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Abstract

Design of experiment is a powerful tool that can reduce the amount of physical testing needed to save
resources, time and money. A CFD-setup was constructed in OpenFOAM-8, simulating injection of liquid
propane with a standard multi-hole injector. The model was then validated against experimental results.
Two design of experiment models were then created using Rstudio. The two models had four specified input
parameters that were present in the CFD-model. The value of each parameter was then changed according
to the respective DoE model and simulated. The two models were then evaluated and compared to each
other. This was done by looking at two response variables and conducting ANOVA tests. Results showed
some correlation between the two models. However significance factors and interactions differed to some
degree between the two. A large effort was also put into comparing the models and evaluating tools for this
purpose. This thesis lays a ground for future work developing a larger CFD-model, having a larger amount
of changeable parameters. Furthermore it lays a ground for developing and optimising a DoE model as well
as focusing on more tools for evaluating the acquired responses.
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Chapter 1

Introduction

1.1 Project motivation and Background

The need for transportation services is growing in an ever globalizing world. At the same time, limiting
global warming is one of the biggest challenges we stand in front of today. Standing for almost 3 percent
of global greenhouse gas emissions, the maritime shipping industry is an important sector where greenhouse
gas emissions need to be reduced [1]. To reach the Paris Agreement 1.5 C° trajectory, at least 5 percent of
all shipping fuels needs to be climate-neutral by 2030 [1]. With the help of research and development we can
find new climate-neutral ways of fueling the maritime shipping industry.

An important tool for research and development is experiments and experimental data. With the help of
experiments and experimental data, it is possible to obtain a greater understanding of how and why a sys-
tem acts the way it does. Using Design of Experiments (DoE) we can further accelerate the experimental
procedure, giving us a greater understanding of how the system works and acts in different circumstances.
With the help of experiments and DoE we can shorten the time to the ever so important move to sustainable
and climate-neutral maritime transport.

Design of experiment is a branch of applied statistics that deals with planning, conducting, analysing and
interpreting of controlled test to evaluate the value of one or a group of parameters. This is a very powerful
tool and can be used in many experimental situations [2]. Using DoE one can mitigate the need for large
in depth experiments and only change a handful of parameters to achieve the same desired effect or effects.
A well planned DoE can give the research a meaningful data-set to act upon with the optimal number of
experiments. This preserves resources that can be used for other important applications.

Computational fluid dynamics, (CFD), uses numerical analysis to examine and solve problems involving fluid
flows. Using this, it is possible to solve and test complex fluid flows such as fuel spray injection in maritime
engines. With the help of CFD a large number of parameters can be changed with ease to find differences
between set-ups. With this tool one can reduce need of physical experiments, saving both money and time.

1.2 Project aims

The project will focus on Design of Experiments applied to computational experiments (3D-CFD). Further-
more, effort will be put into computer tool evaluation with highest priority on the programming languages
R and Python.

The objective for the project is to find the optimal DoE approach to build an accurate response model in size
and complexity. As a reference, a CFD-model representing direct fuel injection into a combustion chamber
will be created and evaluated. The injection model will be created and simulated using OpenFOAM-8. The
CFD-case will in first hand have Liquefied Petroleum Gas, LPG, injected into the chamber with the fall back
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on Diesel. The model will then be analysed and compared to experimental data to ensure accuracy. After
completion of the CFD-model, different experiment design methods should be analysed and compared. The
models will be evaluated and used together with the CFD-model. The final DoE model should be:

• Complex enough for statistical analysis

• Simple enough so it can be fast and easy to deploy on a large scale

• It should allow one to define relevant target parameters (multi-objectives)

• It should allow one to define multiple design parameters

• Some experimental data should be available for validation
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Chapter 2

Theory

2.1 Computational Fluid Dynamics

Computational fluid dynamics, CFD, is a branch within the field of fluid dynamics which utilizes numerical
methods for predicting fluid flows and heat transfer in a number of applications.

2.1.1 OpenFOAM

The OpenFOAM CFD toolbox is a free, open source CFD software where OpenFOAM stands for Open
Field Operation and Manipulation. The software has a large user base across several areas of engineering
and science, both in academia and in the industry sector. OpenFOAM have a large range of features to
solve problems ranging from complex fluid flows involving chemical reactions, turbulence, heat transfer to
acoustics, solid mechanics and electromagnetics. For this thesis the sprayFoam solver will be used to model
and simulate the spray injection and track the injected particles [3].

2.1.2 Governing Equations

Reynolds Averaged Navier-Stokes, (RANS), turbulence modelling is applied to the gaseous phase, thus the
phase is described with the averaged Navier-Stokes partial differential equations. As the flow cannot be
assumed to be incompressible, it is described with the Favre averaged Navier-Stokes equations. This means
that the equations are density and time averaged, the procedure is shown below [4].

Time averaging for any dependent variable, Φ:

Φ =
1

T

∫
T

Φ(t)dt (2.1)

Φ = Φ + Φ′ (2.2)

Density weighted time averaging of Φ:

Φ̃ =
ρΦ

ρ
(2.3)

Φ = Φ̃ + Φ′′ (2.4)

The Favre-averaged Navier-Stokes equations are given in equations 2.5, 2.6, 2.8 and 2.9 below [5]:

Continuity
∂ρ

∂t
+

∂

∂xj
(ρũj) = Sρ

s
(2.5)

5



Momentum
∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = − ∂

∂xj

(
− pδij + τji − ρu′′

i u
′′
j

)
+ Su,i

s
(2.6)

where −ρu′′
i u

′′
j is the Reynolds-stress tensor and τij is the viscous stress tensor defined as:

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
∂ji

)
(2.7)

Species transport
∂

∂t
(ρỸi) +

∂

∂xj
(ρỸiũj) =

∂

∂xj

(
ρD

∂Ỹi

∂xj
− ρu′′

j Y
′′
i

)
+ Sρ,i

s
(2.8)

where D is the mass diffusion coefficient and ρu′′
j Y

′′
i is the Reynolds species flux vector.

Energy
∂

∂t
(ρẼ) +

∂

∂xj
(ρũjẼ) =

∂

∂xj
(−puj + uiτji − qj − ρu′′

jE
′′) + SE

s
(2.9)

where ρu′′
jE

′′ is the Reynolds energy flux vector and Ẽ is the total energy defined as:

Ẽ = ẽ+
ũiũi

2
(2.10)

and qj is the heat flux vector defined as:

qj = −λ
∂T

∂xj
(2.11)

where λ is the thermal conductivity, T the temperature and e the internal energy.

The terms Sρ
s
, Sρ,i

s
, Su,i

s
and SE

s
are source terms introduced due to the two-way coupling which takes the

evaporation of the discrete phase into account. Sρ is the gaseous sphere evaporation rate of all spray parcels
in the cell given by:

Ss
ρ = − 1

Vcell

∑
Np

dmgs

dt
(2.12)

where mgs is the mass of a single gaseous phase sphere and Np is the number of spheres in the parcel. The
time derivative of mgs is the evaporation rate of a gaseous sphere and is given by the expression below:

dmgs

dt
= ṁgs = −mgs

τe
(2.13)

where τe is an evaporation relaxation time.

Similarly to Ss
ρ, the rate of momentum change, Ss

u,i can be expressed as:

Ss
u,i = − 1

Vcell

∑
Npmgs

dugs,i

dt
(2.14)

where the acceleration of the gaseous sphere
dugs,i

dt , can be written as:

dugs,i

dt
= −ugs,i − ui

τu,i
= −urel,i

τu,i
(2.15)

Here τu,i is a momentum relaxation time that is a function of droplet size, velocity, density and drag coefficient.
This means that the only forces that act on the gaseous particles is the drag force. The drag coefficient, CD

can be calculated as [6]:

CD =

{
24

Regs
(1 + 1

6Re
2/3
gs ) Regs ≤ 1000

0.426 Regs > 1000
(2.16)
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Regs is the Reynolds number for a gaseous sphere:

Regs =
ρ|urel,i|dgs

µ
(2.17)

As above for Ss
ρ , Ss

ρ,i can be expressed as:

Ss
ρ,i = − 1

Vcell

∑
Np

dmgs,i

dt
(2.18)

Ss
E is the source term that accounts for exchange of energy between the phases and it can be expressed as:

Ss
E = − 1

Vcell

∑
Npmgs

dhgs

dt
(2.19)

The droplet temperature change is given by:

dTgs

dt
=

T − Tgs

τh
f − 1

cl,gs

hvTgs

τe
(2.20)

where cl,gs is the liquid specific heat and τh is a characteristic heat transfer relaxation time [5].

2.1.3 Lagrangian Particle Tracking

To track the spray particle phase and solve its interaction with the continuous phase during the injection the
Lagrangian particle tracking, (LPT), method is used. The method uses the Lagrangian approach where each
property of the particles is a function of the position (x, y, z) of the particle and the time t. If the value of a
property per unit mass is denoted by ϕ, the total or substantive derivative of ϕ with respect to time is:

Dϕ

Dt
=

∂ϕ

∂t
+

∂ϕ

∂x

dx

dt
+

∂ϕ

∂y

dy

dt
+

∂ϕ

∂z

dz

dt
(2.21)

The fluid particle will follow the flow so, dx/dt = u, dy/dt = v and dz/dt = w. Thus the substantive
derivative of ϕ is given by:

Dϕ

Dt
=

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

∂ϕ

∂z
=

∂ϕ

∂t
+ u · gradϕ (2.22)

Dϕ/Dt defines rate of change of property ϕ per unit mass [7].

The individual particles are tracked from injection until an integration limit criterion is achieved or if they
leave the domain. The particles are injected in turn to obtain an average of all the particle tracks and to
generate source terms to the fluid mass, momentum and energy equations [8].

To calculate the particle trajectory and velocity, the relevant forces acting on the particles needs to be taken
into consideration. If spherical particles are considered, the differential equations for calculating the particle
location and velocity is given by Newtonian second law:

dxP

dt
= uP (2.23)

mP
duP

dt
=

∑
Fi (2.24)

IP
dωP

dt
= T (2.25)

where mP = ρP d
3
Pπ/6 is a particle mass, IP = 0.1mP d

2
P is the moment of inertia, Fi represents the relevant

forces acting on the particle, ωP is the angular velocity of the particle and T is the torque acting on a rotating
particle due to the viscous interactions with the fluid [9].
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2.1.4 K-epsilon Turbulence Model

To model the turbulence, the k-ϵ turbulence model is used. This model is a two equation model where the
transport equations are solved for the two turbulence quantities k and ϵ [10]. The k-ϵ model consists of the
model transport equation for k:

∂(ρk)

∂t
+

∂(ρkui)

∂xi
=

∂

∂xj

[
µt

σk

∂k

∂xj

]
+ 2µtEijEij − ρϵ (2.26)

the model transport equation for ϵ:

∂(ρϵ)

∂t
+

∂(ρϵui)

∂xi
=

∂

∂xj

[
µt

σϵ

∂ϵ

∂xj

]
+ C1ϵ

ϵ

k
2µtEijEij − C2ϵρ

ϵ2

k
(2.27)

where ui represents velocity component in corresponding direction, Eij the component of the rate of defor-
mation and µt the eddy viscosity:

µt = ρ
Cµk

2

ϵ
(2.28)

The model value constants are:

Cµ = 0.09, C1ϵ = 1.44, C2ϵ = 1.92.σk = 1.0, σϵ = 1.3 (2.29)

To compute the Reynold stresses the Boussinesq relationship (2.30) is used.[7]

−ρu′
iu

′
j = µt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 2

3
ρkδij = 2µSij −

2

3
ρδij (2.30)

The Reynolds flux vectors for energy and species transport can be written as:

ρu′′
jE

′′ = − µt

Prt

∂Ẽ

∂xj
(2.31)

and

ρu′′
j Y

′′
i = − µt

Prt

∂Ỹ

∂xj
(2.32)

respectively, where Prt is the turbulent Prandtl number and µt is the turbulent viscosity.

2.1.5 Liquid Breakup and Breakup Models

The liquid fuel injection, atomization and spray formation are key in-cylinder processes that affects the com-
bustion and emission characteristics in an internal combustion engine. To achieve cleaner and more efficient
combustion processes the fuel spray characteristics and injection strategies have to be well optimised. This
is to achieve better fuel evaporation, fuel/air mixing process and a more complete combustion process. In
order to describe and model this fuel atomization and breakup process when using CFD simulations, different
spray models has been developed [11].

KHRT Breakup Model

The KHRT breakup model introduces the competition of the droplet breakup due to Kelvin-Helmholtz
aerodynamic instabilities and Rayleigh-Taylor instabilities, and the one predicting the fastest onset of an
instability dominates the breakup process. In the KH breakup process, the small droplets are shed from
the parent computational parcel to form a new parcel. The parent droplet with a radius larger than the
wavelength of the growing unstable surface wave will break into a new parent and child droplet pair. The
diameter of the stable child droplet, Ds is calculated as:

Ds = 2B0ΛKH (2.33)
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where ΛKH is the wavelength of the growing unstable surface wave and B0 is a model constant. The standard
value for the model constant B0 is 0.61. The rate of change of the parent droplet diameter Dd is given by:

dDd

dt
= −Dd −Dd,stable

τKH
(2.34)

where the characteristic breakup timescale τKH is calculated using:

τKH =
3.726B1Dd/2

∆KHΩKH
(2.35)

where B1 is a model constant ranging between 10 and 60. ΩKH is the growth rate of the fastest growing
wave. If the difference between the original and the new parcel mass is greater than a threshold, usually 3%
of the of the original mass, the smaller droplets are shed off to form a new parcel [11].

In the RT breakup process, the droplet diameter Dd should be larger than the wavelength ΛRT of the fastest
growing wave. This is scaled by a constant C3 with the range of 0.1-1,

Dd = C3ΛRT (2.36)

Additionally, time greater than the RT breakup timescale, τRT must have passed since the last RT breakup.
The wavelength ΛRT is obtained by calculating the corresponding wave number kRT = 2π/ΛRT which
maximizes the growth rate which is given by:

ω(k) = −k2
(
µd + µ

ρd + ρ

)
+

√
k

(
ρd − ρ

ρd + ρ

)
a− k3σ

ρd + ρ
+ k4

(
µd + µ

ρd + ρ

)2

(2.37)

where µ is ambient dynamic viscosity, µd is the fuel droplet dynamic viscosity, a is the acceleration or
deceleration of the droplet, while:

τRT =
Cτ

ωRT
(2.38)

ωRT = ω(kRT ) (2.39)

where Cτ is a model constant often set equal to 1 [11].

Figure 2.1: Schematic over the two break-up regions [12]
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2.1.6 Rosin-Rammler Particle Size Distribution

Particle size distribution functions are used to characterize dispersed systems like powders and droplets. Of-
ten, mathematical distribution functions are fitted to size distributions to derive a specific size for parameters
for such as modeling purposes. One of the most well known and popular model is the Rosin-Rammler size
distribution model. The model is used in a broad range of applications ranging from biproducts development
to breakup of liquid drops, aerosol technology, meteorology and more. Furthermore, the model is used to
characterize seed size and to investigate the influence of the particle size distribution on the minimum ignition
energy of explosive dusts [13].

The Rosin-Rammler distribution function is generally given in the cumulative-volume form:

V = 1−R = 1− exp

(
−

[
x

x′

]n)
(2.40)

where:
V = mass or volume fraction of particles with sizes smaller than or equal to x (= undersize distribution),
assuming constant mass density of all particles.
R = mass or volume fraction of particles with sizes larger than x (= oversize distribution).
x = particle size (x ≥ 0) expressed in, e.g., µm
x′ = location parameter of the distribution, i.e., the particle size at a volume fraction of 0.368 oversize
(x′ ≥ 0)
n = spread parameter of the distribution (n ≥ 0)

The volume density distribution of the Rosin-Rammler distribution can be obtained by differentiation of
equation 2.40:

dV/dx =
n

x′

(
x

x′

)n−1

exp

(
−
[
x

x′

]n)
(2.41)

In OpenFOAM, the particle size distribution model draws random sample from the doubly-truncated two-
parameter Rosin-Rammler probability density function:

f(x;λ, n,A,B) =
n
λ (

x
λ )

n−1exp[−(xλ )
n]

exp[−(An )
n]− exp[(Bλ )

n]
(2.42)

where:
λ = Scale parameter
n = Shape parameter
x = Sample
A = Minimum of the distribution
B = Maximum of the distribution

Random samples are generated by the inverse transform sampling technique by using the quantile function
of the doubly-truncated two-parameter Rosin-Rammler (Weibull) probability density function:

x = λ(qmin − ln(1− ur))1/n (2.43)

with

r = 1− exp(−qmax + qmin) (2.44)

qmin =

(
A

n

)n

(2.45)

qmax =

(
B

n

)n

(2.46)

where u is a sample drawn from the uniform probability density function on the unit interval (0,1) [14].
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2.2 Liquefied Petroleum Gas

Liquefied petroleum gas (LPG), also known as propane autogas, is a clean burning alternative fuel used
in light- and heavy duty propane vehicles. Propane is considered a good, more environmentally friendly
alternative to traditional fuels such as gasoline and diesel [15]. Due to having a much higher hydrogen:carbon
monoxide ratio than diesel and gasoline, greenhouse gas emissions can be significantly reduced if an equivalent
energy conversion can be achieved when using LPG. Furthermore, propane presents no threat to soil, surface
water or groundwater if spilled [16]. The high octane rating of propane, together with a high flame speed,
makes it a very good choice in spark-ignited internal combustion engines with a research octane number
rating of up to 105 compared to gasoline with a rating of 84-93 [17]. Compared to compressed natural gas
which has an energy density of 9 MJ/L @ 248 Bar, stored as a liquid, LPG is stored as a liquid at more
moderate pressures and temperatures at the same time as it has a higher energy density, ∼27 MJ/L @ 24
Bar [18].

2.2.1 Flash Boiling

Limiting factors to achieve high efficiency in engines involve engine knock, misfires, low emissions limits and
the wide range of chemical reactivity in LPG. An important factor that also needs to be taken into account
when using LPG as working liquid is the flash-boiling effect. Propane, that is the main component of LPG,
is prone to flash-boiling at normal GDI engine operating conditions compared to traditional fuels. This is
something that needs to be taken into account due to the fact that the phenomenon will lead to drastic
change in the spray’s behaviour.

Flash-boiling is a phenomenon that occurs when a sub-cooled liquid is rapidly depressurized to a pressure
sufficiently below the saturation point of the liquid. In this state, the fuel is defined as superheated and the
system is in a state of thermodynamic non-equilibrium and thus unstable. To regain the equilibrium in the
system, flash boiling occurs [19].

The flash boiling mechanism can be defined into three stages, namely: Bubble Nucleation, Bubble Growth
and Two-phase flow. Bubble Nucleation is classified into two groups: Homogeneous and Heterogeneous.
Homogeneous nucleation is when nucleation sites form within the liquid itself with a homogeneous distribu-
tion. This becomes predominant when the liquid pressure is considerably reduced. Heterogeneous nucleation
occurs when gas and solid phases appear at an interface or a body, not in the liquid. A nucleus can appear in
the presence of irregularities on a solid surface, fine dust or solid particles and dissolved gases in the liquid [19].

When the bubble nucleation sites have developed, pressure fluctuations can cause the sites to either collapse
or grow. Whilst the bubble still is relatively small, the rate of growth is low and restricted by the bubbles
surface tension. However, if the degree of superheat is great enough, the growth rate reaches a maximum as
the size of the bubble increases. The liquid surrounding the bubble is then cooled due to the transfer of heat
energy required for evaporation, with this, the vapor pressure decreases and bubble growth rate is controlled
by inertia and thermal diffusion. Following this, the bubble growth rate further decreases and inertial effects
become less important. At this stage the growth rate is controlled by thermal diffusion. The growth then
stop when the bubble interior pressure and temperature approach ambient values [19].

The growth of bubbles inside a droplet is limited. A limit determined by the diameter of the droplet, surface
tension, liquid viscosity, the number density of bubble nuclei and growth rate. The limit of bubble growth is
described by the void fraction, ϵ, defined as the volume ratio between the vapor and liquid phases:

ϵ =
Vbubble

Vbubble + Vliquid
(2.47)

where Vbubble is the volume of bubbles and Vliquid is the volume of liquid. In a study by S.Suma and M.
Koizumi [20], it has been observed that break up of a jet fuel occurs at ϵ ranging from 0.51 to 0.53 [21]. After
this it is assumed that the droplet breaks up into small droplets twice as many as the number of bubbles,
this is illustrated in figure 2.2.
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Figure 2.2: Break up cause by bubble disruption [21]

The momentum of the parent droplet is uniformly distributed among the child droplets. Once the flash
boiling process is completed a two-phase flow consisting both of fluid and vapour in equilibrium is obtained.

2.3 Design of Experiment

To understand cause and effect relations in a system the input variables to the system have to be deliberately
changed. These changes in the output from the system must then be observed. That is to say, an experiment
needs to be performed on the system.

Experiments are conducted on all types of questions regarding a system and its processes. An experiment
can be defined as a test or series of runs in which purposeful changes are made to the input variables of a
process or system. Doing this, one may observe and identify the reasons for changes that may be seen in the
output response [22]. When conducting these experiments one might want to determine which variables are
responsible for the observed change in output response from the system, develop a model that relates the
response to the important input variables and use this model to help improve and ease the decision making
regarding the system.

Experiments and experimentation is an important engineering method and is a vital tool when examining
how and why a system works the way it does. A well designed experiment is important due to the fact
that the results and conclusions that are drawn from the tests depends greatly in the manner the data was
collected [22].

2.3.1 2k Factorial Designs

Factorial experiment designs are used to great extent in experiments involving several factors where it is
necessary to study the combined effect of the factors on a response. There are a number of special cases
of the general factorial design that are widely used in research work. The most important case is the one
of k factors where each factor only has two levels. The levels may be quantitative, such as temperature
or pressure or they may be qualitative, such as number of workers or the presence of absence of a factor.
To replicate such a design 2∗2∗2...∗2 = 2k observations are required. This is called a 2k factorial design [22].

The simplest 2k factorial design is the 22 design, in this case there are two factors A and B that has two
levels each. This means that 4 runs are made where several (n) replications are taken. The lowercase letters
a, b, ab and (1) is used to indicate the sum of the responses for all replications of A and B levels. If the lower-
case letter is present the factor is at its high (+1) level. If it does not appear the factor is at its lower level (-1).
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Figure 2.3: Geometrical view of 22 factorial design [23]

Replicate
Factor Level
Combinations

Coded
Levels

1 2 ... n
Sum of n
Replicates

A low, B low −1− 1 xxx xxx ... xxx (1) =y11
A high, B low +1− 1 xxx xxx ... xxx a =y21
A low, B high −1 + 1 xxx xxx ... xxx b =y12
A high, B high +1 + 1 xxx xxx ... xxx ab =y22

Table 2.1: Data in a general 22 factorial experiment

The average effect factor is the average change in the response produced by a change in the level of that
factor averaged over the levels of the other factor [24]. For a general 22 design with n replicates the main
effect factor for A, denoted by A, is:

A =
1

2n
([ab− b] + [a− (1)]) =

1

2n
[ab+ a− b− (1)] (2.48)

here the effect of A at the low level of B, [a − (1)]/n, and the effect of A at the high level of B, [ab − b]/n,
are averaged yielding the main effect of A. The same principle is used for finding the main effect of B. Here
the effect of B at a low level of A, [b− (1)]/n are averaged with the effect of B at a high level of A, [ab−a]/n

B =
1

2n
([ab− a] + [b− (1)]) =

1

2n
[ab− a+ b− (1)] (2.49)

The symbols (1), a, b and ab represent the total of the response variable at all n replicates taken at the factor
level combinations.

The interaction effect, denoted as AB, is defined as the average difference between the effect of A at the high
level of B and the effect of A at the low level of B:

AB =
1

2n
([ab− b]− [a− (1)]) =

1

2n
[ab+ (1)− a− b] (2.50)

The interaction effect could also be defined as the average difference between the effect of B at the high level
of A and the effect of B at the low level of A. This would also lead to equation 2.50 [22].
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In order to determine the importance of each variable, it is essential to examine the magnitude and direction
of the factor effects when working with 2k designs. To determine the importance of a variable, analysis of
variance, ANOVA, can be used together with effect magnitude and direction. One way of determining the
importance is the sums of squares together with an ANOVA.

To determine the sums of squares for A, B and AB one can look at equation 2.48 where a contrast is used
for estimating A, specifically

CA = ab+ a− b− (1) (2.51)

This contrast is often called the total effect of A. Equations 2.49 and 2.50 illustrates that contrast are also
used to determine B and AB. Additionally, these three contrasts are orthogonal. The sum of squares for an
arbitrary contrast can be calculated with

SSC =

(∑a
i=1 ciȳi

)2

1
n

∑a
i=1 c

2
i

(2.52)

where ȳi is the observed sample mean.

This equation states that the sum of squares for any contrast is equal to the contrast squared divided by the
number of observations in each total in the contrast times the sum of the squares of the contrast coefficients
[22]. This yields the following sums of squares for A, B and AB

SSA =
[ab+ a− b− (1)]2

4n
(2.53)

SSB =
[ab+ b− a− (1)]2

4n
(2.54)

and

SSAB =
[ab+ (1)− a− b]2

4n
(2.55)

With the help of these equations together with the ANOVA one can conclude which factors are significant
and if there are any interactions between the different factors. The same principle is used for designs with
k > 2. If, for example k = 3, factors A, B and C will be present.

Figure 2.4: Geometric view for a 23 factorial design [22]
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2.3.2 Space Filling Designs

The use of computer simulations are rapidly increasing and the large computational power that is available
today makes it possible to simulate large and complex systems. The results from these simulations are
most often deterministic. This means that the computer experiment always will produce the same results
if the input parameters are not changed. This means that there is little to no noise in the response. In
classic designs, such as in 2k factorial designs, randomization, replication and blocking are three foundations
that are emphasised when selecting a specific design. These principles are however irrelevant for determin-
istic models since the response will always be the same for that specific factor combination. Replicates in
these cases waste resources. Due to the deterministic output from computer experiments, the models often
require higher order terms. These terms are needed for tests in order to understand the properties of the
true physical system. For these reasons, closing just the corner points as in factorial designs is not enough [25].

To fill the design space, space filling designs can be used. In these designs the design points are spread out
evenly in the design region. It is to note that an important assumption is necessary to use in these models:
the computer simulation must reflect the true physical system. The space filling designs are able to capture
the different behaviours of responses in different areas of the design region due to the spread out points.
These designs do not seek to have replicates in k dimensions, where k is the number of factors. If factors are
found with no statistical effect on the response and the dimension of the design space is reduced as a reaction
to it, the design will not have replicate points in the lower dimension design space. This allows the user to
gain more information about the system. This is because replicated test points do not provide additional
information and the response is deterministic [25].

Metrics that are meaningful for classical designs such as power, prediction variance and the alias properties
of the design, is no longer meaningful for deterministic designs. Instead space filling design use metrics as
minimum distance between points and discrepancy. If the sample size is fixed, the larger the minimum dis-
tance is the better. The discrepancy measures how evenly the points are spread out throughout the design
region, the smaller discrepancy the better [25]. There are several space filling designs used, the one used and
discussed in this report is the Latin Hypercube Design.

Figure 2.5: Latin Hypercube Design for three factors [25]

The Latin Hypercube design select design points with the objective to maximize the minimum distance

15



between design points, but requires the design points to be evenly spaced in the design space. The design
also requires all factors to be continuous. The design is one of the most popular designs and used in practice
due to its balanced nature. The design is effective when trying to capture the different behaviours of responses
in different regions of the design space. The Latin hypercube design is the model that best captures the design
region due to the fact that it selects points both on the limits and in the center of the design region. An
important thing to note however is that the model does not work when using categorical factors [25].

2.3.3 Analysis Of Variance Tests

To analyse results from conducted experiments, an Analysis of variance, ANOVA, test can be conducted. For
conducting the ANOVA test, there has to be collected data regarding at least one categorical independent
variable, parameter, and one quantitative dependent variable, response. The independent variable should
also have levels, such as high and low. Each level creates a group [26].

The ANOVA test determines if these groups, created by the different levels, are statistically different by
calculating the mean of the levels and seeing if these are different from the overall mean of the dependent
variable. If any of the means from the groups are significantly different from the overall mean, the null
hypothesis is rejected and thus the levels has an effect on the response [26].

For calculating statistical significance, the ANOVA uses an F-test. This test allows for multiple comparisons
of means at once. The F-test takes the variance in each group mean and compares it to the overall group
variance. If the variance within the groups are smaller than the variance between the groups, the F-test will
find a higher F-value. The higher the F-value, the higher the likelihood that the difference observed is real
and not due to chance [26].
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Chapter 3

Method

3.1 Method Overview

A model and geometry was created to simulate the injection of LPG into a closed chamber using OpenFOAM.
The setup was based on the aachenBomb tutorial found in OpenFOAM using the sprayFoam solver. This
tutorial was altered by using a modified geometry together with changed fuel and injection properties. The
injector profile was chosen to be the standard ”Spray G” injector profile from the Engine Combustion Net-
work [27]. Setup parameters for the simulations were collected from the paper ”Bulk Spray and Individual
Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions” by B. Windell and M.
Sharma [18], where LPG was injected into a high pressure spray chamber and evaluated using high-speed
Schlieren Imaging and Planar Mie Scattering Imaging [18]. The experimental results were collected from
Windell et.al [18] by extracting the values from the plots using a web based tool called WebPlotDigitizer.
These values were then used to validate the results obtained from the CFD-simulations.

After the CFD-setup was finalized, it was used for the simulations created by the DoE models. Two models
were created using the open source software Rstudio, based on the R programming language, with four
parameters analyzed. The first model was a 24 factorial design consisting of 16 runs, the second one was
a Latin hypercube design also consisting of 16 runs. The two models were created using the SixSigma [28]
and MaxPro [29] R-packages, respectively. The responses from the simulations were then examined and
comparisons using ANOVA tests between the two models were performed.

3.2 CFD-Case Setup

3.2.1 Geometry

The geometry used for the simulation was a 3D ”slice” with an angle at the tip of 45 degrees, this represents
1
8 of a cylindrical domain with a ”Spray G” injector at the top. Due to the symmetric nature of the ”Spray
G” injection profile only one of the eight holes was simulated with cyclic boundary conditions at the adjacent
walls. The geometry is shown in figure 3.1 below.
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Figure 3.1: Slice shaped geometry

The geometry had a height of 100 mm and a radius of 75 mm. A schematic of the geometry can be seen in
figure 3.2. To remove the risk of meshing problems near the point of the slice, the tip of geometry was cut
off. The injector was placed in the middle of the slice located 0.40 mm from the rear cut off with an injection
angle of 37 degrees as specified in the Engine Combustion Network [30]. The injector orifice had a diameter
of 0.165 mm.
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45°
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75 mm

Top View Side View
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e

Top

Bottom

Rear cut-off

Figure 3.2: Schematic view of the geometry
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3.2.2 Spray G Injection Profile

As stated earlier, the injection profile for the injector used was the standard Spray G configuration from
the Engine Combustion Network. The injector specification for this case are for modern advanced injection
systems with high pressure capability [27]. The specified geometry specification for the injector is described
in table 3.1 and figure 3.3.

Number Of Holes 8
Spray Shape Circular
Bend Angle 0°
L/D Ratio 1.4
Hole Shape Straight

Manufacturing EDM
Flow rate 15 cc/s @10 MPa

Fuel injector Delphi solenoid-activated
Nozzle type Valve-covered orifice
Nozzle shape Step hole

Orifice diameter 0.165 mm
Orifice length 0.16-0.18 mm
Step diameter 0.388 mm

Orifice drill angle 37° relative to nozzle axis
Fill outer spray angle 80°

Table 3.1: Specifications for standard Spray G geometry [30]

Figure 3.3: Specified geometry for Spray G [30]
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3.2.3 Boundary And Initial Conditions

The boundary conditions for each boundary are specified in table 3.2. Due to the symmetric nature of the
problem, the side walls were specified as cyclic where the two sides had the opposite side as neighbour patch
i.e. the right side had the left side as neighbour patch and vice versa for the left side.

Region Boundary Boundary Condition
Top No slip, Wall

Bottom No slip, Wall
Arc No slip, Wall

Rear cut-off No slip, Wall
Sides Cyclic, Wall

Table 3.2: Boundary conditions

Several different cases for the initial conditions were explored in the paper by Windell et.al [18]. The initial
conditions utilized for the simulations were the so called G3C conditions, these conditions are listed in table
3.3. The G3C conditions represent part-load, throttled, early injection conditions in a direct injection engine
cylinder. For all cases 100 % liquid propane was injected into air.

Due to the fact that the mass injected in [18] was not specified, the injection velocity for the propane was
calculated using Bernoulli’s equation.

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2 (3.1)

Neglecting elevation differences and assuming v1 = 0, equation 3.1 can be rearranged to calculate the inlet
velocity v2 as:

v2 =

√
2(P1 − P2)

ρ
(3.2)

With an injection pressure, P1, equal to 200 Bar, an ambient pressure in the domain of 1 Bar and a propane
density of 538.07 kg/m3 the calculated inlet velocity to the domain is v2 = 272 m/s. Assuming some pressure
losses in the injector, the injection velocity was set to 250 m/s.

Fuel Propane
Ambient Temperature [K] 293
Ambient Pressure [Bar] 1
Fuel Temperature [K] 293
Injection Pressure [Bar] 200

O2 Concentration Chamber 23.4%
N2 Concentration Chamber 76.6%
Injection Duration [µsec] 870
Injection Velocity [m/s] 250

Injector Orifice Diameter [mm] 0.165

Table 3.3: Initial conditions for G3C test conditions
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3.2.4 Mesh

To create the mesh for the domain, the BlockMesh utility in OpenFOAM was used. This utility creates a mesh
consisting of three dimensional hexahedral blocks. To reduce computational times the mesh had a grading
where the mesh had the highest element density close to the injector and a gradual density decrease the further
away from the injector we get. Four different meshes were created and simulated for the mesh independence
study, the specifications for these can be seen in table 3.4. The mesh used has to be refined enough to capture
all the important aspects of the spray behaviour such as liquid breakup and more. Furthermore, it must
have reasonable computing times as the Design Of Experiment, explained later in the thesis, requires a large
number of simulations to be performed.

Case Number Of Cells Number Of Cells In Each Direction
Coarse Mesh 72000 (30 30 80)
Base Mesh 160000 (40 40 100)
Fine Mesh 540000 (60 60 150)

Even Finer Mesh 1152000 (80 80 180)

Table 3.4: Grids generated for mesh independence study
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(a) Coarse Mesh (b) Base Mesh

(c) Fine Mesh (d) Even Finer Mesh

Figure 3.4: Grids generated for mesh independence study
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3.2.5 Mesh Sensitivity Analysis

The four different meshes were simulated and evaluated using the settings and initial conditions presented
in table 3.3. The parameters evaluated for the mesh sensitivity was maximum liquid penetration length and
maximum vapor penetration length in the domain over the first 1200 microseconds after injection. The liquid
penetration was defined as where the spray contained 95 % of the original mass of the liquid injected into the
domain. For the vapor penetration, if the mass fraction of fuel compared to air was greater than 1 percent
it was used in the calculation for vapor penetration.

The comparisons showed that the fine mesh consisting of 540 000 cells is the optimal choice. It can be
seen that the solution is converging as the deviation in the results between the two finest meshes are at a
maximum 2.5% when looking at the liquid penetration in figure 3.5. When looking at the vapor penetration,
the difference between the two meshes are even smaller at a maximum of 1.2%, figure 3.6. As the differences
between the two finer meshes are so small, it was decided to use the finer mesh consisting of 540 000 cells.
This mesh is sufficiently accurate to capture all important aspects of the spray as at the same time it yields
reasonable computing times, something that is key for the design of experiment analysis.

Figure 3.5: Maximum liquid penetration between the simulated grids
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Figure 3.6: Maximum vapor penetration between the simulated grids

3.2.6 Model Parameter Analysis

To see how the parameters in the KHRT breakup model changed the results in the CFD simulations a number
of simulations with different values of the B0 and B1 parameters was performed. The point of this exercise
was to see if a higher correlation with the experimental results could be achieved. In total 7 simulations was
performed, the input for the breakup parameters are shown in table 3.5. The base values used were collected
from the aachenBomb tutorial in the OpenFOAM environment.

Run Number B0 Value B1 Value
1, Base 0.61 40

2 0.1 40
3 0.2 40
4 1 40
5 0.61 10
6 0.61 20
7 0.61 60

Table 3.5: KHRT breakup parameter values used for comparison

As for the KHRT parameters, the parameters in the Rosin-Rammler function was examined and changed.
The goal with this was also to see how the parameters changed the simulation results and to see if the
correspondence with the experimental results could increase. The values used can be seen in table 3.6. Also
here the base value was collected from the aachenBomb tutorial.
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Run Number maxValue d Value
1, Base 0.00015 0.00015

2 0.00005 0.00005
3 0.00010 0.00010

Table 3.6: Rosin-Rammler parameter values used for comparison

Simulations with the base values are represented in purple in the figures below.

Figure 3.7: Maximum vapor penetration with changed model parameters

The results show that the change of parameters, both in the KHRT breakup model and the Rosin-Rammler
particle size distribution model, translates the vapor penetration and liquid penetration curves up or down.
When increasing the B0 and B1 value the curves both for the liquid and vapor penetration heightens,
increasing the penetration length. However, for the vapor penetration, the parameter values does not affect
the results as significant as it does for the liquid penetration. For the liquid penetration we can see large
differences, especially when changing the B1 and Rosin-Rammler parameters. Increasing the parameter
values moves the curve higher up, but it still maintains the same profile.
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Figure 3.8: Maximum liquid penetration with changed model parameters

Decreasing Rosin-Rammler and B1 parameters showed a good potential for increasing the accuracy of the
vapor penetration length, moving the curve downwards towards the experimental results. However, when
decreasing these values the curves for the liquid penetration also moved downwards, decreasing the accuracy
by moving the curves further away from the experimental results. As the change of parameter values did not
show any clear or significant improvements, it was decided to use the base values of B0 = 0.61, B1 = 40 and
RM = 0.00015 for all the simulations conducted for this thesis.
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3.3 Design Of Experiment Setup

For creating and analyzing the Design of Experiments, the software Rstudio was used. Both a 2k factorial and
Latin Hypercube design was constructed using Rstudio and then simulated with the specified parameter values
from the DoE designs. For the DoE four parameters where considered; Injector Orifice Diameter, Injection
Magnitude, Chamber (Ambient) Pressure and Chamber Temperature. All parameters where considered to
be continuous with an infinite number of values between a set range of two extreme values for the Latin
Hypercube model, the extreme value for each parameter is presented in table 3.7.

Parameter Minimum Value (-) Maximum Value (+)
Injector Orifice Diameter [mm] 0.100 0.300

Injection Magnitude [m/s] 100 300
Chamber Pressure [Bar] 1 50

Chamber Temperature [K] 293 700

Table 3.7: Minimum and maximum values for parameters in DoE

For the DoE it was decided to run 16 simulations, i.e. there would be 16 points in the Latin Hypercube. This
decision was made to try to get an more accurate way of comparing the Latin Hypercube and 2k factorial
designs. With 16 runs, there is an equal number of run for the two different models.

Two main responses where examined for the two different models: Vapor penetration at 870 µs, i.e. at the
end of injection and Liquid penetration at 870 µs.

3.3.1 24 Factorial Design

The factorial design was created using the SixSigma package available in in RStudio. The design is a full
factorial meaning that all 16 combinations of the 4 factors are accounted for. Each factor has a high and a
low value where all of these values are combined to create 16 cases. The parameter values and combinations
for each of the 16 runs is shown in table 3.8.

To be able to linearly fit the model and perform analysis on the response, replications for each run had to be
made. However, as computer experiments are deterministic, the replications was assumed to have the same
response values as the first 16 simulations. The two responses for each of the 16 runs where then aggregated.
Aggregating these results however just resulted in the same original response for each run, as expected. The
reason for this is that the SixSigma package requires replicates to function correctly.

To see which factors were significant and affected the results, the effect of the factors where examined together
with the interaction between the factors. Furthermore, ANOVA tests where conducted to examine the results.
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Run
Number

Injector
Diameter [m]

Injection
Magnitude [m/s]

Chamber
Pressure [Pa]

Chamber
Temperature [K]

1 1E-04 100 1E+05 293
2 3E-04 100 1E+05 293
3 1E-04 300 1E+05 293
4 3E-04 300 1E+05 293
5 1E-04 100 5E+06 293
6 3E-04 100 5E+06 293
7 1E-04 300 5E+06 293
8 3E-04 300 5E+06 293
9 1E-04 100 1E+05 700
10 3E-04 100 1E+05 700
11 1E-04 300 1E+05 700
12 3E-04 300 1E+05 700
13 1E-04 100 5E+06 700
14 3E-04 100 5E+06 700
15 1E-04 300 5E+06 700
16 3E-04 300 5E+06 700

Table 3.8: Parameter values used for runs made by the 24 factorial design

3.3.2 Latin Hypercube Design

The Latin hypercube design was created using the MaxProLHD function in the MaxPro package in RStudio.
To match the number of runs as the factorial design, it was chosen to create 16 runs. The function created
16 runs where the minimum distances between the points are maximized at the same time as they are evenly
distributed in the design domain. The function creates points between [0,1] and distributes them in the
domain. The distribution of the points for all factors in the design domain is shown in figure 3.9.

Figure 3.9: Distribution of points for all factors in the design domain for the Latin hypercube design
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The points in the created design were then multiplied with a linear expression created for each factor. These
expressions scaled up the points in the design domain, transforming them in such a way that the values for
each factor was placed in between the minimum and maximum values presented in table 3.7. The design
points after the transformation is listed in table 3.9.

Run
Number

Injector
Diameter [m]

Injection
Magnitude [m/s]

Chamber
Pressure [Pa]

Chamber
Temperature [K]

1 1.031E-04 190.625 3.896E+06 429.541
2 1.156E-04 240.625 2.315E+06 578.691
3 1.281E-04 153.125 1.683E+06 330.107
4 1.406E-04 203.125 4.192E+05 528.974
5 1.531E-04 140.625 3.264E+06 678.124
6 1.656E-04 290.625 1.367E+06 628.407
7 1.781E-04 265.625 4.528E+06 379.824
8 1.906E-04 103.125 1.999E+06 479.257
9 2.031E-04 165.625 4.844E+06 553.832
10 2.156E-04 215.625 2.631E+06 305.249
11 2.281E-04 253.125 1.031E+05 454.399
12 2.406E-04 128.125 7.352E+05 603.549
13 2.531E-04 228.125 4.212E+06 653.266
14 2.656E-04 115.625 3.580E+06 354.966
15 2.781E-04 278.125 2.948E+06 504.116
16 2.906E-04 178.125 1.051E+06 404.682

Table 3.9: Parameter values used for runs made by the Latin Hypercube design

To examine the results from the simulations using the Latin hypercube parameters, ANOVA tests were
conducted. This also give an opportunity to compare the two DoE models and their predictions. In addition
to the ANOVA tests, 3D contour plots were created to give a visualization of how the response changes with
the factors.
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Chapter 4

Results

4.1 CFD Results

The results from the simulations were visualized using Paraview and RStudio to generate the line plots show-
ing maximum vapor penetration and maximum liquid penetration. All results shown used the initial and
ambient conditions described in table 3.3.

Figure 4.1 and 4.2 shows the maximum liquid and maximum vapor penetration respectively. The results
show a maximum liquid penetration of 63 mm, 1200 µs after the start of injection and a maximum vapor
penetration of 67 mm after the same amount of time. The results show a quite good correlation when looking
at the value of the maximum liquid penetration at 1200 µs. However, the actual profile of the injection does
not correlate very well with a large overshoot, then dropping off to undershoot before reaching the correct
penetration length.

The vapor penetration maximum value does not correlate as well as the liquid penetration. Here the injection
is too powerful in the beginning translating the curve upwards, this is then present during the whole sample
period. However, when looking at the actual profile of the plot, it can be seen that the simulated results
follows the experimental results quite good but with a constant overshoot induced in the beginning.
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Figure 4.1: Maximum liquid penetration

Figure 4.2: Maximum vapor penetration
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Figure 4.3: Propane concentration at various timesteps denoted after start of injection. High-speed Schlieren
images on top from Windell et.al. [18] (penetration scale in mm) and CFD-results at corresponding timesteps
below

The contour plots in figure 4.3 confirms what we can see in the line plots above. For all timesteps examined
it can be seen that the penetration is higher for the CFD simulations compared to the experimental results.
The profile of the contour overall correspond somewhat well. However, the simulation results does not show
the same width and large size of spray cloud at the later timesteps. In figure 4.4, the particle diameter
distribution for the three timesteps can be seen. Here we can see, as expected, that in general the particle
diameter increases the further away from the injector it is. When the diameter reaches a large enough value
the particles evaporate.
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Figure 4.4: Particle diameter distribution in the spray cloud
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4.2 Results - Design Of Experiment

4.2.1 24 Factorial Design

To examine the results and to see which parameters were significant for the response, the effect of the factors
were plotted. Furthermore the parameters were plotted in conjunction with each other to see if there were
any interaction between the parameters.

Figure 4.5: Effect of factors for vapor penetration at end of injection

The effect of factors for the vapor penetration and liquid penetration at end of injection can be seen in figure
4.5 and 4.6 respectively. The figures shows that chamber pressure has the largest effect on the response,
both when looking at vapor and liquid penetration. For both the responses, the penetration decreases a large
amount when the chamber pressure is at the high level of 50 bars.

In general, the results for both penetrations look highly similar for all factors except injection magnitude.
Here it can be seen that the vapor penetration slightly increases when increasing the magnitude. However, for
the liquid penetration, it can be seen that the penetration decreases when increasing the injection magnitude.
It can also be seen that the injection magnitude is more significant for the response when looking at liquid
penetration as the gradient of the curve is larger compared to the vapor penetration response.
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Figure 4.6: Effect of factors for liquid penetration at end of injection

In figure 4.7 and 4.8 the interaction between the factors can be seen for both examined responses. The plots
can be interpreted such that, the less parallel the lines for each factor is, the more they interact with each
other. For the liquid penetration in figure 4.7 it can be seen that there is a clear interaction between chamber
pressure and chamber temperature where the two lines crosses each other when reaching the high level in
chamber pressure. It can also be seen that the chamber pressure and injection magnitude interact with each
other, giving bigger decrease in penetration length at a low injection magnitude compared to a high one
when the chamber pressure is at a high level. For the other factors the interaction is very small and not as
significant as for the ones stated above, however none of the lines are completely parallel meaning there is
some interaction between all factors when examining liquid penetration.

For the vapor penetration, figure 4.8, there is not a large interaction between the majority of the factors.
For this response, the largest interaction is between the injection magnitude and chamber temperature.
When the chamber temperature is at a high level, the vapor penetration increases a larger amount at a high
injection magnitude, compared to when the chamber temperature is at the low value. Furthermore, some
interaction can be seen between injector diameter and injection magnitude. In general however, the lines in
the interaction plots are to a greater extent parallel with each other compared to the interactions for the
liquid penetration response. This means, according to the model, that less interaction is occurring between
the factors when analysing vapor penetration at end of injection compared to liquid penetration.
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Figure 4.7: Interaction between factors looking at liquid penetration at end of injection
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Figure 4.8: Interaction between factors looking at vapor penetration at end of injection

The results for the ANOVA tests are shown in figure 4.9. The analysis resulted in that all four factors have
some significance for both vapor and liquid penetration as a response. What can be seen however is that
chamber pressure has a higher significance than the others, this is shown by the p-value being quite a bit
smaller than for the other factors. Furthermore, the results show that the chamber temperature does not
have an as large significance for the liquid penetration as for the vapor penetration. The numbers also show
us that the interaction between injection magnitude and chamber pressure, injection magnitude and chamber
temperature and also the interaction between chamber pressure and chamber temperature are significant for
both of the examined responses.

All of the results from the ANOVA tests correspond well to what can be observed in the effect of factors and
interaction plots presented above in figures 4.5, 4.6, 4.7 and 4.8.
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(a) Vapor Penetration

(b) Liquid Penetration

Figure 4.9: Results ANOVA test from 24 factorial design for, (a) Vapor penetration (b) Liquid penetration

4.2.2 Latin Hypercube Design

The ANOVA tests for the Latin hypercube design shows that we have low p-values, thus significance, for
injection magnitude and chamber pressure when looking at the vapor penetration. Furthermore, the analysis
show significance when interaction between injection magnitude and chamber pressure occurs. One thing to
note for both vapor and liquid penetration is that the test shows that significance is noteworthy when three
factors interact. One example is in the liquid penetration where the results show quite a large significance
when injector diameter, injection magnitude and chamber pressure interact. For the liquid penetration there
are three instances where three factors interacting shows significance, for the vapor penetration there is one
instance present.

For the liquid penetration the ANOVA tests show a larger amount of factors being significant for the response
compared to the vapor penetration. For this response, all factors have some significance with chamber pressure
being the most significant. According to the test, almost all combination of factors have some significance
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for the response, something that is not present for the vapor penetration response.

(a) Vapor Penetration

(b) Liquid Penetration

Figure 4.10: Results ANOVA test from Latin Hypercube design for, (a) Vapor penetration (b) Liquid
penetration

The contour plots for the examined responses, figure 4.11 and 4.12, give some indication on how the pa-
rameters interact with each other. A common denominator for both responses is the position of the highest
point for each parameter interaction. For all plots it is visible that the highest point is located at roughly
the same position. The contour plots give an indication on the parameter values and how they affect the
response variable. It is for example possible to see that when the chamber pressure is low and the injection
magnitude is high, the vapor and liquid penetration will be at its highest point. One thing to note however
is that it is not possible to see the values of the two other parameters present in the simulation. As the Latin
hypercube design chooses random values for all parameters it is difficult to get a clear understanding how all
four parameters affect the response from the contour plots.
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Figure 4.11: Contour plots showing interaction between parameters for vapor penetration at end of injection
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Figure 4.12: Contour plots showing interaction between parameters for liquid penetration at end of injection
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Chapter 5

Discussion

5.1 CFD Section

When comparing the simulated results with the experiment from Windell et.al. [18] it can be seen that the
results correlate to some degree. For the liquid penetration, roughly the same maximum value is obtained
at the same timestep. However, the profile of the curve does not correlate well, with the experiment having
a more smooth profile with a constant increase of penetration length while the simulations show a large
penetration in the beginning with a plateau at 875 µs to then increase again.

For the liquid penetration, the profile of the experiment and simulation correlate fairly good having a steady
and smooth increase in penetration. However, the simulations have a translation upwards resulting in a
constant higher penetration length compared to the experimental results.

The reason for the non correlating results has most likely to do with the injection profile of the fuel. As the
mass injected in the experiments was not specified, the injection profile was assumed to be a constant velocity
during the injection duration. The behaviour of the liquid penetration with a plateau and a increase in the
last quarter of the examined time is also most probable due to the injection profile. To get more accurate
simulated results, the injection profile should be tweaked and further worked with. However, for the purpose
of this thesis and due to time constraints, it was decided that the results obtained were sufficient for the DoE
implementation.

5.2 Design Of Experiment Section

The results from the factorial design concluded that the chamber pressure had a large effect on both responses
examined. The reason for this large significance could be that the difference between the high and low value
for the factor is large. When looking at the other factors, the relative difference between the high and low
values are a lot lower. Furthermore, when conducting a regular full factorial design of experiment, every
response is assumed to follow a linear function. If the response for a particular factor does not follow a linear
function this will not be picked up by the design. To resolve this issue, one solution could be to add center
points between the high and low value for all factors. With the help of an extra point in the domain the
response could be modeled with a curvature if necessary.

Something to note when analysing the results from the factorial design of experiment is that the model is
not made for deterministic responses, a type response that occurs when conducting computer experiments.
The model needs replicates to be able to calculate an aggregate response. With this aggregated response
the model can then calculate mean differences and variations in the response. The deterministic nature of
the response in this thesis may affect the results in the factorial model, something that has to be taken into
consideration when analysing the results.

42



The Latin hypercube design is, unlike the factorial design, created for experiments with deterministic re-
sponses. This means that the model is more suitable for usage when conducting computer experiment such
as CFD simulations. However, as the design spreads out the point randomly in the design domain, it is more
difficult to analyse significance and interaction between factors in such a systematic order that is possible for
the factorial design. The contour plots give an overview of how different factors affect the response, however
seeing interactions between all variables is somewhat difficult and not as easy as for the line plots created for
the factorial design. As there is not, to the authors knowledge, any way of directly comparing the interactions
and significance of factors between the two models except for ANOVA tests, direct comparison of the two
models is difficult.

The ANOVA tests for the two different designs gave an indication on which factor and which interactions
between the factors that are significant for the examined responses. The factorial design gave a smaller
amount of significant factors and significant interactions but it gave a higher level of significance for the ones
pointed out by the ANOVA test. The high F-values and thus low p-values from the factorial design makes
the significance test more trustworthy compared to the ANOVA tests conducted on the Latin hypercube de-
sign. Furthermore, the tests conducted on the Latin hypercube design showed significant interaction between
three factors, something that seems unreasonable from a physical standpoint. The chance of three factors
interacting and affecting the response significantly is low and as the ANOVA tests for the factorial design
does not show the same three way interaction, this interaction can be questioned. To note however is that
three way interaction is not unfeasible and that the results from the ANOVA test for the Latin hypercube
design should not be completely overlooked.

The results from the simulations and the factorial design showing significant parameters and interaction be-
tween parameters are reasonable and follow what is physically expected. The results show for example that
with lower ambient pressure, the vapor penetration will increase and with higher ambient temperature the
vapor penetration will increase. These results are reasonable and correlate well with results from experiments
conducted by Windell et.al [18], Du et.al [31] and Shervani-Tabar et.al [32]. However, one result that does
not correlate between experiments and the simulated results has to do with liquid penetration and injection
magnitude or pressure. In the experimental results the liquid penetration increases with higher injection
pressures. The results from the simulations and factorial DoE however shows that the liquid penetration
decreases with an increase in injection magnitude. There are many parameters that could affect why the
response for the liquid penetration is different for the experiments compared to the simulations. One might
be the ambient conditions resulting in a higher or lower amount of evaporation of the fuel. Furthermore, the
type of fuel affects when and how the evaporation occurs, in the experiments looking at injection pressure
Diesel and gasoline are the investigated fuels. The faster the evaporation, the shorter the liquid penetration
is. Another thing affecting the evaporation of the droplets in the simulation is the evaporation model, as the
parameters for the KHRT model is optimised for gasoline the evaporation behaviour of the injected propane
might not be fully correct.

A response variable that would be interesting to examine for the design of experiment part is the mixing of
the fuel in the combustion chamber. To achieve good efficiency and correct condition for a good combustion,
a certain amount of mixing of the fuel and air is often specified. When looking at this response however, it is
important that the same mass of fuel is injected for every examined case as often the mass of the injected fuel
is specified to a set number. The mixing should be optimised for the specified mass of fuel injected resulting
in a mixing targeted from the start. Changing the injection magnitude, as done for this thesis, while keeping
the same injection duration, will results in different masses of fuel being injected. Thus if we want to look at
mixing as a response variable for the DoE, the simulation setup needs to be changed ensuring that the same
mass of fuel is injected for all cases.

A number of ways of performing analysis was researched during the thesis but due to lack of time no
real efforts could be put into applying them. One technique that stood out as particularly interesting was
Gaussian process modelling, a process that fits the data and creates a model based on the notion of Gaussian
distribution. Some efforts were put into fitting the response data and use the Gaussian process model,
however no clear result could be conducted from the data. Results from this can be found in appendix A.
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Chapter 6

Conclusions

6.1 Conclusions

The CFD setup constructed for this thesis gives a starting point for injection of LPG using a multi-hole in-
jector. However, due to time constraints an accurate model giving results close to experimental results could
not be obtained. To improve the model and results more time should be put into the model. In the set-up,
modeling parameters as break-up and flash boiling should be looked into further to increase the accuracy of
the model. Furthermore, the injection profile of the fuel should be further worked on. In general the model
gave an accurate enough standpoint to perform the DoE analysis with modifiable parameters changing the
outcome of the results.

Creating and performing simulations based on two design of experiment types gave an overview of what
parameters affected the vapor and liquid penetration of the injected fuel. The models gave similar results
showing that injector orifice diameter was the parameter affecting the response the least and chamber pressure
the parameter affecting the most of the for examined factors. In general the ANOVA test for the factorial de-
sign gave lower p-values and thus a higher confidence that the parameters affected the response. Furthermore
the factorial design gave more physical results showing only interaction between two factors, not three as for
the Latin hypercube design. Comparing the two models proved difficult and no clear comparison technique
between the two models could be found during the work on this thesis. Finding an optimal and quick DoE
model requires further work and investigation.

The tools used for the completion of this thesis has mainly been OpenFOAM-8 and Rstudio. Rstudio gives a
good GUI for the R programming language and is quite easy and comfortable to use if the user has operated
similar programs such as MATLAB. Furthermore, Rstudio is an open source program with a large amount
of users making in easy to find guides and information online. As the R programming language is created
for statistical computing it is very suitable for performing design of experiments and other statistical tasks
such as ANOVA tests. There is a large number of packages created by users online that can be downloaded
and used for free in Rstudio. The packages are an excellent tool giving the user an easy way of doing tasks
such as designing a Latin hypercube design and much more. The packages reduce the amount of code the
user has to write and makes designing and analysing quick and easy. Furthermore, a large amount of the
packages has documentation describing how the specific package can be used. Rstudio also contains a large
number of plotting tools and packages making it possible to create attractive and clear looking plots and
figures, an important aspect to present understandable and clear results. From the work made in Rstudio
for this thesis it can be concluded that the program is a good and powerful tool for creating and evaluating
design of experiments and presenting the obtained results. More work in the program can give powerful and
easy to manage automation scripts both conducting statistical analysis and presenting the results instantly.

44



6.2 Suggestion for future work

To get a more in depth analysis on how to design and optimise both the CFD-model and Design of Experi-
ment models, the work of this thesis could be split in to two different parts.

One part, or study, could have focus on the CFD-modeling and how it could be tweaked to correlate well
with the experimental results. Furthermore, this model could be larger than the current one created giving
more parameters to change for the DoE part. A suggestion is to make a case consisting of the full combustion
chamber, i.e. putting together 8 ”slices” that were examined in this thesis constructing a full combustion
chamber. This would give more opportunity to change parameters such as injection angle and more. Fur-
thermore, the model could be tweaked in such a way that the same mass of fuel is always injected, this would
give opportunity to look at important responses such as mixing.

The second part, or study, could have focus on just developing and optimising the DoE model. For this
report a finished, validated CFD-model should be provided together with a number of given responses that
should be examined. This would give a greater opportunity to optimise and find the correct model for the
DoE, furthermore it would give sufficient time to find good ways of comparing data and models. In this part,
Gaussian process modelling and other evaluation models could be analysed in detail.
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Appendix A

Plots Gaussian Process Modelling

A.1 Liquid Penetration

(a) Chamber Pressure (b) Chamber Temperature

(c) Injector Diameter (d) Injection Magnitude

Figure A.1: Model fitting using Gaussian process with an Exponential kernel, Liquid penetration
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A.2 Vapor Penetration

(a) Chamber Pressure (b) Chamber Temperature

(c) Injector Diameter (d) Injection Magnitude

Figure A.2: Model fitting using Gaussian process with an Exponential kernel, Vapor penetration
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Appendix B

R code

B.1 Contour Plots Lattice Hypercube Design

1

2

3

4 library(plotly)
5 library(ggplot2)
6

7

8 injection.data <- read.csv("C:/Users/knase/Desktop/Master ...
Thesis/CSV files/Lattice hyper liq pen 870.csv", header = TRUE)

9

10

11

12

13 IDCT <- plot ly(x=injection.data$Injector.Diameter, y=injection.data$Chamber.Temperature, ...
z=injection.data$Liquid.Penetration, type = "contour") %>%

14 layout(xaxis= list(title = "<b>Injector Diameter [m]</b>", showexponent = "all", ...
exponentformat = "e"), yaxis= list(title = "<b>Chamber Temperature [K]</b>")) %>%

15 colorbar(title="<b>Liquid \nPenetration [m]</b>")
16

17 IDCT
18

19

20 IDIM <- plot ly(x=injection.data$Injector.Diameter, y=injection.data$Injector.Magnitude, ...
z=injection.data$Liquid.Penetration, type = "contour") %>%

21 layout(xaxis= list(title = "<b>Injector Diameter [m]</b>", showexponent = "all", ...
exponentformat = "e"), yaxis= list(title = "<b>Injection Magnitude [m/s]</b>")) %>%

22 colorbar(title="<b>Liquid \nPenetration [m]</b>")
23

24 IDIM
25

26 IDCP <- plot ly(x=injection.data$Injector.Diameter, y=injection.data$Chamber.Pressure, ...
z=injection.data$Liquid.Penetration, type = "contour") %>%

27 layout(xaxis= list(title = "<b>Injector Diameter [m]</b>", showexponent = "all", ...
exponentformat = "e"), yaxis= list(title = "<b>Chamber Pressure [Pa]</b>", ...
showexponent = "all", exponentformat = "e")) %>%

28 colorbar(title="<b>Liquid \nPenetration [m]</b>")
29

30 IDCP
31

32 IMCP <- plot ly(x=injection.data$Injector.Magnitude, y=injection.data$Chamber.Pressure, ...
z=injection.data$Liquid.Penetration, type = "contour") %>%

33 layout(xaxis= list(title = "<b>Injection Magnitude [m/s]</b>"), yaxis= list(title = ...
"<b>Chamber Pressure [Pa]</b>", showexponent = "all", exponentformat = "e")) %>%

34 colorbar(title="<b>Liquid \nPenetration [m]</b>")
35
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36 IMCP
37

38 IMCT <- plot ly(x=injection.data$Injection.Magnitude, ...
y=injection.data$Chamber.Temperature, z=injection.data$Liquid.Penetration, type = ...
"contour") %>%

39 layout(xaxis= list(title = "<b>Injection Magnitude [m/s]</b>"), yaxis= list(title = ...
"<b>Chamber Temperature [K]</b>")) %>%

40 colorbar(title="<b>Liquid \nPenetration [m]</b>")
41

42 IMCT
43

44 CTCP <- plot ly(x=injection.data$Chamber.Temperature, y=injection.data$Chamber.Pressure, ...
z=injection.data$Liquid.Penetration, type = "contour") %>%

45 layout(xaxis= list(title = "<b>Chamber Temperature [K]</b>"), yaxis= list(title = ...
"<b>Chamber Pressure [Pa]</b>",showexponent = "all", exponentformat = "e")) %>%

46 colorbar(title="<b>Liquid \nPenetration [m]</b>")
47

48 CTCP

B.2 ANOVA Script

1 library(MaxPro)
2 library(SixSigma)
3

4

5 #Factorial Vapor penetration
6 injection.data1 <- ...

read.csv("/home/olle/OpenFOAM/olle-8/run/Finished sim 2k factorial/DoE factorial/Full fac vap 870.csv", ...
header = TRUE)

7

8 response <- injection.data1$Vapor.penetration
9

10 analyse1 <- aov(response¬Injector D+Injection U+Chamber P+Chamber T +
11 Injector D * Injection U + Injector D * Chamber P + Injector D * ...

Chamber T +
12 Injection U * Chamber P + Injection U * Chamber T + Chamber P*Chamber T + ...

Injector D*Injection U*Chamber P +
13 Injection U*Chamber P*Chamber T + Injector D*Chamber P*Chamber T + ...

Injector D*Injection U*Chamber T
14 , data = injection.data1) ...

##Injector Diameter*Injection Magnitude*Chamber Pressure*Chamber Temperature
15

16 summary(analyse1)
17

18 #Factorial Liquid penetration
19 injection.data2 <- ...

read.csv("/home/olle/OpenFOAM/olle-8/run/Finished sim 2k factorial/DoE factorial/Full fac Liq pen 870.csv", ...
header = TRUE)

20

21 response2 <- injection.data2$X
22

23 analyse2 <- aov(response2¬Injector D+Injection U+Chamber P+Chamber T +
24 Injector D * Injection U + Injector D * Chamber P + Injector D * ...

Chamber T +
25 Injection U * Chamber P + Injection U * Chamber T + Chamber P*Chamber T ...

+ Injector D*Injection U*Chamber P +
26 Injection U*Chamber P*Chamber T + Injector D*Chamber P*Chamber T + ...

Injector D*Injection U*Chamber T
27 , data = injection.data2)
28

29 summary(analyse2)
30

31 injection.data3 <- ...
read.csv("/home/olle/OpenFOAM/olle-8/run/FinishedSim lattice hyper/DoE sim/Lattice hyper vapor pen 870.csv", ...
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header = TRUE)
32

33 response3 <- injection.data3$Vapor.Pen
34

35 analyse3 <- aov(response3¬Injector.D+Injection.U+Chamber.P+Chamber.T +
36 Injector.D * Injection.U + Injector.D * Chamber.P + Injector.D * ...

Chamber.T +
37 Injection.U * Chamber.P + Injection.U * Chamber.T + Chamber.P*Chamber.T ...

+ Injector.D*Injection.U*Chamber.P +
38 Injection.U*Chamber.P*Chamber.T + Injector.D*Chamber.P*Chamber.T + ...

Injector.D*Injection.U*Chamber.T
39 , data = injection.data3)
40

41 summary(analyse3)
42

43 injection.data4 <- ...
read.csv("/home/olle/OpenFOAM/olle-8/run/FinishedSim lattice hyper/DoE sim/Lattice hyper liq pen 870.csv", ...
header = TRUE)

44

45 response4 <- injection.data4$Liquid.Penetration
46

47 analyse4 <- ...
aov(response4¬Injector.Diameter+Injection.Magnitude+Chamber.Pressure+Chamber.Temperature ...
+

48 Injector.Diameter * Injection.Magnitude + Injector.Diameter * ...
Chamber.Pressure + Injector.Diameter * Chamber.Temperature +

49 Injection.Magnitude * Chamber.Pressure + Injection.Magnitude * ...
Chamber.Temperature + Chamber.Pressure*Chamber.Temperature +

50 Injector.Diameter*Injection.Magnitude*Chamber.Pressure +
51 Injection.Magnitude*Chamber.Pressure*Chamber.Temperature + ...

Injector.Diameter*Chamber.Pressure*Chamber.Temperature +
52 Injector.Diameter*Injection.Magnitude*Chamber.Temperature, data = ...

injection.data4)
53 summary(analyse4)

B.3 Latin Hypercube Design

1 Lattice design <- MaxProLHD(16,4)
2

3 Lattice design$Design[c(1:16)] <- Lattice design$Design[c(1:16)]*0.0002+0.000096875 ...
#Injector diameter

4

5 Lattice design$Design[c(1:16),2] <- Lattice design$Design[c(1:16),2]*200+96.875 #injector ...
Magnitude

6

7 Lattice design$Design[c(1:16),3] <- ...
Lattice design$Design[c(1:16),3]*(5056666.667)-54895.833 #Chamber Pressure

8

9 Lattice design$Design[c(1:16),4] <- Lattice design$Design[c(1:16),4]*(397.733)+292.82 ...
#Chamber Temperature

10

11 data.frame(Lattice design$Design)
12

13 write.csv(Lattice design$Design, "¬/Desktop/DoE csvs/Lattice hyper.csv", row.names = FALSE)

B.4 24 Factorial Design And Analysis

1 library(SixSigma)
2 library(ggplot2)
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3 theme update(plot.title = element text(hjust = 0.5))
4

5 #Reading in data and responses
6 injection.data <- ...

read.csv("/home/olle/OpenFOAM/olle-8/run/Finished sim 2k factorial/DoE factorial/Full fac Liq pen 870.csv", ...
header = TRUE)

7

8 #Designing the 2ˆ4 experiment
9 Experiment.design <- expand.grid(Injector Diameter = gl(2,1,labels = c('(-)','(+)')), ...

Injection Magnitude = gl(2,1,labels = c('(-)','(+)')), Chamber Pressure = ...
gl(2,1,labels = c('(-)','(+)')), Chamber Temperature = gl(2,1,labels = c('(-)','(+)')) )

10

11 #Randomizing the experiment
12 Experiment.design$ord <- sample(1:16,16)
13 Experiment.design[order(Experiment.design$ord), ]
14

15 #Creating replicates
16 ss.data.doe1 <- data.frame(repl = rep(1:2, each = 16), rbind(Experiment.design))
17

18 replicate.response <- c(injection.data$X,injection.data$X)
19

20 #Addning response to my data
21 ss.data.doe1$response <- replicate.response
22

23 #Aggregating my replicates
24 aggregate(response ¬ Injector Diameter + Injection Magnitude + Chamber Pressure + ...

Chamber Temperature, FUN = mean, data = ss.data.doe1)
25

26 #lm function (Used for conducting analysis of variance)
27 doe.model <- ...

lm(response¬Injector Diameter+Injection Magnitude+Chamber Pressure+Chamber Temperature +
28 Injector Diameter * Injection Magnitude + Injector Diameter * ...

Chamber Pressure + Injector Diameter * Chamber Temperature +
29 Injection Magnitude * Chamber Pressure + Injection Magnitude * ...

Chamber Temperature + Chamber Pressure*Chamber Temperature +
30 Injector Diameter*Injection Magnitude*Chamber Pressure*Chamber Temperature, ...

data = ss.data.doe1)
31

32 #Summary of the DoE model
33 summary(doe.model)
34

35 #Coefficients for the model
36 coef(doe.model)
37

38 #Estimations for all experimental conditions
39 predict(doe.model)
40

41 #Confidence interval for each factor
42 confint(doe.model)
43

44 #Boxplot for the response
45 boxplot(injection.data$X, main = "Distribution Liquid penetration at 870 µs", ylab = ...

"Liquid penetration [m]")
46

47

48 #plot the factors and its effect in one plot
49 prinEF <- data.frame(Factor = rep(c("Injector Diameter","Injection Magnitude","Chamber ...

Pressure", "Chamber Temperature"),each = 2),
50 Level = rep(c(-1,1), 2),
51 Response = c(aggregate(response ¬ Injector Diameter, FUN = mean, data ...

= ss.data.doe1)[,2],
52 aggregate(response ¬ Injection Magnitude, FUN = mean, ...

data = ss.data.doe1)[,2],
53 aggregate(response ¬ Chamber Pressure, FUN = mean, data ...

= ss.data.doe1)[,2],
54 aggregate(response ¬ Chamber Temperature, FUN = mean, ...

data = ss.data.doe1)[,2]))
55 library(ggplot2)
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56 main effects <- ggplot(prinEF,
57 aes(x = Level, y = Response)) +
58 geom point() +
59 geom line() +
60 scale x continuous(breaks = c(-1, 1)) +
61 facet grid(. ¬ Factor) +
62 labs(y="Liquid penetration [m]",title="Effect of factors, Liquid penetration at 870 µs")
63 main effects
64

65

66

67 #plotting the interactions
68 interactionsCPIM <- aggregate(response ¬ Chamber Pressure + Injection Magnitude,
69 FUN = mean, data = ss.data.doe1)
70 effects interaction <- ggplot(interactionsCPIM, aes(x = Chamber Pressure, y = response, ...

color = Injection Magnitude)) +
71 geom point() +
72 geom line(aes(group = Injection Magnitude)) +
73 theme(legend.text = element text(size=15),legend.title = ...

element text(size=12),legend.key.size = unit(1, 'cm'))+
74 theme(title = element text(face = "bold", color = "black") , axis.text.x = ...

element text(face="bold", color ="black", size=12), axis.text.y = ...
element text(face="bold", color ="black", size=12))+

75 labs(x="Chamber Pressure", y="Liquid penetration [m]",colour="Injection Magnitude", ...
title = "Interaction Chamber Pressure and Injection Magnitude")

76 effects interaction
77

78

79 interactionsIDIM <- aggregate(response ¬ Injector Diameter + Injection Magnitude,
80 FUN = mean, data = ss.data.doe1)
81 effects interaction2 <- ggplot(interactionsIDIM, aes(x = Injector Diameter, y = response, ...

color = Injection Magnitude)) +
82 geom point() +
83 geom line(aes(group = Injection Magnitude)) +
84 theme(legend.text = element text(size=15),legend.title = ...

element text(size=12),legend.key.size = unit(1, 'cm'))+
85 theme(title = element text(face = "bold", color = "black") , axis.text.x = ...

element text(face="bold", color ="black", size=12), axis.text.y = ...
element text(face="bold", color ="black", size=12))+

86 labs(x="Injector Diameter", y="Liquid penetration [m]",colour="Injection Magnitude", ...
title = "Interaction Injector Diameter and Injection Magnitude")

87 effects interaction2
88

89

90

91 interactionsIDCT <- aggregate(response ¬ Injector Diameter + Chamber Temperature,
92 FUN = mean, data = ss.data.doe1)
93 effects interaction3 <- ggplot(interactionsIDCT, aes(x = Injector Diameter, y = response, ...

color = Chamber Temperature)) +
94 geom point() +
95 geom line(aes(group = Chamber Temperature)) +
96 theme(legend.text = element text(size=15),legend.title = ...

element text(size=12),legend.key.size = unit(1, 'cm'))+
97 theme(title = element text(face = "bold", color = "black") , axis.text.x = ...

element text(face="bold", color ="black", size=12), axis.text.y = ...
element text(face="bold", color ="black", size=12))+

98 labs(x="Injector Diameter", y="Liquid penetration [m]",colour="Chamber Temperature", ...
title = "Interaction Injector Diameter and Chamber Temperature")

99 effects interaction3
100

101

102

103 interactionsIDCP <- aggregate(response ¬ Injector Diameter + Chamber Pressure,
104 FUN = mean, data = ss.data.doe1)
105 effects interaction4 <- ggplot(interactionsIDCP, aes(x = Injector Diameter, y = response, ...

color = Chamber Pressure)) +
106 geom point() +
107 geom line(aes(group = Chamber Pressure)) +
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108 theme(legend.text = element text(size=15),legend.title = ...
element text(size=12),legend.key.size = unit(1, 'cm'))+

109 theme(title = element text(face = "bold", color = "black") , axis.text.x = ...
element text(face="bold", color ="black", size=12), axis.text.y = ...
element text(face="bold", color ="black", size=12))+

110 labs(x="Injector Diameter", y="Liquid penetration [m]",colour="Chamber Pressure", title ...
= "Interaction Injector Diameter and Chamber Pressure")

111 effects interaction4
112

113

114 interactionsCPCT <- aggregate(response ¬ Chamber Pressure + Chamber Temperature,
115 FUN = mean, data = ss.data.doe1)
116 effects interaction5 <- ggplot(interactionsCPCT, aes(x = Chamber Pressure, y = response, ...

color = Chamber Temperature)) +
117 geom point() +
118 geom line(aes(group = Chamber Temperature)) +
119 theme(legend.text = element text(size=15),legend.title = ...

element text(size=12),legend.key.size = unit(1, 'cm'))+
120 theme(title = element text(face = "bold", color = "black") , axis.text.x = ...

element text(face="bold", color ="black", size=12), axis.text.y = ...
element text(face="bold", color ="black", size=12))+

121 labs(x="Chamber Pressure", y="Liquid penetration [m]",colour="Chamber Temperature", ...
title = "Interaction Chamber Pressure and Chamber Temperature")

122 effects interaction5
123

124 interactionsIMCT <- aggregate(response ¬ Injection Magnitude + Chamber Temperature,
125 FUN = mean, data = ss.data.doe1)
126 effects interaction6 <- ggplot(interactionsIMCT, aes(x = Injection Magnitude, y = ...

response, color = Chamber Temperature)) +
127 geom point() +
128 geom line(aes(group = Chamber Temperature)) +
129 labs(x="Injection Magnitude", y="Liquid penetration [m]",colour="Chamber Temperature", ...

title = "Interaction Injection Magnitude and Chamber Temperature") +
130 theme(legend.text = element text(size=15),legend.title = ...

element text(size=12),legend.key.size = unit(1, 'cm'))+
131 theme(title = element text(face = "bold", color = "black") , axis.text.x = ...

element text(face="bold", color ="black", size=12), axis.text.y = ...
element text(face="bold", color ="black", size=12))

132 effects interaction6
133

134

135 #Plotting residuals
136 par(mfrow=c(2,2))
137 plot(doe.model)
138 box("outer")
139

140 # Check normality of the residuals
141 shapiro.test(residuals(doe.model))
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