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Abstract

This thesis aims to explore the possibility of using deep learning tech-
niques to mine opinions on Twitter, with the objective to predict the
political opinion distribution in Sweden. Different methods of gathering
and annotating training data are evaluated to achieve accurate and reli-
able predictions. The models are quite successful at predicting test data,
achieving F1-scores in the range of 70 % to 85 %. Some party divisions
are found more difficult to classify than others. It is hypothesized and
validated that the context of the tweets can aid in the classification pro-
cess. In practice, this is carried out by exploiting the structure of the
tweet thread structure. When the models were used to predict the gen-
eral political discussion on Twitter, the results show that the predictions
are subject to large variance. Different executions can yield wildly differ-
ent results and, thus, are determined not reliable enough to use as input
to regression when trying to find the relation between the predicted opin-
ion distributions and the opinion polls. The underlying issue causing the
large variance is investigated and results suggest that the training data
is too small, or of too low quality, which causes the model to overfit and
makes patterns hard to recognize. A lexicon-based classification is carried
out as a supplement, but no significant relation can be stated between the
predicted opinion and the opinion polls. Furthermore, it is discussed that
the issue of insufficient results might lie within the method itself. The
Swedish political discussion might not be polarized enough to make good
classifications or Twitter political discussion might not be representative
of the general opinion at all.

4



1 Introduction

1.1 Background

Machine learning is a popular technique where an algorithm receives training
data to learn from before attempting to solve unseen problems. An emerg-
ing field in this domain is Natural Language Processing (NLP), which refers
to the task of training computers to understand human languages and speech
(Kavlakoglu 2020). This task poses a significant challenge since human lan-
guage is rather ambiguous due to concepts such as sarcasm, metaphors, and
other irregularities. Still, NLP appears in many familiar applications, such as
chatbots, email spam detection, speech recognition, and sentiment analysis.

Sentiment analysis is a branch of NLP, where a model is taught to predict the
sentiment of a sentence, such as emotions or sarcasm. Since a machine learn-
ing model has no prior knowledge of sentiment or human language, complex
systems and extensive training is needed to accomplish this task. Sentiment
analysis becomes an even more difficult task on social media platforms, where
traditional grammar rules are often ignored, language is quickly changing and
abbreviations are standard. Opinion mining is a branch of sentiment analysis
where NLP-techniques are used to learn the opinion of a topic. As the spread
of public opinion has shifted from physical distribution to social media, there
is an emerging potential to mine the opinions of a multitude of individuals in
real-time.

One of the most important opinion generating topics is politics. The knowl-
edge of the public opinion in a political context is essential for politicians and
society as a whole, especially close to an election. Each month, a Swedish po-
litical opinion poll is created by an organisation called Kantar SIFO, with the
aim to get a sense of how the public would vote if the election was at that time.
This is a costly operation where 20 000 interviews are being conducted monthly
to try to gauge the current political landscape (Kantar 2023). Meanwhile, many
political discussions are taking place online on various social media platforms.
Perhaps mining the opinion of such platforms could serve as an alternative way
of learning the public’s opinion?

1.2 Objective

The goal of this research is to explore if it is possible to implement a neural
network capable of predicting the political party affiliation of Twitter users in
a Swedish context. Furthermore, this thesis seeks to assess the potential of
using classified tweets as an alternative to opinion polls similar to what has
been successfully implemented in the US. Predicting the political sentiment of
an extensive amount of real-time tweets could serve as an opportunity to reduce
the time and money spent on creating opinion polls.
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1.3 Contribution from this work

The contribution of this work is to utilize and customize techniques used to mine
political opinions on Twitter in a Swedish context. While several machine learn-
ing approaches have been suggested and validated for political opinion mining
on Twitter, this work is primarily inspired by previous work where deep learning
models have been employed for a similar task. The proposed approach was cus-
tomized to fit the Swedish political landscape. Additionally, this work combines
techniques for model initialization and pre-training to improve accuracy and for
acquiring labeled training data from Twitter. As an extension, Twitter threads
were utilized, with the aim of classifying more tweets by taking the context into
consideration.

1.4 Previous research

This work was inspired by a technique called Iterative Opinion Mining using
neural networks (Belcastro et al. 2020). The technique relies on an iterative
classification approach, where the classification rules are updated at each itera-
tion. This enables the model to start with a small training set of pre-classified
tweets and grow it iteratively when more tweets are classified. The first tweets
are annotated with party sentiment based on keywords commonly used in favour
of the different parties, e.g., #VoteForTrump is annotated as a Trump-tweet in
the US. After the classification process, the political view of each user is es-
timated based on their classified tweets. The resulting opinion distribution is
compared to independent opinion polls to determine the accuracy of the model.

From a comparison of different machine learning methods used to predict senti-
ments on tweets concerning the Indonesian Presidential Election, it is concluded
that deep learning models outperforms other machine learning techniques (Hi-
dayatullah, Cahyaningtyas, and Hakim 2020). The deep learning models imple-
mented are shown to outperform Support Vector Machines, Multinomial Naive
Bayes, and Logistic Regression in terms of accuracy in predicting sentiment.
The five deep learning techniques exhibit similar performance in terms of accu-
racy.

Severyn and Moschitt highlight the difficulty of initializing a deep learning model
in their work on Twitter sentiment analysis (Severyn and Moschitti 2015). Since
neural networks rely on optimization, the problem of local optima arises. To
address this, one can try to initialize the model by pre-training word embed-
dings. Random initialization is compared to techniques such as pre-training and
word2vec, described later. The comparison shows that models with pre-trained
word embeddings are significantly more accurate in predicting sentiment.

Kamış and Goularas attempted to establish which Neural Network configuration
excels at sentiment analysis on Twitter data (Goularas and Kamis 2019). It ap-
pears that dedicating time and effort towards developing high-quality training
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sets offers more benefits than tinkering with various configurations or settings
of the neural network.

2 Building of classification model

Twitter was picked as the social media for scraping in this study due to Swedish
politicians’ large presence on the platform and as it is commonly used for po-
litical discussions. Moreover, scraping from Twitter was proven successful in
another study with similar objective (Belcastro et al. 2020).

The political views of the Swedish political parties have shifted over time, but
are mainly driven by the three largest parties; Socialdemokraterna, Modera-
terna, and Sverigedemokraterna. To simplify, the classification of parties was
split into three divisions, which will from now on be referred to as red parties,
blue parties, and the yellow party. The red parties refers to Socialdemokraterna,
Miljöpartiet, Vänsterpartiet, and Centerpartiet. The blue parties refers to Mod-
eraterna, Kristdemokraterna, and Liberalerna. Since Sverigedemokraterna is by
itself the second largest party, this party alone will be referred to as the yellow
party.

An overview of the four phases of the methodology proposed is shown in figure 1.

Figure 1: An overview of the methodology proposed.
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2.1 Swedish political discussions on Twitter

A screening of Twitter showed that much of the political discussions were car-
ried out under the hashtag ”#svpol”, an abbreviation for ”Swedish politics”.
This assertion was further proven by the fact that the hashtag is one of the
most frequently used overall on Swedish-speaking Twitter (Nilsson 2019). Fur-
thermore, the word cloud created from tweets containing the hashtag #svpol
presented in figure 2 shows that words commonly used under this hashtag are
connected to politics.

Figure 2: Word cloud from #svpol 2022.

Some initial data exploration shows that the discussions are skewed by a loud
minority. About 10 % of the users generated 53 % of the total tweets in a sample
of 150 000 tweets, with a few individuals dominating the discussion, e.g. the
most active user posted 543 of the tweets collected. This aspect has to be taken
into consideration in the modeling to ensure the loud minority does not affect
the generated opinion distribution.

To get a sense of the data, approximately 2000 tweets were manually read.
The investigation showed that many of the tweets were unrelated to Swedish
politics, e.g.

”VM guld i bordtennis! Grattis Mattias Falck/Kristian Karlsson
!#svpol #vmguld #bordtennis”

Moreover, many tweets carried their information in the form of a link or an
image. With images and links being removed in pre-processing, this information
is lost when the tweets are fed into the model. Other tweets were dependent on
the context they were presented in, e.g. as a reply to a previous tweet. This
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left many tweets with too little information to suggest any party sentiment.
It is therefore likely appropriate that irrelevant and uninformative tweets are
classified as neutral when constructing a model.

2.2 Data gathering

To gather tweets, keywords were used to scrape Twitter with snscrape (JustAn-
otherArchivist 2018). The keywords were used to retrieve relevant tweets, both
for training data and for prediction. The keywords used to gather training data
are presented in the following section. To gather data for prediction the hashtag
”#svpol” was used and all mentions of parties or party leaders. Simultaneously
as tweets were gathered, other specifications such as users, time, tweet ID, and
reply ID were gathered.

2.3 Supervised vs unsupervised learning

In machine learning, there are two broad categories of learning, supervised learn-
ing and unsupervised learning (Delua 2021). In supervised learning, the model
aims to predict new data, while the aim of unsupervised learning is to make sense
of the data. The main difference between the two approaches is that supervised
learning requires labeled data. The algorithm learns to recognize patterns based
on the labeled data. The objective of this work is to classify tweets based on
their political affiliation. This requires the model to predict and classify new
data, and hence the supervised approach fits better. An overview of how super-
vised learning works is presented in figure 3.

The main limitation of supervised learning is acquiring a sufficient amount of
correctly labeled training data, as the results are highly dependent on the pro-
vided training data. The difficulty of obtaining or labeling training data is a
recurring theme in previous work. This process serves as the most crucial and
complex part of this work. This is mainly due to the complexity of the data
and the sensitivity to bias. The complexity of the data relates to how people
express their political viewpoints in tweets. Few users express their opinions in
a straightforward manner, rather the information is found between the lines.

Previous research suggests that deep learning models are more accurate than
other supervised techniques in predicting the sentiment of tweets. It was also
demonstrated that the performance between different deep learning models in
terms of accuracy is similar. Consequently, a neural network is implemented in
this work.

2.4 Training data

Three approaches to annotate training data were considered. Firstly, the data
can be manually annotated, which in practice means reading tweets and label-
ing them. The benefits of this method are better control of the training data
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Figure 3: An overview of supervised learning.

set and more consistency in the labeled tweets. The downside is that letting
humans manually annotate implies influence by the biases of said humans. It
is also a time-consuming process. Secondly, the tweets can be annotated based
on keywords that strongly suggest an affiliation to a specific party division. In
practice, this would mean identifying keywords often used in favour of a specific
party. The benefits of this method are less influence of human bias in selecting
tweets, and less time needed to annotate tweets. Although, identifying repre-
sentative keywords is also difficult and subject to human bias. The keywords
might also generate mislabeled tweets and affect the outcome of the classifica-
tion. Thirdly, one can scrape based on mentions of parties or party leaders and
then use a sentiment analyzer to filter away negative or neutral tweets so only
positive tweets remain.

The methods chosen were to annotate the training data based on keywords
as well as to use party mentions in combination with lexicon-based sentiment
analysis. These were picked due to time efficiency. Using two techniques permits
more breadth in the training data. The size of the training data set is limited
by the quality of the keywords. A large training data set prevents overfitting,
but more noise and low quality of the training data effects the classification
negatively.

2.4.1 Annotating with keywords

The method to annotate training data with keywords was implemented by man-
ually examining 2000 tweets, identifying keywords or hashtags commonly in
favour of each party division. In total, 4500 tweets were scraped, evenly dis-
tributed over the three categories of parties, i.e., 1500 tweets for each party
group. The tweets were scraped based on the first set of keywords presented in
figure 4. The number of keywords needed was decided by how frequently used
these keywords are, e.g., for the blue parties, more words were needed to reach
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Figure 4: First set of keywords utilized for annotation

Figure 5: Second set of keywords utilized for annotation

the goal of 1500 tweets for a specific time frame.

The keywords chosen to label training data play a crucial role in how the model
classifies tweets. To explore the impact of the set of keywords, another data
set is created based on another set of keywords. The second set of keywords is
shown in figure 5.

2.4.2 Annotating with VADER

The second method to annotate training data was implemented with the help of
a lexicon-based sentiment annotation. Tweets were scraped based on mentions
of party or party leader and a sentiment analyzing tool was used to filter away
all the tweets that are not in support of the mentioned party. This approach
was implemented using a Valence Aware Dictionary and Sentiment Reasoner
(VADER) (Hutto and Gilbert 2014). VADER is used to predict sentiment on
text and is tuned to be used on social media. In practice, this means that it
is sensitive to the polarity of sentiments found on social media. In the Swedish
version, the lexicon is created by 10 independent human raters, which resulted
in 7500 features rated. Both emoticons and slang abbreviations are considered.
The rule-based tool captures the order and relationship between words and
therefore gathers more information than a bag-of-word model. Each word in
the processed text receives a sentiment rating between -1 and 1. Below -0.05
results in a negative sentiment, and above 0.05 results in a positive sentiment.
A score in between results in neutral sentiment. A compound score for the
sentence is calculated by adjusting the score for each word based on rules, and
then summing all scores and normalizing it between -1 and 1.
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2.5 Pre-processing

Pre-processing raw data involves cleaning, normalizing, and transforming it be-
fore it is fed to the neural network. Only valuable information should be passed
to the neural network. The aim of pre-processing is to remove pieces of the
text that do not carry any information about the sentiment, or in other words
to reduce noise in the text. The purpose of reducing the noise is to improve
the performance and efficiency of the classifier. This work was inspired by the
pre-processing approach proposed by Belacastro (Belcastro et al. 2020) in his
work on political polarization on Twitter.

As a first step in the pre-processing, all links and pictures were removed. All
letters were converted to lowercase and all punctuation was removed, which also
includes symbols and special characters. Emoticons have the potential to add
value to the sentiment but would require a deeper analysis before they are used
in the classification. They have unfortunately not been exploited in this thesis
but have the potential to aid in the classification of future work.

In the process of screening 2000 tweets, it was observed that many tweets con-
tain mentions, as they are often in reply to other tweets. These mentions create
a thread structure, and the possibility of utilizing these in the classification pro-
cess will be discussed later. The mentions themselves generally do not add any
value to the sentiment and are therefore removed. An exception is made in the
keyword training set, if a party leader or a party is mentioned, since the mention
of these in combination with positive sentiment is deemed valuable information.
In the lexicon-based training set, these mentions were removed as party leaders
and party names were used in the scraping process. Keywords used to scrape
and annotate the training data were removed, as the model otherwise would
recognize these as an indication of positive sentiment.

Common stopwords were removed since they do not add information about
the sentiment. The purpose of these words is to link words that carry more in-
formation. These are words such as att, den, det, jag, han. A list of stopwords
was retrieved from an open-source Github created by Peter Dalle and consists
of 427 common stopwords in the Swedish language (Dalle 2021). An illustration
of the output of the pre-processing is shown in figure 6.

In the work by Belacastro, stemming is also performed on the tweets (Bel-
castro et al. 2020). Stemming is the process of converting words to their root
form, e.g., from voting or vote to vot. This allows all conjugations of the word
to be interpreted as the same word. Stemming is preferred since regardless
of the conjugation, the word bears the same information about the sentiment.
Due to the difficulty of acquiring a set of root words and their conjugations in
Swedish, and the labour-intensive work of creating such a dictionary, stemming
has unfortunately not been included in this work. Stemming could potentially
be explored in future work.
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Figure 6: Example of Twitter pre-processing.

2.6 Feature extraction

Since machine learning models can only handle numbers as input, all words need
to be transformed into numbers. The procedure of generating unique numbers,
or tokens, for each word, is called tokenization (Uzila 2022). These tokens need
to be constructed in a way that gives meaning to the deep learning model.
This feature extraction is an important step when implementing a deep learn-
ing model and can be done in several ways.

The simplest method is to assign a distinct number to each word and count
its frequency within the text corpus. The text corpus comprises all the words
contained in the collection of tweets. This technique, known as bag of words,
has multiple variations. Since all stopwords are removed, the model will learn
the tweet features based on the tokens with high frequency and likely also the
most interesting in the context. One major limitation of this method is that it
does not account for the relationship between tokens. Consequently, words that
bear meaning together in a sentence will be considered independently and this
information is neglected. An illustration of this issue is shown in figure 7. In
the sentence ”rösta inte p̊a sossarna” the party ”sossarna” is the most frequent
word in the text corpus and the word ”rösta” is the fifth most frequent word.
The word ”rösta” would by itself indicate that the tweet is in favor of the party
mentioned. Although if the relationship ”rösta inte” would be considered, the
model would learn that this combination of words would indicate a tweet in
opposition to the party.
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Figure 7: Example of bag of words

In this work, the tweets were tokenized with the help of the Keras tokenizer
(Chollet et al. 2015). The tokenizer was fitted on all tweets and a dictionary
of all the words and how frequently they appear. The tweet was converted to
a number vector where only the 1000 most frequent words are considered. The
numbers represent how common the words are in the text corpus. The vector
was then zero-padded to ensure that the size of the input to the neural network
is the same.

2.6.1 Keras embedding layer

An alternative to using only the bag of words method when encoding the sen-
tences is to use word embeddings. The embedding works as a dense vector
representation of each word (Saxena 2021). During the training, the weights of
the embedding layer were trained to an optimal value to fit the training data.
The embedding layer learns the structure of the training data and represents
each word with an embedding. Similar words in the training data were repre-
sented with similar embeddings. Visually, the words would be closer together
in the space spanned by the dimension of the features.

The number of features to consider, or the dimension of the embedding, de-
pends on the specific problem. The complexity of the problem increases with
the number of parameters to optimize, which increases with the embedding
dimension. Increasing complexity in optimization is associated with problems
such as getting stuck in local minima and unreliability in the system. A dimen-
sion of 100 to 300 words have been proven to perform well in word embeddings
(Gu et al. 2021).

Furthermore, one can train the embeddings simultaneously with a machine
learning model, or pre-train the embeddings before. An advantage of learn-
ing the embedding simultaneously is that the embedding is specifically trained
on the text corpus related to the problem statement (Brownlee 2019). Since the
construction of sentences in tweets is profoundly different from the sentences
found in for example books there is a possibility that training the embeddings
simultaneously works better than using a pre-trained embeddings. The down-
side of this approach is that the training data set needs to be large and the
training process may be slow.
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2.6.2 Word2vec

Another alternative is to pre-train the embeddings on a large text corpus. This
addresses the issue of limited training data. As mentioned, a large training set
is required to receive representative word embeddings. Since labeled training
data is difficult to acquire in this context, the embeddings can learn from a text
corpus. The pre-trained embeddings may then be updated with the training of
the neural network or remain unchanged.

As seen in the work of Severyn and Moschitti, pre-training word embeddings
can significantly increase the accuracy of Twitter sentiment analysis with neural
networks (Severyn and Moschitti 2015). In this work, the word2vec model was
utilized to pre-train the embeddings. The word2vec method is a neural net-
work itself that predicts one token given another token. This means that if the
word ”rösta” is present, the model will also consider the word ”inte” if these
two words are commonly used as neighbouring words in tweets. By learning
the language structure, the word2vec model can provide valuable insights for
the model when classifying tweets. During the training on the text corpus, an
embedding vector is generated for each word, which can then be utilized by the
deep learning model.

Numerous pre-trained word embeddings for English have been developed us-
ing large text corpora, e.g., a free pre-trained version by Google News data set.
However, obtaining pre-trained models in Swedish is more difficult, and could
be further explored in future work. One option is to pre-train the word2vec
model using a text corpus of thousands of Swedish tweets, the drawback is that
this approach only considers neighbouring words and is limited to the words
present in the training data. Therefore, it is essential to use a very large text
corpus to train the word2vec model. These pre-trained embeddings can then be
used as a layer in the deep-learning model.

The word2vec model was trained on a dataset of 10 000 tweets scraped with the
keyword svpol in 2022. An illustration of the word embeddings can be seen in
figure 8. The illustration shows how words that are often used in neighbouring
contexts are grouped together. One can for example see that Annie Lööf and
Märta Stenevi are close to each other and that Ulf, referring to prime minister
Ulf Kristersson, is closer to Johan Pehrson. This shows how leaders of parties
with similar political view seem to be mentioned in the same context. There is
also a group of words that are far from all other words, such as islam, klankul-
tur, krimpol, and hedersförtryck. This would indicate that these words are often
used in the same context, and seldom together with other political words.

2.6.3 Swedish BERT

Both the Keras embedding layer and the pre-trained word2vec embeddings have
fixed embeddings for each word, independent of the kind of sentence they ap-
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pear in. An alternative is to use context-aware models such as the Bidirectional
Encoder Representations from Transformers (BERT) (Börjeson 2020). The ad-
vantage of BERT is that it creates dynamically updated word embeddings that
are based on the sentence the word appears in.

Figure 8: Visualisation of word embeddings from word2vec

The problem with implementing BERT is that the free and existing models are
based on and trained in English. However, the Swedish Royal Library released
a Swedish version of Google’s BERT model in 2020 (Malmsten, Börjeson, and
Haffenden 2020). According to the institution the Swedish version outperforms
Google’s multi-language model. The model developed by the Royal Library is
trained on approximately 200M sentences from various sources aiming to pro-
vide a representative BERT model for Swedish. When the Swedish BERT model
was used, the vocabulary proved to be insufficient for the task at hand.

Using the implementation of the Swedish BERT model to tokenize 1000 po-
litical tweets, 61 % of the tweets were empty tokens, and 20 % of the tweets
contained only one token. The implication is that the model either did not
recognize, or assign any value to the words in these sentences. The words it was
able to recognize were often very general, e.g., ”Sverige”, that do not provide
much information regarding political opinions. Since these tokenized tweets are
the sole information given to the classifying model, the extensive amount of
information that gets lost is unfavorable.

The following tweet can be used to illustrate this issue.

”Är man bosatt i Sverige s̊a har man en skyldighet att lära sig sven-
ska. Vägrar man göra det, trots att utbildningen är gratis, s̊a f̊ar
man ocks̊a st̊a för tolkkostnaderna. Det är inte rasism att ställa
krav.”
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With the Swedish BERT encoder only the word ”Sverige” is translated to a to-
ken. Words such as ”svenska”, ”rasism” and ”krav” that might add value to the
classification are left out. It was thus concluded that the Swedish BERT Model
vocabulary needs to be expanded before it can be used well in this application.

2.7 Artificial Neural Network

Over the extensive process of evolution, numerous desirable traits have been
developed in the human brain. Artificial neural networks try to mimic some of
the brain’s features to achieve similar abilities.

2.7.1 Neurons

In a biological sense, a neuron is a specialized cell that plays a crucial role in
processing information (Jain, Mao, and Mohiuddin 1996). Neurons receive sig-
nals or impulses from other neurons. Signals passing through the synapse can
modify its effectiveness, allowing synapses to learn from their participation in
activities. This ability to adapt based on history acts as a memory.

Modelling the behaviour of these biological neurons with inputs and outputs
can look like

y = θ

 n∑
j=1

wjxj + u)

 (1)

where xj represent the inputs to the neuron and is the output. The constant u
represents the bias in the modeling and θ the activation function.

The activation function in a neural network enables the neurons to have higher
complexity than just a linear function. While linear equations may be straight-
forward to solve, their capacity for complexity is inherently limited and they
are incapable of learning and recognizing intricate data mappings. Neural net-
works without activation functions operate similarly to linear regression models,
exhibiting limited performance and power in most scenarios (Sagar Sharma, Si-
mone Sharma, and Athaiya 2017). The activation function allows for nonlinear
functional mappings between input and output.

The choice of activation function depends on the application of the neural net-
work. The sigmoid activation function, visualized in figure 10, was commonly
used in neural networks for many years because of its smooth and continuous
output, which made it well-suited for gradient-based optimization techniques
(Eger, Youssef, and Gurevych 2019). However, as neural networks grew deeper,
it became apparent that the sigmoid function suffers from the vanishing gradient
problem, which occurs when the derivative of the activation function approaches
zero.
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The ReLU (Rectified Linear Unit) activation function solves this issue. It has
a simple and efficient form and does not suffer from the vanishing gradient
problem in the same way as the sigmoid function. Its derivative is either 0
or 1, depending on the input value. The ReLU function is now widely used in
practice and has become the default choice for many deep-learning applications.

The Softmax activation function is a type of logistic regression that maps an
input value into a probability, describing the probability of a particular outcome
(Mahmood 2018).

2.7.2 Teaching the Network

The loss function is used to define the performance of the neural network. The
model seeks to minimize the loss function in order to achieve the best possible
accuracy. Cross entropy is a commonly used loss function and is calculated
based on the log-likelihood (Qin, Kim, and Gedeon 2019).

L = − 1

n

∑
k

(ykln(ŷk) + (1− yk)ln(1− ŷk)) (2)

where y is the correct outcome, ŷ is the prediction, and n is the number of items
in the training data (Nielson 2020). The training process aims to minimize the
loss function by updating the weights associated with the neurons. This is done
through backpropagation, which is the process of utilizing the partial derivative
of the error of each weight to optimize for loss minimization (Sathyanarayana
2014).

A commonly used method for optimization is called ADAM. It provides an
efficient stochastic optimization using first-order gradients and requires little
memory. It works by calculating adaptive learning rates for different parame-
ters using estimates of the first and second moments of the gradients (Kingma
and Ba 2017).

The training is performed in batches, and the batch size determines the number
of samples the neural network processes before re-adjusting the weights of the
neurons (Kukreja et al. 2016). To ensure that the weights are tuned correctly,
the network should process many batches. To increase the number of available
batches, the data set can be run through the network several times. The number
of times the entire data set is processed by the network is defined by the epoch
parameter. Two epochs imply letting the network train on the data set twice.

Early stopping is a regularization method used in neural networks to prevent
overfitting (Prechelt 1998). Overfitting occurs when the model is too complex
and is trained too well on the training data, leading to poor generalization per-
formance on new data. Early stopping works by monitoring the performance of
the neural network during training. It is measured after each epoch of training,
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if the performance starts to deteriorate on the testing set, indicating overfit-
ting, the training process is stopped early. A useful parameter in early stopping
is called patience and dictates how many epochs without improvement that is
allowed before stopping early.

2.7.3 Layers

The neural network is divided into different layers. The entry point for the
data is called the input layer and the exit point is called the output layer. In
between these points, there can be hidden layers that the users do not han-
dle themselves. The architecture of the input and output layers is determined
by the structure of the input data. For instance, when analyzing pictures, the
number of pixels would dictate the shape of the input layer. In the context of
Twitter posts, the maximum number of words allowed determines the structure
of the input layer. The output layer produces the final prediction of the neural
network based on the inputs that have been fed into the network and adjusted
by previous neurons. The desired output of the neural network determines the
shape of the output layer. For a binary problem, one neuron is sufficient. For
a classification problem with three possible outcomes, three nodes are required
that will produce a probability of the input being from each respective class. It
is the hidden layers that perform the bulk of the work. Determining the shape
of the hidden layers is a difficult task, as there are no perfectly accurate ways of
calculating the best shape analytically (Brownlee 2019). Deciding on the shape
of the hidden layers is often done by testing parameters randomly or with a
grid search. An illustration of how a neural network can take form is shown in
figure 9.

Figure 9: Illustration of neurons and layers and how they are connected in a
neural network.
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One type of hidden layer is called flatten, the flattening layer is used to change
the shape of the input tensor before being fed into the subsequent layers (Chollet
et al. 2015). By flattening the input tensor, the flattening layer preserves the
spatial relationships between the features of the input, while making it easier
to process the data in a fully connected layer. Another hidden layer is called
dense, the dense layer is a fully connected network, meaning it connects each
neuron in the layer to every neuron in the previous layer. Every single neuron
in the layer produces an output value, which is then passed on to the next layer
in the network. The dense layer is defined by the number of neurons in the layer
and an activation function. The activation function is applied element-wise to
the output of the neuron.

Figure 10: Sigmoid and ReLU activation functions.

2.7.4 Variance and bias trade-off

Variance in a neural network is natural, and there is usually a trade-off between
variance and bias (Hinton et al. 2012). The variance tends to be large if the
model overfits the training data, and learns the sampling error in the training
data set. A neural network tends to overfit the training data when the set of
training data is small. One way to overcome this issue is to average over many
different models. To receive different neural network models one can change
the number of hidden neurons, use different learning algorithms, or change the
training data. This procedure is called bagging. In practice, this could mean
training the model on different subsets of the training data and drawing an av-
erage of the models’ results.

Another alternative is to create expert models, that focus only on predicting
the classes where it outperforms the other models (ibid.). In this work, that
would translate to using different models to predict blue parties, red parties, and
the yellow party. Instead of creating new models and averaging over predictions,
one can use dropout as a way of averaging over models (ibid.). Dropout means
that at each training each neuron is omitted with a given dropout probabil-
ity. Consequently, sampling is done with different architectures in each epoch.
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Dropout is efficient when the neural network is overfitting. This is an extreme
form of bagging.

If limited training data is an issue, a simple model will perform better than
a complex one since the complex model will overfit the training data (Hinton
et al. 2012). Each parameter has posterior probability which means that a large
amount of trainable parameters will increase the variance. A more complicated
model will fit the training data better, but will not be reliable when applied to
a new set of data.

2.7.5 Utilized architecture

Two versions of neural network architectures were utilized in this work and the
structure is shown in figures 11 and 12. Both have input layers of size 100,
allowing 100 words to be fed into the model as none of the tweets in the data
set contained more than 100 words after the pre-processing. The shape of the
embedding layer is 100 times 100, with each word being embedded in a vector of
size 100. The embedding layer utilizes the pre-trained word2vec embeddings to
capture relations between words. The dimensionality of the word embeddings
was chosen within the range of common practices described earlier, as the lower
endpoint to maintain a simple structure. The embedding information, e.g., if
two words often are used together, is described in a 2D matrix.

Subsequently, a flattening layer was performed in order to preserve informa-
tion from the embedding layer that produces a 2D vector when the dense layers
require a single vector as input. The shape of the flattening layer is 10 000, a
result of the embedding layer creating a matrix with 10 000 elements.

A dense layer of 10 neurons follows the flattening layer. This number is empiri-
cally decided upon simply by observing that an increase in the number of hidden
neurons did not result in an improvement in accuracy. This layer has the ReLU
activation function previously described. This activation function was picked
due to its benefits in the optimization over other alternatives.

Lastly, the output layer is added. The amount of parameters differs in the
two versions of the neural network, because of how the classification is struc-
tured. The rationale for this division will be discussed in-depth in the following
paragraph. Figure 9 shows a model providing a 3-way classification, thus hav-
ing 3 neurons in its output layer while figure 10 shows a model with a binary
classification, therefore only containing one neuron in the output layer.

Furthermore, the ADAM optimization algorithm was used and to prevent over-
fitting early stopping was implemented with a patience of 3.
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Figure 11: Base model architecture.

Figure 12: Two-step classification model architecture.

2.8 Designing model structure

Two structures of classification models were implemented with the aim of clas-
sifying tweets in favour of the three party divisions.

2.8.1 Base-model

The first classification structure is hereafter referred to as the Base-model and
is a simple categorical classification with three dummy variables. The data set
is split into 80 percent training set and 20 percent test set. The training set is
fed to the neural network and then used to predict the test set. The output of
the model is a vector of predicted probabilities that the input tweet is in favour
of each of the three party divisions. The tweet is classified based on the most
likely party. An illustration of the classification procedure is shown in figure 13.
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Figure 13: Illustration of the classification procedure with the Base-model.

2.8.2 Two step-model

As an expansion of the Base-model, the Two step-model was constructed. The
Two step-model relies on the hypothesis that it would be easier to perform the
classification in two steps, as the blue parties and the yellow parties are com-
monly considered closer in political views. The first step of the Two step-model
classifies tweets as either in favour of red parties, ”blue or yellow” or as uncer-
tain. The second step classifies the ”blue or yellow” into blue parties, yellow
parties or uncertain. An illustration of how the Two step-model classifies tweets
is shown in figure 14.

This model structure requires the data set to be labeled differently for training
the different classifiers. Firstly, the data was scrambled and separated into a
20 percent test set and a 80 percent training set. The training data was then
sorted after label since the training set for the first classification needed to have
the same share of red tweets and blue/yellow tweets to prevent skewed training
data. Hence, the training tweets for each division were divided in the relation
2:1:1 for red, blue, and yellow tweets. The tweets labeled as yellow or blue
were relabeled as blue/yellow. The data set was scrambled and divided into 80
percent training data and 20 percent validation data.

To train the second classifier, the same training data was sorted and only the
blue and the yellow tweets were considered. This subset of data was scrambled
and the data was divided into 80 percent training and 20 percent validation.
An illustration of this procedure is shown in figure 15.

23



Figure 14: Illustration of the classification procedure with the Two step-model.

Figure 15: Data scrambling for Two step-model.
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2.8.3 Managing uncertainty with a threshold

As mentioned previously, many tweets contain links and images and many of
them are replies to other tweets. This means that a randomly selected tweet is
likely to be taken out of context and may contain too little information when
analyzed on its own. When manually scanning through 1000 tweets, it was dis-
covered that only around 10 percent of these tweets contained enough political
information to be classified in favour of a party. It would hence be wrong to
classify all tweets that are scraped from Twitter since many of them would be
completely irrelevant.

Figure 16: Filtering process.

To address this issue, a threshold is introduced. The model was trained on all
tweets in the training data set and was then used to predict the opinion on
the political data set from Twitter. The model generates probabilities that a
tweet is in favour of the different party divisions. The threshold then works
as a filtering function, and only allows tweets that the model is certain of to
be classified. A higher threshold leads to more tweets being classified, but also
means that tweets that the model is less certain of slips through. A scheme of
this procedure is shown in figure 16.

2.8.4 Classifying with threads

The context of the tweets is hypothesised to add value to the classification.
This hypothesis is tested by examining the impact of considering threads as
a supplement to the classification. This is done by not only looking at each
individual tweet but also examining the context of the tweet. The structure
of the Twitter forum allows for debate in threads. Threads are created when
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someone replies to a tweet, often with an opinion on the tweet in question.
The tweet that generates the thread will from now on be referred to as the
parent tweet. If someone tweets something positive about a specific party, it is
likely to cause debate in the thread. People in favour of that same party are
likely to react positively to that parent tweet and people opposing the party
are likely to react in a negative manner. Sentiment analysis on the replies to
an already classified tweet serves as a possibility to classify even further tweets.
The relationship between threads and parent tweets is illustrated in figure 17.
This is enabled by the scraping tool allowing gathering of both tweet ID and
reply ID associated with each tweet, which is then used to group tweets into
threads.

Figure 17: Classifying threads.

2.9 Alternative model

2.9.1 Lexicon-based opinion mining

A lexicon-based approach has been shown to outperform machine learning tech-
niques in some cases of sentiment analysis (Hota, D. K. Sharma, and Verma
2021). Machine learning techniques are highly dependent on the set of training
data, which is difficult to acquire. The VADER lexicon requires no training
data and serves as an alternative to the deep learning techniques used in the
Base-model and Two step-model. The Vader lexicon model, described earlier, is
used to predict the sentiment of tweets containing mentions of parties or party
leaders within the three divisions. In the political data set of 180 000 tweets,
only the tweets mentioning leaders or parties were considered. Tweets that men-
tioned a division that was also labeled as positive by VADER, were classified as
in favour of that division. Tweets labeled as negative were classified as against.
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3 Evaluation of model designs

3.1 Data scrambling and model initialization

The result of the training is dependent on which part of the data set is chosen
as the training set and which is chosen as the test set. There is also a stochastic
variation in the result as a natural consequence of neural network optimization.
To receive trustworthy results, the classification was carried out several times,
where the data was scrambled each run. This results in different parts of the
data ending up in the training set and test set each run. The models were
pre-trained on tweets scraped from 2021, with the same keywords. The weights
from the pre-training were used to initialize the neural network in each run to
receive a more robust result.

3.2 Evaluation metrics

There are several ways to measure the performance of a model or model aug-
mentation. The outputs of a binary classification model are true positives, false
positives, true negatives and false negatives, and will be referred to as tp, fp,
tn, fn from now on (Lipton, Elkan, and Narayanaswamy 2014). Two important
measures are precision and recall. Precision is defined by the share of all pos-
itive predictions that were true positives. Recall is defined by the share of all
true positives that were predicted positively. Precision and recall are expressed
in (3) and (4). Recall and precision are numbers between zero and one, and are
both high in a good model. Both these measures are important performance
metrics in classification. Precision only considers the predicted positives, and a
high precision score means that a large share of the predicted positives actually
were true positives. However, the model might have neglected to classify many
of the true positives, and would then have a high recall score. Consequently,
it is vital to consider both measures when evaluating the performance of a model.

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

The F1-score is the harmonic mean of precision and recall and is commonly used
to combine both measures into one comparable measure (ibid.). The F1-score
is expressed in (5), and is a number between zero and one. A high F1 score
means that the model is performing well. By calculating an F1-score for each
class, the measure is applicable also for multi-labeled classification.

F1 =
2tp

2tp+ fp+ fn
(5)
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4 Prediction of opinion distribution

The predicted opinion distribution on Twitter was generated by classifying users
based on the classification of their tweets. This was done by scraping 180 000
tweets in 2022 and the keywords used were svpol, all party leaders, and all
parties, to try to cover as much of the political debate as possible.

4.1 Classifying users

To address the issue that 10 percent of the users on Twitter are generating
the majority of the tweets, the tweets are grouped by user. For each user, the
number of classified tweets in favour of each party was counted and the largest
count of classified division was used to determine the party division sentiment
of the user. If a user had the same amount of tweets in favour of several parties,
the user was left unclassified. The procedure is illustrated in figure 18.

Figure 18: Classifying users.

5 Results and discussion

The models designed in the previous section were evaluated by letting them
predict a test set, separated from the training data as described earlier. After
the training process, each model predicted the test set and the results were
compared to the true results. Following the evaluation, the models were used
to predict the general political discussion. These results were evaluated based
on the variance of the predictions.

5.1 Evaluation of model designs

The F1 measure is used to evaluate the model designs. The evaluation was car-
ried out for all training sets, but only the F1 distribution for the training data
based on the first set of keywords is presented as an illustrative example. The
F1 distribution was calculated by training the models 40 times on 3600 tweets
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and letting the model predict a randomly selected test set of 900 tweets. Recall,
precision, and F1-score were calculated for each run with the sample size of 40
(Ganti 2023). The respective F1 distribution expressed in percentage for each
class and model is presented in figure 19 - 21.

Figure 19: Distribution of F1-scores over blue parties.

Figure 20: Distribution of F1-scores over red parties.

The results show that the Base-model surpasses the Two step-model in all classes
based on the F1 score. The mean is both higher and the variance slightly lower
for red parties and the yellow party. The most significant difference between
the models appears in the division of blue parties. In general, both models are
less accurate when predicting blue tweets. Although, the mean is higher and
the variance is lower with the Base-model. That the score is subject to a higher
variance for the Two step-model is likely due to the fact that the training and
prediction is carried out two times each run. Since both classification steps are
subject to a stochastic variation, the total variation is expected to increase.

The mean F1-score for the different classes and models is presented in figure 22.
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Figure 21: Distribution of F1-scores over the yellow party.

Considering the central limit theorem, the scores are assumed to follow a nor-
mal distribution. It is clear that both models are best at predicting tweets from
the yellow party, followed by the red parties, and then the blue parties. The
difference between the classes is most likely a consequence of the training data.
The results also suggest that the Base-model is the better model at predicting
the test set. However, the objective of this work is to predict the general opinion
distribution on Twitter, and the best model is consequently the model that is
best at predicting new unseen tweets. Both models are therefore used in the
next section.

Figure 22: F1-scores.

5.1.1 Evaluation of threads

When examining the training data set scraped from keywords there are 90 tweets
that belong to a thread created by a parent tweet in the same set. This shows
that there is potential to classify more tweets if a parent tweet is already clas-
sified. As described earlier, this thread classification was carried out with the
help of VADER. In the training data set, a total of 43 thread-tweets were clas-
sified with 35 of being classified correctly. This results in a total accuracy of
81 percent. In order to evaluate the performance of this classification for each
category, the F1-score was calculated and is presented in figure 23.
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Figure 23: Performance of VADER classification of tweets in threads.

This shows a potential to use threads as a way of classifying even more tweets,
tweets that the neural network could not classify with certainty above the chosen
threshold. Depending on the threshold, the neural network is on average able
to classify around 600 tweets out of the 900 tweets in the test set. These new
classified tweets represent an extra 7.5 percent of classified tweets, which could
significantly impact the result when predicting unseen tweets.

5.1.2 Threshold analysis

The optimal threshold is a trade-off between the number of tweets classified and
the accuracy of the prediction. The threshold plays an important role when gen-
erating an opinion distribution since many tweets need to be classified but with
high accuracy in order to produce a reliable result. A threshold analysis was
carried out to investigate the effect of the threshold on the accuracy and number
of classified tweets. The results are shown below in figures 24 and 25.

Figure 24: Threshold analysis Base-model.

The bars in the graph show how the F1-score for each class changes with the
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Figure 25: Threshold analysis Two step-model.

threshold along the x-axis. The trend line shows the number of tweets classified
with each threshold. As expected, there is an increase in the number of tweets
classified and a decrease in the F1-score as the threshold is lowered. The number
of tweets classified has a relatively steady increase, and the F1-score has a steady
decrease. The plots show no optimal value, but rather a trade-off between two
important measures. Emphasis was placed on the F1-score since the accuracy
of the classification needed to be high. Predicting general test data showed that
a threshold of 0.025 resulted in an inadequate number of tweets being classified.
A sufficient amount of tweets need to be classified, to minimize the impact
of individual tweets on the opinion distribution. Since the loss in F1-score
when increasing the threshold from 0.05 to 0.1 is quite marginal but achieves a
substantial increase in tweets classified, it was decided to use 0.1 as the threshold
in subsequent modeling.

5.2 Prediction of opinion distribution

When introducing a new set of tweets to the models, the aim is to accurately
predict the party division sentiment of each tweet and to generate a distribu-
tion. Predicting an unseen set, generated differently than the training data, is
a more difficult task for the model. Political data, consisting of 180 000 tweets
scraped with the keyword #svpol or party or party leader mentioned in 2022,
was predicted with the two different model layouts, Base-model and Two step-
model. The predictions were done both with and without the augmented thread
classification. Four different training data sets were used, ”First”, and ”Second”
which are annotated based on different keywords presented earlier, ”Sentiment”
which is annotated with the sentiment analyzer and ”Mixed” which is a mixture
containing equal parts of ”First” and ”Sentiment”. The mixed data set was cre-
ated to prevent the neural network from being trained on too specific tweets,
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making the models perform badly when predicting general political discussion.

Deep-diving into the impact of different training sets shows how diverse the
models are when trained on different training sets. The results for a random
sample of tweets are shown in figure 26. It is clear that the models classify
the tweets differently, and based on this sample entirely opposite. This analysis
shows how crucial the training set is for the prediction of new unseen tweets.
The difficulty of acquiring training data and the impact of the training data set
again shows the difficulty of this problem.

As described in theory, a large variance is natural when fitting neural networks
on complex problems and with small data sets. However, the variance encoun-
tered in the predictions is large, implying unreliable predictions. The same
model with the same underlying training data, predicting the same unseen data
can yield wildly different results. figure 27 describe the standard deviation from
the model variations when predicting tweets from January only. The analysis
was done for multiple months but January is used as an illustrative example.

Figure 26: Illustration of the impact of the set of keywords

The results show that the Base-model, trained on the sentiment data set out-
performs the other models in terms of average variance. This model shows the
best results for the blue parties and the red parties. However, when only consid-
ering the yellow party, it seems as if the mixed data set is better. It is difficult
to establish the reason for this. One hypothesis is that the sentiment set and
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Figure 27: Variance in the predicted number of users in favour of each division
with 20 runs for different variations of models.

the first keywords set complement each other better for the yellow party, e.g.,
by reducing the noise or amplifying patterns. For the red parties and the blue
parties, the mixture might work in the opposite way.

For the Two step-model, the second training data set seems to perform the best
in terms of average variance. Although, the same reasoning goes for the mixed
data set for the yellow party. There is no clear winner between the Two step-
model and the Base-model, but the lowest overall average variance is achieved
with the sentiment training set and the Base-model. Generally, model predic-
tion with threads augmentation achieved a lower variance than without.

Regardless of model, variation of training data, and with or without threads,
the variance is still large. A common issue when experiencing high variance is
that the training data is not sufficient, e.g., not fitting the data it will later be
used to predict, too small, or too noisy. A small training data set could cause
the model to overfit, which means that the model learns the noise of the train-
ing data. The model then performs seemingly well on the training set, whilst
unreliable in predicting new tweets.
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If the training data is too noisy, the model may be incapable of recognizing
patterns, which would also lead to high variance. Low quality of the training
data may be caused by incorrectly annotated tweets, or tweets annotated even
though they in fact carry too little information. A too noisy data set would
suggest that this way of gathering training data is not sufficient, and that manual
annotation might be the better choice. To establish which underlying issues
cause the bad performance, the variance is further analyzed.

5.2.1 Analyzing the variance

One approach to attempt to reduce that variance is to utilize the same simple
layer structure but introduce a dropout layer to further exploit bagging. This
adjustment is only reasonable to implement if the number of hidden neurons is
also increased. The simple layer structure only contains 10 hidden neurons, and
introducing a dropout layer would not make sense with this few hidden neu-
rons. Hence, the number of neurons was increased to 100. The adjustment was
implemented with the lowest variance model, Base-model with threads trained
on the Sentiment-data set. Opposite of the desired effect, the average variance
instead increases as can be seen in figure 28.

Figure 28: Impact on variance when introducing a drop-out layer

Another hypothesis is that the large variance is due to the training data set be-
ing too small, which causes the model to overfit. To examine this, the training
data set was halved and the results are shown in figure 29. When the data set
was halved, the model was unable to classify any tweets as blue. This could
imply that the model would benefit from a larger data set than the original
one to increase the reliability of the blue classifications. On the contrary, the
variance in the classification of red and yellow users was reduced by halving
the data set, marginally for red but more so for yellow users. The difference
in the number of users classified as each party division is shown in figure 30.
Many of the users previously classified as blue are now classified as yellow.
This is probably the reason for the reduction in variance, not classifying any as
blue implies an easier guess and thus, a reduction in variance. Therefore, the
reduction of variance, in this case, is not an improvement in model performance.
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Figure 29: Impact on variance when halving the training data set

Figure 30: Impact on number classified from halving the data set

As seen in figure 27, including threads contributes to lower variance. Due to the
lexicon-based classification being deterministic, including threads is expected to
lower the variance. The evaluation of thread classification was optimistic and
showed potential. However, an issue with the current methodology is that not
all threads are analyzed. Only threads of classified parent tweets are considered,
which potentially simply leverages the party division with most classified tweets.
Thus, utilizing the current form of thread classification lowers the variance, but
might skew the resulting distribution.

5.2.2 Opinion distribution with lexicon-based model

When using sentiment analysis on tweets where party leaders and parties are
mentioned, it is observed that the red parties are most frequently talked about.
The results are shown in figure 31. In total, 9399 tweets were classified as either
in favour of or against a party division. These tweets are generated by 5307
users, of which 51 percent tweet the most about red parties, 38 percent tweet
about blue parties, and 12 percent tweet about the yellow party. Overall, tweets
with a negative sentiment outnumber those with positive sentiment for all party
divisions.

Since it is generally not possible to draw conclusions about party affiliation
based on negative sentiment, one approach to yield an opinion distribution is to
base it only on the users with a positive sentiment. To ensure that the distribu-
tion concerning users in favour of the different divisions adds up to 100 percent,
the results are normalized by the total number of users in favour of a division.
The results are shown in figure 32. Naturally, the distribution of users against
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Figure 31: Opinion distribution with VADER lexicon-based model in January.

Figure 32: Positive opinion distribution with VADER lexicon-based model in
January.

a division also carries significant information about the opinion distribution on
Twitter. Although, these results are more ambiguous and more difficult to use
when creating an opinion distribution.

To get a sense of how to interpret the results, it is interesting to further examine
the share of users classified as either in favour of or against the respective party
divisions. The results are shown in figure 33. These results suggest that infor-
mation about opinion distribution is also captured in the share of users against
a division. Equivalently to how the positive opinion distribution is generated, a
negative distribution can be created. Even though one can not establish which
party the negative user support, the result can be used as a variable in a re-
gression analysis. The regression analysis aims to explore if there is a relation
between results from opinion polls and the predicted distribution of users in
favour of and against.

The analysis showed that there was no significant relation between the opinion
polls and the predicted distribution with the VADER sentiment model. This
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Figure 33: Distribution of positive and negative users by party division.

can depend on several factors, e.g., that the way of scraping based on mentions
of parties is not sufficient to comprehensively determine the opinion distribution
or overarching factors discussed in the next section.

5.3 Method limitations

While the fault could lie in how the data is gathered or other limitations pre-
viously discussed, the problem could also lie entirely in the proposed method.
The Swedish political landscape is not nearly as polarized as in the US (Os-
carsson et al. 2021). Perhaps the political discussion climate is not polarized
enough in Sweden to successfully use the classifying methods that worked in US
and Italy. The US two party-system also simplifies the problem significantly.
Meanwhile, in Sweden, there are many parties that try to have their own dif-
ferentiated political ideology, and collaboration between parties within different
divisions occurs. Therefore, sometimes the split proposed in this work may not
be accurate and cause misclassification.

In addition, there is no guarantee that conversations on Twitter reflect the
overall political views of the general population. The proposed method includes
using regression as a means to weigh the predictions of each month to fit the
distributions of opinion polls. The purpose of this is to map the opinion poll
and the Twitter distribution with weights since the hypothesis is that these do
not perfectly align. Although, the problem could lie in that Twitter is not at
all representative of the general political landscape and no opinion trends can
be discovered on the platform that also translates to the opinion polls. For ex-
ample, the number of users that decides to tweet one month might depend on a
certain political event and has the potential to severely impact the distribution.
This methodology relies on the assumption that Twitter users tweet regularly
to capture changes in distribution.

Many of the conversations on Twitter are heavily context-based. Often a picture
or a link to a news article is the conversation starter, and the replies are in
regard to what the picture or link is about. The thread classification was an
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attempt at taking more of the context into account when classifying but is
not comprehensively capturing all of the contexts. This is likely one of the
limitations affecting the results of the current method.

5.4 Comparison to opinion polls

Figure 34: Opinion distributions with standard deviations predicted with the
Base-model, trained on the sentiment set and with thread augmentation.

Due to the high variance observed when predicting with the different neural
network models, there is no surprise that performing regression on the results
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shows no significant relationship between the predicted opinion distribution and
the opinion polls. Since the predictions are so diverse for each run, there is no
point in trying to find a regression that fits the predictions to the opinion polls.
As illustrated in figure 34, the variability is too large when dealing with such
small changes in the true opinion distribution each month. The figure shows
the mean distribution predicted with the Base-model, trained on the sentiment
set and with thread augmentation since this was the model with the lowest vari-
ance. July is not predicted since there is no opinion poll data for this month to
compare the predictions with.

The result show that the predicted results in November could for example dif-
fer between 23% and 47% within one standard deviation for red parties. A
regression would then be based on one random run, and even if this regression
would show significance, the results would not be reliable. The next run would
generate completely different results.

In the case when using the deterministic lexicon-based model to predict, there is
no issue with variance. However, a regression analysis showed that there was no
significant correlation between the opinion polls and the predicted distributions
using the lexicon-based model.

6 Conclusion

This work attempted to predict political opinion polls using Twitter data. When
building the classification model, the neural network was quite successful in pre-
dicting tweets collected based on specific keywords. Classifying tweets regarding
Sverigedemokraterna achieved the highest F1-score whilst the tweets by parties
affiliated with Moderaterna were more difficult to predict. Moreover, consid-
ering the context in the classification by using the structure of tweet threads
proved a rather effective method.

The prediction of unseen tweets, resulting in an opinion distribution proved to
be a more difficult task. Many different model variations were created in an
attempt to reduce the prediction variance. The model with a three-way pre-
diction, trained on data annotated with a sentiment analyzer and considering
the context with threads achieved the lowest variance, however, still too high
to make any reliable predictions.

The underlying issue of the prediction variance was investigated, but no definite
answer was found. The investigation is pointing towards the need for more
training data of higher quality. However, the problem could also lie in the
proposed method. To accurately predict opinion polls might not be achieved
even with perfect training data due to the structure of Twitter, or the political
landscape. The context of the tweets might not be considered enough to classify
tweets in affiliation with a party, Swedish politics might not be polarized enough
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to accurately make sense of vague tweets or the opinions expressed on Twitter
may not at all be representative of the general population.

7 Ideas for future research

Most feature extraction algorithms are typically designed for English-language
data, and it can be less efficient to apply these algorithms directly to Swedish
text. One solution is to first translate the Swedish text into English and then
apply the English feature extraction algorithms to the translated text. It is
important to note, however, that there may be differences in the grammatical
structure and vocabulary of Swedish and English that can affect the accuracy
of feature extraction. Feature extraction algorithms that would be valuable to
experiment with are BERT and Word2Vec. Another possibility is using the
large language model ChatGPT for sentiment analysis.

In this work, the classified tweets were linked to the user that posted them to
create the distribution. Another possible approach is to deepen the analysis by
considering the number of followers the user has or how many times the tweet
has been viewed to get a sense of the reach.

Furthermore, Twitter is only one of many possible sources of data, subsequent
work could explore the possibility of doing similar analysis on other outlets of
opinions. For example, newspapers or Facebook could be a source of opinion
data that is more representative. Another alternative is to combine multiple
sources to gather more of the political discussions.

This work also discovered that a majority of the tweets expressing an opinion
were negative. Perhaps a better way of predicting opinion would be to use neg-
ative tweets to determine the distribution. However, utilizing negative tweets in
a three-party system poses a difficult challenge since negative views toward one
party do not necessarily reflect a person’s voting intention. Another potential
possibility is to use the negative opinion information to discover trends that can
be exploited to predict changes in opinion.

To further explore where the main limitations lie within this work, it would be
interesting to run the algorithm on political data from the US.
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