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Abstract

In high energy physics, we want to probe the inner structures and behaviours of the par-
ticles that are the building blocks of our universe. This is often done by colliding nuclei
together. This bachelor thesis presents an implementation of a Glauber Monte Carlo simu-
lation framework to determine the geometric quantities such as the number of participating
nucleons Npart and the number of sub-collisions Ncoll as well as the total and elastic inte-
grated cross sections in high-energy collisions. The models include the black and grey disk
models for proton-ion collisions and a dipole model for virtual-photon-ion collisions, which
are fit to cross section data. The models rely on the optical theorem and Good-Walker
formalism to calculate Ncoll and Npart based on the impact parameter b. These models
for proton-proton and virtual-photon-proton (γ∗p) collisions were found to be somewhat
consistent with predicting the integrated total cross section as functions of the center of
mass energy

√
s (or virtuality Q2 and center of mass energy W 2 in virtual-photon-proton

γ∗p) whilst struggling with predicting the integrated elastic cross section for proton-proton
collisions.



Populärvetenskaplig sammanfattning

Partikelkollisioner gör det möjligt för oss att studera de inre strukturerna och beteendena
hos partiklar som utgör universum. År 1969 upptäckte forskare att protoner faktiskt best̊ar
av mindre partiklar som kallas kvarkar genom kollisioner mellan elektroner och protoner. S̊a
genom att kollidera partiklar s̊a f̊ar vi ut hur dessa partiklar p̊averkar varandra men ocks̊a
som i fallet för protonen, vad de best̊ar av. När tv̊a högenergi partiklar kolliderar frontalt,
upptäcks tusentals partiklar i detektorer som ALICE i The Large Hadron Collider (LHC).
Andelen av de laddade partiklarna som detekteras beror p̊a hur central kollisionen var
mellan de tv̊a ing̊aende partiklarna. Denna andel är proportionelig mot antalet deltagande
partiklar i kollisionen Npart i en Glauber Monte Carlo simulering. Glauber Monte Carlo
simulering kan även användar för att beräkna antalet delkollisioner (Ncoll) i en kollision.
Detta görs genom att en partikel är stationär (m̊alet) och den andra i rörelse (projektilen).

Även om befintliga program som PYTHIA och HERWIG kan modellera dessa kollisioner,
kommer det arbete som utförs här att fr̊an grunden se om resultaten kan jämföras med data
och befintliga program. De specifika modeller som används här är tv̊a modeller för proton-
jon kollisioner vilket inkluderar en svart och en gr̊a disk modell och för virtuell-foton-jon
kollisioner använder vi dipolmodellen. Svart och gr̊a disk modellerna simulerar protonen
som en tv̊adimensionell disk med radie R, och när tv̊a diskar överlappar med varandra
har de kolliderat. Den gr̊a disken har ocks̊a en opacitet, det vill säga även om de tv̊a
protonerna överlappar med varandra, beroende p̊a hur opak vi gör protonen, dessto större
sannolikhet för protonerna att kollidera. Dipolmodellen simulerar virtuella-fotononer och
protoner som dipoler (ex. tv̊a kvarkar som är sammankopplade). Beroende p̊a energin i
kollisionen kan sedan dipoler utvecklas till nya dipoler vilket skapar en kedja av dipoler.
Dipolerna anses sen vara kolliderade beroende p̊a orienteringen och längden p̊a dipolerna
men ocks̊a distansen mellan dem.
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1 Introduction

In high energy physics, we want to probe the inner structures and behaviours of the particles
that are the building blocks of our universe. For example the proton was thought of as
a fundamental particle. But in 1969 at the Stanford Linear Accelerator Center (SLAC)
through deep-inelastic scattering in electron-proton collisions [1], it was discovered that
the proton was actually comprised of smaller point-like particles which we now call quarks.

In general, when we collide two high energy particles head on in a particle collider, for
example two nuclei, the number of particles that get detected in the detector will be in the
thousands as a result of the collision. We know that for a nucleus, it consists of protons and
neutrons. So we might ask, how many of these protons and neutrons where participating
in the collision (Npart)? How many sub-collisions where there (Ncoll) and how does this
depend on the centrality of the collision? These geometric quantities are something that
a Glauber Monte Carlo simulation tries to determine. Although Npart and Ncoll cannot be
measured directly in a particle collider, they can be mapped to other quantities that can be
measured (however this will not be done here). For example the number of participating
nucleons is proportional to the number of detected charged tracks in the detector.

There are a couple of ways of implementing a Glauber Monte Carlo and some frameworks
already exists like PYTHIA [2] and HERWIG [3]. In these frameworks there exists
models for each type of collision with different parameters fit to match data. The question
now arises, why are we making another framework if there already exists more than one?
One reason is to gather all of the building blocks of what is needed to make a working
Glauber Monte Carlo and see if the results can compare to data and the other frameworks.

In sections 2 and 3 some models for proton-proton (pp) and virtual-photon-proton (γ∗p)
collisions will be introduced. The models are then fit to cross section data and then used
to calculate the geometric quantities Ncoll and Npart depending on the impact parameter
b. The type of models that are discussed here will rely on the optical theorem and Good-
Walker formalism (see section 2). These models are the black and grey disk models for
proton-ion collisions which model the nucleons as a disk of radius R, and a dipole model for
virtual-photon-ion collisions which models the virtual photon and the ion as a collection
of dipoles. The parameters of the models are then fitted towards data of total integrated
cross sections for the specific collision and used for calculating Npart for virtual-photon-ion
and proton-ion collisions.

2 Theory

In this section we introduce the theoretical building blocks for a Glauber Monte Carlo
which are used in the following sections for estimating total and elastic cross sections for
different types of collision models.

4



2.1 Optical theorem

In a scattering process of an initial state going to a final state, the imaginary part of the
elastic amplitude Ael, with |Ael|2 being the probability of having an elastic scattering, is
given by the optical theorem which in a convenient from can be written as [4]

Im(Ael) =
1

2

(
|Ael|2 +

∑
j

|Aj|2
)
, (2.1)

where the sum runs over all inelastic channels j. Note that the right hand side is the
total cross section divided by two. The real part of the elastic amplitude diminishes as
the energy of the collision increases [4]. This means that we can write for high enough
energies, Ael = i Im(Ael). Using this, Eq. (2.1) can be rewritten as

−iAel =
1

2

(
− A2

el +
∑
j

|Aj|2
)
, (2.2)

=⇒ Ael = i

(
1−

√
1−

∑
j

|Aj|2
)
. (2.3)

And in impact parameter space

Ael(b) = i

(
1−

√
1− Pabs(b)

)
, (2.4)

where Pabs =
∑

j |Aj|2 is the probability for absorption into inelastic channels and b is the
impact parameter.

2.2 Good-Walker formalism and cross sections

We now consider the interaction between two objects which we will call target and projec-
tile. This interaction can be considered in the Good-Walker formalism which introduces
two wave functions |ΨI⟩ and |ΨS⟩ which are the initial state (before the interaction) and the
final state of the system (after the interaction) with a complete set of normalized eigenstates
{|ψi⟩} of the scattering amplitude T̂ (b). |ΨI⟩ and |ΨS⟩ are related by |ΨS⟩ = T̂ (b) |ΨI⟩,
where T̂ (b) = −iAel [4] (also related to the Ŝ-matrix by T̂ = 1 − Ŝ), with eigenvalues
T̂ (b) |ψi⟩ = Ti(b) |ψi⟩. We now look at a interaction between a target and a projectile in
an A+B collision. The incoming wave function |ΨI⟩ can be written as an expansion in the
basis |ψi⟩ as

|ΨI⟩ =
Np∑
p=1

Nt∑
t=1

cpct |ψp, ψt⟩ ≡
∑
p,t

cpct |ψp,t⟩ , (2.5)
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where Ni is the number of nucleons in nuclei i and ci are the expansion coefficients for
i = p, t. The scattered wave function |ΨS⟩ (outgoing wave function) is related to the
incoming wave function by

|ΨS⟩ = T̂ (b) |ΨI⟩ =
∑
p,t

cpctTp,t(b) |ψp,t⟩ . (2.6)

The overlap between Eqs. (2.5) and (2.6) is then

⟨ΨI |ΨS⟩ = ⟨ΨI | T̂ (b) |ΨI⟩ =
∑
p,t

|cp|2|ct|2Tp,t(b) (2.7)

≡ ⟨T (b)⟩p,t , (2.8)

where ⟨T (b)⟩p,t is the probability amplitude of an elastic scattering. The elastic cross
section σel is then

dσel
d2b

= ⟨T (b)⟩2p,t . (2.9)

The total cross section follows directly from the optical theorem (2.1) since the right hand
side is the total probability for a scattering to happen

dσtot
d2b

= 2 ⟨T (b)⟩p,t . (2.10)

The integrated cross sections are then given by integrating equations (2.9) and (2.10)

σel =

∫
d2b ⟨T (b)⟩2p,t , (2.11)

σtot =

∫
d2b 2 ⟨T (b)⟩p,t . (2.12)

2.3 Dipole-dipole model for virtual-photon-proton collisions

We now move into a virtual-photon-proton collision model where the virtual-photon is the
projectile that hits the stationary target proton. In the simplest case we see the virtual-
photon splitting into a quark-antiquark (qq̄) dipole with the size of the dipole r ∝ 1/Q,
where Q is the virtuality of the virtual-photon (see fig. 1). This dipole then interacts with
the target proton which we will approximate as three quarks in an equilateral triangle with
the distance between each dipole rp = 1/(3mp) where mp is the mass of the proton. The
leading interaction between two quarks is an exchange of a single gluon, and hence for a
dipole-dipole interaction, the largest contribution comes via two gluons, which will then
create two new dipoles as in figure 2. The cross section in impact parameter space σdip for
this dipole-dipole interaction is [5]:

dσdip
d2b

=
α2
s

2
log2

(
r13r24
r14r23

)
≡ fij, (2.13)
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γ∗
r ∝ 1/Q

q

q

Figure 1: A visualisation (not a Feynman diagram) of a virtual-photon evolving into a q̄q
dipole with the size of the dipole r ∝ 1/Q.
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Figure 2: Visualization of a dipole-dipole collision where the original dipoles (filled lines)
interact with each other to create two new dipoles (dashed lines).

where αs is the strong coupling constant and rnk where n = 1, 2, k = 3, 4 are the distances
between the nodes of the dipoles n and k. fij is then defined as above for each dipole i and
j for the projectiles and targets respectively (we will later evolve the projectile in rapidity
to branch out into dipole chain). This fij can be thought of as an indicator of how likely
two dipoles are to have an inelastic collision (note: fij is not between 0 and 1 and hence
not a probability). Now assuming that each dipole collision ij is independent of each other,
we can now write the scattering amplitude T (b) for the dipole-dipole collision as [4]

T (b) = 1− exp

(
−
∑
ij

fij

)
, (2.14)

where we sum over all dipole-dipole interactions.

Going back to our original model of our virtual-photon branching into a quark-antiquark
pair |γ∗⟩ → |q̄q⟩, we instead allow it to branch out (i.e |γ∗⟩ → a1 |q̄q⟩+a2 |q̄gq⟩+a3 |q̄qq̄q⟩+
. . . ) where |ai|2 is the probability for γ∗ to branch into the i:th state. The probability P
of a dipole i spanned by the coordinates r1 and r2 with the distance between them r12 to
branch into a new dipole r23 is given by the evolution equation [5]

dP

dy
= d2r3

Ncαs

2π2

r212
r213r

2
23

, (2.15)

where y is the rapidity which for γ∗p is y = log(W/mp) where W
2 = Q2(1− x)/x+m2

p is
the center of mass energy and x is the Bjorken x.
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3 Implementation

The following section introduces the methods used to compute the cross sections for virtual-
photon-proton, proton-proton, and proton-ion collisions.

3.1 Woods-Saxon distribution

The sampling of the nucleons inside the nucleus is done according to the Woods-Saxon
(WS) distribution [6]

ρ(r)

ρ0
=

1

1 + exp
(
r−R
a

) , (3.16)

where ρ(r) is the density of nucleons at position r (r = |r|), ρ0 is the density at the center,
R = 1.1A1/3 − 0.656A−1/3 fm is the nuclear radius (A being the number of nucleons in the
nucleus) and a = 0.459 [6] fm is the skin depth. To not have nucleons overlapping, we will
introduce a hard core repulsion with d = 0.9 fm [6] (protons must be a minimum of 0.9 fm
from each other center to center). Each nucleon of the nucleus will be placed according to
the distribution 4πr2ρ(r) since if we have a sphere V = 4πr3/3, the probability to randomly
sample a volume element is dV = 4πr2dr. The distribution we then want to sample from
is then 4πr2ρ(r).

The sampling of the nucleus on the computer is done by a hit and miss Monte Carlo
approach using a box. We start by picking a uniform random number for the coordinates
of a nucleon x, y, z in a reasonable range. We will use the range −R < (x, y, z) < R
but the larger the range, the more accurate at the edges and time consuming the nucleus
generation will become. The radius r and ρ(r)/ρ0 is then calculated, after which a uniform
random number X ∈ [0, 1] is generated. If ρ(r)/ρ0 < X, the nucleon is rejected and a new
coordinate (x, y, z) and X is generated. If it is accepted, we now check that the distance
between it and all other generated nucleons is less than the hard core repulsion d (i.e if it
overlaps with another nucleon). If it overlaps we go back to generating new coordinates
and if it doesn’t we accept it. This process is then repeated until the number of nucleons
generated are the same as the number of nucleons desired A.

3.2 Impact-parameter sampling

The impact parameter b = (b, φ), being the projectiles’ offset from the target in polar
coordinates (see figure 3), is sampled from the distribution 2πb (0 < b < bmax) for the
same reason as in section 3.1 with V → A = πr2. The sampling for b is done by the
inverse transform sampling method with f(b) = 2πb, i.e. we want to find the inverse of the
primitive function F (b), F−1(b). Starting with the primitive function
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Target

Projectile

b
φ

Figure 3: Visualtisation of a target (large circle) and a projectile (small circle) in the xy
plane with the projectile going the the z direction.

F (b) =

∫ b

0

f(b′) db′ = X

∫ bmax

0

2πb′ db′, (3.17)

= Xπb2max, (3.18)

where X ∈ [0, 1] is a uniform random number and bmax is the maximum value of b. bmax

is chosen to be just large enough to cover the whole nucleus. Also note that F (b) =∫ b

0
2πb′ db′ = πb2 and plugging in F−1(x) into F (b), we find

b = F (F−1(b)) = π(F−1(b))2, (3.19)

=⇒ F−1(b) =

√
b

π
. (3.20)

This together with Eq. (3.18) gives us the equation from which b is sampled from

b = F−1(F (b)) = F−1(Xπb2max) =
√
Xb2max. (3.21)

The angular position φ of the impact parameter is sampled as φ = X2π where X ∈ [0, 1]
is a uniform random number.

3.3 Proton-proton collision models

Using Eq. (3.21) and a predetermined scattering function T (b), we can calculate the cross
section using equations (2.11) and (2.12). Starting with the black disk model, we let the
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scattering amplitude T (b)bDisk = Θ(R − b) where Θ(R − b) is the Heaviside step function
and R is the radius of the disk (target). The analytical solution for the total cross section
is

σbDisk
tot =

∫
d2b 2T (b) =

∫ 2π

0

dφ

∫ ∞

0

db 2Θ(Rb − b)b, (3.22)

= 2πR2
b, (3.23)

where Rb is the radius of the black disk. And the elastic cross section

σbDisk
el =

∫
d2b T (b)2 =

∫ 2π

0

dφ

∫ ∞

0

dbΘ(Rb − b)2b, (3.24)

= πR2
b. (3.25)

The grey disk model introduces some opacity α (0 < α < 1) to the disk and the scattering
amplitude is then given by T (b)gDisk = αΘ(Rg − b) where Rg is the radius of the grey disk.
Its analytical solutions for the integrated cross sections are

σgDisk
tot = 2παR2

g, (3.26)

σgDisk
el = πα2R2

g. (3.27)

From experimental results σel ≈ σtot/4 at high energies [7, 8]. This implies for the grey
disk model that the opacity α = 1/2. To keep the total cross section the same for both
the grey disk and black disk model, the radius of the grey disk Rg must be modified by

σgDisk
tot = σbDisk

tot , (3.28)

2παR2
g = 2πR2

b, (3.29)

=⇒ Rg =
Rb√
α

=
√
2Rb. (3.30)

However, note that these integrated cross sections do not depend on the energy of the
collision (

√
s) which is not true in nature i.e. we have the integrated cross section as some

function of the energy σ(
√
s). This also implies in the models above that the radii of the

disks must also depend on the energy Ri(
√
s) with i = b, g. The function that we will

use for both models is Ri(
√
s) = ai log(bi

√
s) + ci where (a, b, c)i are parameters that are

optimized for each i to fit the data (see fig. 7). Note that R(
√
s) is not special and any

other function that fits the data can be used. For the grey-disk model, we also introduce
the opacity α as a parameter.

3.4 Proton-ion collisions

Combining all previous sections (3.1, 3.2 and 3.3), we can now start the Glauber Monte
Carlo simulation. Note that for proton-ion collisions with black disk and grey disk models,
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y = 0 y = 2 y = 4 y = 6
r 1 1 1 1
r/3 0 1 2 3
r/9 0 0 1 3
r/27 0 0 0 1
Ndip 1 2 4 8

Table 1: The approximate behaviour of the dipole evolution (2.15), with the number of
dipoles Ndip being

(
n
k

)
where n and k are the row and column number respectively.

the number of sub collisions Ncoll and the number of participating nucleons Npart will be
the same. A nucleon is considered participating if it has collided with at least one other
nucleon. A collision between two nucleons is defined for the black disk model, if the distance
between them rb <

√
σNN
inel/π = Rb where σpp

inel = 42 mb is the inelastic nucleon-nucleon
cross section at

√
s = 200 GeV [9]. For a collision to be counted for the grey disk model,

the distance between the two nucleons must be rg < Rg =
√
2Rb (assuming α = 1/2) and

if this is the case, a random uniform number X ∈ [0, 1] is sampled. If X < α, we count it
as a collision, otherwise not.

3.5 Dipole-Dipole and γ∗A collisions

Instead of implementing Eq. (2.15) which describes the probability of a dipole evolving in
rapidity, we will instead implement a toy model. The evolution of the dipoles then follows
the Pascal triangle every two steps in rapidity [4] (see table 1). We start by generating
a mother dipole of size r ∝ 1/Q according to Eq. (3.21). The dipole is then rotated by
a uniform number ψ ∈ [0, 2π] and the evolution begins, keeping one node of the dipole
stationary whilst the other rotates by an angle α = arccos (1− 1/2(1/3)2) = arccos (17/18)
around it (from the law of cosines). This creates the first dipole, the second is generated
by connecting the rotated node and the original un-rotated node. The first dipole is then
discarded and only the two newly generated dipoles are kept. To evolve it further, each of
the newly created dipole are then put through the same treatment which then creates 4
new dipoles whilst the originals are discarded according to table 1.

Since we are working with dipoles, we now also make the proton a collection of three
dipoles in an equilateral triangle in (x, y, z) with the lengths of each dipole r ∝ 1/3mp

where mp is the mass of the proton. With all of this put together we can then use Eq.
(2.13) to calculate fij for each projectile dipole i which is now the evolved virtual-photon
and target dipoles j which is our dipole model of the proton. fij is then used together with
Eqs. (2.11), (2.12) and (2.14) to calculate the integrated total and elastic cross sections of
γ∗p for a given virtuality Q and center of mass energy W .

A nucleus can then also be created like in section 3.1 but now instead each proton consists
of three dipoles. And in a γ∗A collision, we consider a dipole as collided with another dipole

11



r
r

r
3

φ

ψ
ψ

Figure 4: A dipole on the left evolving into 2 other dipoles with lengths r and r/3. The
angles are φ = arccos 17/18 and ψ = arccos 1/6. Note that the original dipole is discarded.

if fij > X where X ∈ [0, 1] is a uniform random number. A nucleon is then considered to
be participating in the collision if any one of its dipoles has collided.

4 Results and Discussion

In this section, the results from the implementations are presented and discussed.

4.1 Nucleus and impact parameter sampling

Figure 5: Sampled nucleons per volume element for a copper nucleus (A = 63) from the
Woods-Saxon distribution compared to the original Woods-Saxon distribution.

The sampled nucleons per volume element with a hard core is shown in figure 5. As we can
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Figure 6: The sampled impact parameter density as according to Eq. (3.21) with bmax = 7
fm.

see, the sampled density does not completely match the tail of the Woods-Saxon density.
The reason is because of the chosen cut-off for our sampled positions (x, y, z) in section
3.1 has the maximum allowed radius chosen b =

√
3R. The inclusion of the hard core does

push the nucleons outwards as they can not clump up at the center, however not enough
for it to be visible.

Another method to encompass the whole WS was tried but was unsuccessful in imple-
mentation. This method implemented a custom function g(r) (ex. a piece-wise constant
and exponential) instead of the box X ∈ [0, 1] with constrained coordinates, which would
follow the WS and also converge (note that g(r) must be larger than WS for all r). We
would then sample an r according to g(r) exactly like in section 3.2 and set a new value
y = Xg(r) (X ∈ [0, 1] is a uniform random number) and if WS(r) > y we accept the
position r for the nucleon (would also need to include a hard core repulsion afterwards)
otherwise go back and sample a new r from g(r). This method would be more accurate as
it would sample from the whole distribution and also potentially faster depending on how
close g(r) is to the WS.

In figure 6 we see the density of sampled impact parameters b for the projectiles. As we
can see the density of sampled impact parameters is indeed linear with with the chosen
sharp cutoff at b = 7 fm. The reason for having the cutoff here is that very few nucleons
are further away from the center of the nucleus. This can be seen in figure 10 where the
average number of participating nucleons for both the black and grey disk models are close
to zero at b > 6 fm.
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Figure 7: Total integrated cross section for grey disk and black disk model in pp collision
as a function of

√
s compared to the data and a fit of the data [10] σpp

tot = exp(a log(
√
s))+b

with a = 0.16 and b = 3.12.

4.2 Proton-proton collisions

In figures 7 and 8 we see the data for the integrated total and elastic cross sections at dif-
ferent

√
s. The radius and opacity (grey-disk only) are fit according to the data separately

in figure 7 as described in section 3.3 and the same parameters (see table 2) are then used
to calculate the elastic cross section in figure 8. As can be seen from figure 7, the black
and grey disks follow each other, both falling off at the higher energies compared to data.
This is most likely due to how R(

√
s) is chosen to be a logarithmic function. Other func-

tions where tested such as various polynomial functions, however they were unsuccessful
in fitting the data.

Now comparing the two methods to the elastic cross section we see that both of the two
models fail at following the data with the grey disk being slightly more accurate. Whilst
there is not really much that can be done for the black disk model, there are ways to
improve the grey-disk model. One way of doing this might be to limit the fit to a smaller
opacity α or also instead of just having R(

√
s), have α(

√
s) as an increasing function too.

We know that the proton, due to confinement, gets ”blacker” (i.e larger α and hence larger
σel/σtot) with

√
s and hence having α increasing with

√
s would make sense. One could

also, with a better method for fitting, make the grey disk model fitted according to both
the total and elastic integrated cross sections and not just one or the other as is done here.
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Model a [fm] b [GeV−1] c [fm] α
Black Disk 0.08 1.05 0.50
Grey Disk 0.11 0.97 0.74 0.50

Table 2: Fitted parameters to the total integrated cross section of the black and grey disk
models with the radius R = ai log (bi

√
s) + ci.

Figure 8: Integrated elastic cross section for the grey disk and black disk models in a pp
collision as a function of

√
s compared to data [10] and a regular fit of the data σpp

el =
exp(a log(

√
s)) + b with a = 0.23 and b = 1.12.
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Figure 9: Visualisation of p-Cu collision in the xy plane where each blue circle represents
a nucleon inside the target copper nucleus and the black circle represents the projectile
proton.

4.3 Proton-ion collision

In figure 9 we see the visualisation of a 2D slice for the p-Cu collision with the protons
radius R = Rb (Rb being the black disk radius). The average number of participants as
a function of impact parameter can be seen in figure 10. As we can see, the black and
grey disk models are quite similar to each other, however note that the grey disk is slightly
broader than the black disk. This is due to the overall radius of the grey disk being larger
and the fact that even if two nucleons overlap, they are not guaranteed to collide. The
disk being larger means that we will have more collisions at low centrality (large b) but
due to it having an opacity, the number of collisions at high to mid centrality goes down.
We also see that the standard deviation for the grey disk is larger due to it including an
opacity parameter.

In figure 11 we see the probability of having a certain number of participating nucleons
Npart in a proton-copper collision. As we can see, there is not a lot of difference in the
probabilities for the black and grey disks. However we do see that the grey disk is a little
bit broader with more probability of having no and more collisions than the black disk
model. This is because of the opacity (sometimes the projectile doesn’t hit) and the radius
of the grey disk is larger.

4.4 Dipole-dipole collisions

Moving on to the dipole-dipole model, in figure 12 we see the number of participating
nucleons density in a virtual-photon-gold collision (A = 197). The probability density
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Figure 10: The average number of participating nucleons ⟨Npart⟩ for proton-copper as a
function of the impact parameter b. The error-bars represent 1 standard deviation.

Figure 11: The probability of having Npart participating nucleons in the black and grey
disk model for proton-copper A = 63 at

√
s = 200 GeV.
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Figure 12: The probability of having Npart participating nucleons in a γ∗A (A=197) colli-
sion at Q2 = 2 GeV2 and W 2 = 5000 GeV2.

Figure 13: Total integrated cross section in a γ∗p collision for different values of Q2 for the
pascal model compared to data [11].
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of the number of participating nucleons Npart decreases slowly at small Npart and more
rapidly at larger Npart in the log plot. This does not represent what has been observed in
[5] (PYTHIA 8) which uses a more ”physical” dipole model stemming from Eq. (2.15)
(instead of the toy model) where the probability decreases rapidly for the first few partici-
pants and then tapers off. The key differences between the two models are that the dipoles
can fluctuate in size instead of being fixed as in they are in the Pascal model and that the
evolution of the dipole is probabilistic which means that at fixed y we do not have a fixed
number of dipoles. Then one way to improve the Pascal model (or see if this is why they
differ) could be to allow the dipoles to fluctuate. For example, the steps in rapidity could
fluctuate for each virtual-photon and the dipole size could also be allowed to fluctuate in
size.

In figure 13, we see the total integrated cross sections for γ∗p in our implemented dipole
model. As we can see, the model follows the data reasonably well by taking the mother
dipole r = 5.068z/Q fm with z = 0.0005 being a fitting parameter, Q in GeV and where
5.068 is the conversion factor from GeV−1 to fm. Note that in this implementation, only
the virtual-photon is allowed to evolve. This could be improved upon by allowing for the
protons to evolve too with W 2 as we know that the proton gets blacker with larger center
of mass energies. So in figure 13 we see that as we increase the virtuality of the photon,
the cross section gets smaller. This is because the size of the mother dipole decreases.
According to Eq. (2.13), for any two dipoles, if the dipoles have a larger size (i.e. smaller
Q), the probability to have a larger fij increases. And an increase in fij then leads to T (b)
being larger according to Eq. (2.14) and hence also the total integrated cross section for
the dipole model increases (see Eq. (2.12)). Now if the center of mass energy W would
increase, the rapidity y would too. An increase in y for our model means potentially more
dipoles according to table 1 which would lead to

∑
ij fij being larger and hence the total

integrated cross section increases.

5 Conclusion and outlook

As we have seen, the models that have been implemented here do follow the data to a
certain extent and we have seen how the centrality of the collision affects the number of
participating nucleons in both proton-ion and virtual-photon-ion collisions. The grey and
black disk models for proton-proton collisions did well following data for total integrated
cross section but not for the elastic integrated cross section. For the dipole-dipole toy
model, it somewhat follows the data for the total integrated cross section for virtual-
photon-proton collisions. There are plenty of ways to improve and optimize on these
models used. The grey disk model can be fit to both the total and elastic integrated cross
sections instead of just the total together with the opacity as a function of the center of
mass energy α(

√
s). The nucleons can be sampled from the Woods-Saxon distribution with

a more precise and efficient method as stated in section 4.1 and the dipole-dipole model
could include fluctuating dipole sizes and evolving protons.
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But in conclusion, we have seen that from optical theorem and the Good-Walker formalism
that we can build models that can be fitted and predict integrated cross sections in both
proton-proton and virtual-photon-proton collisions.
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