatures. Despite this, after re-
training our model was able to predict the left rear tyre temperatures equally good.
This can be seen by comparing metrics presented in Table 5.1, where many of the
performance metrics fall within each-others 99% confidence intervals. This result
suggests that the model, after re-training, would be capable of performing equally
well on the remaining two tyres.

6.3 Feature importance

Apart from the accuracy goal, our thesis aimed to analyze the importance of differ-
ent on-board signals for prediction tyre temperature. According to our model, the
five most important signals are vehicle speed, ambient temperature, brake pedal po-
sition, acc. pedal position, and road inclination in that order (see fig. 4.6). One can
also see that the importance does not decrease linearly, rather there are a few very
important features and the rest do only marginally contribute to the predictions. By
comparing results in Table 5.1, the values indicates that the performance increases
after discarding insignificant signals.

The exact reason for why removing signals improves performance is not clear,
however there are a few possible explanations. One reason may be that when all
features are included the model overfits to the training data. By removing the least
important ones the model complexity is reduced and might increase its ability to
generalize.

Another possible explanation is that by reducing the least important features,
multicollinearity is reduced. In Section 3.2.2, it was presented that even after drop-
ping signals, some pairs still had a very high correlation coefficient. By removing
one of them, the redundancy in the data is reduced. This reduction in redundancy
might enhance the model’s ability to capture independent and meaningful rela-
tionships between the remaining features, without disturbance from non-important
highly correlated inputs.

Also, when reducing the dimensionality of the dataset, the sparsity in the data
reduces since less volume is needed to cover an adequate part of the feature space.
This phenomenon is called Curse of dimensionality, which often leads to over-fitting
and lack of generality. Since our dataset is relatively limited, reducing the number
of features might have mitigated this potential effect.
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6.4 Weather & Road condition

6.4 Weather & Road condition

Earlier the potential impact of a wet or dry asphalt on tyre temperatures was dis-
cussed. No conclusions could be drawn regarding the weather and/or state of the
road, most likely due to the lack of sufficient data representing different conditions.
As seen in Table 3.1, there are only four drives with sunny weather, three drives with
rainy weather, and four drives with wet asphalt. Too analyze how these parameters
impact the model, more data is needed for each condition.

If the data collection could be redone, one way of increasing the amount of data
for different conditions could be to remove the option to classify the pavement under
a drive as Mixed and just use Dry or Wet. Additionally, the driver should be allowed
to change the condition under driving. Theoretically, the road can be very wet in
the beginning of a drive and completely dry at the end. In light of this, if a drive is
classified as mixed and the state of the road significantly impacts tyre temperature,
the model will struggle to capture this effect. However, if the mixed condition is
removed, one also needs to define when the transition from wet to dry occurs (or
vice versa), which can be hard to keep consistent. How to retrieve the weather and
state of the road live in the car is also an obstacle to be solved.

6.5 Dataset split

Since the validation and test data split was based on the different weather and road
conditions and not the actual driving dynamics, there might be a bias in the model.
If, for example, the majority of the validation data consists of highway driving and
the test data of city driving, the model will most likely perform much better on the
validation data than the test data. It can also be so that the train data and test data are
more similar to each-other compared to train and validation. It is not presented in
this work, but indications of this behaviour have been observed since the validation
loss have sometimes been higher than the test loss. To reduce this bias in future
research, one should characterize and split drives by also looking at actual driving
dynamics, rather than solely on weather and road conditions.

6.6 Choice of hyperparameters

As discussed in Section 2.8 the choice of hyperparameters have a big impact on a
model’s performance, and in this thesis only a small portion of the hyperparameter
space was explored. For example, if one wants to test three different values for all
hyperparameters in Table 4.1 (except epochs), the total number of unique combina-
tions are 37 = 2187. However, the goal of this work was not to create the optimal
model so searching extensively through the hyperparameter was deemed unneces-
sary.
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Chapter 6. Discussion

With that said, one could have chosen to test other hyperparameters. Additional
layers and/or more units, a smaller batch size, and a different learning rate might
have improved the performance of the model. Other choices of optimizers or loss
functions might also have had an impact of the performance. Adam and MSE were
used due to them being used in similar problems [7, 8, 9] and they are simple to
implement, but again there are plenty more options to test. Therefore, the remaining
hyperparameter space is left to be explored by future research.

6.6.1 Sequence length
Our analysis showed that for the baseline GRU model, 600 seconds was actually
marginally better than 500 seconds which was used. But as discussed in Section 4.4,
it was opted to use 500 seconds to reduce history required to predict. For the LSTM
model, 500 seconds was best and the validation loss actually increased for longer
sequence lengths.

The drawback of the model design is that to make predictions, 500 seconds of
history is required. It was discussed in Section 4.4 that even though a longer se-
quence might result in better results, it is problematic due to the increase of waiting
time before predictions can be made. This will limit the model’s real-time applica-
bility and hinder its usefulness in short drives scenarios. Thus if one wants to predict
the tyre temperatures in such scenarios, one needs to make a simpler assumption on
how the tyre temperature behaves for the first 500 seconds, or another approach is
required.

6.7 Future work

Apart from exploring the remaining hyperparameter space as previously mentioned,
it would be valuable to explore how the LSTM model performs with an extended
dataset that encompasses a wider range of weather and road conditions. This en-
hanced dataset could potentially help provide insight into how the model’s perfor-
mance is affected by different environmental factors. Also, data from other cars,
tyres, and loads would be interesting to incorporate as well. By doing so, one can
start to work towards developing a more robust tyre temperature prediction model
that can accurately forecast tyre temperatures across a broader spectrum of driving
scenarios, conditions, and cars.

Also, further research could explore the impact of varying sequence lengths on
the model’s performance in more detail, as well as investigate alternative methods
for capturing the necessary historical information more efficiently. This could in-
clude techniques that feed in the initial ground truth tyre temperature at the start
and apply a online learning approach, with the ambition of removing the necessity
historical data. However, if such an approach was to be analyzed, one needs to im-
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6.7 Future work

plement a method of prediction the initial tyre temperature when the car is turned
off and standing still. This problem might prove to not be as complex, but still one
additional obstacle is introduced.

Additional research could also encompass the possible effects of other features
that are not included in the onboard-signals analyzed in this work. Such signals
could be the type of road surface (e.g. asphalt, concrete, or gravel), the sun intensity,
and the temperature of the road. However, some of these signals may be hard to
capture without manual input. Therefore further research is suggested within these
areas to see if it is possible to, for example, automatically detect the type of road
surface.
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7
Conclusion

The aim of this thesis was to explore the possibility of constructing a virtual sensor
using on-board signals and explore the importance of these. To solve this, different
LSTM and GRU models were tried, where an LSTM model with one layer of 256
units, dropout of 0.3, and a sequence length of 500 seconds performed the best.
Even-though it was shown that creating such a sensor is possible, the overall per-
formance falls a bit short of our desired target. Despite this, valuable information
about feature importance could be extracted. It was shown that vehicle speed, am-
bient temperature, brake pedal position, acc. pedal position, and road inclination
was the five most important inputs to the model. At the end, it was discussed how
the model performance can be improved by suggesting different interesting future
research areas, e.g., by including weather and road surface information.
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[4] J. Hyttinen, M. Ussner, R. Österlöf, J. Jerrelind, and L. Drugge. “Truck tyre
transient rolling resistance and temperature at varying vehicle velocities -
measurements and simulations”. Polymer Testing (2023), p. 108004. ISSN:
0142-9418. DOI: 10.1016/j.polymertesting.2023.108004.
URL: https://www.sciencedirect.com/science/article/
pii/S0142941823000843.

[5] J. Ejsmont, S. Taryma, G. Ronowski, and B. Swieczko-Zurek. “Influence of
temperature on the tyre rolling resistance”. International Journal of Automo-
tive Technology 19:1 (2017), pp. 45–54. DOI: 10.1007/s12239-018-
0005-4.

[6] A. Jakobsson. An introduction to time series modeling. Third. Studentlitter-
atur AB, 2021. ISBN: 9789144134031.

51



Bibliography
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