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Abstract: A large area in statistics and machine learning is cluster anal-
ysis. This field of research concerns the design of algorithms that allow com-
puters to automatically categorize a set of observations into different groups
in a reasonable way, without any prior information about which observa-
tions belongs to which group. It is a part of the larger field of unsupervised
learning within machine learning.

Many of these algorithms are designed with a specific problem-task in
mind. One example are so-called statistical jump models, developed by Be-
mporad et al. [2018] and further by Nystrup, Kolm, et al. [2021], that are
developed to be used for (amongst other things, they are quite flexible mod-
els) the clustering of time-series data.

In this thesis we have made a modification of these jump models that
allows us to more freely chose how to measure distance between different
observations. This opens up the possibility of designing more cluster algo-
rithms for time series data that are more resilient to data containing many
outliers, or doing clustering for categorical time series data.

ii



Acknowledgments: I want to thank my supervisor Erik Lindström for
introducing me to this project and for his encouragement and guidance. He
has been an invaluable help in terms of giving me advice on what to investi-
gate next and as a "bollplank" to bounce ideas off of.

iii



Contents
1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Linear Time Series Modelling 3
2.1 Stationary Processes and ARMA models . . . . . . . . . . . . 3
2.2 Non-Stationarity and Dynamic Linear Models . . . . . . . . . 5

3 Regime-Switching Models 7
3.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Statistical Jump Models . . . . . . . . . . . . . . . . . . . . . 9
3.3 Jump Models with Feature Selection . . . . . . . . . . . . . . 12

4 Robust Jump Models with Feature Selection 17
4.1 K-Medoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Medoids-Based Jump Models . . . . . . . . . . . . . . . . . . 23

5 Simulations and Empirical Study 27
5.1 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Student’s t-distributed Features . . . . . . . . . . . . . . . . . 28
5.3 Example from Financial Application . . . . . . . . . . . . . . 36

6 Conclusion and Further Research 40
6.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 References 42

iv



1 Introduction
A well-studied set of problems in statistics are those of cluster analysis. In
such problems, we are interested in developing methods that enable us to
automatically differentiate between groups in a set of observations. An ex-
ample could be if we are given information about different countries, such
as their population, GDP, demographics, political systems, etc., we might
want to categorize them into different groups based on how similar they are.
For example, we might end up grouping them into developing or industri-
alized nations. Another grouping could be democratic, semi-democratic or
authoritarian countries. For a human, such manual categorizations might
seem trivial, but automating such tasks using computers is not.

1.1 Background

Several different approaches to find solutions to the clustering problem exists.
One of the most common ones is the so-called K-means algorithm, which
was first developed by Llyod [1982] in the context of signal processing. The
algorithm is therefore sometimes referred to as Lloyd’s algorithm. Several
other methods exist, such as Gaussian mixture models with expectation-
maximization or hierarchical clustering. More on these methods can be found
in Hastie et al. [2017].

One issue with the clustering methods mentioned above, is that they do
not work well for time series data, i.e. where there is dependence between
the current observation and the observations that came before it. Attempts
at reconciling clustering algorithms with time series data has been made
by, e.g., Bemporad et al. [2018]. The models presented in that article are
referred to as statistical jump models, and are very flexible and can be used
outside of cluster analysis. One example is in Piga et al. [2020], where they fit
the typical Box-Jenkins time series model into the jump model framework.
Another example is the famous hidden Markov model, first developed by
Baum and Petrie [1966], which can also be seen as a special case of the jump
model.

In addition, Nystrup, Kolm, et al. [2021] have managed to combine the
jump model with a feature selection framework originally developed by Wit-
ten and Tibshirani [2010]. This is useful when we, for example, have more
features than observations, or in cases where we are not sure which features
or combination of features are relevant when it comes to determining our
clusters.
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1.2 Purpose of Thesis

A problem with the jump models based on K-means is that they only allow
for squared Euclidean distances to be considered by the model. This means
that the model lacks robustness against potential outliers in the data set and
that it can only consider numerical time series data. The purpose of this
thesis project is to develop a jump model based on K-medoids clustering
instead. K-medoids, unlike K-means, is very flexible in the choice of distance
metric used, while still being computationally feasible to implement. This
means that such a model could enable us to clustering of categorical time
series data, or allow for more robust clustering results when outliers are
present. Our new, medoids-based jump model is presented in section 4.2.

Also, we present how this new medoids-based jump model can be used
in the previously mentioned feature selection framework from Witten and
Tibshirani [2010]. We apply our method with a more robust way of measuring
distance to simulated data with varying amounts of outliers, and compare it
to the performance of the jump model based on K-means.
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2 Linear Time Series Modelling
It is typical for basic courses in statistics to only consider the setting where
we are dealing with i.i.d. observations drawn from some given distribution.
However, such data is often not available to us in real-life scenarios. Instead,
we have to rely on data where there is some temporal and/or spatial cor-
relation between samples. For these cases we need statistical models that
can effectively capture these correlation structures and in this section we will
discuss some of these models for the case with temporal correlation. To do
this, we will first have to define and briefly discuss stochastic processes. The
entire section will be based on material from Jakobsson [2019].

2.1 Stationary Processes and ARMA models

A stochastic process is defined as an indexed collection of random variables
{yt; t ∈ T }. While the standard i.i.d setting is an example of a very par-
ticular stochastic process, we will instead focus on processes that have some
form of correlation structure between observations. In particular, we will
study stochastic processes that fulfill the condition of wide-sense stationarity
(WSS). A stochastic process {yt; t ∈ T } is said to be WSS if the following
three conditions are fulfilled:

1. E(yt) = −∞ < m < ∞, ∀t ∈ T .

2. C(yt, ys) can be written as a function of (s− t).

3. E(|yt|2) < ∞.

A stochastic process fulfilling the WSS conditions ensures that the distribu-
tional properties of the process does not depend on t.

Assuming that we have made T observations of the process, the mean of
the process m can be estimated by

m̂T =
1

T

T∑
t=1

yt.

This estimator is unbiased and if it also consistent, i.e. m̂T
p→ m as T → ∞,

we say that the process is ergodic in the mean.
The second WSS condition means that we can write the autocovariance

as a function r(k) = C(yt, yt−k) that only depends on k, not t. This autoco-
variance function will be symmetric, non-negative and is maximized at k = 0
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for scalar processes. We usually estimate the autocovariance function by

r̂T (k) =
1

T

T∑
t=k+1

(yt − m̂T )(yt−k − m̂T ).

This estimate is actually not unbiased, but it is asymptotically unbiased as
T → ∞ if we assume that the process has mean zero. The reason that we still
use this estimate is that the unbiased estimate will have increasing variance
for increasing k, while the variance of the biased estimate is constant w.r.t.
k.

We have now discussed the very basics of stationary processes and their
descriptive statistics. However, we are most often interested in constructing
an interpretable model that also allows for prediction of future values. A very
common method to achieve this is to treat our observations as the output of
linear time-invariant (LTI) system. If we let xt denote the inputs and yt the
output to such a system, we can write the output as

yt =
∞∑

k=−∞

hkxt−k

where we refer to hk as the impulse response of the system.
One of the most commonly used linear models is the autoregressive mov-

ing average (ARMA) model. If we let {et} denote a white noise process with
zero-mean and variance σ2

e and treat this as the input to our system, then
the ARMA model can be defined through the output of the following LTI
system

yt =
C(z)

A(z)
et

where
C(z) = 1 + c1z

−1 + . . .+ cqz
−q

and
A(z) = 1 + a1z

−1 + . . .+ apz
−p.

Here, z−1 denotes the lag operator, i.e. we have z−1xt = xt−1. A more
common way of writing the ARMA model is

yt + a1yt−1 + . . .+ apyt−p = et + c1et−1 + . . .+ cqet−q.

Such an ARMA model will be stationary if the roots of the polynomial A(z)
have absolute value less than one. If we have the same result for the polyno-
mial C(z), we say that the process is invertible.
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Several extensions of the standard ARMA model exist. For example,
if we suspect that the data is non-stationary with a (stochastic) trend, an
appropriate model might be an autoregressive integrated moving average
(ARIMA) model, defined by the system

A(z)(1− z−1)dyt = C(z)et.

It is also possible to include exogenous input variables, via the system

A(z)(1− z−1)dyt = B(z)xt−d + C(z)et

where B(z) = b0 + b1z
−1 + . . . + bsz

−s. Such models are referred to as AR-
MAX models. If we are dealing with multivariate yt, these models can be
extended by treating A(z) and C(z) as matrix polynomials. Such multivari-
ate processes are often referred to as vector ARMAX models (VARMAX).

2.2 Non-Stationarity and Dynamic Linear Models

In applications such as finance, we do not typically have access to stationary
data. One possible solution to this kind of problem is to instead model the
data using stochastic dynamic systems. This is often done by using a state-
space representation of the system, where we have a measurement equation
describing the behavior of the measured data, which in turn depends on some
underlying, non-observed variables that follow a so-called state equation. In
particular, if we assume that the system is LTI and the uncertainty follows
a Gaussian distribution, we can write the state equation as

xt+1 = Axt +But + vt

and the measurement equation as

yt = Cxt + wt.

Here {vt} and {wt} are assumed to be zero-mean multivariate Guassian
processes that are independent of each other, with covariance matrices Rv

and Rw respectively. Assuming that xt, yt and ut are n-dimensional, m-
dimensional and k-dimensional row vectors respectively, then A, B and C
are n× n, n× k and m× n dimensional matrices respectively.

Given that the matrices A, B, C, Rv and Rw are known and do not have
to be estimated, we can estimate the unknown states using the Kalman filter.
This is a recursive algorithm that requires us to pick initial "prediction" of
x1 as

E(x1) = x̂1|0
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and the uncertainty of this initial "prediction"

Var(x1) = V1|0.

Then, given the a priori prediction x̂t|t−1 and Vt|t−1, we can update this
prediction using all the of the observations available up until time t to get
the a posteriori updates

E(xt|y1, . . . , yt) = x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1)

and
Var(xt|y1, . . . , yt) = Vt|t = (I −KtC)Vt|t−1

Using this estimate, we can get a new a priori prediction by

x̂t+1|t = Ax̂t|t +But

and
Vt+1|t = AVt|tA

′ +Rv.

Here, Kt denotes the Kalman gain, which is given by

Kt = Vt|t−1C
′(CVt|t−1C

′ +Rw)
−1.

All of these equations allow us to recursively estimate the unknown states.
The linear Gaussian state-space model presented above, allows for AR-

MAX processes of the form

A(z)yt = B(z)ut + C(z)et

with parameters that vary over time. We can do this by writing the model
on state space form as

xt+1 = xt + vt

yt = C̄txt + et

where vt is white noise. The state vector xt represents the model parameters
given observations up until time t

xt = [a1 . . . ap c1 . . . cq b0 . . . bs]
′

and the row vector C̄t contains the given observations and noise realizations
up until time t

C̄t = [−yt−1 . . . − yt−p et−1 . . . et−q ut . . . ut−s].

Then it follows trivially how we can recursively form estimates of the time
varying parameters by using the Kalman filter.
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3 Regime-Switching Models
Often, we are interested in working with more complex time series data that
cannot be modelled well by the linear time series models presented in section
2. Thus there is a need to develop alternative approaches, that are better able
to capture non-linear complexities in the data. A common class of such non-
linear models are regime-switching models. They assume that the data can be
described by a finite number of different states (or regimes), each state using
different time series dynamics. The jump models we will be working with are
an extension of clustering algorithms, a commonly used unsupervised learning
method in machine learning. We will begin by discussing a commonly used
regime-switching model, the Hidden Markov Model (HMM). Then, we will
show how this framework can be generalized using so-called jump models. In
the final part of this section we will discuss how feature selection methods
initially developed for the unsupervised learning setting in machine learning
can be used to do feature selection in the previously mentioned jump model
framework.

3.1 Hidden Markov Models

A relatively simple yet flexible framework (and also one of the most widely
used ones) for regime-switching models is to the let the state transitions be
governed by an unobservable finite-state Markov chain. Such models are
referred to as HMMs and were first developed by Baum in a series of articles,
the first of which being Baum and Petrie [1966]. These models have been
used in a large variety of applications, of which one of the first was in the
area of speech recognition (see e.g. Baker [1975]), but they have also been
successfully used in, for example, bioinformatics (see e.g. Li and Stephens
[2003]) and quantitative finance (see e.g. Sipos et al. [2017]).

For our illustration of HMMs we will rely on the tutorial by Rabiner
[1989]. A HMM is defined by the following five properties, given a total of
T observations y1, . . . , yT taking on discrete values from the set {1, . . . , L}
and samples from a discrete time Markov chain s = (s1, . . . , sT ) take values
in the set {1, . . . , K}:

1. The (discrete) probability distribution of the initial state, π0 = {π0,i}.
The initial probabilities are given by

π0,i = P (s1 = i), i ∈ {1, . . . , K}.

2. The transition matrix Π = {πi,j} of the Markov chain which governs
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the state dynamics. The individual transition probabilities are

πi,j = P (st+1 = j|st = i), i, j ∈ {1, . . . , K}.

3. The emission probabilities for state β = {βj(v)}. The emission proba-
bilities are written

βj(v) = P (yt = v|st = j, st−1, . . . , s1, yt−1, . . . , y1)

= P (yt = v|st = j), j ∈ {1, . . . , K} and v ∈ {1, . . . , L}.

The above equation for the emission probabilities illustrates an im-
portant detail when defining HMMs: that the current observation is
only dependent on the current state, and not the previous states or
observations.

Thus, we have that a HMM is completely defined by the set of parameters
Θ = {Π, β, π0} (where K and L are defined via Π and β).

Often times, we want to reconstruct the most likely state sequence given
the HMM parameters Θ and observations y1, . . . , yT but with the actual
state sequence missing. A common method for doing this is the algorithm by
Viterbi [1967]. This algorithm is based on recursively computing the highest
probability for a state sequence at time t with the current state being i,
denoted

δt(i) = max
s1,s2,...,st−1

P (s1, s2, . . . , st = i, y1, y2, . . . , yt|Θ),

by noting that, since s is a Markov chain and only depends on the previous
state, along with the fact that the current observation only depends on the
current state, we can write

δt+1(j) = max
s1,s2,...,st

P (s1, s2, . . . , st+1 = j, y1, y2, . . . , yt+1|Θ)

= max
i

( max
s1,s2,...,st−1

P (s1, s2, . . . , st = i, y1, y2, . . . , yt|Θ)P (st+1 = j|st = i))

×P (yt+1|st+1 = j) = max
i

δt(i)πi,jβj(yt+1).

If we then let ϕ = argmax
i

δt(i)πi,jβj(yt+1) and initialize the algorithm by

letting δ1(i) = π0,iβi(y1) for every 1 ≤ i ≤ K and ϕ1(i) = 0, we can compute
all of these δ’s and ϕ’s for 2 ≤ t ≤ T and 1 ≤ j ≤ K recursively and pick

s∗T = argmax
1≤i≤K

δT (i)

8



s∗t = ϕt+1(s
∗
t+1), t = T − 1, . . . , 1

to reconstruct the most likely state sequence given the observations.
There are several ways to extend the HMM defined above, e.g. letting

the observations and states take on continuous values. In such a case we
can instead use so called sequential Monte Carlo methods (also commonly
referred to as particle filters) to retrieve our state sequence. Such models
are described in detail in, for example, Chopin and Papaspiliopoulos [2020].
In the next section we will discuss a further, very general extension of the
HMM (which also extends other regime-switching models), known as statis-
tical jump model.

3.2 Statistical Jump Models

In Bemporad et al. [2018], a general framework for statistical jump models
is presented. First, letting X denote the T ×P1 input data matrix with rows
xt and Y the T × P2 output data matrix with rows yt, we define the fitting
objective as

J(X, Y, Θ, s) =
T∑
t=1

ℓ(xt, yt, θst) +
K∑
k=1

r(θk) + L(s)

where ℓ denotes the loss function, r is called the regularizer, the vector
Θ = (θ1, . . . , θK) denotes the model parameters, the vector s = (s1, . . . , sT )
denotes the state sequence taking values in the set {1, . . . , K} and L is called
the state sequence loss. The sum of loss functions represents the regression
part and indeed, if we picked the loss function to be the typical squared Eu-
clidean loss, made the assumption that the output yt is a scalar and modeled
as a linear combination of the inputs, and that the regularizer and state loss
are set to zero, we would end up with standard multiple linear regression.
The regularizer r is typically picked to be the either the ridge and/or LASSO
penalty term, i.e. letting r(θ) = θ2 or r(θ) = |θ| respectively. L is defined as

L(s) = Linit(s0) +
T∑
t=1

Lstate(st) +
T∑
t=1

Ltrans(st, st−1).

Linit, Lstate and Ltrans are referred to as the initial state cost, state cost
and state transition cost, respectively. The jump model is then obtained by
minimizing J over the model parameters Θ and state sequence s.

The actual fitting of the jump model is accomplished by iterating between
optimizing J over the parameters Θ while keeping the state sequence s fixed,
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and then optimizing it over s while keeping Θ fixed. The optimization over
Θ can be accomplished using traditional convex optimization algorithms,
assuming that both ℓ and r are convex functions of the parameters. For the
optimization over the state sequence, we achieve a global optimum by letting
V and U be matrices defined by

V (s, T ) = Lstate(s) + ℓ(xT , yT , θs)

Us,t = arg min
j

[V (j, t+ 1) + Ltrans(j, s)]

V (s, t) = Lstate(s) + ℓ(xt, yt, θs) + V (Us,t, t+ 1) + Ltrans(Us,t, s)

V (s, 0) = Linit(s) + min
j
[V (j, 1) + Ltrans(j, s)]

which can be computed backwards, starting from T . From these equations it
is clear that the matrix V will consist of the relevant parts of the fitting ob-
jective to be minimized (since we are not minimizing over the parameters we
can ignore the regularization term) and the matrix U consists of minmizing
indices. The estimated state sequence is then given by

sT = arg min
j

V (j, 0)

st = Ust−1,t, t = 1, . . . , T − 1.

The entire iterative optimization algorithm will find at least a local optimum
using just a finite number of iterations. However the optimization is depen-
dent on the initial state sequence chosen, so we might potentially end up
with a lower value for the fitting objective J if we run with a different ini-
tialization. Therefore, it is common to initialize the algorithm with multiple
different s and then picking the resulting parameters out of these runs that
results in the smallest J .

The Viterbi algorithm discussed in section 3.1 is the same as the above
iterative fitting procedure for jump models, but with the entries of the ma-
trices M and U being computed forwards in time instead of backwards. This
is not the only connection between jump models and the HMM framework.
In fact, Bemporad et al. [2018] showed that if we let

ℓ(x, y, θs) = −log(βθs(y)), r(θ) = 0

Ltrans(st, st−1) = −logπst,st−1 , Linit(s0) = −logπ0,s0 , Lstate(s) = 0

with xt = 1 and θs = s, in the above jump model framework, we retrieve the
HMM. This illustrates how much more flexible jump models are compared to
HMMs, where we are restricted to state sequences with Markovian dynamics

10



and discrete state space, just to name a few restrictions which we do not
have in the jump model case.

To further illustrate the flexibility of jump models we will discuss how they
can be used for clustering in an unsupervised learning setting. In cluster
analysis, we are interested in assigning a label out of a finite number of
different labels to each data point in a data set, where all the data points
are unlabeled to begin with. To do this, the clustering algorithm will assign
the same label to data points that are closer to each other than they are to
other data points, using some given distance measure. Thus, the clustering
algorithm will assign the same label to "clusters" of the data, hence the name.
There are many algorithms that try to solve this problem, see for example
Hastie et al. [2017] for a list of some of the most common ones.

We will have a closer look at one specific, common clustering algorithm,
the K-means algorithm. For this algorithm, each observation is assigned
one out of K labels, where K is given. This is achieved by minimizing the
within-cluster sum of squares (WCSS)

T∑
t=1

∥yt − ȳst∥22

over the st’s, which take values in the set {1, . . . , K} and denotes which
cluster observation t belongs to. ȳk denotes the mean of all the observations
belonging to cluster k. By noting the following relation between the total
sum of squares (TSS), WCSS and between-cluster sum of squares (BCSS)

T∑
t=1

∥yt − ȳ∥22 =
T∑
t=1

∥yt − ȳst∥22 +
K∑
k=1

nk∥ȳk − ȳ∥22 (1)

we can achieve K-means clustering by instead maximizing the BCSS

K∑
k=1

nk∥ȳk − ȳ∥22

where nk is the total number of observations belonging to cluster k and ȳ
is the mean of the observations. We can reconcile the jump model with the
K-means algorithm by letting xt = yt and choosing L(s) = r(θk) = 0 for all
k ∈ {1, . . . , K} and

ℓ(xt, yt, θst) = ℓ(yt, θst) = ∥yt − θst∥22

where θk = ȳk. Once again, this example illustrates the generality of the
jump modeling framework.
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A problem with most clustering algorithms, including K-means, is that
they do not work well for data with sequential dependence. It is possible
to amend this by viewing the clustering problem as a jump model (as we
illustrated how to do for the K-means case in the above paragraph), but
then letting the state sequence loss L be non-zero. For example, if we keep
Linit(s0) = Lstate(i) = 0 for all i ∈ {1, . . . , K} as we did before, but now
instead letting

Ltrans(i, j) = λ · I{i ̸= j ̸= 0}
where λ is called the jump penalty and is a hyperparameter of our choosing,
it allows us to rewrite the fitting objective as

T−1∑
t=1

[
ℓ(yt, θst) + λI{st ̸= st+1}

]
+ ℓ(yT , θsT ). (2)

where we, to facilitate for more general clustering algorithms, don’t necessar-
ily let the loss function ℓ be Euclidean distance from the cluster centre. The
hyperparameter λ is referred to as the jump penalty because it will increase
the value of the objective function to be minimized each time there is a switch
of states, and thus it penalizes jumps. In this case, letting the jump penalty
λ → ∞, we end up with a model with constant state sequence, or a single
cluster, since just a single jump will lead to a very large value for the objec-
tive function. On the other hand, if we let λ → 0 we end up with a model
that does not take the temporal correlation of the data into account, i.e. we
end up with a pure clustering model. In fact, if we let ℓ be the Euclidean
distance, we end up with the K-means algorithm. We have now established
a connection between jump models and clustering algorithms. This can be
used to allow for feature selection in such jump models.

3.3 Jump Models with Feature Selection

In many applications, the number of features P is large, potentially larger
than the number of observations. For those cases it is often of interest to
be able to identify the most important subset of features to use for the
clustering. Such feature selection allows for more interpretable results and
lower computational costs when including new observations in the model.
Witten and Tibshirani [2010] presented such a feature selection framework for
clustering algorithms, along with a general framework for clustering methods.

Assuming we have T observations of P features, we denote the T × P
data matrix by Y and feature p by ỹp ∈ RT . Several clustering algorithms
(including the K-means algorithm) can be formulated in terms of maximiz-
ing a sum of transformations of the individual features, i.e. maximizing an
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objective function of the following form

P∑
p=1

fp(ỹp,Θ) (3)

over some parameter space, where fp denotes a function of the p’th feature
and parameters Θ. The idea of sparse clustering is to put different weights
on the different features in such a way that some of the weights will be zero
(and thus that feature becomes irrelevant to the clustering procedure). This
can be achieved by modifying the above objective function to get

P∑
p=1

wpfp(ỹp,Θ)

where we once again maximize over Θ, but also additionally over the weights
w. These weights are subject to the following constraints, which we will
denote (⋆):

(i) ∥w∥22 ≤ 1

(ii) ∥w∥1 ≤ κ

(iii) wp ≥ 0, ∀p

where ∥·∥2 refers to the L2-norm, ∥·∥1 refers to the L1-norm and 1 ≤ κ ≤
√
P

is a tuning parameter of our choice. Due to the constraint ∥w∥1 ≤ κ, which
is referred to as the LASSO penalty, some of the weights will be set to zero.

In practice, we perform the optimization by iterating between optimizing
over possible Θ and then optimizing over the w’s. By results presented
in Boyd and Vandenberghe [2004], this latter optimization procedure with
respect to w has an exact solution

w =
S(a+, ∆)

∥S(a+, ∆)∥2
(4)

where S denotes the soft-thresholding operator given by S(x, c) = sign(x)(|x|−
c)+, a is a row vector of length P with entries ap = fp(ỹp,Θ), x+ is the pos-
itive part of x and we pick ∆ = 0 if this gives ∥w∥1 < κ, otherwise we pick
∆ > 0 such that ∥w∥1 = κ. The property of the LASSO penalty that will
set certain feature weights to exactly zero can be illustrated by plotting the
soft-threshold function. We have done so in figure 1, from which notice that
the function will be zero in the interval [−c, c]. This means that the weight
for feature p will be set to zero if max{ap, 0} ∈ [−∆, ∆].
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A feature selection algorithm for jump models is derived in Nystrup,
Kolm, et al. [2021] by combining the sparse clustering framework presented
just above and the final jump model presented in 3.2. This is done by first
noting that if we let ℓ(yt, θst) = ∥yt − θst∥22, then minimizing the fitting
objective (2) is equivalent to maximizing the following expression

K∑
k=1

nk∥θk − ȳ∥22 − λ

T−1∑
t=1

I{st ̸= st+1}

where nk is the number of observations in state k and ȳ is the mean of the
observations. This follows from relation (1). We can then fit this new fitting
objective into the spare clustering framework by maximizing

w′
K∑
k=1

nk(θk − ȳ)2 − λ
T−1∑
t=1

I{st ̸= st+1} (5)

with respect to w, θ1, . . . , θK and s, where the square is taken element-wise
and w is subject to the restrictions (⋆).

Figure 1: Plot of the soft-thresholding operator S(x, c) = sign(x)(|x| − c)+
as a function of x.
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Just like the sparse clustering algorithm in Witten and Tibshirani [2010],
the maximization of the objective function (5) is done by iterating between
optimizing (5) w.r.t. the model parameters θ1, . . . , θK and s, and then op-
timizing (5) w.r.t. the feature weights w. Such an iterative approach is
not jointly convex and thus we are not guaranteed to achieve a global op-
timum, but the objective function will increase at each step. Also, when
optimizing over the weights, the solution is as given above of the form (4),
where a =

∑K
k=1 nk∥θk − ȳ∥22. The entire sparse jump fitting procedure is

summarized in Algorithm 1.
Note that in both the sparse clustering framework in Witten and Tib-

shirani [2010] and the sparse jump models in Nystrup, Kolm, et al. [2021],
we assume that the features are standardized before initializing the algo-
rithm. This is needed to ensure that the sizes of the weights are not based
on the data having different scales, but only on the actual importance of each
feature.

It is possible to pick λ and κ using some hyperparameter optimization
routine, e.g. using grid search over some possible parameter values with some
prespecified performance measure. How to pick such a performance measure
follows very naturally for regression or classification problems where we have
access to output data we can compare predictions to. However, in the case of
clustering (and more generally in unsupervised learning) we do not have this
and thus have to take more care in how to pick our performance measure. In
Witten and Tibshirani [2010] they suggest using the so-called gap statistic as
performance measure and in Nystrup, Kolm, et al. [2021] they suggest picking
hyperparameters based on the specific applications using relevant domain
knowledge. A newer approach is suggested by Cortese et al. [2023], which
based on using a information criterion developed specifically for statistical
jump models.

When fitting the jump model we need to provide a initial state sequence.
We do this using an initialization strategy typically used for the regular
K-means algorithm, called K-means++ developed by Arthur and Vassil-
vitskii [2007]. The development of this alternate initialization strategy was
motivated by the fact that, while the standard K-means algorithm is very
computationally efficient, random initialization of the algorithm can often
lead to inappropriate clustering assignments that only results in a local op-
timum of the WCSS being found. The K-means++ initialization is done by
first picking a cluster center at random amongst the available observations.
The next cluster centre is picked amongst the remaining observations, where
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observation y∗ is picked with probability

minθ∈Θ∥y∗ − θ∥22∑T
t=1minθ∈Θ∥yt − θ∥22

where Θ is the set of already picked centroids. We do this until we have K
initial cluster centres, after which we can run the standard K-means algo-
rithm. Thus the K-means++ initialization is also done randomly, but with
weighted probabilities. Empirical results from Arthur and Vassilvitskii [2007]
show that this initialization technique results in more accurate clustering re-
sults without sacrificing computational efficiency. In Nystrup, Kolm, et al.
[2021] they initialize the jump model fitting 10 times each iteration, and let
one of these initial state sequences be the best state sequence from the pre-
vious iteration, the others are obtained using K-means++. This results in a
more robust model.

Algorithm 1 Fitting sparse jump model. (Nystrup, Kolm, et al. [2021])
Input: Standardized observations y1, . . . , yT of P features, number of hid-
den states K and tuning parameters λ, κ.

1. Initialize feature weights w by setting w0
1, . . . , w

0
P = 1/

√
P .

2. For i = 1, . . . up until ∥wi −wi−1∥1/∥wi−1∥1 < 10−4 :

(a) Compute weighted features zt = yt·diag(
√
wi−1), for t = 1, . . . , T .

(b) Initialize state sequence s as s0 = (s01, . . . , s
0
T ).

(c) For j = 1, . . . up until sj = sj−1:

i. Fit model parameters, µj = arg min
µ

∑T
t=1∥zt − µsj−1

t
∥2.

ii. Fit state sequence, sj = arg min
s

{∑T−1
t=1

[
ℓ(zt, µ

j
st) + λI{st ̸=

st+1}
]
+ ℓ(zT , µ

j
sT
)
}

.

(d) Update weights w = S(a+,∆)
∥S(a+,∆)∥2 , where a =

∑K
k=1 nk∥µk − µ̄∥2.

Output: Model parameters µ, state sequence s and weights w.
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4 Robust Jump Models with Feature Selection
In most statistical settings we work under the assumption that the data is
in some sense well-behaved. In e.g. parametric problems, this often means
that the data is assumed to follow some prespecified probability distribu-
tion. However, in typical real-data scenarios the data often contains outlier
measurements which could skew the empirical distribution of the data. This
results in a degradation of the model performance and gives results that
do not reflect what the distribution of the data would be with these out-
lier removed. One approach to such problems is to inspect the data to try
to identify outlier observations and then remove them manually, but this is
often a tedious process, especially if the data set at hand is large and/or
multivariate.

Another method is to develop robust statistical models for the problem
at hand. Robust models are specifically designed to be less sensitive to
outliers in the data and often relaxes some of the assumptions made for the
standard, non-robust version of the model. Examples of such robust models
can be found in e.g. Huber and Ronchetti [2009]. In this section, we will
try to develop a more robust variant of the sparse jump model presented
in section 3.3 by using a clustering method that allows for flexible choice of
dissimilarity measure.

4.1 K-Medoids

The jump model presented in section 3.2 was based on K-means clustering
which used squared Euclidean distance to determine which observations be-
long to which cluster/state. Squared Euclidean distance will give a large
dissimilarity value to outlier observations and could even create entire clus-
ters that just contains such outliers. Thus, if we are interested in creating
a more robust jump model, an obvious approach would be to replace the
squared Euclidean distance with a dissimilarity measure that does not re-
sults in as large values for large distances. However, using squared Euclidean
distance for the K-means setting has the advantage of the objective function
being minimized by the cluster means. This ensures that the optimization
over the parameters when fitting the jump model using the iterative ap-
proach is trivial. A different dissimilarity measure might not have such a
useful property.

Before discussing more robust alternatives to regular K-means, we will
define more exactly what we mean by dissimilarity measure. This discussion
will be based on material from Hastie et al. [2017]. Denote the dissimilar-
ity measure by d( · ), where this is a function taking value from the set of
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observation to the positive real line. Further, we will assume that d( · ) is a
combination of dissimilarities between individual features:

d(yi, yj) =
P∑

p=1

dp(yip, yjp)

where dp( · ) denotes the dissimilarity between feature p of the observations.
We can further generalize this by weighting each of the individual feature
dissimilarities

d(yi, yj) =
P∑

p=1

wpdp(yip, yjp).

If we want to make sure that each feature contributes equally to the total
dissimilarity, we can let the weight for feature p be equal to that features
contribution to the average pairwise dissimilarity

wp =
( 1

T 2

T∑
i=1

T∑
j=1

dp(yip, yjp)
)−1

.

In the case where we use squared Euclidean distance as our dissimilarity
measure, we get that

wp =
( 1

T 2

T∑
i=1

T∑
j=1

(yip − yjp)
2
)−1

=
1

2Var(ỹp)

where ỹp denotes the p’th feature vector. This means that in the case of using
squared Euclidean distance, we can achieve equal contribution by simply
standardizing each feature to get their z-scores.

The dissimilarity measure we have used thus far in this thesis is squared
Euclidean distance (or squared L2 norm), given by

d2L2(yi, yj) = (yi1 − yj1)
2 + . . .+ (yiP − yjP )

2 = ∥yi − yj∥22.

The square root of this value will give the squared length of the straight
line drawn between the two points yi and yj. While Euclidean distance
(either squared or not) is the most commonly used dissimilarity measure
when dealing with numerical data, it is not always the most appropriate. A
common alternative is the Manhattan distance (or L1 norm), which we write
as

dL1(yi, yj) = |yi1 − yj1|+ . . .+ |yiP − yjP | = ∥yi − yj∥1.
The difference between squared Euclidean and Manhattan distance can be
illustrated by plotting them in the setting with a single feature, which we
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have done in figure 2. From this figure, we notice that squared Euclidean dis-
tance assigns a smaller distance to observations that are close to each other
compared to the Manhattan distance. On the other hand, when the obser-
vations are far apart, the squared terms in the squared Euclidean distance
will result in much larger distance values being assigned compared to Man-
hattan distance. Thus, we draw the conclusion that the Manhattan distance
is more robust to outliers, but might perform worse in situations where we
have more "well-behaved" data when compared to squared Euclidean dis-
tance. The above mentioned dissimilarity measures are examples of so-called
Lp norms, which can be written as

dLp(yi, yj) = (|yi1 − yj1|p + . . .+ |yiP − yjP |p)1/p = ∥yi − yj∥p.

So far, we have only discussed dissimilarity measure when the data is
numeric. However, using the dissimilarities framework allows us to deal with
categorical data as well. For example, given a data set where each observa-
tion has P features that in turn can take on M distinct, categorical values.
Assume, for sake of simplicity, that each category is labeled by numbers from
1 to M . Then, a commonly used dissimilarity measure is

dL0(yi, yj) = I{yi1 ̸= yj1}+ . . .+ I{yiP ̸= yjP}.

In fact, we will retrieve the dissimilarity dL0 by taking the limit of the Lp

norm, as p goes to zero:

dL0(yi, yj) = lim
p→0

∥yi − yj∥p.

This can be modified so that different differences between pair of categorical
labels have different dissimilarity values. Additionally, if we are dealing with
ranked categorical data, further modifications are necessary.

An alternative to K-means which allows for more flexible choice of dissim-
ilarity measure is called K-medoids and is discussed in Hastie et al. [2017].
This method modifies the objective function to be minimized from WCSS
used in standard K-means to

T∑
t=1

d(yt, ytst )

where we now minimize over the state sequence s = {s1, . . . , sT} and indices
{ti}Ki=1. Here our cluster centres, or medoids, are restricted to be one of
our observations, which is what allows for more flexibility when choosing
dissimilarity measure. Thus, we could for example use Manhattan distance
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if we suspect that there are outliers in the data, or the "L0" norm if we have
binary data.

Figure 2: Blue graph is squared Euclidean distance from the origin in the
one-dimensional setting. Red graph is Manhattan distance from the origin
in the one-dimensional setting.

Optimizing this objective function can be achieved in several different
ways. One such approach, referred to as Partitioning Around Medoids (PAM),
was presented by Kaufman and Rousseeuw [1990]. This optimization algo-
rithm starts by finding initial medoids using what is called the BUILD step.
The first medoid is picked to result in the lowest value for the objective func-
tion, the second is picked amongst the remaining observations that results in
the biggest reduction in the value of the objective function. This is repeated
until we have found K initial medoids. Once the BUILD step is finished,
PAM tries to improve on the initial selection of medoids by swapping be-
tween each medoid and the other non-medoid observations, evaluating the
resulting objective function for each swap. PAM then updates the chosen
medoids by picking the swap that results in the biggest reduction in the
value of the objective function, continuing this process until there are no fur-
ther swaps that results in a reduced value. This second part of the algorithm
is referred to as the SWAP step.

Another, naive, heuristic method very similar to the K-means algorithm
is based on iterating between minimizing the objective function holding s
fixed and then minimizing it holding {ti}Ki=1 fixed. This method is presented
in Park and Jun [2009], where they show that it performs comparably to
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PAM. However, a different comparison between the heuristic iterative algo-
rithm and PAM (along with other algorithms for the K-medoids problem)
is done in Schubert and Rousseeuw [2021]. They state that the heuristic
algorithm indeed is faster, but it is not as exhaustive as PAM and misses
many potential medoids that could improve the objective function. Also, the
heuristic algorithm has a tendency to get stuck at a local optimum. Thus,
we conclude that for smaller data sets PAM is to be preferred, but if we
are dealing with large data sets it might not be viable due to computational
constraints and we would have to use the heuristic algorithm instead.

To illustrate the potential robustness property (depending on the dis-
similarity measure we pick) of K-medoids, we will apply regular K-means
and K-medoids with L1-norm, using PAM, to a simulated data set of two-
dimensional t-distributed data and compare how they perform. We simulate
data from a mixture of three t-distributions with degrees-of-freedom υ = 2
and the following three location vectors

µ1 =

(
0
0

)
, µ2 =

(
−5
−6

)
, µ3 =

(
6
−5

)
and scale matrices

ρ1 =

(
1 0
0 1

)
, ρ2 =

(
1 0.13

0.13 1

)
, ρ3 =

(
1 0.67

0.67 1

)
.

We simulate 50 observations from each distribution, the results being visible
in figure 3. Notice that there is an outlier observation from the distribution
with µ2 and ρ2 in the lower right corner of the plot. Then, we cluster this
data using 3-means and 3-medoids with L1-norm, with the resulting clusters
visible in figures 4 and 5, respectively. Here, 3-means performs quite poorly,
devoting an entire cluster to just the outlier observation. Meanwhile, 3-
medoids is much less sensitive to the outlier and manages to recreate the real
clusters fairly well. This very simple example illustrates the importance of
robustness of the statistical methods we use.
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Figure 3: Simulated mixture of three different t-distributions. Points in blue
belong to the distribution with mean µ1 and correlations ρ1, points in red
belong to distribution with mean µ2 and correlations ρ2, points in green
belong to distribution with mean µ3 and correlations ρ3.

Figure 4: The data from figure 3 clustered using 3-means. Notice the single
red observation in the lower right corner.
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Figure 5: The data from figure 3 clustered using 3-medoids with L1-norm
and PAM.

4.2 Medoids-Based Jump Models

In section 3.2, we defined the jump model by minimizing the the fitting
objective given by equation (2) over the cluster centroids and state sequence.
In this setting we deliberately did not specify the loss function ℓ in an effort
to allow for more flexible model choice. Thus, in an effort to arrive at a more
robust jump model, we could use a loss function different from the squared
Euclidean one that we used throughout section 3.3. However, optimizing
fitting objective (2) over the parameters (keeping the state sequence fixed)
is not always computationally feasible for every choice of loss function, and
in some cases analytical solution (which we have in the case of the squared
Euclidean distance) to this optimization problem might not even exist. In this
subsection we will make our own contribution to the literature on statistical
jump models by attempting to solve this problem using an algorithm based
on K-medoids clustering.

To solve this issue, we can start by viewing the K-medoids model pre-
sented in section 4.1 as a special case of the jump model framework from
Bemporad et al. [2018]. To do this, let X = Y , r(θ) = L(s) = 0, θi = ti
and ℓ(xt, yt, θi) = d(yt, yti). Further, we can modify this slightly by letting
Ltrans(i, j) = λ · I{i ̸= j ̸= 0}. Doing this, we arrive at a model of the form
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presented in equation (2). This can be written explicitly as

T−1∑
t=1

[
d(yt, ytst ) + λI{st ̸= st+1}

]
+ d(yT , ytsT ). (6)

If we, for example, use the squared Euclidean distance as our dissimilarity,
we arrive at a model very similar to the regular K-means based jump model,
with the crucial difference being that we have now restricted our choice of
centroids to members of our original data set.

Optimization of fitting objective (6) is done as for objective (2), where
we iterate between minimizing holding the state sequence fixed and mini-
mizing holding the parameters fixed. The former step, where we optimize
over the parameters, can be done by letting the medoid for each cluster be
the observation in that cluster that minimizes the sum of dissimilarities to
all other observations in the cluster. This is the main advantage of using
the medoids-based jump model; since our parameters space is now finite,
optimization when keeping the state sequence fixed is trivial regardless of
choice of dissimilarity. The latter step can as before be done using dynamic
programming. This optimization strategy is very similar to the heuristic,
alternating optimization method for regular K-medoids presented in section
4.1. Thus, we have constructed a jump model of the form given by equation
(2) that allows for a more robust choice of loss function, while at the same
time being realistic to implement from a computational perspective.

In addition, we would like to allow for automatic feature selection in such
medoids-based jump models. Witten and Tibshirani [2010] note that it is
possible to rewrite the regular K-medoids problem as maximizing a fitting
objective on the form of equation (3)

P∑
p=1

( T∑
t=1

[
dp(xtp, xt0,p)− dp(xtp, xtst ,p

)
])

where t0 denotes the index of the observation that minimizes distance to all
other observations in the data set, i.e. the medoid for the whole data set.
This fitting objective can be viewed as maximizing the between-cluster sum
of point-to-medoid distances. Then, we arrive at the medoids-based jump
model by subtracting the state sequence loss and maximizing the resulting
fitting objective

P∑
p=1

( T∑
t=1

[
dp(xtp, xt0,p)− dp(xtp, xtst ,p

)
])

− λ
T−1∑
t=1

I{st ̸= st+1}.
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From this, it is then possible to arrive at a sparse version of the medoids-based
jump model by maximizing

P∑
p=1

wp

( T∑
t=1

[
dp(xtp, xt0,p)− dp(xtp, xtst ,p

)
])

− λ
T−1∑
t=1

I{st ̸= st+1}

subject to the constraints (⋆) from section 3.3:

(i) ∥w∥22 ≤ 1

(ii) ∥w∥1 ≤ κ

(iii) wp ≥ 0, ∀p.

The optimization could be done similarly to before, where we iterate between
fitting a medoids-based jump model on weighted data and then updating
the weights given the new state sequence by solving the soft-thresholding
problem. However, when we run this algorithm, we notice that the feature
selection performs poorly.

Instead, we can update the weights by solving the soft-thersholding prob-
lem for the following fitting objective

P∑
p=1

wp

(
TDp(s)− WCDp(s)

)
given a fixed state sequence s, subject to constraints (⋆), where TD denotes
the average pairwise dissimilarity of the total data set

TDp(s) =
1

T

∑
i,j

dp(xip, xjp)

and WCD denotes the average within-cluster pairwise dissimilarity

WCDp(s) =
K∑
k=1

1

Tk

∑
i,j∈{1≤t≤T ; st=k}

dp(xip, xjp)

where Tk denotes the number of observations belonging to state k. We are
now updating states and weights using two different fitting objectives. While
this results in a model that is less theoretically sound, it also results in feature
selection results that are actually useful. We do not know why this is the
case.
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In our specific case, we are interested in developing a more robust jump
model with feature selection. To this end, we will use Manhattan distance
as our choice of dissimilarity measure. The optimization procedure for the
medoids-based jump model with Manhattan distance and feature selection
is summarized by Algorithm 2. The initialization is done as before using
K-means++. It is of course possible to extend this algorithm to other dis-
similarity measures: instead of computing the weighted data in step 2(a),
simply precompute the weighted dissimilarities before running the medoids-
based jump model in step 2(c).

Algorithm 2 Fitting sparse medoids-based jump model with Manhattan
distance.
Input: Standardized observations y1, . . . , yT of P features, number of hid-
den states K and tuning parameters λ, κ.

1. Initialize feature weights w by setting w0
1, . . . , w

0
P = 1/

√
P .

2. For i = 1, . . . up until ∥wi −wi−1∥1/∥wi−1∥1 < 10−4 :

(a) Compute weighted features zt = yt · diag(wi−1), for t = 1, . . . , T .

(b) Initialize state sequence s as s0 = (s01, . . . , s
0
T ).

(c) For j = 1, . . . up until sj = sj−1:

i. Fit model parameters,

tjk = arg min
tk∈{1≤t′≤T ; sj−1

t′ =k}

∑
t∈{1≤t′≤T ; sj−1

t′ =k}

∥zt − ztk∥1

for k = 1, . . . , K.

ii. Fit state sequence, sj = arg min
s

{∑T−1
t=1

[
∥zt−ztjst

∥1+λI{st ̸=

st+1}
]
+ ∥zT − ztjsT

∥1
}

.

(d) Update weights w = S(a+,∆)
∥S(a+,∆)∥2 , where ap = TDp(s)− WCDp(s).

Output: Model parameters {ti}Ki=1, state sequence s and weights w.
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5 Simulations and Empirical Study
The fact that we are free to pick dissimilarity measures in the sparse medoids-
based jump models from section 4.2 allows for great flexibility and variety of
applications. We could, just to name a couple of examples, use it for feature
selection when clustering categorical time series data or use a more robust
dissimilarity measure (such as Manhattan distance) when we suspect the
data might come from a more fat tailed distribution, which is very common
in e.g. financial applications. In this section, we will study how well the
sparse medoids-based jump model with Manhattan distance works in the fat
tailed setting compared to the other jump models discussed in this thesis.
This is done by doing a simulation study, whose set-up will be based on
previous simulation studies from Witten and Tibshirani [2010] and Nystrup,
Kolm, et al. [2021].

5.1 Previous Studies

In Witten and Tibshirani [2010], they compare sparse K-means to regular
K-means, as well as a series of other clustering methods typically used for
settings with a high-dimensional feature space, by doing a simulation study.
The P -dimensional data was simulated from a mixture of three multivari-
ate normal distributions, that all have identity matrices as their covariance
matrices and the following mean vectors

µ1 = µIp≤q, µ2 = 0, µ3 = −µIp≤q

where Ip≤q is a vector whose first q elements are one and the others are 0, i.e.
the first q observations are treated as the relevant features for the clustering
problem, while the remaining ones should not be selected by a successful fea-
ture selection algorithm. m observations per distribution where simulated,
with different combinations of µ, P , q and m. The different clustering algo-
rithms were then applied to these simulations and the resulting classification
error rate (CER) compared.

The results of this simulation study show that the sparse K-means algo-
rithm performs worse in terms of CER compared to the regular K-means al-
gorithm when the observations only have relevant features, while it performs
significantly better compared to regular K-means for increasing number of
irrelevant features. This results hold regardless of choice of µ. In addition,
when P , q and m are chosen to be small, the sparse K-means has lower CER
compared to the other clustering methods tried. However, for larger P , q
and m, regular K-means using the principal components of the data per-
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forms better in terms of CER. However this PCA-based K-means algorithm
is not able to perform successful feature selection.

In Nystrup, Kolm, et al. [2021] they modify the above simulation setup
slightly by deciding which observation will follow which distribution through
a Markov chain {st} taking values in the set {1, 2, 3} and with transition
matrix

Γ =

0.9903 0.0047 0.0050
0.0157 0.9666 0.0177
0.0284 0.0300 0.9416

 .

The transition matrix is taken from a hidden Markov model used to model
stock returns, see Nystrup, Lindström, et al. [2020]. Then we can write the
conditional distribution of the observation at time t as

yt|st = N(µst , I).

Thus, the data is imbued with temporal dependence in this case.
In the simulation setup from Witten and Tibshirani [2010], there was

an equal number of simulated observations from each distribution. In the
case where the distribution to be simulated from is dependent on a Markov
chain, we will not necessarily get such a balanced data set, since one state
might be much more prominent than the others. Therefore, CER might give
a misleading impression of how well the algorithm is performing and thus,
a different way of measuring accuracy is necessary. In Nystrup, Kolm, et
al. [2021] they use balanced accuracy (BAC) instead of CER, where BAC
is calculated by averaging over the accuracy for each individual state. For
example, if we have a total of three states, and all observation belonging
to state one and two are correctly clustered but none of the observations
belonging to state three is correctly clustered, the BAC will always result in
a value of 2/3, while the CER might result in a very low value if the data is
imbalanced.

The sparse jump model, along with a series of other cluster methods, are
applied to this simulated data for different combinations of µ and P , where we
keep q = 15 fixed. The results show that the sparse jump model significantly
outperforms the regular jump model, as well as most other models that were
tried, in most cases. In particular, as P gets larger, the sparse jump model
starts performing much better than most of the other models. The results
also hold true when correlation is introduced between the irrelevant features.

5.2 Student’s t-distributed Features

We are now interested in how well the medoids-based jump model with Ma-
hattan distance performs compared to the other jump models in cases where
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there are a significant amount of outliers in the data. The Student’s t-
distribution is commonly used when we want to develop statistical methods
that are robust to outliers and deviations from normality, see for example
Lange et al. [1989]. The t-distribution resembles the normal distribution, but
with the important differences that the weight of the tails of the t-distribution
can be controlled via the degrees-of-freedom parameter υ. In fact, if we let
the degrees-of-freedom go to infinity, the t-distribution will be asymptoti-
cally equal to the normal distribution. Since the tails can be controlled to be
thin/fat, we might not always have that all the moments of the distribution
exists. However, in the case of the t-distribution, the expectation exists if
υ > 1 and in addition the variance exists if υ > 2. In Lange et al. [1989] the
development of robust methods is done in a parametric setting, by replacing
the underlying Gaussian probability distribution with t-distribution. They
look mostly at different linear regression problems, but the same has been
done for e.g. HMMs in Bulla [2011].

In our case we are working with models that do not assume any specific
underlying distribution for the data, so we cannot make any explicit assump-
tions about our model following the t-distribution. Instead, we will try to use
a more robust dissimilarity measure and then slightly modify the simulation
setup used in Nystrup, Kolm, et al. [2021], by letting the first 15 features be
simulated from a Student’s t-distribution with one of the following location
parameters for each state

µ1 = µ, µ2 = 0, µ3 = −µ

and degrees-of-freedom equal to υ. The remaining features will be simu-
lated as zero-mean white noise. We will run these simulation for different
combinations of µ and υ.

The chosen values for υ are 0.75, 1.5, 3 and 10. The probability density
function for t-distributions with these degrees-of-freedom, as well as a stan-
dard Gaussian density, have been plotted in figure 6. We notice that the
t-distributions have heavier tails for decreasing υ, in fact for υ = 0.75, 1.5
the distribution does not even have finite variance. Thus, we expect to get
many more, large outliers disturbing the data for smaller υ and therefore the
jump models having a harder time estimating the correct state sequence. In
the case when υ = 10 we expect that the standard jump models will perform
comparably to the results obtained in Nystrup, Kolm, et al. [2021].

For the mean parameter µ we will run simulations for the values 0.25, 1
and 2.5. These values represent an increasing degree of separation between
the different states, so we expect the jump models to have a harder time
estimating the state sequence for µ = 0.25 and it being much easier to cluster
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when µ = 2.5. In fact, for µ = 2.5 we are reaching a point were it becomes
possible for humans to perform the clustering task with a very high degree
of accuracy (at least in the absence of outliers).

We are going to perform the clustering task on the simulated data with
four different models: the standard and sparse jump model using squared
Euclidean distance and the medoids-based jump model using Manhattan
distance with and without feature selection. However, the performance of
these models are based on the choice of hyperparameters, the jump penalty
λ in all cases, as well as number of features κ for the sparse models. We will
perform hyperparameter optimization by using grid search, the same way as
in Nystrup, Kolm, et al. [2021]. For the regular and medoids-based jump
models we will pick λ among 14 values in the interval [10−2, 104] that are
logarithmically spaced and for the sparse variants of the models we will pick
λ from seven values in the interval [10−1, 102], also logarithmically spaced.
For κ, we will pick between 14 equdistant values in the interval [1,

√
P ]. This

means that in the case of sparse models, we do a 2-dimensional grid-search
over 14 · 7 = 98 pairs of hyperparameter values. The hyperparameters that
result in the highest BAC will be picked.

Figure 6: Probability density functions for t-distributions with five different
degrees-of-freedom v (here v = ∞ is the same as a standard Gaussian den-
sity).

In addition, we are interested in determining whether the sparse medoids-
based jump model performs significantly better compared to the sparse jump
model. Typically, if we could assume that sample of the pair of BAC values
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were (at least approximately) normally distributed, this could be done using a
paired two-sample Student’s t-test. However, we do not know the distribution
of the paired BAC sample and thus have to use a distribution-free hypothesis
test. A commonly used non-parametric hypothesis test for paired samples
is the Wilcoxon signed-rank test, see the original article by Wilcoxon [1945].
In the right-tailed case, the signed-rank test will test whether x− y follows a
distribution with median bigger than zero, for the paired sample (x, y). Here
it is worth noting that the data has to be paired, which in our case means
the the pair of BAC values have to result from the different jump models
being applied to the same simulated observations, otherwise the comparison
will be unfair.

The resulting state sequence from running the jump models might not be
sorted in the same way as the real state sequence. In our case with only three
states, this issue can be resolved fairly easily be simply running through all
permutations of the estimated state sequence and then picking the one that
results in highest BAC.

The result of the simulation study with t-distributed features are visible
in tables 1, 2 and 3. We notice from theses that in the case where P =
15 the jump models using Manhattan distance perform significantly better
compared to the models with squared Euclidean distance in the case when
υ = 1.5 for all values of µ, when υ = 3 for µ = 0.25 or 1, and when υ = 0.75
for µ = 2.5. This indicates that when there is no feature selection necessary,
the Manhattan distance outperforms squared Euclidean distance when there
is a moderate amount of outliers given the separation of the states. In the
case when µ = 0.25 or 1, degrees-of-freedom υ = 0.75 results in too many
outliers for the Manhattan distance too handle, but when µ = 2.5 the states
seem to be well-separated enough that the Manhattan distance gives better
results even when υ = 0.75. In the case when υ = 10, i.e. the t-distribution
is closer to the normal distribution, the medoids-based jump models actually
have worse performance. We do not know if this is because of the different
choice of metric or due to the use of medoids instead of means.

When we start adding irrelevant features to the simulated observations,
we get slightly more mixed results. The medoids-based jump model with-
out features selection seems to deteriorate in performance very quickly as P
grows in most cases (the exception being for small values of µ and υ) and
the deterioration seems much faster than what happens to the regular jump
model. However, the sparse medoids-based jump model manages to retain a
significantly higher BAC when υ = 1.5 and µ = 1 or 2.5, for both P = 30
and 100. In the other cases where the sparse medoids-based model performed
significantly better than the standard sparse model for P = 15, the sparse
medoids-based model eventually becomes just slightly better or worse than
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the standard sparse model for big enough P . This is not so strange, consid-
ering that υ = 1.5 is where the gain from using Manhattan distance seems
to be the biggest.

Table 1: Resulting mean BAC values (and their standard deviations in paran-
theses) of the simulation study described in this section, where a total 500
observations of P features are simulated. The first 15 features are simulated
from a t-distribution with location µ1 = µ, µ2 = 0, µ3 = −µ depending on
the state, where µ = 0.25, and degrees-of-freedom υ ∈ {0.75, 1.5, 3, 7}, the
remaining P − 15 are simulated from a standard normal distribution. Four
different models are applied to the data: standard and sparse jump models
with squared Euclidean distance, as well as standard and sparse medoids-
based jump models with Manhattan distance. Bolded values indicate that
the BAC of the sparse medoids-based jump model is significantly bigger than
the BAC of the sparse jump model, using the Wilcoxon signed-rank test at
significance level α = 0.05.

P = 15 P = 30 P = 100

µ = 0.25, υ = 0.75
Jump 0.35 (0.03) 0.43 (0.10) 0.43 (0.06)
Medoids Jump 0.35 (0.04) 0.46 (0.10) 0.49 (0.08)
Sparse Jump 0.35 (0.03) 0.47 (0.11) 0.49 (0.08)
Sparse Medoids Jump 0.35 (0.02) 0.45 (0.10) 0.46 (0.05)

µ = 0.25, υ = 1.5
Jump 0.35 (0.04) 0.41 (0.06) 0.49 (0.10)
Medoids Jump 0.43 (0.08) 0.47 (0.08) 0.50 (0.08)
Sparse Jump 0.37 (0.07) 0.40 (0.06) 0.48 (0.09)
Sparse Medoids Jump 0.50 (0.07) 0.49 (0.08) 0.50 (0.07)

µ = 0.25, υ = 3
Jump 0.47 (0.07) 0.45 (0.05) 0.48 (0.10)
Medoids Jump 0.52 (0.07) 0.48 (0.07) 0.50 (0.12)
Sparse Jump 0.48 (0.07) 0.46 (0.06) 0.56 (0.10)
Sparse Medoids Jump 0.59 (0.06) 0.52 (0.06) 0.48 (0.10)

µ = 0.25, υ = 10
Jump 0.64 (0.09) 0.60 (0.09) 0.55 (0.11)
Medoids Jump 0.56 (0.07) 0.51 (0.09) 0.50 (0.08)
Sparse Jump 0.66 (0.12) 0.63 (0.09) 0.64 (0.09)
Sparse Medoids Jump 0.56 (0.08) 0.51 (0.09) 0.49 (0.05)
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We also observe strange behavior for all of the jump models, where their
performance in terms of BAC actually increases significantly when we add
irrelevant noise features in the case where υ = 0.75 for all values of µ, as well
as when υ = 1.5 and µ = 0.25. We have a hard time explaining these results,
but note that even though the BAC values increase, they still perform fairly
poorly and remain below 0.5.
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Table 2: Resulting mean BAC values (and their standard deviations in paran-
theses) of the simulation study described in this section, where a total 500
observations of P features are simulated. The first 15 features are simulated
from a t-distribution with location µ1 = µ, µ2 = 0, µ3 = −µ depending
on the state, where µ = 1, and degrees-of-freedom υ ∈ {0.75, 1.5, 3, 7}, the
remaining P − 15 are simulated from a standard normal distribution. Four
different models are applied to the data: standard and sparse jump models
with squared Euclidean distance, as well as standard and sparse medoids-
based jump models with Manhattan distance. Bolded values indicate that
the BAC of the sparse medoids-based jump model is significantly bigger than
the BAC of the sparse jump model, using the Wilcoxon signed-rank test at
significance level α = 0.05.

P = 15 P = 30 P = 100

µ = 1, υ = 0.75
Jump 0.35 (0.03) 0.46 (0.12) 0.48 (0.11)
Medoids Jump 0.36 (0.06) 0.46 (0.11) 0.50 (0.11)
Sparse Jump 0.37 (0.06) 0.49 (0.12) 0.51 (0.10)
Sparse Medoids Jump 0.38 (0.07) 0.48 (0.11) 0.50 (0.10)

µ = 1, υ = 1.5
Jump 0.44 (0.12) 0.50 (0.10) 0.49 (0.09)
Medoids Jump 0.72 (0.13) 0.55 (0.10) 0.53 (0.08)
Sparse Jump 0.45 (0.12) 0.47 (0.10) 0.53 (0.10)
Sparse Medoids Jump 0.76 (0.14) 0.78 (0.15) 0.74 (0.15)

µ = 1, υ = 3
Jump 0.86 (0.14) 0.86 (0.15) 0.83 (0.15)
Medoids Jump 0.92 (0.11) 0.81 (0.13) 0.60 (0.10)
Sparse Jump 0.89 (0.13) 0.88 (0.14) 0.89 (0.14)
Sparse Medoids Jump 0.96 (0.06) 0.97 (0.07) 0.88 (0.15)

µ = 1, υ = 10
Jump 0.98 (0.04) 0.99 (0.03) 0.99 (0.03)
Medoids Jump 0.96 (0.07) 0.88 (0.12) 0.68 (0.12)
Sparse Jump 0.99 (0.02) 1.00 (>0.01) 1.00 (>0.01)
Sparse Medoids Jump 0.97 (0.06) 0.98 (0.03) 0.96 (0.10)
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Table 3: Resulting mean BAC values (and their standard deviations in paran-
theses) of the simulation study described in this section, where a total 500
observations of P features are simulated. The first 15 features are simulated
from a t-distribution with location µ1 = µ, µ2 = 0, µ3 = −µ depending on
the state, where µ = 2.5, and degrees-of-freedom υ ∈ {0.75, 1.5, 3, 7}, the
remaining P − 15 are simulated from a standard normal distribution. Four
different models are applied to the data: standard and sparse jump models
with squared Euclidean distance, as well as standard and sparse medoids-
based jump models with Manhattan distance. Bolded values indicate that
the BAC of the sparse medoids-based jump model is significantly bigger than
the BAC of the sparse jump model, using the Wilcoxon signed-rank test at
significance level α = 0.05.

P = 15 P = 30 P = 100

µ = 2.5, υ = 0.75
Jump 0.35 (0.05) 0.42 (0.05) 0.46 (0.08)
Medoids Jump 0.43 (0.14) 0.46 (0.07) 0.49 (0.07)
Sparse Jump 0.35 (0.05) 0.44 (0.07) 0.50 (0.08)
Sparse Medoids Jump 0.51 (0.14) 0.56 (0.13) 0.53 (0.09)

µ = 2.5, υ = 1.5
Jump 0.68 (0.15) 0.69 (0.13) 0.68 (0.17)
Medoids Jump 0.94 (0.11) 0.84 (0.16) 0.66 (0.15)
Sparse Jump 0.72 (0.15) 0.73 (0.16) 0.74 (0.15)
Sparse Medoids Jump 0.95 (0.10) 0.98 (0.08) 0.94 (0.13)

µ = 2.5, υ = 3
Jump 0.98 (0.08) 0.99 (0.04) 0.99 (0.06)
Medoids Jump 1.00 (>0.01) 0.99 (0.03) 0.90 (0.11)
Sparse Jump 1.00 (0.01) 1.00 (>0.01) 1.00 (>0.01)
Sparse Medoids Jump 1.00 (>0.01) 1.00 (>0.01) 1.00 (>0.01)

µ = 2.5, υ = 10
Jump 1.00 (>0.01) 1.00 (>0.01) 1.00 (>0.01)
Medoids Jump 1.00 (0.01) 0.99 (0.03) 0.96 (0.08)
Sparse Jump 1.00 (>0.01) 1.00 (>0.01) 1.00 (>0.01)
Sparse Medoids Jump 1.00 (>0.01) 1.00 (0.01) 1.00 (>0.01)
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5.3 Example from Financial Application

We have so far discussed the clustering problem and jump models in quite
abstract, theoretical terms. It might be of interest to the reader to see how
these models work in practice, applied to real data. A common application
of jump models is to determine regimes for financial markets and such an
application was considered by Nystrup, Kolm, et al. [2021]. There they look
at 2516 daily portfolio returns from 49 different stock portfolios and use the
sparse jump model to determine different volatility regimes for the data.
The mean, the cumulative sum of the mean and the six-day rolling standard
deviation of the mean of the portfolio returns are plotted in figure 7.

Figure 7: Upper plot: Average daily portfolio returns of 49 different stock
portfolios. Middle plot: Cumulative sum of the average daily portfolio re-
turns. Lower plot: Six-day rolling standard deviation of the average daily
portfolio returns.

The actual data to be fitted by the sparse jump model is the six-day
rolling standard deviations of the portfolio returns. Thus, the sparse jump
model will cluster the data into different volatility regimes. In Nystrup et al.
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they decided on using K = 3 different states, letting the hyperparameters
be κ = 5 and λ = 50. Additionally, they add 9 different row-permutations
of the original data as features, bringing the total number of features up to
490, with only the first 49 being relevant.

The resulting estimated state sequence from using the sparse jump model,
along with the feature weights, are visible in figure 8. The resulting state
sequence can be interpreted as follows: the state assigned value one in the
figure corresponds to a very persistent low-volatility regime, the states with
value two corresponds to a more passing mid-volatility regime and the state
assigned value three corresponds to a very rare high-volatility regime. We
also notice how none of the irrelevant, permuted features are assigned positive
feature weights, which mean that the sparse jump model is able to perform
the feature selection task well in this case.

Figure 8: Upper plot: Six-day rolling standard deviation of the average daily
portfolio returns. Middle plot: Estimated state sequence obtained from using
the sparse jump model. Lower plot: Feature weights resulting from the sparse
jump model.

Now, we want to see how our sparse medoids-based jump model performs
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in this scenario compared to the standard sparse jump model. First, we will
do this using squared Euclidean distance as our dissimilarity measure. Since
we are using the same dissimilarity measures a for the regular sparse jump
model, we do not expect the estimated state sequence to be much different.
The resulting estimated state sequence is visible in figure 9 and it does indeed
look similar to what we got using the standard sparse jump model. The main
difference seems to be that the middle volatility state seems slightly less
common. To get good state sequence, we had to set the hyperparameters to
κ = 5, which is the same as before, and λ = 100, which is twice as big as
before. This might indicate that medoids-based jump models require higher
jump penalties compared to when using standard jump models.

Figure 9: Upper plot: Six-day rolling standard deviation of the average
daily portfolio returns. Middle plot: Estimated state sequence obtained from
using the sparse medoids-based jump model with squared Euclidean distance.
Lower plot: Feature weights resulting from the sparse medoids-based jump
model with squared Euclidean distance.

One of the main advantages of the medoids-based jump model is that
it allows for flexibility in the choice of dissimilarity measure. To illustrate
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this, we decide to use Manhattan distance when fitting the medoids-based
model, instead of the squared Euclidean distance which is used by the stan-
dard jump model. The hyperparameters are set to κ = 5 and λ = 50, the
same as before. The state sequence estimated using the sparse medoids-
based jump model, along with the feature weights, are visible in figure 10.
We notice that the estimated state sequence in this case is quite different,
with the mid- and high-volatility regimes being substantially more persis-
tent compared to sparse case. This is probably due to the use of Manhattan
distance and the volatility spike occurring in late 2011 having less influence
on the estimated state sequence using such a dissimilarity measure. Overall,
the sparse medoids-based model performs feature selection well, only putting
weights on a subset of the 49 relevant features.

Figure 10: Upper plot: Six-day rolling standard deviation of the average daily
portfolio returns. Middle plot: Estimated state sequence obtained from using
the sparse medoids-based jump model with Manhattan distance. Lower plot:
Feature weights resulting from the sparse medoids-based jump model with
Manhattan distance.
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6 Conclusion and Further Research
In this thesis, we have managed to show how the K-medoids clustering al-
gorithm can fit into the statistical jump model framework developed by Be-
mporad et al. [2018]. This has allowed us to add a jump penalty to the
K-medoids objective function, analogously to what was done for the jump
model based on K-means. Thus, we have developed a clustering method
for time series data that allows for flexible choice of dissimilarity measure.
This opens up possibilities for using time series clustering with outliers in
the data or non-numerical values. Further, we also showed how the medoids-
based jump model can be fitted into the sparsity framework from Witten and
Tibshirani [2010], allowing for easy and effective feature selection.

The simulation studies show that using Manhattan distance in the medoids-
based jump model gives better results when there is a moderate amount
of outliers present in the relevant features compared to the regular jump
model. This only seems to hold true when the separation between the states
is large, however. Additionally, feature selection seems to be working well in
the medoids-based jump model, since the sparse medoids-based jump model
manages to keep comparable levels of accuracy even when adding several
irrelevant noise features.

6.1 Further Research

In our simulation study, we only looked into the case when the relevant fea-
tures are simulated from fat-tailed distributions and the irrelevant ones come
from a standard Gaussian distribution. While the the medoids-based jump
model with Manhattan distance manages to do correct feature selection in
this case, it would be worthwhile investigating whether the model would also
be able to do correct feature selection when the irrelevant noise parameters
are sampled from a fat-tailed distribution. This is important, because we
don’t expect just the relevant features to suffer from outliers when work-
ing with real data. It might also be the case that the addition of outliers
in only the relevant features made the feature selection problem too trivial,
indicating that the good results might be giving a misleading impression.

Something that was noticed from the results of the simulation study, was
that the models seemed to increase in performance for ill-separated states
with a large number outliers when irrelevant Gaussian noise features where
added. We could not come up with a good explanation for this, and it might
be worthwhile to make further, more detailed investigations into this to try
and find a reasonable explanation.

Further, we notice that feature selection based on the between-cluster
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sum of point-to-medoids dissimilarities resulted in poor feature selection.
We could not figure out why this was the case. However, the more observa-
tions we have access to, the closer the medoids-based model should be to the
regular one, indicating that feature selection based on point-to-medoids dis-
similarities might perform better when the number of observations increase.
This hypothesis would be worth investigating.

Of course, we also would want to apply the model to more scenarios using
real data. One potential application could be in the financial setting, which
is well-known to typically follow fat-tailed distributions. Even though we did
investigate this briefly, we looked at smoothed, portfolio data, which should
result in fairly robust results regardless of method chosen. In cases with more
volatile, non-smoothed data, using the Manhattan distance in this case could
potentially lead to more interpretable results with fewer states necessary.
Another application would be to use the medoids-based jump model with
categorical time series data.
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